JP5148365B2 - Method for purifying contaminated soil and groundwater - Google Patents

Method for purifying contaminated soil and groundwater Download PDF

Info

Publication number
JP5148365B2
JP5148365B2 JP2008132081A JP2008132081A JP5148365B2 JP 5148365 B2 JP5148365 B2 JP 5148365B2 JP 2008132081 A JP2008132081 A JP 2008132081A JP 2008132081 A JP2008132081 A JP 2008132081A JP 5148365 B2 JP5148365 B2 JP 5148365B2
Authority
JP
Japan
Prior art keywords
inner cylinder
well
groundwater
nutrient source
heating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008132081A
Other languages
Japanese (ja)
Other versions
JP2009279488A (en
Inventor
善孝 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008132081A priority Critical patent/JP5148365B2/en
Publication of JP2009279488A publication Critical patent/JP2009279488A/en
Application granted granted Critical
Publication of JP5148365B2 publication Critical patent/JP5148365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Biological Wastes In General (AREA)

Description

本発明は、汚染土壌及び/又は地下水の浄化方法に関する。   The present invention relates to a method for purifying contaminated soil and / or groundwater.

近年、工業廃水などに含まれる、トリクロロエチレン、テトラクロロエチレン、テトラクロロエタンなどの有機塩素化合物などによる環境汚染が大きな問題となっている。これらの汚染物質の多くは、土壌中に浸透し、分解されることなく地下水に混入し、この地下水を通じて汚染領域を拡大させる。このような環境汚染の拡大を防止するとともに、既に汚染された環境を浄化し、修復する技術の確立が強く望まれている。   In recent years, environmental pollution due to organic chlorine compounds such as trichlorethylene, tetrachloroethylene, and tetrachloroethane, which are contained in industrial wastewater, has become a major problem. Many of these contaminants penetrate into the soil and enter the groundwater without being decomposed, expanding the contaminated area through this groundwater. It is strongly desired to establish a technique for preventing the spread of environmental pollution and purifying and repairing an already polluted environment.

汚染土壌及び地下水の浄化方法として、近年、微生物による生物学的な処理を用いた方法(バイオレメディエーション法)が提案されている。バイオレメディエーション方法は、汚染領域に生息する微生物や外部から汚染領域に導入された微生物によって、汚染物質を無害な物質にまで分解する方法である。この方法において、例えば、原位置で曝気することにより汚染土壌中に存在する真菌類を活性化すること(特許文献1)や、汚染領域内に形成された井戸内に加熱手段を配置し加熱することにより微生物による汚染物質の分解を促進させること(特許文献2)等が提案されている。その他には、基質(炭素源)、窒素やリンなどの無機栄養塩及び水素供与体などを含む活性剤を汚染領域に導入し、微生物による汚染物質の分解作用を向上させることが提案されている。   In recent years, a method using biological treatment with microorganisms (bioremediation method) has been proposed as a method for purifying contaminated soil and groundwater. The bioremediation method is a method in which a pollutant is decomposed into a harmless substance by microorganisms living in the contaminated area or introduced from the outside into the contaminated area. In this method, for example, the fungi existing in the contaminated soil are activated by aeration in situ (Patent Document 1), or heating is provided in the well formed in the contaminated area. Thus, it has been proposed to promote the degradation of contaminants by microorganisms (Patent Document 2). In addition, it has been proposed to introduce an activator containing a substrate (carbon source), inorganic nutrient salts such as nitrogen and phosphorus, and a hydrogen donor into the contaminated area to improve the degradation action of the pollutants by microorganisms. .

活性化剤の導入は、通常、ボーリング等により採掘された孔にそのまま固体状の栄養源を配置する方法、孔に挿入した注入管を通じて液状の栄養源を注入する方法等により行われている(特許文献1及び2参照)。その他には、図3に示すように、孔の壁面に井戸管101を形成しその内部に固体状の栄養源14を配置すること等により行なわれている。しかしながら、バイオレメディエーションは浄化に長い期間を要するという問題があり、浄化効率の向上が求められている。
特開2005−279415号公報 特開2007−105594号公報
The activator is usually introduced by a method in which a solid nutrient source is arranged as it is in a hole mined by boring or the like, a method in which a liquid nutrient source is injected through an injection tube inserted in the hole, and the like ( (See Patent Documents 1 and 2). In addition, as shown in FIG. 3, the well tube 101 is formed on the wall surface of the hole, and the solid nutrient source 14 is disposed therein. However, bioremediation has a problem that it takes a long time for purification, and improvement in purification efficiency is required.
JP-A-2005-279415 JP 2007-105594 A

そこで、本発明は汚染土壌及び/又は地下水の浄化効率を向上可能な浄化方法を提供する。   Therefore, the present invention provides a purification method capable of improving the purification efficiency of contaminated soil and / or groundwater.

本発明の汚染土壌及び/又は地下水を浄化する方法(以下、「本発明の浄化方法」ともいう)は、井戸ケーシング内に内筒が配置された栄養源供給井戸を形成すること、前記内筒の底面電気ヒータを使用した加熱手段を配置し、ついで固体状の栄養源を充填すること、及び、前記加熱手段により前記内筒内の水温を維持するように連続または断続して加熱することを含み、前記内筒は、前記井戸の底面及び前記井戸ケーシングの側面と離隔空間をもって配置されており、側面及び底面に地下水が流出入可能な複数の透水口を有する。
The method for purifying contaminated soil and / or groundwater of the present invention (hereinafter also referred to as “the purification method of the present invention”) includes forming a nutrient source supply well in which an inner cylinder is disposed in a well casing, and the inner cylinder A heating means using an electric heater is arranged on the bottom of the tube , and then a solid nutrient source is filled , and heating is performed continuously or intermittently so as to maintain the water temperature in the inner cylinder by the heating means. The inner cylinder is arranged with a space apart from the bottom surface of the well and the side surface of the well casing, and has a plurality of water inlets through which groundwater can flow in and out on the side surface and the bottom surface.

