JP2014231050A - Soil cleaning apparatus utilizing electrical warming means - Google Patents

Soil cleaning apparatus utilizing electrical warming means Download PDF

Info

Publication number
JP2014231050A
JP2014231050A JP2013113743A JP2013113743A JP2014231050A JP 2014231050 A JP2014231050 A JP 2014231050A JP 2013113743 A JP2013113743 A JP 2013113743A JP 2013113743 A JP2013113743 A JP 2013113743A JP 2014231050 A JP2014231050 A JP 2014231050A
Authority
JP
Japan
Prior art keywords
well
soil
water
well frame
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013113743A
Other languages
Japanese (ja)
Other versions
JP6186891B2 (en
Inventor
俊彦 三重野
Toshihiko Mieno
俊彦 三重野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2013113743A priority Critical patent/JP6186891B2/en
Publication of JP2014231050A publication Critical patent/JP2014231050A/en
Application granted granted Critical
Publication of JP6186891B2 publication Critical patent/JP6186891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a soil cleaning apparatus utilizing electrical warming means that can minimize the number of wells to be drilled and that can efficiently pump up the collected underground water to the ground.SOLUTION: A well structure 10 installed into each well is provided with: a) a well frame 11 having water permeability for taking in the underground water contained in the soil; b) an electrode 14 inserted into the well frame and electrically insulated from the well frame; c) a lifting pipe 15 inserted into the well frame such that one end thereof is positioned beneath the water surface of the pooled water taken into the well frame; and d) an air sending pipe 16 inserted into the well frame, for sending in air into the lifting pipe 15 at the position beneath the water surface. By having the well frame 11 of a) as conductive, it can serve as substitution for the electrode 14 of b). VOC and the like in the soil enters the underground water because of the Joule heating by the electric current flowing between the electrodes and taken in into the well frame 11. The underground water is pumped up to the ground by the lifting pipe 15 on the principle of air lift pump.

Description

本発明は、土壌浄化装置に係り、特に電気加温法を用いた土壌浄化装置に関する。   The present invention relates to a soil purification apparatus, and more particularly to a soil purification apparatus using an electric heating method.

汚染物質で汚染された土壌を浄化する方法には、処理場所によって区分すると、汚染土壌を掘削後、非汚染土壌と入れ替え、掘削した汚染土壌は場外の最終処分場に運搬・埋立処分する方法(掘削・場外搬出)、掘削した汚染土壌を場内に持ち込んだ処理施設で浄化し埋め戻す方法(オンサイト浄化)、ならびに掘削することなく地中にあるがままの状態で浄化する方法(原位置浄化)がある。オンサイト浄化や原位置浄化は土壌の運搬作業が不要であり、その分の費用や手間が掛からない、さらに汚染物質を場外に持ち出さないので汚染の拡散を防ぐというメリットがある。電気加温法は原位置浄化技術の一つである。   As a method of purifying soil contaminated with pollutants, after classifying the contaminated soil by excavation, it is replaced with non-contaminated soil, and the excavated contaminated soil is transported and landfilled to a final disposal site outside the site ( (Excavation and off-site transport), excavating contaminated soil at a treatment facility that has been brought into the site and refilling it (on-site purification), and purifying the soil as it is without being excavated (in-situ purification) ) On-site purification and in-situ purification do not require soil transportation work, and there is an advantage in that the cost and labor of that amount are not required, and the contamination is not taken out of the field, thereby preventing the spread of contamination. The electric heating method is one of in-situ purification technologies.

汚染物質による区分では、重金属による汚染と、VOC(揮発性有機化合物:Volatile Organic Compounds)による汚染に大別される。加えて、最近は油汚染も問題視されるようになってきている。   The classification by pollutants is broadly divided into heavy metal pollution and VOC (Volatile Organic Compounds) pollution. In addition, oil pollution has recently become a problem.

原位置でのVOC土壌浄化方法の一つに、加温により土壌の温度を上げる方法がある(加温法)。加温法は、テトラクロロエチレン、トリクロロエチレン、ジクロロエチレン、トリクロロエタンをはじめとするVOCなどで汚染された土壌の浄化に適する。VOCの多くは粘性が低く、水よりも比重が大きいため、地中深く浸透し易く、地下水汚染を発生させる。また、粘性土壌の粒子間隙中に吸着して土壌汚染を引き起こす。そこで加温法では、土壌の温度を上げることで土壌粒子間隙中に吸着しているVOCを脱離するとともにその流動性を高め、気化させたり周囲の地下水に混入させる。そして、そのようなVOCを多く含む気体や地下水を汲み上げることでVOCを回収し、これにより汚染地下水、及び汚染土壌を浄化する。   One of the in-situ VOC soil purification methods is to increase the temperature of the soil by heating (heating method). The heating method is suitable for purification of soil contaminated with VOC including tetrachloroethylene, trichloroethylene, dichloroethylene, and trichloroethane. Most VOCs are low in viscosity and have a higher specific gravity than water, so they easily penetrate deep into the ground and cause groundwater contamination. Moreover, it adsorbs in the particle | grain space | gap of viscous soil, and causes soil contamination. Therefore, in the heating method, by increasing the temperature of the soil, the VOC adsorbed in the gap between the soil particles is desorbed and its fluidity is increased and vaporized or mixed into the surrounding ground water. And VOC is collect | recovered by pumping up the gas and groundwater which contain such VOC much, and this purifies contaminated groundwater and contaminated soil.

加温には、土壌に高温水蒸気(スチーム)を吹き込んだり、熱水を送り込んだりする方法のほか、土壌にヒータを挿入し熱伝導によってヒータ周辺の土壌や地下水を加温する方法もあるが(たとえば特許文献2、特許文献3)、エネルギー効率や制御性に優れた方法として電気加温法がある。電気加温法は、土壌に複数の電極を埋め、電極間の土壌に電流を流し、土壌自身の電気抵抗によってジュール熱を生じさせるものである。これにより、使用する電力の多くを土壌の加温に利用できる(たとえば特許文献1)。   In addition to the method of blowing high temperature steam (steam) into the soil or sending hot water to the soil, there are methods of inserting a heater into the soil and heating the soil and groundwater around the heater by heat conduction ( For example, Patent Document 2 and Patent Document 3), an electric heating method is a method excellent in energy efficiency and controllability. In the electric heating method, a plurality of electrodes are buried in the soil, a current is passed through the soil between the electrodes, and Joule heat is generated by the electrical resistance of the soil itself. Thereby, much of the electric power used can be utilized for the heating of soil (for example, patent document 1).

