JP2018034086A - Process for clarifying contaminated soil and groundwater - Google Patents

Process for clarifying contaminated soil and groundwater Download PDF

Info

Publication number
JP2018034086A
JP2018034086A JP2016167539A JP2016167539A JP2018034086A JP 2018034086 A JP2018034086 A JP 2018034086A JP 2016167539 A JP2016167539 A JP 2016167539A JP 2016167539 A JP2016167539 A JP 2016167539A JP 2018034086 A JP2018034086 A JP 2018034086A
Authority
JP
Japan
Prior art keywords
soil
groundwater
dioxane
persulfate
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016167539A
Other languages
Japanese (ja)
Other versions
JP6825179B2 (en
Inventor
徹朗 佐藤
Tetsuaki Sato
徹朗 佐藤
光太 瀬野
Kota Seno
光太 瀬野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Kogyo Co Ltd
Original Assignee
Kokusai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Kogyo Co Ltd filed Critical Kokusai Kogyo Co Ltd
Priority to JP2016167539A priority Critical patent/JP6825179B2/en
Publication of JP2018034086A publication Critical patent/JP2018034086A/en
Application granted granted Critical
Publication of JP6825179B2 publication Critical patent/JP6825179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for clarifying contaminated soil and groundwater, which solves the conventional problem, in which the process can be adopted even in places where pumping is difficult and, on top of that, does not require the addition of catalyst.SOLUTION: "Process for clarifying contaminated soil and groundwater" of the present invention is a clarification process for clarifying a soil and groundwater contaminated with 1,4-dioxane, and is a process comprising a soil warming step and an injection step. In the soil warming step, by applying voltage to three or more electrode wells built in the soil and passing an electric current through the soil, the soil and groundwater is warmed. In addition, in the injection step, persulfate dissolved in room temperature water is injected into the soil or groundwater in a warmed state and, by this persulfate salt being warmed, sulfate radicals are generated, and, by this sulfate radicals, 1,4-dioxane is decomposed.SELECTED DRAWING: Figure 2

Description

本願発明は、汚染土壌と地下水を浄化する技術に関するものであり、より具体的には、1,4−ジオキサンによって汚染された土壌と地下水を、硫酸ラジカルを活用して浄化する方法に関するものである。   The present invention relates to a technique for purifying contaminated soil and groundwater, and more specifically, to a method for purifying soil and groundwater contaminated by 1,4-dioxane using sulfate radicals. .

土壌汚染とは、人の健康にとって有害な物質で土壌が汚染された状態をいい、操業活動での不用意な取り扱いによって有害物質が地表から浸透することで、あるいは排煙に含まれる有害物質が地表面に降下して堆積または浸透することで発生し、盛土や埋土が行われる際に汚染土壌が持ち込まれることで発生するケースもある。この有害物質は土壌汚染対策法によって指定されており、現在、揮発性有機化合物、重金属、農薬等の計25物質が特定有害物質とされている。   Soil contamination is a condition in which soil is contaminated with substances that are harmful to human health, and is caused by the infiltration of harmful substances from the surface due to careless handling in operational activities, or the presence of harmful substances contained in smoke. It occurs when it falls to the ground surface and accumulates or infiltrates, and it sometimes occurs when contaminated soil is brought in when embankment or embedding is performed. This hazardous substance is specified by the Soil Contamination Countermeasures Law, and a total of 25 substances such as volatile organic compounds, heavy metals, and agricultural chemicals are currently designated as hazardous substances.