本発明の浄化方法によれば、汚染土壌及び地下水の浄化効率を向上できる。   According to the purification method of the present invention, the purification efficiency of contaminated soil and groundwater can be improved.

本発明は、井戸ケーシング内に内筒が配置された二重構造の栄養源供給井戸を設け、その内筒を通じて加熱及び栄養源の供給を行えば、汚染物質の浄化効率を向上できるという知見に基づく。本発明の浄化方法において、汚染物質の浄化が促進されるメカニズムの詳細は明らかではないが、内筒の側面及び底面から流入する地下水の水流力により固体状の栄養源の破砕・溶解が促進され、井戸の底面に直接配置するよりも短時間で栄養源を拡散できるためであると推測される。また、内筒内に配置した加熱手段により加熱することにより、地下水の循環(対流)を促進できるため、水流力による栄養源の破砕・溶解が促進されためであると推測される。さらに、加熱手段による加熱により微生物の活性を向上できるためであると推測される。但し、これらの推測は、本発明を限定するものではない。
The present invention is based on the knowledge that the purification efficiency of pollutants can be improved by providing a double structure nutrient source supply well in which an inner cylinder is arranged in a well casing, and heating and supplying the nutrient source through the inner cylinder. Based. In the purification method of the present invention, the details of the mechanism by which the purification of pollutants is promoted are not clear, but the crushing / dissolution of solid nutrients is promoted by the hydropower of groundwater flowing from the side and bottom of the inner cylinder. This is presumed to be because the nutrient source can be diffused in a shorter period of time than the direct arrangement on the bottom of the well. Further, by heating by the heating means disposed within the inner cylinder, since it promotes circulation of groundwater (convection), crushed and dissolved nutrients by a water force is presumed to be because that will be promoted. Furthermore, it is estimated that the activity of microorganisms can be improved by heating with a heating means. However, these assumptions do not limit the present invention.

すなわち、本発明の浄化方法は、井戸ケーシング内に内筒が配置された栄養源供給井戸を形成すること、内筒の底面電気ヒータを使用した加熱手段を配置し、ついで固体状の栄養源を充填すること、及び、加熱手段により内筒内の水温を維持するように連続または断続して加熱することを含み、内筒は、井戸の底面及び井戸ケーシングの側面と離隔空間をもって配置されており、側面及び底面に地下水が流出入可能な複数の透水口を有する。本発明の浄化方法によれば、固体状の栄養源の短時間での拡散が可能になるため速やかに微生物を活性化することができ、汚染物質の浄化速度を向上できる。
That is, in the purification method of the present invention, a nutrient source supply well in which an inner cylinder is arranged in a well casing is formed, a heating means using an electric heater is arranged on the bottom surface of the inner cylinder , and then a solid nutrient source filling the, and comprises heating continuously or intermittently to maintain the water temperature in the inner tube by the heating means, the inner cylinder, is arranged with a side surface and spaced space of the bottom surface and the well casing of the well And has a plurality of water inlets through which groundwater can flow in and out on the side and bottom. According to the purification method of the present invention, a solid nutrient source can be diffused in a short time, so that microorganisms can be activated quickly and the purification rate of contaminants can be improved.

[栄養源供給井戸]
本発明において「栄養源供給井戸」とは、汚染土壌及び/又は地下水に固体状の栄養源を供給するため井戸であって、井戸ケーシング内に内筒が配置された井戸のことをいう。
[Nutrition source supply well]
In the present invention, the “nutrient source supply well” refers to a well for supplying a solid nutrient source to contaminated soil and / or groundwater and having an inner cylinder disposed in a well casing.

[内筒]
本発明において「内筒」とは、側面及び底面に複数の透水口(孔)を有し、側面及び底面から地下水が流出入可能であり、かつ内部に加熱手段及び固体状の栄養源を配置可能なものをいう。内筒は、透水口を通じて流入した地下水によって内筒内の栄養源を溶解し、溶解した栄養源が透水口を通じて内筒の外部に拡散可能なものが好ましい。透水口は、内筒全体に形成されていても良いし、地下水に接触する側面及び底面にのみ形成されていても良い。透水口の大きさは、例えば、配置する固体状の栄養源の大きさに応じて適宜決定できる。透水口の形状としては、例えば、丸、角、六角、縦長丸、縦長角、横長丸及び横長角等が挙げられ、中でも、横長丸及び横長角が好ましい。内筒は、例えば、複数の孔を有する樹脂又は鋼材等により形成できる。
[Inner cylinder]
In the present invention, the “inner cylinder” has a plurality of water inlets (holes) on the side surface and bottom surface, allows groundwater to flow in and out from the side surface and bottom surface, and has heating means and a solid nutrient source disposed inside. Say what you can. The inner cylinder is preferably one in which the nutrient source in the inner cylinder is dissolved by the groundwater flowing through the water-permeable port, and the dissolved nutrient source can be diffused to the outside of the inner cylinder through the water-permeable port. The water permeability port may be formed on the entire inner cylinder, or may be formed only on the side surface and the bottom surface that are in contact with the groundwater. The magnitude | size of a water-permeable opening can be suitably determined according to the magnitude | size of the solid nutrient source arrange | positioned, for example. Examples of the shape of the water-permeable port include a circle, a corner, a hexagon, a vertically long circle, a vertically long angle, a horizontally long circle, and a horizontally long angle. Among these, a horizontally long circle and a horizontally long angle are preferable. The inner cylinder can be formed of, for example, a resin or a steel material having a plurality of holes.