電気加温法では、図9に示すように、汚染土壌中に汚染物質回収用の井戸(回収井戸)51と、その周囲に電気加温のための井戸(電極井戸)52を掘削(ボーリング)する。電極井戸52は、例えば汚染土壌を囲む六角形の頂点にそれぞれ設け(図9の「領域1」)、各電極井戸52の電極に3相交流電源の各相の電圧を印加する。これにより、これら電極井戸52で囲まれた領域内の土壌に電流が流れ、ジュール熱により土壌の温度が上昇して、汚染物質が土壌から脱離する。土壌から脱離した汚染物質は地下水に混入し、該地下水は回収井戸51から汲み上げられる。その結果に応じて、その領域の外側に更なる回収井戸と電極井戸を掘削してゆくことにより、浄化領域を広げてゆく(「領域2」、「領域3」)。   In the electric heating method, as shown in FIG. 9, a well (collection well) 51 for collecting pollutants in the contaminated soil and a well (electrode well) 52 for electric heating are excavated (boring) around the well. To do. The electrode wells 52 are respectively provided at the apexes of a hexagon surrounding the contaminated soil, for example ("region 1" in FIG. 9), and the voltage of each phase of the three-phase AC power supply is applied to the electrodes of each electrode well 52. As a result, a current flows through the soil in the region surrounded by the electrode wells 52, the temperature of the soil rises due to Joule heat, and the contaminants are detached from the soil. Contaminants detached from the soil are mixed into the groundwater, and the groundwater is pumped from the recovery well 51. Depending on the result, the purification area is expanded by drilling further recovery wells and electrode wells outside the area ("area 2", "area 3").

回収井戸51から汲み上げられた、汚染物質を含む地下水は、地上で曝気処理等を行うことにより、汚染物質を除去する(非特許文献1)。   The groundwater containing the pollutant pumped up from the recovery well 51 removes the pollutant by performing aeration treatment or the like on the ground (Non-patent Document 1).

特開平05-10083号公報JP 05-10083 A 特開平11-57685号公報Japanese Patent Laid-Open No. 11-57685 特開2006-272273号公報JP 2006-272273 A

地盤環境技術研究会編「土壌汚染対策技術」,株式会社日科技連出版社,2003年9月24日Soil Environmental Technology Study Group "Soil Contamination Control Technology", Nikka Techen Publishers, Inc., September 24, 2003

上記従来の電気加温法では、土壌の浄化作業を行う場所において、電極井戸52とは別に回収井戸51を設ける必要があるため、掘削すべき井戸の本数が多いという問題がある。浄化すべき領域が広い場合には、図9に示すように、回収井戸の数も多くなり、掘削のコストは大きなものとなる。   The conventional electric heating method has a problem that the number of wells to be excavated is large because it is necessary to provide the recovery well 51 in addition to the electrode well 52 at a place where soil purification work is performed. When the area to be purified is large, as shown in FIG. 9, the number of recovery wells increases, and the cost of excavation increases.

また、前述のとおりVOC等を含む汚染水は多くの場合地下深くにあるが、地上に置いた真空ポンプでは1気圧の揚程である10 mを超える深さの汚染水を汲み上げることができない。一方、真空ポンプを井戸の底に設置しようとすると、ポンプを設置するために径の大きな井戸を掘削する必要があり、井戸掘削コストが大きく跳ね上がる。また、電極井戸からの電場の影響を受けてモーターの磁束が乱れたり、金属部品に腐食(電食)を生じたりして、正常に動作しなくなるという問題もある。   In addition, as mentioned above, contaminated water containing VOCs is often deep underground, but a vacuum pump placed on the ground cannot pump up contaminated water with a depth exceeding 10 m, which is a lift of 1 atm. On the other hand, if the vacuum pump is to be installed at the bottom of the well, it is necessary to excavate a well having a large diameter in order to install the pump, and the cost of excavating the well is greatly increased. In addition, there are problems that the magnetic flux of the motor is disturbed by the influence of the electric field from the electrode well, or the metal parts are corroded (electric corrosion), so that they do not operate normally.

本発明が解決しようとする課題は、掘削すべき井戸の本数を少なくするとともに、回収された地下水を効率よく地上に汲み上げることのできる、電気加温法による土壌浄化装置を提供することである。   The problem to be solved by the present invention is to provide a soil purification apparatus by an electric heating method that can reduce the number of wells to be excavated and can efficiently pump the recovered groundwater to the ground.

上記課題を解決するために成された本発明の第1の態様のものは、電気加温法を利用した土壌浄化に用いる、各井戸に設ける井戸構造体であって、
a)土壌に含まれる地下水を取り込むための透水性を有する井戸枠と、
b)前記井戸枠の中に挿入された、前記井戸枠とは電気的に絶縁された電極と、
c)前記井戸枠に取り込まれる貯留水の水面下にその一端が位置するように前記井戸枠内に挿入された揚水管と、
d)前記井戸枠の中に挿入された、前記水面下において前記揚水管内に空気を送り込むための送気管と
を有することを特徴とする。
The thing of the 1st aspect of this invention made in order to solve the said subject is a well structure provided in each well used for soil purification using an electric heating method,
a) a well frame having water permeability for taking in groundwater contained in the soil;
b) an electrode inserted into the well frame and electrically insulated from the well frame;
c) a pumping pipe inserted into the well frame such that one end thereof is located below the surface of the water stored in the well frame;
d) An air supply pipe inserted into the well frame and for sending air into the pumping pipe under the water surface.

また、本発明の第2の態様のものは、電気加温法を利用した土壌浄化に用いる、各井戸に設ける井戸構造体であって、
a)導電性と、土壌に含まれる地下水を取り込むための透水性とを有する井戸枠と、
b)前記井戸枠に取り込まれる貯留水の水面下にその一端が位置するように前記井戸枠内に挿入された揚水管と、
c)前記井戸枠の中に挿入された、前記水面下において前記揚水管内に空気を送り込むための送気管と
を有することを特徴とする。
Moreover, the thing of the 2nd aspect of this invention is a well structure provided in each well used for the soil purification using an electric heating method,
a) a well frame having electrical conductivity and permeability to take in groundwater contained in the soil;
b) a pumping pipe inserted into the well frame such that one end thereof is located below the surface of the water stored in the well frame;
and c) an air supply pipe inserted into the well frame for sending air into the pumping pipe under the water surface.