また、土壌汚染対策法で指定された特定有害物質以外にも、ダイオキシン類、PAH(polycyclic aromatic hydrocarbon)など、人の健康に被害を与える物質があることが知られており、その他、発がん性が疑われている1,4−ジオキサンも近年では注目されている。1,4−ジオキサンは有機溶剤に反応剤や安定剤として添加されるものであり、界面活性剤やPET(Polyethyleneterephthalat)樹脂の製造工程で副生成されることもある。また1,4−ジオキサンは、原料や製品に不純物として混入することがあり、あるいは製造工程からの排水に非意図的に含まれていることもあることから、直接使用していないにもかかわらず1,4−ジオキサンが排出されることも珍しくない。我が国では河川や地下水における1,4−ジオキサンの検出事例の増加に伴い、平成21年11月に水質環境基準及び地下水環境基準の対象物質に追加され、平成24年5月には水質汚濁防止法の有害物質に指定されるなど、排水基準や地下浸透規制等により環境中への排出規制がなされることとなった。   In addition to the specific hazardous substances specified by the Soil Contamination Countermeasures Law, there are also known substances that damage human health, such as dioxins and PAH (polycyclic aromatic hydrocarbons). Suspected 1,4-dioxane has also attracted attention in recent years. 1,4-Dioxane is added to an organic solvent as a reactant or stabilizer, and may be by-produced in the production process of a surfactant or a PET (Polyethylene terephthalate) resin. In addition, 1,4-dioxane may be mixed as an impurity in raw materials and products, or may be unintentionally contained in wastewater from the manufacturing process, so it is not used directly. It is not uncommon for 1,4-dioxane to be discharged. In Japan, with the increase of 1,4-dioxane detection cases in rivers and groundwater, it was added to the target substances of water quality standards and groundwater environment standards in November 2009, and in May 2012, the Water Pollution Control Law Emission regulations into the environment have been made due to wastewater standards and underground penetration regulations.

1,4−ジオキサンは、水に溶け易く揮発しにくい難分解性の合成化学物質であり、揮発性有機化合物(VOC:VolatileOrganicCompounds)とはその性質が異なる。また1,4−ジオキサンには、土壌粒子への吸着性が低いという特徴もあり、浅層部に残留しやすい重金属類や農薬類とも性質が異なる。そのため地下環境中における1,4−ジオキサンの挙動(浸透性や地下水汚染の広がり方等)は、VOCや重金属類、農薬類とは異なり、したがってVOCや重金属類等に対して採用される浄化方法では1,4−ジオキサンを適切に浄化できないこともある。   1,4-Dioxane is a hardly decomposable synthetic chemical substance that is easily dissolved in water and hardly volatilizes, and is different in nature from volatile organic compounds (VOCs). In addition, 1,4-dioxane has a feature of low adsorptivity to soil particles, and is different in properties from heavy metals and agricultural chemicals that are likely to remain in the shallow layer portion. Therefore, the behavior of 1,4-dioxane in the underground environment (permeability, how the groundwater contamination spreads, etc.) is different from VOC, heavy metals, and agricultural chemicals, and therefore a purification method adopted for VOC, heavy metals, etc. Then, 1,4-dioxane may not be purified properly.

1,4−ジオキサンは水に溶け易いことから帯水層(地下水のある層)に高濃度で存在することもあり、したがって浄化方法としては地下水揚水処理が効果的である。VOCや油類を対象に用いられるバイオレメディエーション(微生物を活用した土壌汚染浄化)も浄化方法として考えられるが、1,4−ジオキサンに対する分解能をもつ微生物の存在は既に確認されているものの、未だ原位置での浄化は実用化されていないのが現状である。   Since 1,4-dioxane is easily dissolved in water, it may be present in high concentration in the aquifer (layer with groundwater). Therefore, groundwater pumping treatment is effective as a purification method. Bioremediation (soil pollution purification using microorganisms) used for VOCs and oils is also considered as a purification method. However, although the presence of microorganisms capable of decomposing 1,4-dioxane has already been confirmed, The current situation is that purification at the position has not been put to practical use.

地下水揚水処理の他、酸化剤の地中注入による原位置浄化が行われることもある。1,4−ジオキサンは難分解性ではあるが、ラジカル反応によって分解することが確認されており、薬剤からのラジカル生成を促すことで1,4−ジオキサンを分解することができる。特許文献1でも、重亜硫酸塩などの触媒とともに過硫酸塩を添加することによって、土壌と地下水を浄化する技術を提案している。添加する触媒と過硫酸塩を適切なモル比とすることで過硫酸塩のラジカル反応を促し、このラジカル反応により1,4−ジオキサンを分解するわけである。   In addition to groundwater pumping treatment, in-situ purification by underground injection of oxidant may be performed. Although 1,4-dioxane is difficult to decompose, it has been confirmed that it is decomposed by a radical reaction, and 1,4-dioxane can be decomposed by promoting radical generation from the drug. Patent Document 1 also proposes a technique for purifying soil and groundwater by adding persulfate together with a catalyst such as bisulfite. The radical reaction of persulfate is promoted by adjusting the molar ratio of the catalyst to be added to the persulfate, and 1,4-dioxane is decomposed by this radical reaction.

