JP2018034744A - Hybrid vehicle system - Google Patents

Hybrid vehicle system Download PDF

Info

Publication number
JP2018034744A
JP2018034744A JP2016171678A JP2016171678A JP2018034744A JP 2018034744 A JP2018034744 A JP 2018034744A JP 2016171678 A JP2016171678 A JP 2016171678A JP 2016171678 A JP2016171678 A JP 2016171678A JP 2018034744 A JP2018034744 A JP 2018034744A
Authority
JP
Japan
Prior art keywords
battery
temperature
secondary battery
air conditioning
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016171678A
Other languages
Japanese (ja)
Other versions
JP6575469B2 (en
Inventor
宏紀 三木
Hiroki Miki
宏紀 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016171678A priority Critical patent/JP6575469B2/en
Publication of JP2018034744A publication Critical patent/JP2018034744A/en
Application granted granted Critical
Publication of JP6575469B2 publication Critical patent/JP6575469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hybrid vehicle system with a battery overheat suppressed even in the case of a charge-discharge load of a secondary battery being large when a heater is turned on under an extreme low temperature condition.SOLUTION: A hybrid vehicle system 10 includes: an air-conditioner-battery cooling part 60 for supplying a cabin air-conditioning unit 62 and a secondary battery cooling unit 64 with a common coolant; and a control device 40 for controlling charge-discharge power of a secondary battery 20 in accordance with a battery temperature. In the case of satisfying three conditions, i.e., an external temperature is equal to or lower than a given temperature, a cabin air-conditioning is a heating mode, and a battery load of the secondary battery is equal to or higher than a given power value, the control device 40 shifts limitation of charge-discharge power toward a low temperature side of the battery temperature in comparison with the case of dissatisfying at least one of the three conditions.SELECTED DRAWING: Figure 1

Description

本開示は、ハイブリッド車両システムに係り、特に、車室内空調ユニットに用いる冷媒を二次電池冷却ユニットに用いる冷媒として併用するハイブリッド車両システムに関する。   The present disclosure relates to a hybrid vehicle system, and more particularly, to a hybrid vehicle system that uses a refrigerant used in a vehicle interior air conditioning unit as a refrigerant used in a secondary battery cooling unit.

ハイブリッド車両に搭載される二次電池は充放電によって発熱するので冷却が必要である。車両の車室内空調に用いる冷媒と二次電池冷却に用いる冷媒とを併用すれば、二次電池冷却ユニットの車両への搭載性が向上する。   The secondary battery mounted on the hybrid vehicle generates heat due to charging / discharging and needs to be cooled. If the refrigerant used for vehicle interior air conditioning of the vehicle and the refrigerant used for cooling the secondary battery are used in combination, the mountability of the secondary battery cooling unit on the vehicle is improved.

特許文献1には、室内空調ユニットと電池冷却ユニットとに共通の冷媒を用いる冷媒循環回路を有し、電池の充放電制御開始温度Tb1よりも低温で、電池の常用運転温度域上限Tb3よりも高温の範囲において、電池冷却優先上限温度Tb2を定めることが述べられている。ここで、電池温度がTb2以上のときは、室内空調ユニットへの冷媒の供給を止めて、冷媒の全量を電池冷却ユニットに回す。   Patent Document 1 has a refrigerant circulation circuit that uses a common refrigerant for the indoor air-conditioning unit and the battery cooling unit, and is lower than the charge / discharge control start temperature Tb1 of the battery and higher than the normal operating temperature range upper limit Tb3 of the battery. It is stated that the battery cooling priority upper limit temperature Tb2 is set in the high temperature range. Here, when the battery temperature is equal to or higher than Tb2, the supply of the refrigerant to the indoor air conditioning unit is stopped, and the entire amount of the refrigerant is sent to the battery cooling unit.

特許文献2には、電池冷却水回路と冷凍サイクル回路とを備え、車室内の冷暖房と二次電池の暖機・冷却とを行う電動車両用の温度調整装置が述べられている。ここでは、夏季や冬季では車室内の冷暖房に特に大きな空調エネルギーを要し、電動車両の航続距離が低下することを指摘している。そこで、夏季や冬季の運転開始時に、外部電源によって冷凍サイクルを駆動し、発生する冷熱・温熱を電池冷却水回路に移して、二次電池を冷却・昇温して熱エネルギーを蓄積した熱マス(熱容量素子)化し、以後の冷房・暖房に利用することが開示されている。   Patent Document 2 describes a temperature control device for an electric vehicle that includes a battery cooling water circuit and a refrigeration cycle circuit, and performs heating / cooling of a vehicle interior and warming up / cooling of a secondary battery. Here, it is pointed out that especially in the summer and winter, a large amount of air-conditioning energy is required for cooling and heating the passenger compartment, and the cruising distance of the electric vehicle decreases. Therefore, at the start of operation in summer and winter, the refrigeration cycle is driven by an external power supply, the generated cold / heat is transferred to the battery cooling water circuit, and the secondary battery is cooled / heated to accumulate heat energy. It is disclosed that it is made into a (heat capacity element) and used for subsequent cooling and heating.

本開示に関連する技術として、特許文献3には、車両に搭載される二次電池の放電電力制限値WOUT及び充電電力制限値WINについて、放電時と比べて、充電時には充電効率の悪化により温度上昇が発生しやすいことを指摘している。そこで、電池温度が高温のときのWINの制限開始温度を、WOUTの制限開始温度よりも低温側で開始することが開示されている。 As a technique related to the present disclosure, Patent Document 3 discloses that the discharge power limit value W OUT and the charge power limit value W IN of a secondary battery mounted on a vehicle are deteriorated in charge efficiency when charging compared to when discharging. It is pointed out that temperature rise is likely to occur. Therefore, the limit start temperature of W IN when the battery temperature is a high temperature, than the limit start temperature of W OUT discloses that starts at a low temperature side.

特開2012−030663号公報JP 2012-030663 A 特開2012−232730号公報JP 2012-232730 A 特開2007−221885号公報Japanese Patent Laid-Open No. 2007-221885

冷媒の圧縮・凝縮・膨張・蒸発のサイクルを利用したヒートポンプを用いて、車室内空調ユニットに用いる冷媒を二次電池冷却ユニットに用いる冷媒として併用することができる。ヒートポンプを用いて室内を暖房するときは、外気から吸熱し、圧縮によって高圧高温した気体をさらに昇温させて室内空気に放熱する。ここで、外気温度が例えば−10℃以下の極低温であると、圧縮によって高圧高温にした気体から熱が奪われ、以後の二次電池冷却における膨張弁による冷却効果が低下する。この状況下で、二次電池の充放電の電池負荷が大きいと、内部抵抗の大きい電池セル等が異常過熱する恐れがある。そこで、極低温下の暖房時に二次電池の電池負荷が大きい場合であっても、電池過熱を抑制できるハイブリッド車両システムが要望される。   By using a heat pump that utilizes a cycle of refrigerant compression / condensation / expansion / evaporation, the refrigerant used for the vehicle interior air conditioning unit can be used in combination as the refrigerant used for the secondary battery cooling unit. When a room is heated using a heat pump, heat is absorbed from the outside air, and a high-pressure and high-temperature gas is further raised by compression to radiate heat to the room air. Here, when the outside air temperature is an extremely low temperature of, for example, −10 ° C. or less, heat is taken away from the gas that has been made high pressure and high temperature by compression, and the cooling effect by the expansion valve in the subsequent secondary battery cooling is reduced. Under this circumstance, if the battery load for charging / discharging the secondary battery is large, the battery cell having a large internal resistance may be abnormally overheated. Therefore, there is a demand for a hybrid vehicle system that can suppress battery overheating even when the battery load of the secondary battery is large during heating at extremely low temperatures.