第1の態様のもの、第2の態様のもの、共に、送気管は揚水管の外に設けてもよいし、揚水管の内部に設けてもよい(すなわち二重管構造としてもよい)。   In both the first and second aspects, the air supply pipe may be provided outside the pumping pipe, or may be provided inside the pumping pipe (that is, a double pipe structure may be used).

本発明に係る井戸構造体は、油やVOC等の汚染物質が保持された土壌領域を囲む複数の井戸にそれぞれ設ける。第1の態様のものでは各井戸構造体中の電極に電圧を印加することにより、また、第2の態様のものでは井戸枠に電圧を印加することにより、これら複数の井戸構造体を設けた井戸で囲まれた土壌領域に電流を流し、ジュール熱を発生させて加温する。これにより汚染土壌の温度を上げ、該土壌に保持されている汚染物質を該土壌から脱離させ、その流動性を高めて地下水に混入させる。本発明に係る井戸構造体の井戸枠は透水性を有するため、この地下水はその水圧により井戸枠内に入り込み、そこに貯留される。   The well structure according to the present invention is provided in each of a plurality of wells surrounding a soil region in which contaminants such as oil and VOC are held. In the first embodiment, the plurality of well structures are provided by applying a voltage to the electrodes in each well structure, and in the second embodiment, a voltage is applied to the well frame. An electric current is passed through the soil area surrounded by the well, generating Joule heat and heating. As a result, the temperature of the contaminated soil is raised, the pollutant retained in the soil is desorbed from the soil, and its fluidity is increased and mixed into the groundwater. Since the well frame of the well structure according to the present invention has water permeability, the groundwater enters the well frame by the water pressure and is stored therein.

こうして井戸枠内に取り込まれた汚染物質を含む地下水(貯留水)を、揚水管及び送気管を用いてエアリフトポンプの原理により地上に引き揚げる。すなわち、貯留水の水面下において、送気管から空気を揚水管内に送り込むことにより、空気の混入により平均的に比重が軽くなった水が、下方からの水圧(貯留水の揚程圧)により揚水管内を押し上げられてゆく。井戸枠内の貯留水の水位が低下すると、地下水は水圧により井戸枠を透過して井戸枠内に侵入し、貯留水の水位が回復する。こうして送気管から揚水管に空気を送り込み続けることにより、継続的に貯留水(汚染水)を汲み上げることができる。   Thus, the groundwater (contained water) containing the contaminants taken into the well frame is drawn up to the ground by the principle of an air lift pump using a pumping pipe and an air supply pipe. That is, the water whose average gravity is lightened on average by mixing air into the pumped pipe below the surface of the stored water is fed into the pumped pipe by the water pressure from below (the head pressure of the stored water). Will be pushed up. When the water level of the stored water in the well frame decreases, the groundwater penetrates the well frame by water pressure and enters the well frame, and the water level of the stored water is recovered. By continuously sending air from the air supply pipe to the pumping pipe in this way, the stored water (contaminated water) can be continuously pumped up.

本発明に係る井戸構造体では、電極井戸が回収井戸を兼ねているため、同一面積を浄化するための井戸の本数を従来よりも少なくすることができる。浄化すべき土地の面積が大きくなると、この本数の差は大きなものとなり、大きなコストダウンとなる。また、逆の見方をすれば、回収井戸の本数が従来よりも多くなるため、より効率よく汚染水を地上に引き上げることができるようになる。   In the well structure according to the present invention, since the electrode well also serves as the recovery well, the number of wells for purifying the same area can be reduced as compared with the conventional structure. As the area of land to be cleaned increases, this difference in number increases and the cost is greatly reduced. In other words, since the number of recovery wells is larger than before, the contaminated water can be more efficiently lifted to the ground.

本発明に係る井戸構造体はエアリフトポンプの原理を利用して汚染水を地上に汲み上げるため、ポンプを地下に置く必要がない。このため、各井戸の径を小さくすることができ、この点でも除染コスト低減に寄与する。そして、1気圧の揚程である10 mの限界がないため、どのような深さからでも汚染水を汲み上げることができる。更に、汲み上げる地下水に小さな土砂などが混入していても汲み上げることができる。従来の(地上/地下)ポンプで汲み上げる土壌浄化装置では、汲み上げる地下水に土砂等が混入しているとポンプが傷んでしまうためフィルター等を設ける必要があったが、本発明に係る井戸構造体ではフィルター自体の費用やその交換のための費用・手間を節約することができる。   The well structure according to the present invention pumps the contaminated water to the ground by using the principle of the air lift pump, so that it is not necessary to place the pump underground. For this reason, the diameter of each well can be made small, and this also contributes to decontamination cost reduction. And since there is no limit of 10 m, which is a lift of 1 atm, contaminated water can be pumped from any depth. Furthermore, even if small earth and sand are mixed in the groundwater to be pumped up, it can be pumped up. In the conventional soil purification device that pumps up with the pump (above ground / underground), it is necessary to provide a filter or the like because the pump will be damaged if soil or sand is mixed in the pumped-up groundwater. It is possible to save the cost of the filter itself and the cost and labor for the replacement.

本発明に係る井戸構造体ではエアリフトポンプの原理を応用しているため、次のような付随的効果も得られる。汚染物質を含む地下水はエアリフトポンプの原理で揚水管中を上昇して行く間に送気管からの空気と混合され続けているため、VOC等の気化しやすい汚染物質は地下水から容易に脱離する。このため、本発明に係る井戸構造体を用いた土壌浄化処理では、地上での曝気処理が不要となる。   Since the well structure according to the present invention applies the principle of the air lift pump, the following incidental effects can also be obtained. Since groundwater containing pollutants continues to be mixed with the air from the air pipe while going up in the pumping pipe by the principle of the air lift pump, pollutants that are easily vaporized such as VOC easily desorb from the groundwater. . For this reason, in the soil purification process using the well structure according to the present invention, an aeration process on the ground becomes unnecessary.