特開2011−173089号公報JP 2011-173089 A

1,4−ジオキサンの浄化方法としての地下水揚水処理は、直接的な浄化対策としてだけでなく拡散防止の意味でも効果的であるが、適切な井戸設計(数・配置・揚水量等)を行わなければ期待した浄化効果が得られないという難しさがある。また、地下水濃度が排水基準を大きく上回る場合は高度な水処理設備が必要であり、さらに、流動性の小さい地下水(宙水や難透水層中の間隙水)等、十分量の揚水が困難な場合には採用することができない。   Groundwater pumping treatment as a purification method for 1,4-dioxane is effective not only as a direct purification measure but also in terms of preventing diffusion, but with appropriate well design (number, arrangement, pumping amount, etc.) Otherwise, there is a difficulty that the expected purification effect cannot be obtained. In addition, if the groundwater concentration greatly exceeds the drainage standard, advanced water treatment facilities are required, and it is difficult to pump a sufficient amount of groundwater (such as low-fluidity groundwater or pore water in difficult-to-permeate water layers). In some cases it cannot be adopted.

一方の酸化剤の地中注入による原位置浄化は、流動性の小さい地下水に対しても適用できるが、従来の手法では鉄塩などの触媒の添加が必要であり、しかも浄化効果を得るためには酸化剤に対して適切な比率で鉄触媒を添加しなければならず、相当の手間とコストがかかっていた。更に、添加した鉄塩の析出により、井戸閉塞等の弊害もでていた。   In-situ purification by underground injection of one oxidizer can be applied to groundwater with low fluidity, but the conventional method requires the addition of a catalyst such as iron salt, and in order to obtain a purification effect Had to add an iron catalyst in an appropriate ratio to the oxidant, which required considerable labor and cost. Further, precipitation of the added iron salt has caused problems such as well blocking.

本願発明の課題は、従来が抱える問題を解決することであり、すなわち揚水が難しい場所でも採用でき、そのうえ触媒の添加を必要としない、汚染土壌と地下水の浄化方法を提供することである。   An object of the present invention is to provide a method for purifying contaminated soil and groundwater that can be used even in places where pumping is difficult, and that does not require the addition of a catalyst.

本願発明は、加温した土壌と地下水に過硫酸塩をすることで、熱活性状態で硫酸ラジカルを発生させ、これにより1,4−ジオキサンを分解する、という点に着目したものであり、従来にはなかった発想に基づいてなされた発明である。   The invention of the present application focuses on the point of generating sulfate radicals in a thermally activated state by persulfating the heated soil and groundwater, thereby decomposing 1,4-dioxane. It was an invention made based on an idea that did not exist.

本願発明の「汚染土壌と地下水の浄化方法」は、1,4−ジオキサンで汚染された土壌と地下水を浄化する浄化方法であり、土壌加温工程と注入工程を備えた方法である。土壌加温工程では、土壌内に構築された3以上の電極井戸に印加し(電圧をかけ)、土壌に電流を流すことでジュール熱によって土壌と地下水を加温する。また注入工程では、常温水に溶解した過硫酸塩を、加温された状態の土壌又は地下水に注入し、この過硫酸塩が加温されることで硫酸ラジカルを発生させる。そして、この硫酸ラジカルによって1,4−ジオキサンが分解される。   The “contaminated soil and groundwater purification method” of the present invention is a purification method for purifying soil and groundwater contaminated with 1,4-dioxane, and includes a soil heating step and an injection step. In the soil warming step, the soil and groundwater are warmed by Joule heat by applying (applying voltage) to three or more electrode wells constructed in the soil and passing an electric current through the soil. Moreover, in an injection | pouring process, the persulfate melt | dissolved in normal temperature water is inject | poured into the soil or groundwater of a warmed state, A sulfuric acid radical is generated by heating this persulfate. Then, 1,4-dioxane is decomposed by this sulfuric acid radical.

本願発明の「汚染土壌と地下水の浄化方法」は、土壌加温工程において土壌又は地下水を40〜50℃に加温する方法とすることもできる。   The “contaminated soil and groundwater purification method” of the present invention may be a method of heating soil or groundwater to 40 to 50 ° C. in the soil heating step.