内筒は、栄養源供給井戸の底面及び井戸内の井戸ケーシングの側面と離隔空間をもって配置される。本発明において「離隔空間をもって配置される」とは、ある一定の距離を保って離れた状態で配置されることをいう。したがって、前記井戸において、内筒の底面と井戸の底面との間、内筒の側面と井戸ケーシングの側面との間にそれぞれ空間が形成される。内筒の底面と井戸底面との距離は、地下水の対流(循環)を促進させる点から、30〜50mmであることが好ましい。また、内筒の外周面と井戸ケーシングの内周面との距離は、地下水の対流(循環)を促進させる点から、20〜40mmであることが好ましい。内筒は、栄養源を均一に拡散させる点から、井戸ケーシングと略同心で配置されていることが好ましい。   The inner cylinder is arranged with a space apart from the bottom surface of the nutrient source supply well and the side surface of the well casing in the well. In the present invention, “arranged with a separation space” means that they are arranged in a state of being separated at a certain distance. Therefore, in the well, spaces are formed between the bottom surface of the inner cylinder and the bottom surface of the well, and between the side surface of the inner cylinder and the side surface of the well casing. The distance between the bottom surface of the inner cylinder and the bottom surface of the well is preferably 30 to 50 mm from the viewpoint of promoting convection (circulation) of groundwater. Moreover, it is preferable that the distance of the outer peripheral surface of an inner cylinder and the inner peripheral surface of a well casing is 20-40 mm from the point which promotes the convection (circulation) of groundwater. It is preferable that the inner cylinder is arranged substantially concentrically with the well casing from the viewpoint of uniformly diffusing nutrient sources.

井戸ケーシングは、通常の揚水井戸及び栄養源供給井戸等に使用される公知の井戸ケーシングが使用できる。井戸ケーシングは、井戸内への地下水の流出入可能であれば良く、例えば、透水性の材質、複数の孔を有する樹脂又は鋼材等により形成されたスクリーンを備える。井戸内への土壌の流入を抑制する点から、少なくとも透水層内に配置される部分にスクリーンが形成された井戸ケーシングが好ましい。   As the well casing, known well casings used for ordinary pumping wells, nutrient source supply wells, and the like can be used. The well casing is only required to be able to flow into and out of the groundwater, and includes, for example, a screen formed of a water-permeable material, a resin having a plurality of holes, a steel material, or the like. From the viewpoint of suppressing the inflow of soil into the well, a well casing in which a screen is formed at least in a portion disposed in the permeable layer is preferable.

[栄養源]
栄養源は固体状のものであれば良く、地下水に溶解しにくい固体状の栄養源が好ましい。固体状の栄養源としては、地下水への徐放性に優れ、微生物の棲家となりやすいことから、炭素数が10以上の脂肪酸が好ましい。なかでも、融点が高く、地下水において固体状態を維持しやすいことから、主成分として炭素数が10以上の飽和脂肪酸を含むものが好ましく、より好ましくは炭素数が12〜18の高級脂肪酸、さらに好ましくは炭素数が14〜18の高級脂肪酸を含むものである。上記脂肪酸としては、例えば、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、アラキジン酸、ベヘン酸及びリグノセリン酸等が挙げられ、これらの中でも、入手が容易であり、ミリスチン酸、パルミチン酸、ステアリン酸が好ましい。また、固体状の栄養源は、さらに、例えば、炭酸カルシウム、リン酸二水素カリウム、ポリソルベート等の界面活性剤、硫酸アンモニウム、窒素系栄養塩及びリン系栄養塩等等のその他の成分を含んでも良い。栄養源は、公知の固体状の栄養源を使用しても良い。
[Nutrition source]
The nutrient source may be solid, and a solid nutrient that is difficult to dissolve in groundwater is preferable. As the solid nutrient source, fatty acids having 10 or more carbon atoms are preferable because they are excellent in sustained release to groundwater and easily become microorganisms. Among them, those containing a saturated fatty acid having 10 or more carbon atoms as a main component are preferable, more preferably higher fatty acids having 12 to 18 carbon atoms, and more preferably, since the melting point is high and it is easy to maintain a solid state in groundwater. Contains higher fatty acids having 14 to 18 carbon atoms. Examples of the fatty acid include capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, behenic acid and lignoceric acid, and among these, they are easily available. Myristic acid, palmitic acid and stearic acid are preferred. Further, the solid nutrient source may further contain other components such as a surfactant such as calcium carbonate, potassium dihydrogen phosphate, polysorbate, ammonium sulfate, nitrogen-based nutrient salt, phosphorus-based nutrient salt, and the like. . As the nutrient source, a known solid nutrient source may be used.

固体状の栄養源の形状としては、例えば、ペレット状、塊状及び顆粒状等が挙げられる。固体状の栄養源の平均粒径は、例えば、0.1〜10mmであり、好ましくは1〜5mmである。   Examples of the shape of the solid nutrient source include pellets, lumps and granules. The average particle size of the solid nutrient source is, for example, 0.1 to 10 mm, and preferably 1 to 5 mm.