本発明の第1の態様の井戸構造体では、井戸枠内の貯留水には、土壌と同様に、電極間の電流が流れ、この電流によりジュール加熱される。貯留水は電極のすぐ近くにあるため、電流密度が大きく、また、水は一般に土壌よりも比抵抗値が高いため、土壌よりも早く高温に達する。この高温の貯留水の熱が熱伝導で周囲の土壌に与えられることによっても、汚染土壌の加温が促進される。更に、前記のエアリフト中の地下水からの汚染物質の脱離も促進される。   In the well structure according to the first aspect of the present invention, the current between the electrodes flows in the stored water in the well frame, like the soil, and is joule-heated by this current. Since the stored water is in the immediate vicinity of the electrode, the current density is large, and since water generally has a higher specific resistance value than the soil, it reaches a higher temperature earlier than the soil. The heating of the contaminated soil is also promoted by the heat of the high-temperature stored water being given to the surrounding soil by heat conduction. Furthermore, the detachment of contaminants from the ground water during the airlift is also promoted.

なお、このような原理を利用するため、第1の態様の井戸構造体においては、井戸枠は電極から絶縁されている必要があるが、井戸枠自体は絶縁体であってもよいし、導電体(例えば金属製)であってもよい。   In order to utilize such a principle, in the well structure according to the first aspect, the well frame needs to be insulated from the electrode. However, the well frame itself may be an insulator or a conductive layer. The body (for example, metal) may be sufficient.

第2の態様の井戸構造体は、電極を使用しないため、井戸径を細くすることができ、低コストで土壌汚染の除去を行うことができる。   Since the well structure of the second aspect does not use an electrode, the well diameter can be reduced, and soil contamination can be removed at low cost.

本発明による井戸構造体の一実施例の概略構成図。The schematic block diagram of one Example of the well structure by this invention. 実施例の井戸構造体の井戸枠に設けられた2種のスリットを示す斜視図。The perspective view which shows two types of slits provided in the well frame of the well structure of the Example. 本発明による井戸構造体を用いた井戸の配置例の図。The figure of the example of arrangement | positioning of the well using the well structure by this invention. 本発明の別の実施例による井戸構造体の概略構成を示す図。The figure which shows schematic structure of the well structure by another Example of this invention. 本発明の更に別の実施例による井戸構造体の概略構成を示す図。The figure which shows schematic structure of the well structure by another Example of this invention. 本発明の井戸構造体を用いた土壌浄化装置の実験データであり、(a)は地表における各井戸の位置及び土壌温度の測定位置を示す平面図、(b)は各測定位置における温度の時間推移を示すグラフ。It is experimental data of a soil purification apparatus using the well structure of the present invention, (a) is a plan view showing the position of each well on the ground surface and the measurement position of the soil temperature, (b) is the temperature time at each measurement position The graph which shows transition. 本発明の井戸構造体を用いた別の実験の井戸配置の図。The figure of the well arrangement | positioning of another experiment using the well structure of this invention. 前記実験による、通電開始からの経過日数とVOC回収量累計の推移を示すグラフ。The graph which shows transition of the elapsed days from the start of electricity supply, and the accumulation amount of VOC collection by the said experiment. 従来の電気加温法による回収井戸と電極井戸の配置を示す概略構成図。The schematic block diagram which shows arrangement | positioning of the collection | recovery well and electrode well by the conventional electric heating method.

本発明の井戸構造体の一実施例について図1〜図3を参照しつつ説明する。
図1は、本実施例の井戸構造体10の概略構成を示す断面図である。井戸構造体10は、井戸枠11とその上下に設けられた井戸蓋12及び井戸底13、そして、井戸蓋12から井戸枠11の中に気密に挿入された電極14、揚水管15、送気管16、吸引管17等から構成される。送気管16の先端は揚水管15の下端付近で揚水管15の側面に接続され、揚水管15内に空気を送給するようになっている。本実施例では井戸枠11は鋼製となっているため、電極14が井戸枠11と電気的に接触しないように、井戸蓋12と電極14の間には絶縁部材18が介装されている。
An embodiment of the well structure of the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view showing a schematic configuration of a well structure 10 of this example. The well structure 10 includes a well frame 11, a well lid 12 and a well bottom 13 provided above and below the well frame 11, an electrode 14 inserted in the well frame 11 from the well lid 12, a pumping pipe 15, and an air pipe. 16 and a suction tube 17 or the like. The tip of the air pipe 16 is connected to the side surface of the water pump 15 near the lower end of the water pump 15 so that air is fed into the water pump 15. In this embodiment, since the well frame 11 is made of steel, an insulating member 18 is interposed between the well lid 12 and the electrode 14 so that the electrode 14 is not in electrical contact with the well frame 11. .

図2(a)や(b)に示すように、井戸枠11の下方側面には多数のスリット19を形成し、土壌に含まれている地下水を透過させるようにする。スリット19の幅は、土壌粒子が通過しない大きさ(例えば3 mm程度)としておく。スリットの長さや配置は、井戸枠11の強度が保持されれば任意であり、図2(a)、(b)に示すような態様に限られない。   As shown in FIGS. 2 (a) and 2 (b), a number of slits 19 are formed on the lower side surface of the well frame 11 so that the groundwater contained in the soil can permeate. The width of the slit 19 is set to a size that prevents soil particles from passing (for example, about 3 mm). The length and arrangement of the slits are arbitrary as long as the strength of the well frame 11 is maintained, and is not limited to the mode shown in FIGS. 2 (a) and 2 (b).

送気管16の地上側には、空気を送るための送気ポンプ20を接続する。また、吸引管17の地上側には、吸引管17から空気(ガス)を吸引するための吸引ポンプ21を接続する。   An air supply pump 20 for sending air is connected to the ground side of the air supply pipe 16. A suction pump 21 for sucking air (gas) from the suction pipe 17 is connected to the ground side of the suction pipe 17.