本願発明の「汚染土壌と地下水の浄化方法」は、注入工程において薬剤(常温水に溶解した過硫酸塩)を帯水層に向けて注入する方法とすることもできる。   The “contaminated soil and groundwater purification method” of the present invention can be a method of injecting a drug (persulfate dissolved in room temperature water) toward the aquifer in the injection step.

本願発明の「汚染土壌と地下水の浄化方法」には、次のような効果がある。
(1)揚水を伴わないことから揚水処理が難しい場所でも幅広く採用でき、鉄触媒の添加を必要としないことから従来の酸化剤注入方法よりも手間とコストを軽減することができる。
(2)電気発熱法(ジュール熱により土壌自体を発熱させる方法)を用いることから、継続して土壌等を加温することができ、常温の薬剤を注入しても土壌等の中高温(例えば40〜50℃)状態を維持することができる。
(3)常温で溶解できる、すなわち薬剤自体を暖める必要がないことから、過硫酸塩のロスを低減することができる。
(4)目標とする土壌等の温度は中高温(例えば40〜50℃)程度でよいため、他の加温方法(例えば、スチームやヒーター)と比べエネルギーの消費量を抑えることができる。
(5)過硫酸塩注入後も加温が可能である(特に過硫酸塩がイオン化するため電気も流れやすくなる)ことから、他の酸化剤よりも効果の持続期間が長い過硫酸の特徴を生かすことができる。
(6)加温することによって反応性も高まることから、常温で実施するより薬剤量を削減することができる。
The “contaminated soil and groundwater purification method” of the present invention has the following effects.
(1) Since it is not accompanied by pumping, it can be widely used even in places where pumping treatment is difficult, and since it does not require the addition of an iron catalyst, labor and cost can be reduced as compared with conventional oxidant injection methods.
(2) Since the electric heating method (method of heating the soil itself with Joule heat) is used, the soil etc. can be continuously heated, and even if a normal temperature chemical is injected, 40 to 50 ° C.) state can be maintained.
(3) Since it can be dissolved at room temperature, that is, there is no need to warm the drug itself, the loss of persulfate can be reduced.
(4) Since the target temperature of soil or the like may be about medium to high temperature (for example, 40 to 50 ° C.), energy consumption can be suppressed as compared with other heating methods (for example, steam or heater).
(5) Heating is possible even after the injection of persulfate (especially because the persulfate is ionized, which facilitates electricity flow), so the characteristics of persulfate have a longer duration of effect than other oxidants. You can save it.
(6) Since the reactivity is increased by heating, the amount of the drug can be reduced as compared with the case of carrying out at normal temperature.

本願発明の「汚染土壌と地下水の浄化方法」の主な工程の流れを示すフロー図。The flowchart which shows the flow of the main processes of "the purification method of contaminated soil and groundwater" of this invention. 複数の電極井戸を示す断面図。Sectional drawing which shows several electrode wells. 三角形を形成するように平面配置された電極井戸を示す平面図。The top view which shows the electrode well arrange | positioned planarly so that a triangle may be formed. 帯水槽に向けて薬剤が注入される状況を示す断面図。Sectional drawing which shows the condition where a chemical | medical agent is inject | poured toward an aquifer.

本願発明の「汚染土壌と地下水の浄化方法」の実施形態の一例を、図1に示すフロー図を参照しながら説明する。本願発明は、あらかじめ土壌と地下水を加温し、加温状態の土壌や地下水に過硫酸塩を注入することを一つの特徴としている。そこで大きく2段階に分けて、すなわち土壌と地下水を加温する段階と、過硫酸塩を注入する段階とに分けて説明する。   An example of the embodiment of the “contaminated soil and groundwater purification method” of the present invention will be described with reference to the flowchart shown in FIG. One feature of the present invention is that the soil and groundwater are heated in advance, and the persulfate is injected into the heated soil and groundwater. Therefore, it is divided into two steps, that is, a step of heating the soil and groundwater and a step of injecting persulfate.

1.電気発熱法による加温
本願発明の場合、土壌と地下水を加温する手法としては、加温にかかる設備規模を軽減できる、容易に温度調整できる、土壌自体を発熱するため熱容量が高く温度が低下しにくい、といった理由から電気発熱法が適している。以下、電気発熱法による加温について説明する。
1. Heating by the electric heating method In the case of the present invention, as a method of heating the soil and groundwater, the equipment scale required for heating can be reduced, the temperature can be easily adjusted, the heat itself is heated, and the heat capacity is high and the temperature is lowered. The electric heating method is suitable because it is difficult to do. Hereinafter, heating by the electric heating method will be described.