固体状の栄養源は、市販品を使用しても良い。市販品としては、徐放性が優れ、高い水素供与能力を有することから、高級脂肪酸(一般式Cn2n2(nは平均炭素数))を主成分とするアムテクリーンP(商品名、松下電器産業株式会社製)の固形品が好ましい。中でも、アムテクリーンP−SL18(高級脂肪酸の平均炭素数:17.1、融点:60℃、直径1mmの顆粒)、アムテクリーンP-SL18−661(主成分:ステアリン酸、高級脂肪酸の平均炭素数:15.3、融点:58℃、直径5mmのペレット)、アムテクリーンP−SL16(高級脂肪酸の平均炭素数:116.7、融点:54℃、直径1mmの顆粒)、アムテクリーンP−SL14(高級脂肪酸の平均炭素数:13.9、融点:53℃、直径1mmの顆粒)がより好ましい。 A commercially available product may be used as the solid nutrient source. As a commercially available product, Amteclean P (trade name, which has a higher fatty acid (general formula C n H 2n O 2 (n is an average number of carbon atoms)) as a main component because of its excellent sustained release and high hydrogen-donating ability. A solid product manufactured by Matsushita Electric Industrial Co., Ltd. is preferable. Among them, Amteclean P-SL18 (average carbon number of higher fatty acids: 17.1, melting point: 60 ° C., granules having a diameter of 1 mm), Amteclean P-SL18-661 (main components: stearic acid, average carbon number of higher fatty acids: 15) .3, melting point: 58 ° C., 5 mm diameter pellet), Amteclean P-SL16 (average carbon number of higher fatty acid: 116.7, melting point: 54 ° C., granule of 1 mm diameter), Amteclean P-SL14 (average of higher fatty acid) More preferably, the number of carbon atoms is 13.9, the melting point is 53 ° C., and the diameter is 1 mm.

[加熱手段]
加熱手段としては、例えば、シーズヒータ等の水中で使用できる電気ヒータ等を使用できる。本発明の浄化方法によれば、加熱手段は井戸の底面及び側面と離隔状態を保って配置されているため、例えば、井戸底面の土壌に熱を奪われることなく効率よく栄養源及び地下水を加熱することができる。加熱手段の熱量は、内筒の直径及び地下水の水流等によって適宜決定することができ、例えば、内筒の直径が80mmである場合、30〜100Wとすることができる。
[Heating means]
As the heating means, for example, an electric heater that can be used in water such as a sheathed heater can be used. According to the purification method of the present invention, since the heating means is arranged so as to be separated from the bottom and side surfaces of the well, for example, the nutrient source and the groundwater can be efficiently heated without taking heat away from the soil on the bottom surface of the well. can do. The amount of heat of the heating means can be appropriately determined according to the diameter of the inner cylinder, the flow of groundwater, and the like. For example, when the diameter of the inner cylinder is 80 mm, it can be set to 30 to 100 W.

[汚染土壌及び/又は地下水]
本発明において「汚染土壌及び/又は地下水」とは、汚染物質を含む土壌及び地下水のことをいう。汚染物質としては、例えば、揮発性有機化合物(VOC)、重金属、油分、硝酸性窒素、亜硝酸性窒素等が挙げられる。揮発性有機化合物としては、例えば、有機塩素化合物、ベンゼン、ホルムアルデヒド、トルエン、キシレン等が挙げられる。中でも、本発明の浄化方法は、揮発性有機化合物、より好適には有機塩素化合物を含む汚染土壌及び/又は地下水の浄化に適している。有機塩素化合物としては、例えば、四塩化炭素、1,2−ジクロロエタン、1,1−ジクロロエチレン、cis−1,2−ジクロロエチレン、1,3−ジクロロプロペン、ジクロロメタン、テトラクロロエチレン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン等が挙げられる。中でも、本発明の浄化方法は、テトラクロロエチレン、トリクロロエチレン、cis−1,2−ジクロロエチレン、1,1−ジクロロエチレン及び塩化ビニル等で汚染された土壌及び/又は地下水の浄化に特に適している。
[Contaminated soil and / or groundwater]
In the present invention, “contaminated soil and / or groundwater” refers to soil and groundwater containing pollutants. Examples of pollutants include volatile organic compounds (VOC), heavy metals, oils, nitrate nitrogen, nitrite nitrogen, and the like. Examples of volatile organic compounds include organic chlorine compounds, benzene, formaldehyde, toluene, xylene, and the like. Among these, the purification method of the present invention is suitable for the purification of contaminated soil and / or groundwater containing a volatile organic compound, more preferably an organic chlorine compound. Examples of the organic chlorine compound include carbon tetrachloride, 1,2-dichloroethane, 1,1-dichloroethylene, cis-1,2-dichloroethylene, 1,3-dichloropropene, dichloromethane, tetrachloroethylene, 1,1,1-trichloroethane. 1,1,2-trichloroethane, trichlorethylene and the like. Among these, the purification method of the present invention is particularly suitable for purification of soil and / or groundwater contaminated with tetrachloroethylene, trichloroethylene, cis-1,2-dichloroethylene, 1,1-dichloroethylene, vinyl chloride, and the like.

[浄化方法]
本発明の浄化方法では、まず、栄養源供給井戸を形成する。栄養源供給井戸は、例えば、ボーリング等により採掘した孔の壁面に井戸ケーシングを形成し、その内部に内筒を配置することによって形成できる。栄養源供給井戸は、栄養源の拡散を向上でき、微生物を効率的に活性化できる点から、少なくとも透水層下部まで達していることが好ましく、その透水層の下に位置する不透水層まで達していることがより好ましい。なお、本発明において「透水層」とは、地下水が存在する層をいい、帯水層、飽和層、宙水層を含む。
[Purification method]
In the purification method of the present invention, first, a nutrient source supply well is formed. The nutrient source supply well can be formed, for example, by forming a well casing on the wall surface of a hole mined by boring or the like, and disposing an inner cylinder therein. It is preferable that the nutrient source supply well reaches at least the lower part of the permeable layer from the viewpoint of improving the diffusion of the nutrient source and efficiently activating the microorganisms, and reaches the impermeable layer located below the permeable layer. More preferably. In the present invention, the “permeable layer” refers to a layer in which groundwater exists, and includes an aquifer layer, a saturated layer, and an aquifer layer.