このような井戸構造体10を、図3に示すように、除染すべき土壌の周囲に掘削した井戸に設置する。図3の例では、3本の井戸10-1〜10-3を正三角形の頂点に設け、各井戸の電極を、3相交流電源23の各相の端子(Φ1〜Φ3)に接続する。この三角形の大きさは、3相交流電源23の電圧及び電源容量と土壌の電気抵抗により適宜設定するが、3相交流電源23の出力電圧が80〜250 V、出力電流が10〜100 Aの場合、一般的には各辺の長さを3〜10 m程度とするとよい。各井戸の深さは、汚染物質及び地下水の存在する深さに応じて設定するが、例えば地下10〜30 m程度まで掘削することが多い。なお、井戸の直径は、上記のように電極や揚水管、送気管等を挿入しなければならないことから、50 mm以上は必要であるが、あまりに大きいと井戸の掘削コストが非常に大きくなることから、200 mm程度以下とするのがよい。   Such a well structure 10 is installed in a well excavated around the soil to be decontaminated, as shown in FIG. In the example of FIG. 3, three wells 10-1 to 10-3 are provided at the vertices of an equilateral triangle, and the electrodes of each well are connected to terminals (Φ1 to Φ3) of each phase of the three-phase AC power supply 23. The size of this triangle is set as appropriate according to the voltage and power capacity of the three-phase AC power source 23 and the electrical resistance of the soil. The output voltage of the three-phase AC power source 23 is 80 to 250 V and the output current is 10 to 100 A. In general, the length of each side is preferably about 3 to 10 m. The depth of each well is set according to the depth of the pollutant and groundwater, but is often excavated to about 10 to 30 m underground, for example. The diameter of the well needs to be 50 mm or more because electrodes, pumping pipes, air supply pipes, etc. must be inserted as described above, but if it is too large, the cost of drilling the well will be very high. Therefore, it should be about 200 mm or less.

地下水が含まれている土壌の存在する深さまで掘削して設けた井戸では、土壌に含まれる地下水が水圧により井戸枠内に侵入し、貯留水となる(図1)。この地下水の状態を予め調査しておくことにより、電極14、揚水管15、送気管16は、この貯留水の水面下に位置する深さまで挿入しておく。なお、井戸枠11が金属製である場合は特に問題はないが、井戸枠11が非金属製(絶縁体)である場合、隣接井戸の電極間の電流はスリット19を通してしか流れないため、井戸枠11に設けるスリット19も、予め調査の上、加温したい深さのところに設けておく。   In a well that has been excavated to a depth where soil containing groundwater exists, groundwater contained in the soil enters the well frame by water pressure and becomes stored water (FIG. 1). By investigating the state of this groundwater in advance, the electrode 14, the pumping pipe 15, and the air supply pipe 16 are inserted to a depth located below the surface of the stored water. There is no particular problem when the well frame 11 is made of metal, but when the well frame 11 is made of non-metal (insulator), the current between the electrodes of the adjacent wells flows only through the slits 19. The slit 19 provided in the frame 11 is also provided at a depth where it is desired to be heated after investigation.

3相交流電源23の電源をオンにして各井戸構造体10の電極14に電圧を印加すると、3相交流電源23の電圧は、井戸枠11内の貯留水、井戸間の汚染土壌、隣接井戸構造体10の井戸枠11内の貯留水の間に印加される。これにより、まず、電流密度の高い、井戸枠11内の貯留水がジュール熱により加熱される。この貯留水の熱が周囲の汚染土壌を加温するとともに、汚染土壌は電極間の電流によってもそれ自身でジュール発熱する。   When the power of the three-phase AC power supply 23 is turned on and a voltage is applied to the electrode 14 of each well structure 10, the voltage of the three-phase AC power supply 23 is stored water in the well frame 11, contaminated soil between wells, adjacent wells. Applied between the stored water in the well frame 11 of the structure 10. Thereby, first, the stored water in the well frame 11 having a high current density is heated by Joule heat. The heat of the stored water heats the surrounding contaminated soil, and the contaminated soil also generates Joule heat by itself between the electrodes.

こうして土壌を加温すると、土壌粒子に吸着しているVOCが脱離するとともにその流動性が高まり、土壌に含まれている地下水に混入する。この地下水は前記の通り井戸枠11内に侵入する。この井戸枠11内に侵入した地下水(貯留水)は、次のようにエアリフトポンプの原理により地上に汲み上げられる。   When the soil is heated in this manner, the VOC adsorbed on the soil particles is desorbed and its fluidity is increased, and is mixed into the groundwater contained in the soil. This groundwater enters the well frame 11 as described above. Groundwater (reserved water) that has entered the well frame 11 is pumped to the ground by the principle of an air lift pump as follows.

まず、送気ポンプ20により空気を送気管16に送る。送気管16の下方先端は、貯留水の水面下において揚水管15に接続しているため、空気は揚水管15に送り込まれる。送り込まれた空気は揚水管15内の貯留水に混入し、これにより、平均的に比重が軽くなった貯留水が、下方からの水圧(貯留水の揚程圧)により、井戸枠11内に立設された揚水管15の内部を押し上げられて浮上する。汲み上げる貯留水の量は、送気ポンプ20の出力により調整することができる。   First, air is sent to the air supply pipe 16 by the air supply pump 20. Since the lower end of the air supply pipe 16 is connected to the pumping pipe 15 below the surface of the stored water, the air is fed into the pumping pipe 15. The air sent in is mixed into the stored water in the pumping pipe 15, so that the stored water whose average specific gravity is lightened on average stands in the well frame 11 due to the water pressure from below (the head pressure of the stored water). The inside of the pumped water pipe 15 is pushed up and floats. The amount of stored water to be pumped can be adjusted by the output of the air pump 20.

井戸枠11の内部の貯留水を汲み上げていくと、その水位は一旦低下するが、土壌中の地下水がその水圧で井戸枠11のスリット19を通過して侵入するため、井戸枠11内に貯留された貯留水の水位は回復する。このようにして、送気ポンプ20で送気を行っている間、VOCが混入した地下水(貯留水)を継続して回収することができる。   When the stored water inside the well frame 11 is pumped up, the water level temporarily decreases. However, since the groundwater in the soil enters through the slit 19 of the well frame 11 by the water pressure, the water level is stored in the well frame 11. The stored water level is restored. In this manner, the groundwater (reserved water) mixed with VOC can be continuously collected while the air pump 20 supplies air.

以上のとおり、本実施例の土壌浄化装置では、各井戸が土壌(及び貯留水)加温のための電極井戸とVOC汚染水を回収する回収井戸の両方の機能を備える。したがって、従来のように、電極井戸とは別の回収井戸を設ける必要がなく、井戸の本数を減らし、井戸掘削に掛かる費用ひいては土壌浄化に要するトータルのコストも下げることが可能となる。   As described above, in the soil purification apparatus of the present embodiment, each well has functions of both an electrode well for heating soil (and stored water) and a recovery well for collecting VOC-contaminated water. Therefore, unlike the conventional case, there is no need to provide a recovery well different from the electrode well, the number of wells can be reduced, and the cost for drilling the well and thus the total cost for soil purification can be reduced.

さらに、本発明の土壌浄化装置では、貯留水の汲み上げにエアリフトポンプを利用したことで、以下のような効果も得られる。すなわち、貯留水に空気を送り込むことで貯留水が曝気され、その内部に混入していたVOCの一部が気化する。こうして気化したVOCは、揚水管15と共に地上に引き上げられる他、揚水管15の外部にも放出される。揚水管15中を貯留水と共に引き上げられたVOCガスは、地上で水と分離され、活性炭吸着等の排ガス処理装置へ送られ、無害化される。また、揚水管15の外部の井戸枠11内に放出されたVOCガスは、吸引ポンプ21により吸引管17を通して吸引され、同様に排ガス処理装置へ送られ無害化される。これらにより、VOCの回収効率を向上させることが可能となる。また、貯留水の温度が高いほどより多くのVOCが爆気によって気化するため、このような理由からも貯留水を加温するメリットがある。加えて、排ガス処理装置は、汲み上げたVOC汚染水を処理する水処理施設よりも安価なため、エアリフトポンプによるガス化促進は、処理のコスト削減メリットがある。   Furthermore, in the soil purification apparatus of this invention, the following effects are acquired by using an air lift pump for pumping up stored water. That is, by sending air to the stored water, the stored water is aerated, and a part of the VOC mixed in the inside is vaporized. The vaporized VOC is lifted to the ground together with the pumping pipe 15 and is also released to the outside of the pumping pipe 15. The VOC gas pulled up together with the stored water in the pumping pipe 15 is separated from the water on the ground, sent to an exhaust gas treatment device such as activated carbon adsorption, and rendered harmless. Further, the VOC gas released into the well frame 11 outside the pumping pipe 15 is sucked through the suction pipe 17 by the suction pump 21, and is similarly sent to the exhaust gas treatment apparatus to be rendered harmless. Thus, it becomes possible to improve the recovery efficiency of VOC. In addition, since the higher the temperature of the stored water, the more VOCs are vaporized by the explosion, there is an advantage of warming the stored water for this reason. In addition, since the exhaust gas treatment device is less expensive than a water treatment facility that treats the pumped VOC-contaminated water, the promotion of gasification by the air lift pump has the advantage of reducing the cost of treatment.

上記実施例では、井戸枠11の中に電極14を設けたが、井戸枠11を金属製とし、井戸枠11を電極として用いることもできる。この、本発明の第2の態様に係る井戸構造体30の実施例を図4に示す。この井戸構造体30は、電極が無い他は、基本的な構造は前記第1実施例の井戸構造体10とほぼ同じである。ただ、電極を挿入しないため、井戸枠31(すなわち、掘削すべき井戸)の太さを小さくすることができる。   In the above embodiment, the electrode 14 is provided in the well frame 11, but the well frame 11 may be made of metal and the well frame 11 may be used as an electrode. An example of this well structure 30 according to the second aspect of the present invention is shown in FIG. The well structure 30 is substantially the same as the well structure 10 of the first embodiment except that no electrode is provided. However, since no electrode is inserted, the thickness of the well frame 31 (that is, the well to be drilled) can be reduced.

本発明の更に別の実施例を図5(a)に示す。この実施例の井戸構造体40では、送気管46を揚水管45の内側に配置し、二重管構造としている。なお、図5(a)の井戸構造体40では送気管46の下端から揚水管45内に空気を放出しているが、図5(b)に示すように、送気管48の下端を閉塞し、その側面から空気を放出するようにしてもよい。これにより、送気管48内への土壌粒等の侵入を防ぐことができる。   Yet another embodiment of the present invention is shown in FIG. In the well structure 40 of this embodiment, the air supply pipe 46 is arranged inside the pumped water pipe 45 to form a double pipe structure. In the well structure 40 in FIG. 5 (a), air is discharged from the lower end of the air supply pipe 46 into the pumping pipe 45. However, as shown in FIG. 5 (b), the lower end of the air supply pipe 48 is closed. The air may be discharged from the side surface. Thereby, invasion of soil particles or the like into the air pipe 48 can be prevented.

そのような3本の電極井戸を用いた場合の土壌の加温効果を実験により確認したので、そのデータを図6に示す。図6(a)は、地表における各電極井戸の位置及び土壌温度の測定位置を示す。今回の実験では、3本の電極井戸A〜Cを、一辺の長さが3.5 mの正三角形の頂点に設け、各電極の深さは地下25 mとした。土壌は関東ロームであり、各電極への電圧印加には、出力電圧が110 V、出力電流が20 A、周波数50 Hzの3相交流電源を用いた。図6(b)は、横軸を経過日数(日)、縦軸を土壌温度(℃)として、各測定位置(1)〜(3)の地下24 mにおける土壌温度の測定値をプロットしたものである。土壌温度の測定は、測定位置(1)〜(3)にボーリングで地下24 mの深さの穴を形成し、各穴の底に温度計を配置して行った。   Since the heating effect of the soil when using such three electrode wells was confirmed by experiments, the data is shown in FIG. FIG. 6 (a) shows the position of each electrode well and the measurement position of soil temperature on the ground surface. In this experiment, three electrode wells A to C were provided at the apex of an equilateral triangle with a side length of 3.5 m, and the depth of each electrode was 25 m underground. The soil was Kanto Loam, and a three-phase AC power source with an output voltage of 110 V, an output current of 20 A, and a frequency of 50 Hz was used for voltage application to each electrode. Fig. 6 (b) plots the measured soil temperature at 24 m underground at each measurement position (1) to (3) with the elapsed time (days) on the horizontal axis and the soil temperature (° C) on the vertical axis. It is. The soil temperature was measured by drilling holes at a depth of 24 m underground at measurement positions (1) to (3) and placing a thermometer at the bottom of each hole.

図6(b)のグラフのとおり、初日には約20℃であった土壌温度は、日数の経過とともに上昇し、90日後には40℃近くまで上昇している。この値は、シミュレーション結果の示す傾向に一致しており、本発明に係る土壌浄化装置に用いる電極井戸は、十分な土壌の加温効果を有することを確認できた。その間の貯留水の水位は地下18 m程度であった。   As shown in the graph of FIG. 6 (b), the soil temperature, which was about 20 ° C. on the first day, increased with the passage of days, and increased to nearly 40 ° C. after 90 days. This value is consistent with the tendency indicated by the simulation results, and it was confirmed that the electrode well used in the soil purification apparatus according to the present invention has a sufficient soil heating effect. During that time, the water level was about 18 m underground.