浄化対象となる土壌内に3以上の電極井戸を設置する(Step10)。図2は、複数(この図では3つ)の電極井戸10を示す断面図である。この電極井戸10は鋼製のケーシングで形成されており、したがって図2に示すように各電極井戸10のケーシングを電源装置20に接続することで、電極井戸10間に電流が流れ、途中の土壌にジュール熱を発生させることができる。そのため各電極井戸10は、対象となる土壌を取り囲むように配置するとよく、例えば図3に示すように三角形を形成するように配置することができる。なお図3に示す4つの三角形はそれぞれ一辺が約3.5mの正三角形となっているが、もちろんこれに限らず種々の形状となるよう電極井戸10を配置することができる。   Three or more electrode wells are installed in the soil to be purified (Step 10). FIG. 2 is a cross-sectional view showing a plurality (three in this figure) of electrode wells 10. This electrode well 10 is formed of a steel casing. Therefore, as shown in FIG. 2, by connecting the casing of each electrode well 10 to the power supply device 20, a current flows between the electrode wells 10 and the soil on the way. Joule heat can be generated. Therefore, each electrode well 10 is preferably arranged so as to surround the target soil, and for example, can be arranged so as to form a triangle as shown in FIG. Note that each of the four triangles shown in FIG. 3 is a regular triangle having a side of about 3.5 m, but of course, the electrode well 10 can be arranged to have various shapes.

電極井戸10が設置できると、上記したとおり電源装置20を利用して電極井戸10に印加する(Step20)。印加された電極井戸10間には電流が流れ、電極井戸10間にある土壌にジュール熱が発生し、これに伴って土壌や地下水の温度が上昇していく。このとき、土壌や地下水があらかじめ設定した温度となるよう、印加する電圧の大きさを調整するとよい。   When the electrode well 10 can be installed, it is applied to the electrode well 10 using the power supply device 20 as described above (Step 20). A current flows between the applied electrode wells 10, Joule heat is generated in the soil between the electrode wells 10, and the temperature of the soil and groundwater rises accordingly. At this time, the magnitude of the applied voltage may be adjusted so that the soil and groundwater have a preset temperature.

ところで本願発明の発明者は、鉄塩等の触媒がなくても過硫酸塩から硫酸ラジカルを発生させる手法を模索した結果、加熱することで硫酸ラジカルが発生することを見出した。具体的には、土壌や地下水を適当な温度に加温した条件で、溶解した過硫酸塩を注入すると、過硫酸塩が熱活性して硫酸ラジカルが発生することを確認している。つまり、鉄触媒に代えて加熱することで、硫酸ラジカルの発生を促進するわけである。さらに本願発明の発明者は、土壌や地下水の温度が中高温となった状況で硫酸ラジカルの発生が促進され、特に40〜50℃となった土壌や地下水に過硫酸塩を注入すると硫酸ラジカルが発生しやすいことを確認している。   By the way, as a result of searching for a method for generating sulfate radicals from persulfate without the use of a catalyst such as iron salt, the inventors of the present invention have found that sulfate radicals are generated by heating. Specifically, it has been confirmed that when dissolved persulfate is injected under conditions where soil and groundwater are heated to an appropriate temperature, the persulfate is thermally activated to generate sulfate radicals. That is, the generation of sulfuric acid radicals is promoted by heating instead of the iron catalyst. Furthermore, the inventor of the present invention promotes the generation of sulfate radicals in a situation where the temperature of the soil and groundwater is medium and high. In particular, when persulfate is injected into the soil or groundwater at 40 to 50 ° C., It has been confirmed that it is likely to occur.

つまり土壌や地下水の温度を上げる目的は、硫酸ラジカルが発生し得る環境をつくることである。そのため、土壌や地下水の温度が中高温(特に、40〜50℃)になるまで上昇するように、電圧を調整したうえで各電極井戸10に印加するとよい。なお、加温された土壌や地下水の現実の温度は、予測された(あるいは解析された)温度とは異なることも十分考えられるため、実際の温度を観測しながら(Step30)電極井戸10に印加していくこともできる。この場合、図3に示すように各電極井戸10の間に温度観測井戸30を構築しておき、この温度観測井戸30を利用して土壌や地下水の温度を観測するとよい。   In other words, the purpose of raising the temperature of soil and groundwater is to create an environment where sulfuric acid radicals can be generated. Therefore, after adjusting a voltage so that the temperature of soil and groundwater may become medium high temperature (especially 40-50 degreeC), it is good to apply to each electrode well 10. FIG. It should be noted that the actual temperature of the heated soil or groundwater is considered to be different from the predicted (or analyzed) temperature, so that it is applied to the electrode well 10 while observing the actual temperature (Step 30). You can also do it. In this case, as shown in FIG. 3, a temperature observation well 30 may be constructed between the electrode wells 10, and the temperature and soil temperature may be observed using the temperature observation well 30.

2.薬剤の注入
電極井戸10に印加する一方で、土壌や地下水に注入する薬剤を調整する(Step40)。薬剤とは、常温(15〜25℃)の水に過硫酸塩を溶解したものであり、ここで用いる過硫酸塩としては過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウムなどが例示できる。なお、過硫酸塩を溶解させる水を常温とする理由は、過硫酸塩は常温では熱活性しないことから常温水に溶解することで土壌や地下水に到達する前に硫酸ラジカルが発生することを防止できるからであり、換言すると常温水に溶解することで過硫酸塩の状態のまま土壌や地下水に送ることができるからである。
2. Injection of chemical | medical agent While applying to the electrode well 10, the chemical | medical agent inject | poured into soil or groundwater is adjusted (Step40). A chemical | medical agent melt | dissolves a persulfate in normal temperature (15-25 degreeC) water, and sodium persulfate, potassium persulfate, ammonium persulfate etc. can be illustrated as a persulfate used here. The reason why the water for dissolving persulfate is room temperature is that persulfate is not thermally activated at room temperature, so it dissolves in room temperature water to prevent the generation of sulfate radicals before reaching the soil or groundwater. This is because it can be sent to soil or groundwater in the state of persulfate by dissolving in room temperature water.

土壌や地下水が目的の温度(中高温)になったことを確認したうえで(Step30)薬剤の調整を行い(Step40)、土壌や地下水に薬剤を注入していく(Step50)。このとき、図3に示すように、対象となる土壌内に構築した注入井戸40を利用することができる。具体的には、ポンプ等の圧送手段を用いて貯留槽から薬剤を圧送し、注入井戸40から土壌や地下水に対して薬剤を注入していく。あるいは注入井戸40に代えて、電極井戸10を利用して薬剤を注入してもよい。   After confirming that the soil and groundwater have reached the target temperature (medium / high temperature) (Step 30), the drug is adjusted (Step 40), and the drug is injected into the soil and groundwater (Step 50). At this time, as shown in FIG. 3, the injection well 40 constructed in the target soil can be used. Specifically, the drug is pumped from the storage tank using a pumping means such as a pump, and the drug is injected into the soil and groundwater from the injection well 40. Alternatively, the drug may be injected using the electrode well 10 instead of the injection well 40.

1,4−ジオキサンは水に溶け易い性質があることから、地下水に多く存在することが考えられる。したがって薬剤の注入は、地下水を含む土層を選んで行うとよい。図4は、帯水層に向けて薬剤が注入される状況を示す断面図である。帯水層は透水性が高いことから地下水を多く含んでおり、すなわち多くの1,4−ジオキサンが存在していることから、この帯水層を選んで薬剤を注入すると効果的となる。もちろん、土層を選ぶことなく全体的に薬剤を注入してもよい。   Since 1,4-dioxane has the property of being easily dissolved in water, it can be considered that a large amount exists in groundwater. Therefore, it is recommended to inject the drug by selecting a soil layer containing groundwater. FIG. 4 is a cross-sectional view showing a situation in which a medicine is injected toward the aquifer. Since the aquifer has a high water permeability, it contains a lot of groundwater, that is, since a large amount of 1,4-dioxane is present, it is effective to select this aquifer and inject a drug. Of course, the drug may be injected as a whole without selecting a soil layer.