栄養源供給井戸の直径は、汚染領域の大きさ、汚染物質の濃度及び種類等により適宜決定でき、例えば、100〜300mmが好ましい。内筒の直径は、栄養源供給井戸の直径、汚染領域の大きさ、汚染物質の濃度及び種類等により適宜決定でき、例えば、60〜200mmが好ましい。井戸の直径が150〜200mmである場合、内筒の直径を90〜100mm、内筒の側面と井戸(井戸ケーシング)の側面との距離を30〜50mm、内筒の底面と井戸の底面との距離を30〜50mmとすることが好ましい。   The diameter of the nutrient supply well can be determined as appropriate depending on the size of the contaminated area, the concentration and type of the contaminant, and is preferably 100 to 300 mm, for example. The diameter of the inner cylinder can be appropriately determined depending on the diameter of the nutrient source supply well, the size of the contaminated area, the concentration and type of the contaminant, and is preferably 60 to 200 mm, for example. When the diameter of the well is 150 to 200 mm, the diameter of the inner cylinder is 90 to 100 mm, the distance between the side surface of the inner cylinder and the side surface of the well (well casing) is 30 to 50 mm, and the bottom surface of the inner cylinder and the bottom surface of the well The distance is preferably 30 to 50 mm.

栄養源供給井戸は、浄化の効率化の点から、汚染領域内及び/又は汚染領域周辺に形成することが好ましい。また、1つの汚染領域における栄養源供給井戸の数は、1つであっても良く、複数個であっても良く、例えば、汚染領域の大きさ、汚染物質の濃度等に応じて適宜決定できる。   It is preferable to form the nutrient source supply well in the contaminated area and / or around the contaminated area from the viewpoint of efficient purification. Further, the number of nutrient source supply wells in one contaminated area may be one or plural, and can be appropriately determined according to, for example, the size of the contaminated area, the concentration of the contaminant, and the like. .

つぎに、内筒に加熱手段及び固体状の栄養源を配置する。加熱手段及び固体状の栄養源を配置する順序は特に制限されないが、加熱効率の点から、まず内筒の底面に加熱手段を配置し、ついで固体状の栄養源を充填することが好ましい。固体状の栄養源の充填量は特に制限されないが、栄養源を追加充填する頻度を低減できるため、内筒全体、すなわち内筒の上端部まで充填することが好ましい。   Next, a heating means and a solid nutrient source are arranged in the inner cylinder. The order in which the heating means and the solid nutrient source are arranged is not particularly limited, but from the viewpoint of heating efficiency, it is preferable to first arrange the heating means on the bottom surface of the inner cylinder and then fill the solid nutrient source. The filling amount of the solid nutrient source is not particularly limited. However, since the frequency of additional filling of the nutrient source can be reduced, it is preferable to fill the entire inner cylinder, that is, the upper end portion of the inner cylinder.

そして、内筒内の加熱手段による加熱を行う。加熱により、栄養源の拡散を向上し、また、土壌に存在する嫌気微生物等の微生物の活性を向上できる。加熱手段による加熱は、例えば、内筒内の水温が30℃以上となる程度まで加熱することが好ましく、微生物の活性化及びコストの点から、40〜50℃がより好ましい。加熱は連続的に行っても良いし、断続的に行っても良いが、浄化効率の点から、連続して行うことが好ましい。   And it heats with the heating means in an inner cylinder. By heating, diffusion of nutrient sources can be improved, and the activity of microorganisms such as anaerobic microorganisms present in the soil can be improved. The heating by the heating means is preferably performed, for example, to the extent that the water temperature in the inner cylinder becomes 30 ° C. or higher, and 40 to 50 ° C. is more preferable from the viewpoints of microorganism activation and cost. Heating may be performed continuously or intermittently, but is preferably performed continuously from the viewpoint of purification efficiency.

つぎに、本発明の浄化方法の例について図面に基づき説明する。但し、本発明は以下の例に制限されない。   Next, an example of the purification method of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples.

図1は、本発明の浄化方法の一実施形態を示す概略構成図であり、表層1、不透水層2、透水層3及び不透水層4からなる基本的な地下領域において汚染領域16内に栄養源供給井戸10を設け、浄化する例である。   FIG. 1 is a schematic configuration diagram showing an embodiment of the purification method of the present invention. In a basic underground region composed of a surface layer 1, a water-impermeable layer 2, a water-permeable layer 3 and a water-impermeable layer 4, a contamination region 16 is provided. This is an example in which a nutrient source supply well 10 is provided and purified.

栄養源供給井戸10は、地表面から透水層3の下部を超え不透水層4の内部に至る深さまで略垂直方向に採掘されている。栄養源供給井戸10の壁面には井戸ケーシング11が設けられ、その内部に内筒12が配置されている。井戸ケーシング11は、地下水が透過可能なスクリーン(ストレーナ)11aを備えている。スクリーン11aは、透水層3栄養源供給井戸10の底面から透水層3上部付近まで形成されている。内筒12は、井戸の底面及び井戸ケーシング11と離隔空間を保って井戸10内に配置されている。内筒12は、その内部に加熱手段13及び固体状の栄養源14が配置されている。内筒12は、側面及び底面に複数の透水口を有するため、図中の矢印で示すように地下水の流出入が可能である。   The nutrient source supply well 10 is mined in a substantially vertical direction from the ground surface to a depth extending from the bottom of the permeable layer 3 to the inside of the impermeable layer 4. A well casing 11 is provided on the wall surface of the nutrient source supply well 10, and an inner cylinder 12 is disposed therein. The well casing 11 includes a screen (strainer) 11a through which groundwater can pass. The screen 11 a is formed from the bottom surface of the water permeable layer 3 nutrient source supply well 10 to the vicinity of the upper part of the water permeable layer 3. The inner cylinder 12 is arranged in the well 10 while maintaining a space apart from the bottom of the well and the well casing 11. The inner cylinder 12 has a heating means 13 and a solid nutrient source 14 disposed therein. Since the inner cylinder 12 has a plurality of water permeable ports on the side surface and the bottom surface, the inflow and outflow of groundwater is possible as indicated by arrows in the figure.