本開示に係るハイブリッド車両システムは、車室内空調ユニットと二次電池冷却ユニットとに共通の冷媒の供給を行う空調・電池冷却部と、車両の外気温度を検出する外気温度検出部と、二次電池の充放電による電池負荷を検出する電池負荷検出部と、二次電池の電池温度を検出する電池温度検出部と、電池温度に応じて二次電池の充放電電力の制限を行う制御装置と、を備え、制御装置は、外気温度が所定温度以下の低温であること、車室内空調が暖房モードであること、及び二次電池の電池負荷が所定電力値以上であることの3つの条件を満たすときに、3つの条件のうちの少なくとも1つを満たさないときと比較して、充放電電力の制限を電池温度の低温側にシフトさせる。   A hybrid vehicle system according to the present disclosure includes an air conditioning / battery cooling unit that supplies a common refrigerant to a vehicle interior air conditioning unit and a secondary battery cooling unit, an outside air temperature detecting unit that detects an outside air temperature of the vehicle, A battery load detecting unit for detecting a battery load due to charging / discharging of the battery, a battery temperature detecting unit for detecting a battery temperature of the secondary battery, and a control device for limiting charge / discharge power of the secondary battery according to the battery temperature; The control device has three conditions: the outside air temperature is a low temperature equal to or lower than a predetermined temperature, the vehicle interior air conditioning is in a heating mode, and the battery load of the secondary battery is equal to or higher than a predetermined power value. When satisfy | filling, compared with when not satisfy | filling at least 1 of three conditions, the restriction | limiting of charging / discharging electric power is shifted to the low temperature side of battery temperature.

本開示に係るハイブリッド車両システムによれば、極低温下の暖房時に二次電池の電池負荷が大きい場合であっても、電池過熱を抑制できる。   According to the hybrid vehicle system according to the present disclosure, battery overheating can be suppressed even when the battery load of the secondary battery is large during heating at a cryogenic temperature.

実施の形態に係るハイブリッド車両システムの構成図である。1 is a configuration diagram of a hybrid vehicle system according to an embodiment. 図1における空調・電池冷却部の詳細構成図である。It is a detailed block diagram of the air-conditioning and battery cooling part in FIG. 図1における充放電制限関係ファイルの例を示す図である。It is a figure which shows the example of the charging / discharging restriction | limiting relation file in FIG. 実施の形態に係るハイブリッド車両システムにおいて、電池過熱抑制制御の手順を示すフローチャートである。4 is a flowchart showing a procedure of battery overheat suppression control in the hybrid vehicle system according to the embodiment. 図2の空調・電池冷却部において、冷房モードのときの冷媒の流れを示す図である。FIG. 3 is a diagram illustrating a refrigerant flow in a cooling mode in the air conditioning / battery cooling unit in FIG. 2. 図2の空調・電池冷却部において、暖房モードのときの冷媒の流れを示す図である。FIG. 3 is a diagram showing a refrigerant flow in a heating mode in the air conditioning / battery cooling unit of FIG. 2.

以下に図面を用いて実施の形態のハイブリッド車両システムにつき、詳細に説明する。以下では、車室内空調ユニットと二次電池冷却ユニットとに共通の冷媒の供給を行う空調・電池冷却部の構成として冷凍サイクルを述べるが、これは説明のための例示であって、これ以外の構成であってもよい。例えば、冷凍サイクルと冷却水循環回路とを組み合わせたものであってもよい。   Hereinafter, a hybrid vehicle system according to an embodiment will be described in detail with reference to the drawings. In the following, a refrigeration cycle will be described as a configuration of an air conditioning / battery cooling unit that supplies a common refrigerant to the vehicle interior air conditioning unit and the secondary battery cooling unit. It may be a configuration. For example, a combination of a refrigeration cycle and a cooling water circulation circuit may be used.

以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。   Below, the same code | symbol is attached | subjected to the same element in all the drawings, and the overlapping description is abbreviate | omitted.

図1は、本実施の形態におけるハイブリッド車両システム10の構成図である。以下では、ハイブリッド車両システムが搭載されるハイブリッド車両を、特に断らない限り車両と呼ぶ。ハイブリッド車両システム10は、本体部11と、本体部11の構成要素の動作を全体として制御する制御装置40とを含む。本体部11は、エンジン12、回転電機ブロック14、PCU(Power Control Unitの略)と示される電力コントロールユニット16、二次電池20、空調・電池冷却部60を含む。   FIG. 1 is a configuration diagram of a hybrid vehicle system 10 in the present embodiment. Hereinafter, a hybrid vehicle equipped with a hybrid vehicle system is referred to as a vehicle unless otherwise specified. The hybrid vehicle system 10 includes a main body 11 and a control device 40 that controls the operation of the components of the main body 11 as a whole. The main body 11 includes an engine 12, a rotating electric machine block 14, a power control unit 16 indicated as PCU (abbreviation of Power Control Unit), a secondary battery 20, and an air conditioning / battery cooling unit 60.

エンジン12は、車両に搭載される内燃機関である。回転電機ブロック14は、MG1,MG2と示される2つの回転電機を含む。MG1,MG2は、共に車両に搭載されるモータ・ジェネレータ(Motor/Generator:MG)であって、車両走行中は電動機として作用し、車両が制動中は発電機として作用する三相同期型回転電機である。MG1はエンジン12によって駆動され、主として発電機として働き、MG2は主として車両の駆動用モータとして働く。電力コントロールユニット16は、回転電機ブロック14に接続されるインバータ回路、及び、二次電池20とインバータ回路との間に設けられる昇降圧コンバータを含む。   The engine 12 is an internal combustion engine mounted on a vehicle. The rotating electrical machine block 14 includes two rotating electrical machines indicated as MG1 and MG2. MG1 and MG2 are both motor generators (Motor / Generator: MG) mounted on the vehicle, and act as an electric motor while the vehicle is running, and act as a generator when the vehicle is braked. It is. MG1 is driven by the engine 12, and mainly functions as a generator, and MG2 mainly functions as a motor for driving the vehicle. The power control unit 16 includes an inverter circuit connected to the rotating electrical machine block 14 and a step-up / down converter provided between the secondary battery 20 and the inverter circuit.

二次電池20は、電池セルを複数個組み合わせて、所定の高電圧、大電流を出力可能にした高電圧電池である。二次電池20の端子間電圧の一例は、約200〜300Vである。図1では、複数の電池セルを直列接続した二次電池20を示したが、出力される高電圧、大電流の仕様に応じ、直列接続と並列接続とを適宜組み合わせた二次電池20であってよい。電池セルの種類としては、リチウムイオン電池セル、ニッケル水素電池セル等が用いられる。   The secondary battery 20 is a high voltage battery in which a plurality of battery cells are combined to output a predetermined high voltage and large current. An example of the voltage between the terminals of the secondary battery 20 is about 200 to 300V. Although FIG. 1 shows the secondary battery 20 in which a plurality of battery cells are connected in series, the secondary battery 20 is an appropriate combination of series connection and parallel connection according to the specifications of the output high voltage and large current. It's okay. As the types of battery cells, lithium ion battery cells, nickel metal hydride battery cells, and the like are used.