次に、別の井戸配置により実験を行った結果を図7及び図8により説明する。VOC実汚染現場において、図7に示すように6本の井戸を設け、各井戸に図1に示す井戸構造体を設置して、加温機能およびVOC回収機能の検証を実施した。現場の条件は次の通りである。
汚染物質:VOC(パークロロエチレン(PCE),トリクロロエチレン(TCE),ジクロロエチレン(DCE),塩化ビニルモノマ(VCM;但し、VCMはDCEの分解生成物))
土質:砂質シルト(粘性土)
地下水位:地表から2 m
電極深度:10 m
電極本数:6 本
出力電圧:三相交流110 V
出力電流:30〜40 A
Next, the results of experiments conducted with different well arrangements will be described with reference to FIGS. At the actual VOC contamination site, six wells were provided as shown in FIG. 7, and the well structure shown in FIG. 1 was installed in each well to verify the heating function and the VOC recovery function. The site conditions are as follows.
Contaminant: VOC (perchlorethylene (PCE), trichlorethylene (TCE), dichloroethylene (DCE), vinyl chloride monomer (VCM; where VCM is the decomposition product of DCE))
Soil quality: sandy silt (cohesive soil)
Groundwater level: 2 m from the surface
Electrode depth: 10 m
Number of electrodes: 6 Output voltage: Three-phase AC 110 V
Output current: 30-40A

通電開始から50日後に土壌温度が50℃に達したので、その時点でガス吸引とエアリフト揚水を開始した。図8のグラフは、エアリフト揚水曝気によって気化したVOC回収量の累計である。土壌温度の上昇は計画通りであり、また、この土壌からのVOCの回収も有効に行われていることが示されている。これにより、本発明による井戸構造体により電極井戸と回収井戸の両方の機能が有効に得られることが証明できた。   Since the soil temperature reached 50 ° C. 50 days after the start of energization, gas suction and air lift pumping were started at that time. The graph of FIG. 8 is the total of the amount of VOC recovered by vaporization by air lift pumping aeration. The increase in soil temperature is as planned, and it has been shown that the recovery of VOCs from this soil is also being carried out effectively. Thus, it was proved that the functions of both the electrode well and the recovery well can be effectively obtained by the well structure according to the present invention.

10、30、40…井戸構造体
11、31…井戸枠
12…井戸蓋
13…井戸底
14…電極
15、45…揚水管
16、46、48…送気管
17…吸引管
18…絶縁部材
19…スリット
20…送気ポンプ
21…吸引ポンプ
23…3相交流電源
51…回収井戸
52…電極井戸
DESCRIPTION OF SYMBOLS 10, 30, 40 ... Well structure 11, 31 ... Well frame 12 ... Well lid 13 ... Well bottom 14 ... Electrode 15, 45 ... Pumping pipe 16, 46, 48 ... Air supply pipe 17 ... Suction pipe 18 ... Insulating member 19 ... Slit 20 ... Air supply pump 21 ... Suction pump 23 ... Three-phase AC power supply 51 ... Recovery well 52 ... Electrode well

Claims (5)

電気加温法を利用した土壌浄化に用いる、各井戸に設ける井戸構造体であって、
a)土壌に含まれる地下水を取り込むための透水性を有する井戸枠と、
b)前記井戸枠の中に挿入された、前記井戸枠とは電気的に絶縁された電極と、
c)前記井戸枠に取り込まれる貯留水の水面下にその一端が位置するように前記井戸枠内に挿入された揚水管と、
d)前記井戸枠の中に挿入された、前記水面下において前記揚水管内に空気を送り込むための送気管と
を有することを特徴とする井戸構造体。
It is a well structure provided in each well used for soil purification using the electric heating method,
a) a well frame having water permeability for taking in groundwater contained in the soil;
b) an electrode inserted into the well frame and electrically insulated from the well frame;
c) a pumping pipe inserted into the well frame such that one end thereof is located below the surface of the water stored in the well frame;
d) a well structure having an air supply pipe inserted into the well frame for sending air into the pumping pipe below the water surface.
電気加温法を利用した土壌浄化に用いる、各井戸に設ける井戸構造体であって、
a)導電性と、土壌に含まれる地下水を取り込むための透水性とを有する井戸枠と、
b)前記井戸枠に取り込まれる貯留水の水面下にその一端が位置するように前記井戸枠内に挿入された揚水管と、
c)前記井戸枠の中に挿入された、前記水面下において前記揚水管内に空気を送り込むための送気管と
を有することを特徴とする井戸構造体。
It is a well structure provided in each well used for soil purification using the electric heating method,
a) a well frame having electrical conductivity and permeability to take in groundwater contained in the soil;
b) a pumping pipe inserted into the well frame such that one end thereof is located below the surface of the water stored in the well frame;
c) a well structure having an air supply pipe inserted into the well frame for sending air into the pumping pipe under the water surface.
前記送気管が前記揚水管の外に設けられていることを特徴とする請求項1又は2に記載の井戸構造体。   The well structure according to claim 1 or 2, wherein the air supply pipe is provided outside the pumping pipe. 前記送気管が前記揚水管の中に設けられ、揚水管と送気管が二重管構造となっていることを特徴とする請求項1又は2に記載の井戸構造体。   The well structure according to claim 1 or 2, wherein the air supply pipe is provided in the pumping pipe, and the water pumping pipe and the air supply pipe have a double pipe structure. 前記送気管の下端が封止され、側面に開口が設けられていることを特徴とする請求項4に記載の井戸構造体。   The well structure according to claim 4, wherein a lower end of the air pipe is sealed and an opening is provided on a side surface.
JP2013113743A 2013-05-30 2013-05-30 Soil purification device using electric heating method Active JP6186891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013113743A JP6186891B2 (en) 2013-05-30 2013-05-30 Soil purification device using electric heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013113743A JP6186891B2 (en) 2013-05-30 2013-05-30 Soil purification device using electric heating method

Publications (2)

Publication Number Publication Date
JP2014231050A true JP2014231050A (en) 2014-12-11
JP6186891B2 JP6186891B2 (en) 2017-08-30

Family

ID=52124780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013113743A Active JP6186891B2 (en) 2013-05-30 2013-05-30 Soil purification device using electric heating method

Country Status (1)

Country Link
JP (1) JP6186891B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105251759A (en) * 2015-10-16 2016-01-20 北京德瑞科森环保科技有限公司 Multi-section type soil in-situ aerating device
JP2016159259A (en) * 2015-03-04 2016-09-05 株式会社島津製作所 Soil purification method using electrical warming means, and electrode for the same
CN105983254A (en) * 2016-03-08 2016-10-05 南通恒和环保科技有限公司 Liquid discharging device and method of sedimentation tank
JP2018034086A (en) * 2016-08-30 2018-03-08 国際航業株式会社 Process for clarifying contaminated soil and groundwater
KR101943945B1 (en) * 2018-08-09 2019-03-04 주식회사 효림 In-situ underground contaminated soil heater device for high temperature heat injection and extraction and the in-situ contaminated soil remediation system by using the same
CN110208074A (en) * 2019-05-21 2019-09-06 上海市环境科学研究院 A kind of Volatile Organic Compounds in Soil device for fast detecting and its detection method
KR101995207B1 (en) * 2018-10-02 2019-10-17 주식회사 효림 Multi-contaminated soil remediation system by in situ thermal desorption for high temperature heat injection and extraction and oxidation and washing of organic acid
KR101995212B1 (en) * 2018-10-02 2019-10-17 주식회사 효림 Multi-functional well system for remediation of contamianted soil and groundwater
KR101995210B1 (en) * 2018-10-02 2019-10-17 주식회사 효림 Soil Remedation and Monitoring System Using Thermal Enhanced Soil Vapor Extraction by in situ Thermal Desorption Device
CN110681689A (en) * 2019-11-05 2020-01-14 中科鼎实环境工程有限公司 Resistance heating thermal desorption device for repairing polluted soil and underground water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510083A (en) * 1991-07-05 1993-01-19 James J Malot Method of electric vacuum purifying
JP2000055000A (en) * 1998-08-06 2000-02-22 Kumagai Gumi Co Ltd Pumping device
KR100850165B1 (en) * 2007-04-23 2008-08-04 (주)대우건설 Apparatus and method for remediation of contaminated soil and groundwater by electric resistance heating combined with the injection of oxidizing agents
JP2008291651A (en) * 2007-05-22 2008-12-04 Satoru Hizume Pumping system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510083A (en) * 1991-07-05 1993-01-19 James J Malot Method of electric vacuum purifying
JP2000055000A (en) * 1998-08-06 2000-02-22 Kumagai Gumi Co Ltd Pumping device
KR100850165B1 (en) * 2007-04-23 2008-08-04 (주)대우건설 Apparatus and method for remediation of contaminated soil and groundwater by electric resistance heating combined with the injection of oxidizing agents
JP2008291651A (en) * 2007-05-22 2008-12-04 Satoru Hizume Pumping system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159259A (en) * 2015-03-04 2016-09-05 株式会社島津製作所 Soil purification method using electrical warming means, and electrode for the same
CN105251759A (en) * 2015-10-16 2016-01-20 北京德瑞科森环保科技有限公司 Multi-section type soil in-situ aerating device
CN105983254A (en) * 2016-03-08 2016-10-05 南通恒和环保科技有限公司 Liquid discharging device and method of sedimentation tank
JP2018034086A (en) * 2016-08-30 2018-03-08 国際航業株式会社 Process for clarifying contaminated soil and groundwater
KR101943945B1 (en) * 2018-08-09 2019-03-04 주식회사 효림 In-situ underground contaminated soil heater device for high temperature heat injection and extraction and the in-situ contaminated soil remediation system by using the same
KR101995207B1 (en) * 2018-10-02 2019-10-17 주식회사 효림 Multi-contaminated soil remediation system by in situ thermal desorption for high temperature heat injection and extraction and oxidation and washing of organic acid
KR101995212B1 (en) * 2018-10-02 2019-10-17 주식회사 효림 Multi-functional well system for remediation of contamianted soil and groundwater
KR101995210B1 (en) * 2018-10-02 2019-10-17 주식회사 효림 Soil Remedation and Monitoring System Using Thermal Enhanced Soil Vapor Extraction by in situ Thermal Desorption Device
CN110208074A (en) * 2019-05-21 2019-09-06 上海市环境科学研究院 A kind of Volatile Organic Compounds in Soil device for fast detecting and its detection method
CN110681689A (en) * 2019-11-05 2020-01-14 中科鼎实环境工程有限公司 Resistance heating thermal desorption device for repairing polluted soil and underground water
CN110681689B (en) * 2019-11-05 2024-04-16 中科鼎实环境工程有限公司 Resistance heating thermal desorption device for repairing polluted soil and underground water

Also Published As

Publication number Publication date
JP6186891B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6186891B2 (en) Soil purification device using electric heating method
US5347070A (en) Treating of solid earthen material and a method for measuring moisture content and resistivity of solid earthen material
JP5005146B2 (en) Heater element for on-site thermal desorption soil improvement system
KR100925129B1 (en) Thermally enhanced soil decontamination method
EP2969275B1 (en) In situ remediation of soils and groundwater containing organic contaminants
US7759536B2 (en) In-situ salt remediation and ground heating technology
AU2002336664A1 (en) Thermally enhanced soil decontamination method
JP6266971B2 (en) Method for purifying contaminated soil or contaminated groundwater
WO2011109342A1 (en) Methods and systems for electrochemically induced reduction of contaminants in groundwater, soils and low permeability media
JP6464830B2 (en) Well structure for soil remediation using electric warming method
CA2893882C (en) In-situ salt remediation and ground heating technology
JPH0510083A (en) Method of electric vacuum purifying
JP2000084535A (en) Method of cleaning contaminated soil by volatile compound
KR101995212B1 (en) Multi-functional well system for remediation of contamianted soil and groundwater
JP4739702B2 (en) Purification method for contaminated ground
JP2022007435A (en) Voc in-situ purification system, and voc in-situ purification method
JP2023165488A (en) Soil and underground water purification method, resistivity value measurement device, and soil and underground water purification system
JP2002001299A (en) Method for decontamination of contaminated soil
JP2024037358A (en) In-situ purification method for contaminated soil
CN112658024A (en) Soil purification device and soil purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R151 Written notification of patent or utility model registration

Ref document number: 6186891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151