固体状の栄養源14の供給及び加熱手段13による加熱により、例えば、汚染土壌に存在する嫌気性微生物を活性化し、これにより嫌気性微生物による汚染物質の分解・浄化を促進できる。また、加熱手段13により加熱することによって、地下水の流れを促進でき、固体状の栄養源14の溶解並びに地下水及び/又は土壌への拡散を促進できる。これにより、嫌気性微生物の活性をさらに向上できる。また、栄養源として固体状の栄養源を使用することから、例えば、持続的に微生物を活性化できる。   By supplying the solid nutrient source 14 and heating by the heating means 13, for example, anaerobic microorganisms present in the contaminated soil can be activated, thereby promoting degradation and purification of the contaminants by the anaerobic microorganisms. Moreover, the flow of groundwater can be accelerated | stimulated by heating by the heating means 13, and melt | dissolution of the solid nutrient source 14 and the spreading | diffusion to groundwater and / or soil can be accelerated | stimulated. Thereby, the activity of anaerobic microorganisms can further be improved. Moreover, since a solid nutrient source is used as a nutrient source, for example, microorganisms can be activated continuously.

図1に示す構成の栄養源供給井戸10を用いて土壌及び地下水の浄化を行った。栄養源供給井戸10の直径を150mm、内筒12の直径を90mm、内筒12の長さを10mとし、内筒12の上端部いっぱいに固体状の栄養源を充填した。栄養源は、商品名アムテクリーンP SL18−661(松下電器産業株式会社製、5mmペレット、含有成分:C18362、ポリソルベート、炭酸カルシウム、硫酸アンモニウム、リン酸二水素ナトリウム、融点:58℃、溶解度:0.03g/100g水)を使用し、内筒12全体に充填した。ヒータは、投げ込み用シーズヒータ(100V−200W、42℃温度調節付)を使用し、内筒内の水温が42℃となるように加熱した。また、加熱は、浄化期間中、前記水温を維持するように連続又は断続して行った。 Soil and groundwater were purified using the nutrient source supply well 10 having the configuration shown in FIG. The diameter of the nutrient source supply well 10 was 150 mm, the diameter of the inner cylinder 12 was 90 mm, the length of the inner cylinder 12 was 10 m, and the upper end of the inner cylinder 12 was filled with a solid nutrient source. Nutrient sources are trade name Amteclean P SL18-661 (Matsushita Electric Industrial Co., Ltd., 5 mm pellet, components: C 18 H 36 O 2 , polysorbate, calcium carbonate, ammonium sulfate, sodium dihydrogen phosphate, melting point: 58 ° C., Solubility: 0.03 g / 100 g water) was used to fill the entire inner cylinder 12. As the heater, a throwing sheathed heater (100 V-200 W, with 42 ° C. temperature adjustment) was used, and the water temperature in the inner cylinder was heated to 42 ° C. The heating was performed continuously or intermittently so as to maintain the water temperature during the purification period.

栄養源供給井戸10の下流側にモニタリング井戸(図示せず)を設けた。栄養源供給開始から10日おきにモニタリング井戸から地下水を汲み上げ、これに含まれる汚染物質(テトラクロロエチレン(PCE、基準値:0.03mg/L)、トリクロロエチレン(TCE、基準値:0.01mg/L)、ジクロロエチレン(cis−1,2−DCE、基準値:0.04mg/L;1,1−DCE、基準値:0.02mg/L)、塩化ビニル(VC))の濃度(mg/L)を測定した。その結果を図2Aのグラフに示す。   A monitoring well (not shown) was provided downstream of the nutrient source supply well 10. The groundwater is pumped up from the monitoring well every 10 days from the start of supply of nutrients, and pollutants contained in this (tetrachlorethylene (PCE, standard value: 0.03 mg / L), trichlorethylene (TCE, standard value: 0.01 mg / L) , Concentration of dichloroethylene (cis-1,2-DCE, standard value: 0.04 mg / L; 1,1-DCE, standard value: 0.02 mg / L), vinyl chloride (VC)) (mg / L) It was measured. The result is shown in the graph of FIG. 2A.

比較例1として、ヒータで加熱しない以外は上記実施例と同様にして行った。その結果を図2Bのグラフに示す。また、比較例2として、図3に示すように内筒が配置されていない井戸を使用し、井戸内に直接栄養源及びヒータを配置した以外は上記実施例と同様にして行った。その結果を図2Cのグラフに示す。   Comparative Example 1 was carried out in the same manner as in the above example except that it was not heated with a heater. The result is shown in the graph of FIG. 2B. Further, as Comparative Example 2, the same procedure as in the above Example was performed except that a well having no inner cylinder as shown in FIG. 3 was used and a nutrient source and a heater were directly arranged in the well. The result is shown in the graph of FIG. 2C.