土壌や地下水は中高温が保たれていることから、土壌や地下水に到達した薬剤は徐々に温度を上げて中高温となり、その結果、過硫酸塩が熱活性して硫酸ラジカルが発生する(Step60)。そして、この硫酸ラジカルによって1,4−ジオキサンが分解していく(Step70)。あらかじめ設定した時間だけ薬剤の注入を続けた後、薬剤注入を停止し、電極井戸10への引加も停止する(Step80)。   Since the medium and high temperatures are maintained in the soil and groundwater, the chemical that has reached the soil and groundwater gradually increases in temperature to a medium and high temperature. As a result, the persulfate is thermally activated to generate sulfate radicals (Step 60). ). Then, 1,4-dioxane is decomposed by this sulfuric acid radical (Step 70). After the injection of the drug is continued for a preset time, the drug injection is stopped, and the application to the electrode well 10 is also stopped (Step 80).

本願発明の「汚染土壌と地下水の浄化方法」は、1,4−ジオキサンが使用され、排出され、あるいは副生成される操業地(又は操業跡地)で利用することができる。本願発明が、我が国の環境改善にとって極めて有益であることを考えれば、産業上利用できるばかりでなく社会的にも大きな貢献が期待できる発明といえる。   The “contaminated soil and groundwater purification method” of the present invention can be used in an operation area (or an operation site) where 1,4-dioxane is used, discharged, or by-produced. Considering that the present invention is extremely useful for improving the environment in Japan, it can be said that the invention can be used not only industrially but also can make a great social contribution.

10 電極井戸
20 電源装置
30 温度観測井戸
40 注入井戸
10 Electrode well 20 Power supply 30 Temperature observation well 40 Injection well

Claims (3)

1,4−ジオキサンで汚染された土壌と地下水を浄化する浄化方法において、
土壌内に構築された3以上の電極井戸に印加し、土壌に電流を流すことによって、土壌と地下水を加温する土壌加温工程と、
常温水に溶解した過硫酸塩を、加温された状態の土壌又は地下水に注入し、該過硫酸塩が加温されることで硫酸ラジカルを発生させる注入工程と、を備え、
前記硫酸ラジカルによって1,4−ジオキサンを分解する、ことを特徴とする汚染土壌と地下水の浄化方法。
In a purification method for purifying soil and groundwater contaminated with 1,4-dioxane,
A soil heating step of heating the soil and groundwater by applying current to the soil by applying to three or more electrode wells constructed in the soil;
Injecting persulfate dissolved in room temperature water into warm soil or groundwater, and injecting sulfuric acid radicals by heating the persulfate,
A method for purifying contaminated soil and groundwater, wherein 1,4-dioxane is decomposed by the sulfate radical.
前記土壌加温工程では、土壌又は地下水を40〜50℃に加温する、ことを特徴とする請求項1記載の汚染土壌と地下水の浄化方法。   The method for purifying contaminated soil and groundwater according to claim 1, wherein in the soil heating step, the soil or groundwater is heated to 40 to 50 ° C. 前記注入工程では、常温水に溶解した過硫酸塩を帯水層に向けて注入する、ことを特徴とする請求項1又は請求項2記載の汚染土壌と地下水の浄化方法。   The method for purifying contaminated soil and groundwater according to claim 1 or 2, wherein in the injection step, persulfate dissolved in room temperature water is injected toward the aquifer.
JP2016167539A 2016-08-30 2016-08-30 How to purify contaminated soil and groundwater Active JP6825179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016167539A JP6825179B2 (en) 2016-08-30 2016-08-30 How to purify contaminated soil and groundwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016167539A JP6825179B2 (en) 2016-08-30 2016-08-30 How to purify contaminated soil and groundwater

Publications (2)

Publication Number Publication Date
JP2018034086A true JP2018034086A (en) 2018-03-08
JP6825179B2 JP6825179B2 (en) 2021-02-03

Family

ID=61566404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016167539A Active JP6825179B2 (en) 2016-08-30 2016-08-30 How to purify contaminated soil and groundwater

Country Status (1)

Country Link
JP (1) JP6825179B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550686A (en) * 2018-05-31 2019-12-10 中国科学院过程工程研究所 treatment method of heterocyclic organic matter-containing wastewater and obtained adsorption material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000084535A (en) * 1998-09-11 2000-03-28 Hazama Gumi Ltd Method of cleaning contaminated soil by volatile compound
JP2002001299A (en) * 2000-06-23 2002-01-08 Hazama Gumi Ltd Method for decontamination of contaminated soil
JP2002513676A (en) * 1998-05-05 2002-05-14 ユニバーシティ オブ コネチカット Chemical oxidation of volatile organic compounds
JP2008506511A (en) * 2004-02-26 2008-03-06 エフ エム シー コーポレーション Oxidation of organic compounds at high pH
KR100850165B1 (en) * 2007-04-23 2008-08-04 (주)대우건설 Apparatus and method for remediation of contaminated soil and groundwater by electric resistance heating combined with the injection of oxidizing agents
JP2014231050A (en) * 2013-05-30 2014-12-11 株式会社島津製作所 Soil cleaning apparatus utilizing electrical warming means
JP2015514570A (en) * 2012-03-22 2015-05-21 エフ エム シー コーポレーションFmc Corporation Organic acid activity of persulfate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002513676A (en) * 1998-05-05 2002-05-14 ユニバーシティ オブ コネチカット Chemical oxidation of volatile organic compounds
JP2000084535A (en) * 1998-09-11 2000-03-28 Hazama Gumi Ltd Method of cleaning contaminated soil by volatile compound
JP2002001299A (en) * 2000-06-23 2002-01-08 Hazama Gumi Ltd Method for decontamination of contaminated soil
JP2008506511A (en) * 2004-02-26 2008-03-06 エフ エム シー コーポレーション Oxidation of organic compounds at high pH
KR100850165B1 (en) * 2007-04-23 2008-08-04 (주)대우건설 Apparatus and method for remediation of contaminated soil and groundwater by electric resistance heating combined with the injection of oxidizing agents
JP2015514570A (en) * 2012-03-22 2015-05-21 エフ エム シー コーポレーションFmc Corporation Organic acid activity of persulfate
JP2014231050A (en) * 2013-05-30 2014-12-11 株式会社島津製作所 Soil cleaning apparatus utilizing electrical warming means

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550686A (en) * 2018-05-31 2019-12-10 中国科学院过程工程研究所 treatment method of heterocyclic organic matter-containing wastewater and obtained adsorption material
CN110550686B (en) * 2018-05-31 2020-12-29 中国科学院过程工程研究所 Treatment method of heterocyclic organic matter-containing wastewater and obtained adsorption material
US11760673B2 (en) 2018-05-31 2023-09-19 Institute Of Process Engineering, Chinese Academy Of Sciences Treatment method of wastewater containing heterocyclic organics and adsorbing material obtained therefrom

Also Published As

Publication number Publication date
JP6825179B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
AU2014249598B2 (en) In situ remediation of soils and groundwater containing organic contaminants
JP6266971B2 (en) Method for purifying contaminated soil or contaminated groundwater
Baker et al. How effective is thermal remediation of DNAPL source zones in reducing groundwater concentrations?
Yukselen-Aksoy et al. Electrokinetic delivery and activation of persulfate for oxidation of PCBs in clayey soils
US7290959B2 (en) Electrode heating with remediation agent
JP2018034086A (en) Process for clarifying contaminated soil and groundwater
CN111097785B (en) Method for restoring polluted soil and underground water
JP2010075887A (en) Cleaning method of contaminated soil and groundwater
JP2015024401A (en) Soil and groundwater purifying method, and soil and groundwater purifying apparatus
CN111136093B (en) Method for restoring polluted soil and underground water
US20150183666A1 (en) Situ chemical fixaton of metal contaminants
JP2022032395A (en) Pcb original position purification system and pcb original position purification method
JP7140350B2 (en) Contaminant diffusion suppression method
KR101995212B1 (en) Multi-functional well system for remediation of contamianted soil and groundwater
BE1028861B1 (en) Combination of thermal desorption and in situ chemical treatment
JP5722006B2 (en) Groundwater purification method
JP6639947B2 (en) Aquifer purification method
JP5148365B2 (en) Method for purifying contaminated soil and groundwater
JP7120706B2 (en) Soil remediation method
JP2007105594A (en) Restoration method for oil-contaminated soil
JP2010075883A (en) Cleaning method of contaminated soil and groundwater
CN104801539B (en) Reduction dechlorination enzyme is utilized to repair the method in contaminated with halogenated hydrocarbons place
JP2022105425A (en) Method for purifying contaminated soil
JP2006006996A (en) Purification method of pollution vehicle
JP2020044481A (en) Method for cleaning contaminated soil

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201216

R150 Certificate of patent or registration of utility model

Ref document number: 6825179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250