二次電池20は、電池パックケース21に収納され、空調・電池冷却部60によって冷却される。電池温度検出部22は、二次電池20の温度である電池温度θBを検出する温度検出手段である。電池電圧検出部24は、二次電池20の端子間電圧である電池電圧Vを検出する電圧検出手段である。充放電電流検出部26は、二次電池20からの放電電流と二次電池20へのから充電電流である充放電電流Iを検出する電流検出手段である。電池電圧検出部24と充放電電流検出部26とは、二次電池20の充放電電力負荷である電池負荷を検出する電池負荷検出部28を構成する。検出された電池温度θB、電池電圧V、充放電電流Iのデータは、適当な信号線によって制御装置40に伝送される。 The secondary battery 20 is accommodated in the battery pack case 21 and cooled by the air conditioning / battery cooling unit 60. The battery temperature detection unit 22 is a temperature detection unit that detects a battery temperature θ B that is the temperature of the secondary battery 20. The battery voltage detection unit 24 is a voltage detection unit that detects a battery voltage V that is a voltage between terminals of the secondary battery 20. The charge / discharge current detection unit 26 is a current detection unit that detects a discharge current from the secondary battery 20 and a charge / discharge current I that is a charge current from the secondary battery 20. The battery voltage detection unit 24 and the charge / discharge current detection unit 26 constitute a battery load detection unit 28 that detects a battery load that is a charge / discharge power load of the secondary battery 20. The detected battery temperature θ B , battery voltage V, and charging / discharging current I data are transmitted to the control device 40 through appropriate signal lines.

外気温度検出部34は、車両の外気温度θOを検出する温度検出手段である。外気温度検出部34は、例えば、車両の前方側に配置されるラジエータの周辺に設けられ、検出された外気温度θOデータは、適当な信号線によって制御装置40に伝送される。 Outside air temperature detector 34 is a temperature detecting means for detecting the outside air temperature theta O of the vehicle. The outside air temperature detection unit 34 is provided, for example, in the vicinity of a radiator disposed on the front side of the vehicle, and the detected outside air temperature θ O data is transmitted to the control device 40 through an appropriate signal line.

空調・電池冷却部60は、車両の車室内の空調を行う車室内空調ユニット62と、二次電池20の冷却を行う二次電池冷却ユニット64とについて、ヒートポンプまたは冷凍サイクルとして知られる構成によって同じ冷媒を用いるシステムに一体化したものである。ヒートポンプまたは冷凍サイクルは同じものであるので、以下では、ヒートポンプとする。   The air conditioning / battery cooling unit 60 is the same for the vehicle interior air conditioning unit 62 that performs air conditioning in the vehicle interior of the vehicle and the secondary battery cooling unit 64 that cools the secondary battery 20, depending on the configuration known as a heat pump or a refrigeration cycle. It is integrated into a system that uses a refrigerant. Since the heat pump or the refrigeration cycle is the same, the heat pump is hereinafter referred to as a heat pump.

図2に示すように、ヒートポンプの基本構成は、アキュムレータ72、圧縮機74、室外機78、送風ファン80、膨張弁84、エバポレータ86を含む。車室内空調ユニット62が冷房モードのときは、圧縮機74はアキュムレータ72に含まれる冷媒を吸い上げて高圧高温の気体とし、室外機78は、高圧高温の気体を放熱させて低温液体に凝縮させる凝縮器として働く。膨張弁84は低温液体を断熱膨張させて一部気化し、エバポレータ86は全部の低温液体の蒸発によって吸熱させる。これらの要素の構成及び作用、用いられる冷媒等は、ヒートポンプまたは冷凍サイクルとして周知であるので、さらなる説明を省略する。   As shown in FIG. 2, the basic configuration of the heat pump includes an accumulator 72, a compressor 74, an outdoor unit 78, a blower fan 80, an expansion valve 84, and an evaporator 86. When the passenger compartment air-conditioning unit 62 is in the cooling mode, the compressor 74 sucks the refrigerant contained in the accumulator 72 into high-pressure high-temperature gas, and the outdoor unit 78 dissipates the high-pressure high-temperature gas to condense it into a low-temperature liquid. Work as a vessel. The expansion valve 84 adiabatically expands the low temperature liquid to partially vaporize it, and the evaporator 86 absorbs heat by evaporation of all the low temperature liquid. Since the configuration and operation of these elements, the refrigerant used, and the like are well known as a heat pump or a refrigeration cycle, further description is omitted.

空調・電池冷却部60は、ヒートポンプを車室内空調ユニット62の暖房モードのときに用いるために、三方弁76、ヒータコア92、膨張弁94を備える。暖房モードにおいて、ヒータコア92は、圧縮機74によって圧縮された高圧高温の気体に対する凝縮器として働く。暖房モードにおいては、室外機78を放熱器でなく吸熱器である蒸発器として作用させる。暖房モードにおいては、送風ファン80は駆動されない。   The air conditioning / battery cooling unit 60 includes a three-way valve 76, a heater core 92, and an expansion valve 94 in order to use the heat pump in the heating mode of the vehicle interior air conditioning unit 62. In the heating mode, the heater core 92 serves as a condenser for the high-pressure and high-temperature gas compressed by the compressor 74. In the heating mode, the outdoor unit 78 acts as an evaporator that is a heat absorber rather than a radiator. In the heating mode, the blower fan 80 is not driven.

車室内空調ユニット62は、室内機としての空調用ダクト66を有する。空調用ダクト66内には、冷房モードのときに動作するエバポレータ86と、暖房モードのときに動作するヒータコア92とが設けられ、空気取入口側の送風機68から車室内の空気を取り込み、空気吹出口69側から車室内に戻す。空調用ダクト66内に設けられる流路切替ドア70は、冷房モードまたは暖房モードに対応して、エバポレータ86によって冷やされた冷気、またはヒータコア92によって暖められた暖気が空気吹出口69に流れるように、空調用ダクト66内の流れを切り替える。   The vehicle interior air conditioning unit 62 has an air conditioning duct 66 as an indoor unit. In the air conditioning duct 66, an evaporator 86 that operates in the cooling mode and a heater core 92 that operates in the heating mode are provided. The air in the vehicle compartment is taken in from the blower 68 on the air intake side, and the air blowing is performed. Return to the passenger compartment from the exit 69 side. The flow path switching door 70 provided in the air conditioning duct 66 corresponds to the cooling mode or the heating mode so that the cold air cooled by the evaporator 86 or the warm air heated by the heater core 92 flows to the air outlet 69. The flow in the air conditioning duct 66 is switched.

二次電池冷却ユニット64は、分岐冷媒路88と膨張弁90とを有する。分岐冷媒路88は、車室内空調ユニット62の冷房モードのときに用いられるエバポレータ86への冷媒路に並列に配置された冷媒路である。すなわち、分岐冷媒路88は、車室内空調ユニット62の冷房モードのときに用いられるエバポレータ86へ冷媒が供給される冷媒供給路に一方端が接続され、エバポレータ86からアキュムレータ72側に冷媒が戻される冷媒戻し路に他方端が接続される。膨張弁90は、分岐冷媒路88の一方端の側に設けられる。分岐冷媒路88は、一方端の側から電池パックケース21の側に延び、適当な接続部を介して電池パックケース21の内部に入り込み、二次電池20の底部等に熱交換のために接触してからUターンし、接続部を介して他方端の側に戻る。   The secondary battery cooling unit 64 has a branch refrigerant path 88 and an expansion valve 90. The branch refrigerant path 88 is a refrigerant path arranged in parallel with the refrigerant path to the evaporator 86 used when the vehicle interior air conditioning unit 62 is in the cooling mode. That is, the branch refrigerant path 88 is connected at one end to a refrigerant supply path through which refrigerant is supplied to the evaporator 86 used when the vehicle interior air conditioning unit 62 is in the cooling mode, and the refrigerant is returned from the evaporator 86 to the accumulator 72 side. The other end is connected to the refrigerant return path. The expansion valve 90 is provided on one end side of the branch refrigerant path 88. The branch refrigerant path 88 extends from one end side to the battery pack case 21 side, enters the inside of the battery pack case 21 through an appropriate connection portion, and contacts the bottom portion of the secondary battery 20 for heat exchange. Then, it makes a U-turn and returns to the other end side through the connecting portion.

逆止弁82は、室外機78と膨張弁84とを結ぶ管路の途中に設けられ、室外機78側から膨張弁84,90側への冷媒の流れを許容し、膨張弁84側から室外機78側に向かう冷媒の流れを阻止する働きを有する。   The check valve 82 is provided in the middle of a pipe line connecting the outdoor unit 78 and the expansion valve 84, allows refrigerant to flow from the outdoor unit 78 side to the expansion valves 84 and 90, and from the expansion valve 84 side to the outdoor side. It has a function of blocking the flow of refrigerant toward the machine 78 side.

空調・電池冷却部60の冷房モード、暖房モード等における動作の詳細については、図4の説明の際に、図5、図6を用いて後述する。   Details of the operation of the air conditioning / battery cooling unit 60 in the cooling mode, the heating mode, and the like will be described later with reference to FIGS. 5 and 6 in the description of FIG.

図1に戻り、空調モードSW36は、ユーザによって操作され、車室内空調のモードを冷房モード、暖房モード、空調停止モードのいずれかに設定される操作子である。空調モードSW36によって設定されたモードは、適当な信号線を介して、制御装置40に伝送される。   Returning to FIG. 1, the air conditioning mode SW 36 is an operator that is operated by the user and sets the air conditioning mode of the passenger compartment to any one of the cooling mode, the heating mode, and the air conditioning stop mode. The mode set by the air conditioning mode SW 36 is transmitted to the control device 40 via an appropriate signal line.

制御装置40に接続されるメモリ42は、制御装置40と接続され、制御装置40で用いられるプログラムや、演算処理のデータ等を記憶するメモリである。特に、二次電池20に関する充放電制限関係ファイル44を記憶する。   The memory 42 connected to the control device 40 is a memory that is connected to the control device 40 and stores programs used in the control device 40, data of arithmetic processing, and the like. In particular, a charge / discharge restriction relation file 44 relating to the secondary battery 20 is stored.

図3は、充放電制限関係ファイル44の例を示す図である。充放電制限関係ファイル44は、電池温度θBについて、二次電池20の高温側における充放電電力の制限を示すマップである。低温側でも充放電制御が行われるが、図3では省略した。横軸は二次電池20の電池温度θBで、縦軸の正方向側は、二次電池20の放電電力制限値WOUTで、縦軸の負方向側は、二次電池20の充電電力制限値WINである。二次電池20の放電電力制限特性100と、充電電力制限特性102をそれぞれ実線で示す。横軸上に高温側閾値温度θB2を示す。高温側閾値温度θB2は、高温側の充放電制限開始温度で、これよりも高温側でWOUT,WINを制限する。電池温度θBがθB2より高温になるに従い、放電電力制限特性100はWOUTが次第に小さくなる放電電力制限特性101となり、充電電力制限特性102はWINが次第に小さくなる充電電力制限特性103となる。図3のようなマップは、二次電池20について予めシミュレーションや実験で求めておくことができる。 FIG. 3 is a diagram illustrating an example of the charge / discharge restriction relation file 44. The charge / discharge restriction relation file 44 is a map showing the restriction of charge / discharge power on the high temperature side of the secondary battery 20 with respect to the battery temperature θ B. Although charge / discharge control is performed also on the low temperature side, it is omitted in FIG. The horizontal axis is the battery temperature θ B of the secondary battery 20, the vertical axis is the discharge power limit value W OUT of the secondary battery 20, and the negative axis is the charge power of the secondary battery 20. This is the limit value W IN . The discharge power limiting characteristic 100 and the charging power limiting characteristic 102 of the secondary battery 20 are indicated by solid lines, respectively. The high temperature side threshold temperature θ B2 is shown on the horizontal axis. The high temperature side threshold temperature θ B2 is the charge / discharge restriction start temperature on the high temperature side, and limits W OUT and W IN on the high temperature side. As the battery temperature θ B becomes higher than θ B2 , the discharge power limiting characteristic 100 becomes the discharge power limiting characteristic 101 where W OUT gradually decreases, and the charging power limiting characteristic 102 is the charging power limiting characteristic 103 where W IN gradually decreases. Become. The map as shown in FIG. 3 can be obtained in advance for the secondary battery 20 by simulation or experiment.

図3では、充放電制限関係ファイル44として、放電電力制限特性100と充電電力制限特性102とをマップ形式によって示した。これ以外に、ルックアップテーブル形式、数式関係、電池温度θBを入力することでその温度におけるWOUT,WINを出力されるROM形式等を用いてよい。 In FIG. 3, the discharge power restriction characteristic 100 and the charge power restriction characteristic 102 are shown in a map format as the charge / discharge restriction relation file 44. Other than this, a lookup table format, a mathematical relationship, a ROM format that outputs W OUT and W IN at that temperature by inputting the battery temperature θ B may be used.

制御装置40は、本体部11の各要素の動作を全体的に制御する装置であるが、特に、外気温度θOが−10℃以下の極低温時に暖房モードとなり、さらに二次電池20の電池負荷が大きいときに、二次電池20の過熱を抑制する二次電池過熱抑制制御を行う。制御装置40は、空調モードSW36の設定に従って空調・電池冷却部60を制御し、電池温度検出部22、電池負荷検出部28、外気温度検出部34から伝送されるθB,V,I,θOを取得し、メモリ42と交信して充放電制限関係ファイル44を参照する。制御装置40は、空調モードが暖房モードか否かを判定する空調モード判定部46、外気温度θOが所定温度以下か否かを判定する外気温度判定部48、電池負荷判定部50、及び、充放電制限部52を含む。 The control device 40 is a device for overall control of the operation of each element of the main body unit 11, and in particular, the heating mode is set at an extremely low temperature of the outside air temperature θ O of −10 ° C. or lower, and further the battery of the secondary battery 20. When the load is large, secondary battery overheat suppression control for suppressing overheating of the secondary battery 20 is performed. The control device 40 controls the air conditioning / battery cooling unit 60 according to the setting of the air conditioning mode SW 36, and θ B , V, I, θ transmitted from the battery temperature detection unit 22, the battery load detection unit 28, and the outside air temperature detection unit 34. O is acquired, and the charge / discharge restriction relation file 44 is referred to by communicating with the memory 42. The control device 40 includes an air conditioning mode determination unit 46 that determines whether or not the air conditioning mode is a heating mode, an outside air temperature determination unit 48 that determines whether or not the outside air temperature θ O is equal to or lower than a predetermined temperature, a battery load determination unit 50, and A charge / discharge limiting unit 52 is included.

制御装置40のこれらの機能は、制御装置40がソフトウェアを実行することで実現でき、具体的には、制御装置40が電池過熱抑制プログラムの各処理手順を実行することで実現される。上記機能の一部をハードウェアで実現してもよい。   These functions of the control device 40 can be realized by the control device 40 executing software. Specifically, the control device 40 is realized by executing each processing procedure of the battery overheat suppression program. A part of the above functions may be realized by hardware.

上記構成の作用、特に、制御装置40の各機能について、図4〜図6を用いてさらに詳細に説明する。   The operation of the above configuration, in particular, each function of the control device 40 will be described in more detail with reference to FIGS.

図4は、外気温度θOが−10℃以下の極低温時に暖房モードとなり、さらに二次電池20の電池負荷が大きいときに、二次電池20の過熱を抑制する電池過熱抑制制御の手順を示すフローチャートである。各手順は、制御装置40において実行される電池過熱抑制プログラムの各処理手順に対応する。車両においてイグニッションスイッチ等によって車両の制御システムが立ち上がると、システム初期化処理を経て、電池過熱抑制プログラムが立ち上がる。 FIG. 4 shows the procedure of the battery overheat suppression control that is in the heating mode when the outside air temperature θ O is at a very low temperature of −10 ° C. or less and further suppresses overheating of the secondary battery 20 when the battery load of the secondary battery 20 is large. It is a flowchart to show. Each procedure corresponds to each processing procedure of the battery overheat suppression program executed in the control device 40. When a vehicle control system is started by an ignition switch or the like in the vehicle, a battery overheat suppression program is started through a system initialization process.

まず、車室内空調に対する要求が、暖房モードか否かが判定される(S10)。この処理手順は、制御装置40の空調モード判定部46の機能によって実行される。具体的には、空調モードSW36から伝送されてくる設定データが「暖房モード」であるときは、S10の判定が肯定され、S12に進む。   First, it is determined whether or not the request for vehicle interior air conditioning is in the heating mode (S10). This processing procedure is executed by the function of the air conditioning mode determination unit 46 of the control device 40. Specifically, when the setting data transmitted from the air conditioning mode SW36 is “heating mode”, the determination in S10 is affirmed and the process proceeds to S12.

それ以外の「冷房モード」、「空調停止モード」のときは、S10が否定され、S18に進む。S18は、二次電池20の電池温度θBに対する充放電制限処理に関するものであるが、ここでは、通常通りの充放電制限が行われる。通常通りの充放電制御とは、図3で述べた放電電力制限特性100,101、充電電力制限特性102,103に従い、電池温度θB2以上で充放電電力制限を行う制御である。 In other “cooling mode” and “air-conditioning stop mode”, S10 is denied and the process proceeds to S18. S18 relates to the charge / discharge restriction process for the battery temperature θ B of the secondary battery 20, but here, charge / discharge restriction is performed as usual. The normal charge / discharge control is control for limiting the charge / discharge power at the battery temperature θ B2 or higher according to the discharge power limit characteristics 100 and 101 and the charge power limit characteristics 102 and 103 described in FIG.

ここで、空調・電池冷却部60における冷媒の流れについて、図5、図6を用い、冷房モード、空調停止モード、暖房モードの順に説明する。   Here, the flow of the refrigerant in the air conditioning / battery cooling unit 60 will be described in the order of the cooling mode, the air conditioning stop mode, and the heating mode with reference to FIGS. 5 and 6.

図5は、冷房モードについて、空調・電池冷却部60の冷媒の流れる経路を太線で示す図である。冷房モードにおいては、送風機68と送風ファン80は駆動され、流路切替ドア70は、空調用ダクト66に流れる空気がヒータコア92を通らないように設定される。三方弁76は圧縮機74から室外機78側に冷媒が流れるように設定される。   FIG. 5 is a diagram showing a path through which a refrigerant flows in the air conditioning / battery cooling unit 60 with a thick line in the cooling mode. In the cooling mode, the blower 68 and the blower fan 80 are driven, and the flow path switching door 70 is set so that the air flowing through the air conditioning duct 66 does not pass through the heater core 92. The three-way valve 76 is set so that the refrigerant flows from the compressor 74 to the outdoor unit 78 side.

冷房モードにおいて、冷媒は次のように流れる。アキュムレータ72の低圧低温の気体は、圧縮機74によって吸い上げられ高圧高温の気体となる。高圧高温の気体は、三方弁76を通り、室外機78において送風ファン80の送風によって冷却され、高圧高温の気体が放熱によって低温高圧の液体に凝縮される。凝縮された低温高圧の液体は、逆止弁82を通り、膨張弁84を通って断熱膨張して一部気化し、エバポレータ86で全部の低温液体が蒸発し、送風機68によって空調用ダクト66内を流れてくる車室内の空気を吸熱して冷却する。冷却された空気は、空気吹出口69側から車室内に戻され、これによって、車室内が冷房される。   In the cooling mode, the refrigerant flows as follows. The low-pressure and low-temperature gas in the accumulator 72 is sucked up by the compressor 74 and becomes high-pressure and high-temperature gas. The high-pressure and high-temperature gas passes through the three-way valve 76 and is cooled by the blower 80 in the outdoor unit 78, and the high-pressure and high-temperature gas is condensed into a low-temperature and high-pressure liquid by heat radiation. The condensed low-temperature and high-pressure liquid passes through the check valve 82, adiabatically expands through the expansion valve 84, partially vaporizes, and all the low-temperature liquid evaporates in the evaporator 86. The air in the passenger compartment flowing through the car absorbs heat and cools it. The cooled air is returned from the air outlet 69 side to the vehicle interior, thereby cooling the vehicle interior.

逆止弁82を通ってきた低温高圧の液体の一部は、分岐冷媒路88の一方端に入る。分岐冷媒路88に入った低温高圧の気体は、膨張弁84を通って断熱膨張して一部気化し、低温の湿り気体となって電池パックケース21の接続部を通って電池パックケース21の内部に入る。電池パックケース21の内部では、二次電池20の底部等に接触して二次電池20を吸熱して冷却して気化する。気化した気体は、分岐冷媒路88をUターンして戻り、アキュムレータ72に帰る。これによって、二次電池20の冷却が行われる。   Part of the low-temperature and high-pressure liquid that has passed through the check valve 82 enters one end of the branch refrigerant path 88. The low-temperature and high-pressure gas that has entered the branch refrigerant path 88 is adiabatically expanded through the expansion valve 84 and partially vaporized, becomes a low-temperature wet gas, passes through the connection portion of the battery pack case 21, and is stored in the battery pack case 21. Enter inside. Inside the battery pack case 21, the secondary battery 20 is brought into contact with the bottom of the secondary battery 20 to absorb heat, cool and vaporize. The vaporized gas returns by making a U-turn through the branch refrigerant path 88 and returns to the accumulator 72. Thereby, the secondary battery 20 is cooled.

空調停止モードの場合は、冷房モードの状態において、空調用ダクト66に設けられた送風機68の運転を停止させる。なお、切替弁等の適当な手段によって、膨張弁84、エバポレータ86には冷媒が供給されない。これによって車室内には冷気が送られないが、分岐冷媒路88には低温高圧の気体が流れ、二次電池20の冷却を行うことができる。   In the air conditioning stop mode, the operation of the blower 68 provided in the air conditioning duct 66 is stopped in the cooling mode state. Note that the refrigerant is not supplied to the expansion valve 84 and the evaporator 86 by an appropriate means such as a switching valve. As a result, cold air is not sent into the passenger compartment, but low-temperature and high-pressure gas flows through the branch refrigerant path 88, and the secondary battery 20 can be cooled.

図6は、暖房モードについて、空調・電池冷却部60の冷媒の流れる経路を太線で示す図である。暖房モードにおいて、送風機68は駆動され、送風ファン80は停止され、流路切替ドア70は、空調用ダクト66に流れる空気がヒータコア92を通るように設定される。三方弁76は膨張弁94側から室外機78側に冷媒が流れるように設定される。なお、切替弁等の適当な手段によって、膨張弁84、エバポレータ86には冷媒が供給されない。送風機68によって空調用ダクト66に送り込まれた車室内の空気は、エバポレータ86を素通りしてヒータコア92に向かって流れる。   FIG. 6 is a diagram showing a path through which a refrigerant flows in the air conditioning / battery cooling unit 60 with a thick line in the heating mode. In the heating mode, the blower 68 is driven, the blower fan 80 is stopped, and the flow path switching door 70 is set so that the air flowing through the air conditioning duct 66 passes through the heater core 92. The three-way valve 76 is set so that the refrigerant flows from the expansion valve 94 side to the outdoor unit 78 side. Note that the refrigerant is not supplied to the expansion valve 84 and the evaporator 86 by an appropriate means such as a switching valve. The air in the passenger compartment sent into the air conditioning duct 66 by the blower 68 flows through the evaporator 86 toward the heater core 92.

暖房モードにおいて、冷媒は次のように流れる。アキュムレータ72の低圧低温の気体は圧縮機74によって吸い上げられ高圧高温の気体となる。高圧高温の気体は三方弁76側には流れずに、ヒータコア92に流れる。ヒータコア92では、空調用ダクト66を流れてきた車室内の空気と熱交換して放熱し、低温高圧の液体に凝縮される。空調用ダクト66を流れる車室内の空気はヒータコア92によって暖められ、空気吹出口69側から車室内に戻される。これによって、車室内が暖房される。   In the heating mode, the refrigerant flows as follows. The low-pressure and low-temperature gas in the accumulator 72 is sucked up by the compressor 74 and becomes high-pressure and high-temperature gas. The high pressure and high temperature gas does not flow to the three-way valve 76 side but flows to the heater core 92. In the heater core 92, heat is exchanged with the air in the passenger compartment flowing through the air conditioning duct 66 to dissipate heat, and the heat is condensed into a low-temperature and high-pressure liquid. The air in the passenger compartment flowing through the air conditioning duct 66 is warmed by the heater core 92 and returned to the passenger compartment from the air outlet 69 side. As a result, the passenger compartment is heated.

ヒータコア92で凝縮された低温高圧の液体は、膨張弁94を通って断熱膨張して一部気化し、三方弁76を経由して室外機78に流れる。室外機78においては、外気からの吸熱によって、全部の低温液体が蒸発し、分岐冷媒路88の一方端に入る。分岐冷媒路88に入った気体は、膨張弁84を通って断熱膨張して冷却され、電池パックケース21の接続部を通って電池パックケース21の内部に入る。電池パックケース21の内部では、二次電池20の底部等に接触して二次電池20を吸熱して冷却する。その後、分岐冷媒路88をUターンして戻り、アキュムレータ72に帰る。これによって、二次電池20の冷却が行われる。   The low-temperature and high-pressure liquid condensed in the heater core 92 is adiabatically expanded through the expansion valve 94 and partially vaporized, and flows to the outdoor unit 78 via the three-way valve 76. In the outdoor unit 78, all the low-temperature liquid evaporates due to heat absorption from the outside air and enters one end of the branch refrigerant path 88. The gas that has entered the branch refrigerant path 88 is adiabatically expanded and cooled through the expansion valve 84 and enters the inside of the battery pack case 21 through the connection portion of the battery pack case 21. Inside the battery pack case 21, the secondary battery 20 is absorbed by the bottom of the secondary battery 20 and cooled. Thereafter, the branch refrigerant path 88 is U-turned back to return to the accumulator 72. Thereby, the secondary battery 20 is cooled.

再び図4に戻り、S10の判定が肯定されると、次に、外気温度θOが所定温度以下であるか否かが判定される(S12)。この処理手順は、制御装置40の外気温度判定部48の機能によって実行される。 Returning to FIG. 4 again, if the determination in S10 is affirmative, it is next determined whether or not the outside air temperature θ O is equal to or lower than a predetermined temperature (S12). This processing procedure is executed by the function of the outside air temperature determination unit 48 of the control device 40.

図6で述べたように、暖房モードにおいて分岐冷媒路88に入ってくる気体は、室外機78において外気からの吸熱によって低温液体が蒸発したものである。ここで外気温度が低すぎると、圧縮機74によって高温化された気体から熱が奪われ、室外機78において液化が生じ、気体圧力が低下する。液化し圧力が低下した冷媒が分岐冷媒路88に供給されると、膨張弁90における断熱膨張による冷却効果が低下し、二次電池20に対する冷却能力が低下する。S12における所定温度とは、暖房モードにおいて、外気温度θOが低すぎて、圧縮機74によって高温化された気体から熱が奪われ、二次電池冷却ユニット64における膨張弁90による冷却効果が十分でなくなる温度である。一般的な空調機では、外気温度が約−10℃以下となると暖房性能が低下することが知られている。ここでは、所定温度を−10℃とする。この温度は説明のための例示であって、空調・電池冷却部60の仕様によって適宜変更が可能である。 As described with reference to FIG. 6, the gas entering the branch refrigerant path 88 in the heating mode is obtained by evaporating the low-temperature liquid in the outdoor unit 78 due to heat absorption from the outside air. If the outside air temperature is too low, heat is taken from the gas heated by the compressor 74, liquefaction occurs in the outdoor unit 78, and the gas pressure decreases. When the liquefied and reduced pressure refrigerant is supplied to the branch refrigerant path 88, the cooling effect due to adiabatic expansion in the expansion valve 90 is reduced, and the cooling capacity for the secondary battery 20 is reduced. The predetermined temperature in S12 means that in the heating mode, the outside air temperature θ O is too low, heat is taken away from the gas heated by the compressor 74, and the cooling effect by the expansion valve 90 in the secondary battery cooling unit 64 is sufficient. It is the temperature that does not. In a general air conditioner, it is known that the heating performance deteriorates when the outside air temperature is about −10 ° C. or lower. Here, the predetermined temperature is −10 ° C. This temperature is an illustrative example, and can be appropriately changed depending on the specifications of the air conditioning / battery cooling unit 60.

外気温度検出部34から伝送されてきた外気温度θOの値が所定温度である−10℃以下であるとS12の判定が肯定され、S14に進む。外気温度θOが所定温度を超えるときは、二次電池冷却ユニット64における膨張弁90による冷却効果が十分な場合であるので、S18に進む。 If the value of the outside air temperature θ O transmitted from the outside air temperature detector 34 is equal to or lower than −10 ° C., which is the predetermined temperature, the determination in S12 is affirmed, and the process proceeds to S14. When the outside air temperature θ O exceeds the predetermined temperature, the cooling effect by the expansion valve 90 in the secondary battery cooling unit 64 is sufficient, so the process proceeds to S18.

S12の判定が肯定されると、二次電池20の電池負荷が所定値Wth以上か否かが判定される(S14)。この処理手順は、制御装置40の電池負荷判定部50の機能によって実行される。電池負荷は、電池負荷検出部28から伝送されてくる電池電圧V、充放電電流Iのデータから、充放電負荷電力に関するI2やIVを算出して求められる。所定値Wthは、二次電池20が過熱する恐れのある充放電電力として設定される値である。低温下であっても、車両の走行負荷が重くて、二次電池20からの電池負荷が重く、(充放電電流I)2が大きくなる場合等である。その場合には、二次電池20が過熱する恐れが生じる。特に、二次電池20を構成する電池セルの内で内部抵抗が高い劣化可能性セル等が異常過熱する恐れが生じる。S14は、二次電池20の過熱の恐れの有無を判定する処理手順である。S14の判定が肯定されるとS16に進む。S16の判定が否定されるときは、二次電池20の過熱の恐れがない場合であるので、S18に進む。 If the determination in S12 is affirmative, it is determined whether or not the battery load of the secondary battery 20 is equal to or greater than a predetermined value Wth (S14). This processing procedure is executed by the function of the battery load determination unit 50 of the control device 40. The battery load is obtained by calculating I 2 and IV related to charge / discharge load power from the data of the battery voltage V and the charge / discharge current I transmitted from the battery load detector 28. The predetermined value W th is a value set as charge / discharge power that may cause the secondary battery 20 to overheat. Even when the temperature is low, the running load of the vehicle is heavy, the battery load from the secondary battery 20 is heavy, and (charge / discharge current I) 2 becomes large. In that case, the secondary battery 20 may be overheated. In particular, there is a possibility that a cell having a high internal resistance among the battery cells constituting the secondary battery 20 may be abnormally overheated. S14 is a processing procedure for determining whether or not the secondary battery 20 may be overheated. If the determination in S14 is affirmative, the process proceeds to S16. If the determination in S16 is negative, there is no possibility of overheating of the secondary battery 20, so the process proceeds to S18.

S14の判定が肯定されると、充放電制限をS18で述べた通常処理に比べて、電池温度θBの低温側にシフトする(S16)。この処理手順は、S18と同様に、制御装置40の充放電制限部52の機能により実行される。図3に、充放電制限に関する高温側閾値温度θB2を電池温度θBの低温側にシフトする例を破線で示す。ここでは、θB2から低温側にΔθBAシフトした電池温度θBを電池温度(θB2−ΔθBA)とする。放電制限については、電池温度(θB2−ΔθBA)から高温になるにつれて、放電電力制限特性100からWOUTが次第に小さくなる放電電力制限特性104を示す。充電制限についても同様に、電池温度(θB2−ΔθBA)から高温になるにつれて、充電電力制限特性102からWOUTが次第に小さくなる充電電力制限特性106を示す。充放電制限をS18で述べた通常処理に比べて、高温側閾値温度θB2を電池温度θBの低温側にシフトすることで、二次電池20の過熱を抑制することができる。 If the determination in S14 is affirmative, the charge / discharge restriction is shifted to a lower temperature side of the battery temperature θ B than in the normal process described in S18 (S16). This processing procedure is executed by the function of the charge / discharge limiting unit 52 of the control device 40 as in S18. FIG. 3 shows an example of shifting the high temperature side threshold temperature θ B2 related to the charge / discharge limitation to the low temperature side of the battery temperature θ B by a broken line. Here, the battery temperature θ B shifted Δθ BA from θ B2 to the low temperature side is defined as the battery temperature (θ B2 −Δθ BA ). As for the discharge limitation, the discharge power limitation characteristic 104 is shown in which W OUT gradually decreases from the discharge power limitation characteristic 100 as the battery temperature (θ B2 −Δθ BA ) increases. Similarly, the charging limitation shows a charging power limiting characteristic 106 in which W OUT gradually decreases from the charging power limiting characteristic 102 as the battery temperature (θ B2 −Δθ BA ) becomes higher. Compared to the normal processing described in S18 for charging / discharging limitation, overheating of the secondary battery 20 can be suppressed by shifting the high temperature side threshold temperature θ B2 to the low temperature side of the battery temperature θ B.

本実施の形態に係るハイブリッド車両システム10は、車室内空調ユニット62と二次電池冷却ユニット64とに共通の冷媒の供給を行う空調・電池冷却部60を備える。また、ハイブリッド車両システム10は、車両の外気温度θOを検出する外気温度検出部34と、二次電池20の充放電による電池負荷を検出する電池負荷検出部28と、二次電池20の電池温度θBを検出する電池温度検出部22とを備える。また、ハイブリッド車両システム10は、電池温度θBに応じて二次電池20の充放電電力の制限を行う制御装置40を備える。制御装置40は、外気温度θOが所定温度以下の低温であること、車室内空調が暖房モードであること、及び二次電池20の電池負荷が所定電力値以上であることの3つの条件を満たすか否かについて判定する。3つの条件を満たすときには、3つの条件のうちの少なくとも1つを満たさないときと比較して、充放電電力の制限を電池温度θBの低温側にシフトさせる。このハイブリッド車両システム10によれば、−10℃以下等の極低温下の暖房時に二次電池20の電池負荷が大きい場合であっても、二次電池20の過熱を抑制できる。 The hybrid vehicle system 10 according to the present embodiment includes an air conditioning / battery cooling unit 60 that supplies a common refrigerant to the vehicle interior air conditioning unit 62 and the secondary battery cooling unit 64. Further, the hybrid vehicle system 10 includes an outside air temperature detection unit 34 that detects the outside air temperature θ O of the vehicle, a battery load detection unit 28 that detects a battery load due to charging / discharging of the secondary battery 20, and a battery of the secondary battery 20. And a battery temperature detection unit 22 for detecting the temperature θ B. Moreover, the hybrid vehicle system 10 includes a control device 40 that limits the charge / discharge power of the secondary battery 20 according to the battery temperature θ B. The control device 40 has three conditions: the outside air temperature θ O is a low temperature that is equal to or lower than a predetermined temperature, the vehicle interior air conditioning is in a heating mode, and the battery load of the secondary battery 20 is equal to or higher than a predetermined power value. It is determined whether or not it is satisfied. When the three conditions are satisfied, the charge / discharge power limit is shifted to the lower temperature side of the battery temperature θ B than when at least one of the three conditions is not satisfied. According to the hybrid vehicle system 10, overheating of the secondary battery 20 can be suppressed even when the battery load of the secondary battery 20 is large during heating at an extremely low temperature of −10 ° C. or less.

10 ハイブリッド車両システム、11 本体部、12 エンジン、14 回転電機ブロック、16 電力コントロールユニット(PCU)、20 二次電池、21 電池パックケース、22 電池温度検出部、24 電池電圧検出部、26 充放電電流検出部、28 電池負荷検出部、34 外気温度検出部、36 空調モードSW、40 制御装置、42 メモリ、44 充放電制限関係ファイル、46 空調モード判定部、48 外気温度判定部、50 電池負荷判定部、52 充放電制限部、60 空調・電池冷却部、62 車室内空調ユニット、64 二次電池冷却ユニット、66 空調用ダクト、68 送風機、69 空気吹出口、70 流路切替ドア、72 アキュムレータ、74 圧縮機、76 三方弁、78 室外機、80 送風ファン、82 逆止弁、84,90,94 膨張弁、86 エバポレータ、88 分岐冷媒路、92 ヒータコア、100,101,104 放電電力制限特性、102,103,106 充電電力制限特性。   DESCRIPTION OF SYMBOLS 10 Hybrid vehicle system, 11 Main part, 12 Engine, 14 Rotating electrical machine block, 16 Electric power control unit (PCU), 20 Secondary battery, 21 Battery pack case, 22 Battery temperature detection part, 24 Battery voltage detection part, 26 Charging / discharging Current detection unit, 28 Battery load detection unit, 34 Outside air temperature detection unit, 36 Air conditioning mode SW, 40 Control device, 42 Memory, 44 Charge / discharge restriction relation file, 46 Air conditioning mode determination unit, 48 Outside air temperature determination unit, 50 Battery load Judgment unit, 52 Charge / discharge limiting unit, 60 Air conditioning / battery cooling unit, 62 Car interior air conditioning unit, 64 Secondary battery cooling unit, 66 Air conditioning duct, 68 Blower, 69 Air outlet, 70 Channel switching door, 72 Accumulator , 74 Compressor, 76 Three-way valve, 78 Outdoor unit, 80 Blower, 82 Check valve, 84,90,94 expansion valve, 86 an evaporator, 88 branch coolant passage, 92 a heater core, 100,101,104 discharge power limitation characteristic, 102,103,106 charging power limitation characteristic.

Claims (1)

車室内空調ユニットと二次電池冷却ユニットとに共通の冷媒の供給を行う空調・電池冷却部と、
車両の外気温度を検出する外気温度検出部と、
二次電池の充放電による電池負荷を検出する電池負荷検出部と、
前記二次電池の電池温度を検出する電池温度検出部と、
前記電池温度に応じて前記二次電池の充放電電力の制限を行う制御装置と、
を備え、
前記制御装置は、
前記外気温度が所定温度以下の低温であること、車室内空調が暖房モードであること、及び前記二次電池の前記電池負荷が所定電力値以上であることの3つの条件を満たすときに、該3つの条件のうちの少なくとも1つを満たさないときと比較して、前記充放電電力の制限を前記電池温度の低温側にシフトさせる、ハイブリッド車両システム。
An air conditioning / battery cooling unit that supplies a common refrigerant to the vehicle interior air conditioning unit and the secondary battery cooling unit;
An outside temperature detector for detecting the outside temperature of the vehicle;
A battery load detector for detecting a battery load due to charging / discharging of the secondary battery;
A battery temperature detector for detecting a battery temperature of the secondary battery;
A control device that limits charge / discharge power of the secondary battery according to the battery temperature;
With
The controller is
When the outside air temperature is a low temperature below a predetermined temperature, the vehicle interior air conditioning is in a heating mode, and the battery load of the secondary battery is above a predetermined power value, A hybrid vehicle system that shifts the limit of the charge / discharge power to a lower temperature side of the battery temperature than when not satisfying at least one of the three conditions.
JP2016171678A 2016-09-02 2016-09-02 Hybrid vehicle system Active JP6575469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016171678A JP6575469B2 (en) 2016-09-02 2016-09-02 Hybrid vehicle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016171678A JP6575469B2 (en) 2016-09-02 2016-09-02 Hybrid vehicle system

Publications (2)

Publication Number Publication Date
JP2018034744A true JP2018034744A (en) 2018-03-08
JP6575469B2 JP6575469B2 (en) 2019-09-18

Family

ID=61564661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016171678A Active JP6575469B2 (en) 2016-09-02 2016-09-02 Hybrid vehicle system

Country Status (1)

Country Link
JP (1) JP6575469B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021002992A (en) * 2019-06-24 2021-01-07 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Control system and method of battery pack heating system and battery pack heating management system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227073A (en) * 2008-03-21 2009-10-08 Toyota Motor Corp Hybrid vehicle, and control method for the same
JP2012245879A (en) * 2011-05-27 2012-12-13 Toyota Motor Corp Vehicle
JP2013071622A (en) * 2011-09-28 2013-04-22 Toyota Motor Corp Control device for hybrid vehicle, and hybrid vehicle
JP2015131597A (en) * 2014-01-15 2015-07-23 株式会社デンソー Vehicle thermal management system
JP2016025790A (en) * 2014-07-23 2016-02-08 トヨタ自動車株式会社 Power storage system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227073A (en) * 2008-03-21 2009-10-08 Toyota Motor Corp Hybrid vehicle, and control method for the same
JP2012245879A (en) * 2011-05-27 2012-12-13 Toyota Motor Corp Vehicle
JP2013071622A (en) * 2011-09-28 2013-04-22 Toyota Motor Corp Control device for hybrid vehicle, and hybrid vehicle
JP2015131597A (en) * 2014-01-15 2015-07-23 株式会社デンソー Vehicle thermal management system
JP2016025790A (en) * 2014-07-23 2016-02-08 トヨタ自動車株式会社 Power storage system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021002992A (en) * 2019-06-24 2021-01-07 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Control system and method of battery pack heating system and battery pack heating management system

Also Published As

Publication number Publication date
JP6575469B2 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
US9604521B2 (en) Vehicle and method for controlling vehicle
US20170021698A1 (en) Vehicle-mounted temperature adjustment device, vehicle air-conditioning device, and battery temperature adjustment device
US9923214B2 (en) Heat exchanging system that exchanges heat between refrigerant and a temperature regulated portion
EP2699432B1 (en) Cooling apparatus
EP2770275A1 (en) Cooling device and control method for cooling device
EP2694303B1 (en) Cooling apparatus
JP2014037180A (en) Thermal management system for electric vehicle
JP5724610B2 (en) Refrigeration cycle equipment for vehicles
US9631544B2 (en) Cooling system and vehicle that includes cooling system
WO2013051114A1 (en) Control method for cooling apparatus
JP2014037182A (en) Thermal management system for electric vehicle
JP2019115128A (en) Electric vehicle
WO2021192762A1 (en) Vehicle air conditioning device
JP6575469B2 (en) Hybrid vehicle system
WO2021192761A1 (en) Vehicle air conditioner
JP7354599B2 (en) Vehicle thermal management system
JP6712400B2 (en) Air conditioning system for vehicles
JP2014189140A (en) Vehicle heat pump device
JP5618011B2 (en) Control method of cooling device
JP2022151635A (en) Battery temperature adjusting device
JP2014092325A (en) Heat pump device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190805

R151 Written notification of patent or utility model registration

Ref document number: 6575469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151