図2Aに示すように、本実施例によれば、浄化開始後30日でPCE濃度が基準値(0.03mg/L)以下となった。また、浄化開始後50日には、全ての汚染物質の濃度が基準値以下の0.1mg/L以下となり、浄化開始後70日には、全ての物質の濃度が0.001mg/L以下となった。一方、ヒータで加熱を行わなかった比較例1は、図2Bに示すように、浄化開始後60日を経過してもcis−1,2−DCE濃度が高く、全ての汚染物質の濃度が0.001mg/L以下となるには浄化開始から80日を必要とした。また、栄養源及びヒータを井戸内に直接配置した比較例2は、図2Cに示すように、浄化開始後30日以降の浄化速度、特に、浄化開始後30日以降のPCEの浄化速度が実施例と比べて遅かった。実施例では浄化開始から60日を経過する前にPCE濃度は略0となったにも関わらず、比較例2では浄化開始から70日以上必要であった。   As shown in FIG. 2A, according to the present example, the PCE concentration became equal to or less than the reference value (0.03 mg / L) 30 days after the start of purification. Further, on the 50th day after the start of purification, the concentration of all pollutants becomes 0.1 mg / L or less, which is below the reference value, and on the 70th day after the start of purification, the concentration of all substances becomes 0.001 mg / L or less. became. On the other hand, as shown in FIG. 2B, in Comparative Example 1 in which heating was not performed with the heater, the cis-1,2-DCE concentration was high even after 60 days from the start of purification, and the concentration of all contaminants was 0. It took 80 days from the start of purification to be 0.001 mg / L or less. Further, in Comparative Example 2 in which the nutrient source and the heater are directly arranged in the well, as shown in FIG. 2C, the purification rate after 30 days from the start of purification, particularly the purification rate of PCE after 30 days from the start of purification is performed. It was slower than the example. In Example, the PCE concentration became substantially 0 before 60 days from the start of purification, but in Comparative Example 2, 70 days or more were required from the start of purification.

これら結果から、内筒内に固体状の栄養源及び加熱手段を配置し、加熱した実施例によれば、加熱しなかった比較例1及び2よりも汚染物質の分解が速く、土壌及び/又は地下水の浄化効率を向上できた。特に、固体状の栄養源の供給と加熱とを併用することによって、cis−1,2−DCEからVCへの分解反応を促進できた。これは、内筒内に配置した加熱手段による加熱により、内筒と井戸ケーシング(外筒)との間の地下水と透水層内の地下水との間に温度差が生じ、温度差によって地下水の対流(循環)を積極的に行うことができたためであると推測される。また、内筒と井戸ケーシング(外筒)との間の空間は、透水層内と比較して地下水の移動が容易であるため効率的に地下水の対流(循環)を生じさせることができたものと考えられる。一方、内筒を使用しない比較例2では、井戸内の上部から井戸の壁面に沿うような地下水の対流が生じるのみであるため、内筒を配置した実施例と比較して地下水の対流(循環)が十分に行われなかったものと考えられる。   From these results, the solid nutrient source and the heating means were arranged in the inner cylinder, and according to the heated example, the decomposition of the pollutants was faster than in the comparative examples 1 and 2, which were not heated, and the soil and / or The purification efficiency of groundwater was improved. In particular, the decomposition reaction from cis-1,2-DCE to VC could be promoted by using both solid nutrient supply and heating. This is because the temperature difference between the ground water between the inner cylinder and the well casing (outer cylinder) and the ground water in the permeable layer is generated by heating by the heating means arranged in the inner cylinder, and the convection of the ground water is caused by the temperature difference. This is presumably because the (circulation) could be carried out actively. In addition, the space between the inner cylinder and the well casing (outer cylinder) was able to efficiently generate groundwater convection (circulation) because it is easier to move the groundwater than in the permeable layer. it is conceivable that. On the other hand, in Comparative Example 2 that does not use the inner cylinder, only convection of groundwater occurs along the wall surface of the well from the upper part of the well. ) May not have been sufficiently conducted.

本発明は、汚染された土壌及び地下水の浄化に有用であり、中でも、PCE及びTCE等の有機塩素化合物で汚染された土壌及び地下水の浄化に有用である。   The present invention is useful for purification of contaminated soil and groundwater, and in particular, is useful for purification of soil and groundwater contaminated with organochlorine compounds such as PCE and TCE.

図1は、本発明の浄化方法の一例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an example of the purification method of the present invention. 図2Aは、実施例における地下水の汚染物質の濃度変化を示すグラフであり、図2B及びCは、比較例における地下水の汚染物質の濃度変化を示すグラフである。FIG. 2A is a graph showing changes in the concentration of pollutants in groundwater in Examples, and FIGS. 2B and 2C are graphs showing changes in the concentration of contaminants in groundwater in Comparative Examples. 図3は、従来の栄養源供給井戸の一例を示す概略構成図である。FIG. 3 is a schematic configuration diagram illustrating an example of a conventional nutrient source supply well.

符号の説明Explanation of symbols

1・・・・表層
2・・・・不透水層
3・・・・透水層
4・・・・不透水層
10・・・栄養源供給井戸
11・・・井戸ケーシング
11a・・スクリーン
12・・・内筒
13・・・加熱手段
14・・・栄養源
15・・・電源
16・・・汚染領域
101・・井戸管
DESCRIPTION OF SYMBOLS 1 ... Surface layer 2 ... Impervious layer 3 ... Impervious layer 4 ... Impervious layer 10 ... Nutrient source supply well 11 ... Well casing 11a ... Screen 12 ...・ Inner cylinder 13 ... heating means 14 ... nutrition source 15 ... power source 16 ... contaminated area 101 ... well pipe

Claims (5)

井戸ケーシング内に内筒が配置された栄養源供給井戸を形成すること、
前記内筒の底面電気ヒータを使用した加熱手段を配置し、ついで固体状の栄養源を充填すること、及び、
前記加熱手段により前記内筒内の水温を維持するように連続または断続して加熱することを含み、
前記内筒は、前記井戸の底面及び前記井戸ケーシングの側面と離隔空間をもって配置されており、側面及び底面に地下水が流出入可能な複数の透水口を有する、汚染土壌及び/又は地下水の浄化方法。
Forming a nutrient supply well in which an inner cylinder is arranged in a well casing;
Arranging a heating means using an electric heater on the bottom surface of the inner cylinder , and then filling a solid nutrient source; and
Heating continuously or intermittently so as to maintain the water temperature in the inner cylinder by the heating means,
The inner cylinder is disposed with a space apart from the bottom surface of the well and the side surface of the well casing, and has a plurality of water-permeable ports through which groundwater can flow in and out on the side surface and the bottom surface. .
前記栄養源供給井戸は、少なくとも透水層下部まで達している、請求項1記載の汚染土壌及び/又は地下水の浄化方法。 The method for purifying contaminated soil and / or groundwater according to claim 1, wherein the nutrient source supply well reaches at least the lower part of the permeable layer. 前記栄養源は、炭素数が10以上の脂肪酸を含む、請求項1又は2に記載の汚染土壌及び/又は地下水の浄化方法。 The method for purifying contaminated soil and / or groundwater according to claim 1 or 2, wherein the nutrient source contains a fatty acid having 10 or more carbon atoms. 汚染物質は、揮発性有機化合物を含む、請求項1から3のいずれかに記載の汚染土壌及び/又は地下水の浄化方法。 The method for purifying contaminated soil and / or groundwater according to any one of claims 1 to 3, wherein the pollutant contains a volatile organic compound. 井戸ケーシング内に内筒が配置された栄養源供給井戸を形成すること、Forming a nutrient supply well in which an inner cylinder is arranged in a well casing;
前記内筒の底面に電気ヒータを使用した加熱手段を配置し、ついで固体状の栄養源を充填すること、及び、Arranging a heating means using an electric heater on the bottom surface of the inner cylinder, and then filling a solid nutrient source; and
前記加熱手段により前記内筒内の水温を維持するように連続または断続して加熱することを含み、Heating continuously or intermittently so as to maintain the water temperature in the inner cylinder by the heating means,
前記栄養源供給井戸は、少なくとも透水層下部まで達し、The nutrient supply well reaches at least the bottom of the permeable layer,
前記栄養源は、炭素数が10以上の脂肪酸を含み、The nutrient source includes a fatty acid having 10 or more carbon atoms,
汚染物質は、揮発性有機化合物を含み、Pollutants include volatile organic compounds,
前記内筒は、前記井戸の底面及び前記井戸ケーシングの側面と離隔空間をもって配置されており、側面及び底面に地下水が流出入可能な複数の透水口を有する、汚染土壌及び/又は地下水の浄化方法。The inner cylinder is disposed with a space apart from the bottom surface of the well and the side surface of the well casing, and has a plurality of water inlets through which groundwater can flow into and out of the side surface and the bottom surface. .
JP2008132081A 2008-05-20 2008-05-20 Method for purifying contaminated soil and groundwater Expired - Fee Related JP5148365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132081A JP5148365B2 (en) 2008-05-20 2008-05-20 Method for purifying contaminated soil and groundwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132081A JP5148365B2 (en) 2008-05-20 2008-05-20 Method for purifying contaminated soil and groundwater

Publications (2)

Publication Number Publication Date
JP2009279488A JP2009279488A (en) 2009-12-03
JP5148365B2 true JP5148365B2 (en) 2013-02-20

Family

ID=41450523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132081A Expired - Fee Related JP5148365B2 (en) 2008-05-20 2008-05-20 Method for purifying contaminated soil and groundwater

Country Status (1)

Country Link
JP (1) JP5148365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6411716B2 (en) * 2013-07-29 2018-10-24 Dowaエコシステム株式会社 Soil / groundwater purification method and soil / groundwater purification device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491929B2 (en) * 1993-09-29 2004-02-03 キヤノン株式会社 Purification method of groundwater contaminated by soil contamination
JP4428125B2 (en) * 2004-04-22 2010-03-10 パナソニック株式会社 Pollution purification method
JP4501659B2 (en) * 2004-12-01 2010-07-14 パナソニック株式会社 Nutrient source injection method
JP2007105594A (en) * 2005-10-12 2007-04-26 Matsushita Electric Ind Co Ltd Restoration method for oil-contaminated soil

Also Published As

Publication number Publication date
JP2009279488A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
EP0741611B1 (en) Process for soil decontamination by oxidation and vacuum extraction
JPH06218355A (en) Method of restoring contaminated soil in site
JP4756651B2 (en) Purification system and method for oil-contaminated soil
TW446587B (en) Method for detoxification treatment of soil
US7290959B2 (en) Electrode heating with remediation agent
JP5737551B2 (en) Method and apparatus for purifying contaminated soil or groundwater
JP2009045558A (en) In-situ purification method of polluted groundwater
JP5148365B2 (en) Method for purifying contaminated soil and groundwater
JP4281551B2 (en) Soil and groundwater contamination purification equipment and purification method
JP2010075887A (en) Cleaning method of contaminated soil and groundwater
JP2018079416A (en) System and method for purifying ground water
KR101378763B1 (en) Method for purifying contaminated groundwater with bacteria and permeable reactive barrier used for purifying
JP4359174B2 (en) Environmental purification method
JP4501659B2 (en) Nutrient source injection method
JP7140350B2 (en) Contaminant diffusion suppression method
JP4428125B2 (en) Pollution purification method
JP2012035181A (en) In situ purification method of contaminated soil and groundwater
Thomson In Situ Chemical Oxidation of Petroleum Hydrocarbons
JP3646301B2 (en) Method and structure for treating organochlorine compounds
JP3695348B2 (en) Soil and / or groundwater contaminant treatment agent and method
JP2015160175A (en) Purification processing method of original position of contaminated soil and contaminated groundwater
JP2010075883A (en) Cleaning method of contaminated soil and groundwater
JP2007105594A (en) Restoration method for oil-contaminated soil
JP7120706B2 (en) Soil remediation method
JP2009279471A (en) Method of purifying contaminated soil and ground water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees