JP2018031262A - Warming device - Google Patents

Warming device Download PDF

Info

Publication number
JP2018031262A
JP2018031262A JP2016161735A JP2016161735A JP2018031262A JP 2018031262 A JP2018031262 A JP 2018031262A JP 2016161735 A JP2016161735 A JP 2016161735A JP 2016161735 A JP2016161735 A JP 2016161735A JP 2018031262 A JP2018031262 A JP 2018031262A
Authority
JP
Japan
Prior art keywords
flow path
gas
heating
exhaust
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016161735A
Other languages
Japanese (ja)
Inventor
敏博 松野
Toshihiro Matsuno
敏博 松野
孝哉 吉川
Takaya Yoshikawa
孝哉 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016161735A priority Critical patent/JP2018031262A/en
Publication of JP2018031262A publication Critical patent/JP2018031262A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for effectively utilizing heat released from a gas warming member.SOLUTION: A warming device includes a gas flow path member for distributing exhaust gas flowing in an exhaust passage, the gas warming member arranged in the gas flow path member and having a first gas flow path for distributing the exhaust gas from the upstream side to the downstream side of the gas flow path member, and a heat recovery member arranged between the gas warming member and the gas flow path member so as to encircle the outer periphery of the gas warming member, for recovering heat from the gas warming member, the heat recovery member having a second gas flow path for distributing the exhaust gas from the upstream side to the downstream side.SELECTED DRAWING: Figure 2

Description

本発明は、排気ガスを加温するための技術に関する。   The present invention relates to a technique for heating exhaust gas.

近年、内燃機関の排気流路の途中には種々の排気ガス浄化装置が配置されている(例えば、特許文献1)。これら排気ガス浄化装置としては、NOxを還元浄化させるための選択還元触媒(SCR)装置や粒子状物質(PM)を捕集するためのディーゼル微粒子フィルタ(DPF)などが挙げられる。これらの排気ガス浄化装置の多くは、活性化温度が高温(例えば、180度以上)である。よって、従来の技術において、ガス加温部材(例えば、蓄熱器やヒーター)が排気流路の途中に設けられている。ガス加温部材は、排気ガスを活性化温度まで加温する。   2. Description of the Related Art In recent years, various exhaust gas purifying devices are arranged in the middle of an exhaust passage of an internal combustion engine (for example, Patent Document 1). Examples of these exhaust gas purification devices include a selective reduction catalyst (SCR) device for reducing and purifying NOx and a diesel particulate filter (DPF) for collecting particulate matter (PM). Many of these exhaust gas purification apparatuses have a high activation temperature (for example, 180 degrees or more). Therefore, in the conventional technology, a gas heating member (for example, a regenerator or a heater) is provided in the middle of the exhaust passage. The gas heating member warms the exhaust gas to the activation temperature.

特開2008−190462号公報JP 2008-190462 A

従来の技術では、例えば特許文献1に開示されているように、ガス加温部材を配置した排ガス管路(加温用管路)の周囲を、ガス加温部材を配置していない排ガス管路(バイパス管路)で覆うことでガス加温部材の周囲を二重構造にしている。これにより、ガス加温部材からの熱やバイパス管路中の排気ガスからの熱を回収している。しかしながら、従来の技術において、外部への放熱量が多いガス加温部材の周辺(例えば、加温用管路内)には、熱回収のための部材が設置されていない。よって、ガス加温部材からの熱を有効に回収できないといった問題が生じ得る。また、従来の技術では、加温用管路の周囲に配置されたバイパス管路にガス加温部材よりも低温の排気ガスが流れることでガス加温部材の熱引きが大きくなる。これにより、ガス加温部材を目標温度に加温するために必要な電力が大きくなり、燃費が悪化するという問題が生じ得る。よって、従来から、ガス加温部材から放出される熱を有効に利用できる技術が望まれている。   In the prior art, as disclosed in Patent Document 1, for example, an exhaust gas pipe without a gas heating member disposed around an exhaust gas pipe (heating pipe) having a gas heating member arranged therein. The gas heating member has a double structure by covering with (bypass pipe). Thereby, the heat from the gas heating member and the heat from the exhaust gas in the bypass pipe are recovered. However, in the conventional technology, no member for heat recovery is installed around the gas heating member (for example, in the heating pipe) having a large amount of heat radiation to the outside. Therefore, the problem that the heat from a gas heating member cannot be collected effectively may arise. Further, according to the conventional technique, exhaust gas having a temperature lower than that of the gas heating member flows through the bypass pipe arranged around the heating pipe, so that the heat of the gas heating member is increased. Thereby, the electric power required for heating the gas heating member to the target temperature is increased, which may cause a problem that fuel consumption deteriorates. Therefore, conventionally, a technique that can effectively use the heat released from the gas heating member is desired.

本発明は、上述の課題を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。   The present invention has been made to solve the above-described problems, and can be realized as the following forms or application examples.

(1)本発明の一形態によれば、内燃機関の排気流路の途中に設けられ、前記排気流路を流通する排気ガスを加温するための加温装置が提供される。この加温装置は、前記排気流路を流れる前記排気ガスを流通させるためのガス流路部材と、前記ガス流路部材内に配置された、前記ガス流路部材の上流側から下流側へと前記排気ガスを流通させるための第1ガス流路を有するガス加温部材と、前記ガス加温部材の外周部を取り囲むように前記ガス加温部材と前記ガス流路部材との間に配置された、前記ガス加温部材からの熱を回収するための熱回収部材と、を備え、前記熱回収部材は、前記上流側から前記下流側へと前記排気ガスを流通させるための第2ガス流路を有する。この形態によれば、ガス加温部材から放出された熱を熱回収部材によって回収することで、熱回収部材に熱を蓄えることができる。これにより、ガス流路部材内を流通する排気ガスを、ガス加温部材の熱に加えて熱回収部材に蓄えられた熱によっても加温できる。よって、ガス加温部材から放出される熱を有効に利用して排気ガスを加温できる。 (1) According to one aspect of the present invention, there is provided a heating device that is provided in the middle of an exhaust passage of an internal combustion engine and that warms exhaust gas flowing through the exhaust passage. The heating device includes a gas flow path member for circulating the exhaust gas flowing through the exhaust flow path, and an upstream side of the gas flow path member disposed in the gas flow path member from the downstream side. A gas heating member having a first gas flow path for circulating the exhaust gas, and disposed between the gas heating member and the gas flow path member so as to surround an outer peripheral portion of the gas heating member. A heat recovery member for recovering heat from the gas heating member, wherein the heat recovery member is a second gas flow for circulating the exhaust gas from the upstream side to the downstream side. Has a road. According to this aspect, heat can be stored in the heat recovery member by recovering the heat released from the gas heating member by the heat recovery member. Accordingly, the exhaust gas flowing through the gas flow path member can be heated by the heat stored in the heat recovery member in addition to the heat of the gas heating member. Therefore, the exhaust gas can be heated by effectively utilizing the heat released from the gas heating member.

(2)上記形態であって、前記熱回収部材は、前記ガス加温部材の前記外周部と前記ガス流路部材との隙間を埋めるように配置されていてもよい。この形態によれば、ガス加温部材の外周部からの熱伝導によっても熱回収部材は熱を蓄えることができる。これにより、ガス加温部材から放出される熱をさらに有効に利用できる。また、ガス流路部材内を排気ガスが通過する際に、第1ガス流路または第2ガス流路を排気ガスが通過するので、排気ガスの加温を効率良くできる。 (2) It is the said form, Comprising: The said heat recovery member may be arrange | positioned so that the clearance gap between the said outer peripheral part of the said gas heating member and the said gas flow path member may be filled up. According to this aspect, the heat recovery member can store heat also by heat conduction from the outer peripheral portion of the gas heating member. Thereby, the heat released from the gas heating member can be used more effectively. Further, when the exhaust gas passes through the gas channel member, the exhaust gas passes through the first gas channel or the second gas channel, so that the exhaust gas can be efficiently heated.

(3)上記形態であって、前記第2ガス流路の圧力損失は、前記第1ガス流路の圧力損失以上であってもよい。この形態によれば、ガス流路部材の流路に排気ガスを流通させた場合に、第1ガス流路を流通する排気ガスの量が少なくなる可能性を低減できる。これにより、排気ガスをガス加温部材の熱によって効率良く加温できる。 (3) It is the said form, Comprising: The pressure loss of the said 2nd gas flow path may be more than the pressure loss of the said 1st gas flow path. According to this aspect, when exhaust gas is circulated through the flow path of the gas flow path member, the possibility that the amount of exhaust gas flowing through the first gas flow path is reduced can be reduced. Thereby, exhaust gas can be efficiently heated by the heat of a gas heating member.

(4)上記形態であって、前記排気ガスの流れ方向において、前記熱回収部材は前記ガス加温部材よりも長くてもよい。この形態によれば、ガス加温部材から放出される熱のより多くを熱回収部材によって回収できる。 (4) In the above embodiment, the heat recovery member may be longer than the gas heating member in the flow direction of the exhaust gas. According to this aspect, more of the heat released from the gas heating member can be recovered by the heat recovery member.

(5)上記形態であって、前記熱回収部材の熱伝導率は、前記ガス流路部材の熱伝導率以下であってもよい。この形態によれば、ガス加温部材から放出され熱回収部材に蓄えられた熱が、熱伝導によってガス流路部材に移動することを抑制できる。よって、ガス加温部材から放出される熱を排気ガスの加温のためにさらに有効に利用できる。 (5) It is the said form, Comprising: The heat conductivity of the said heat recovery member may be below the heat conductivity of the said gas flow path member. According to this embodiment, it is possible to suppress the heat released from the gas heating member and stored in the heat recovery member from moving to the gas flow path member due to heat conduction. Therefore, the heat released from the gas heating member can be used more effectively for heating the exhaust gas.

(6)上記形態であって、前記第2ガス流路は、ハニカム形状であってもよい。この形態によれば、第2ガス流路を形成する熱回収部材の強度を向上でき、また、排気ガスを第2ガス流路全体に均一に流すことができる。 (6) In the above embodiment, the second gas flow path may have a honeycomb shape. According to this aspect, the strength of the heat recovery member forming the second gas flow path can be improved, and the exhaust gas can be made to flow uniformly throughout the second gas flow path.

(7)上記形態であって、前記熱回収部材は、Si、Mg、Al、C、又は、Siの酸化物、Mgの酸化物、Alの酸化物の少なくとも1種以上を含有してもよい。この形態によれば、Si、Mg、Al、C、又は、Siの酸化物、Mgの酸化物、Alの酸化物の少なくとも1種以上を含有する材料によって熱回収部材を作成できる。 (7) In the above form, the heat recovery member may contain at least one of Si, Mg, Al, C, or an oxide of Si, an oxide of Mg, and an oxide of Al. . According to this aspect, the heat recovery member can be made of a material containing at least one of Si, Mg, Al, C, or an oxide of Si, an oxide of Mg, and an oxide of Al.

(8)上記形態であって、さらに、前記排気流路を流れる前記排気ガスを流通させるためのバイパス流路部材であって、前記ガス流路部材の流路とは異なる流路を形成するバイパス流路部材と、前記ガス流路部材および前記バイパス流路部材の上流側に位置し、前記ガス流路部材の前記流路と前記バイパス流路部材の前記流路とを分岐させる分岐部と、前記ガス流路部材および前記バイパス流路部材の下流側に位置し、前記ガス流路部材の前記流路と前記バイパス流路部材の前記流路とが合流する合流部と、前記排気ガスの流通経路を、前記ガス流路部材の前記流路と前記バイパス流路部材の前記流路とのいずれかに切り替え可能な流路切替部と、を備えてもよい。この形態によれば、流路切替部によって、排気ガスの流通経路をガス流路部材の流路とバイパス流路部材の流路とのいずれかに切り替えることができる。 (8) In the above-described form, further, a bypass channel member for circulating the exhaust gas flowing through the exhaust channel, wherein the bypass forms a channel different from the channel of the gas channel member A flow path member, a branch portion located upstream of the gas flow path member and the bypass flow path member, and branching the flow path of the gas flow path member and the flow path of the bypass flow path member; A merging portion located downstream of the gas flow path member and the bypass flow path member, where the flow path of the gas flow path member and the flow path of the bypass flow path member merge, and circulation of the exhaust gas You may provide the flow path switching part which can switch a path | route to either the said flow path of the said gas flow path member, or the said flow path of the said bypass flow path member. According to this aspect, the flow path switching unit can switch the flow path of the exhaust gas to either the flow path of the gas flow path member or the flow path of the bypass flow path member.

なお、本発明は、種々の形態で実現することが可能であり、加温装置のほかに、加温方法、加温装置の制御方法、加温装置の制御プログラム等の態様で実現することができる。   The present invention can be realized in various forms, and can be realized in a mode such as a heating method, a heating device control method, and a heating device control program in addition to the heating device. it can.

第1実施形態としての加温装置を備える車両を概略的に示す説明図である。It is explanatory drawing which shows roughly a vehicle provided with the heating apparatus as 1st Embodiment. 加温装置の概略構成を説明するための図である。It is a figure for demonstrating schematic structure of a heating apparatus. 図2のF2−F2断面図である。It is F2-F2 sectional drawing of FIG. 第2実施形態の加温装置について説明するための図である。It is a figure for demonstrating the heating apparatus of 2nd Embodiment. 熱回収部材の配置についての変形例を説明するための図である。It is a figure for demonstrating the modification about arrangement | positioning of a heat recovery member.

A.第1実施形態:
図1は、本発明の第1実施形態としての加温装置20を備える車両500を概略的に示す説明図である。加温装置20は、加温制御装置60の構成要素である。加温制御装置60は、加温装置20の他に、加温装置20および後述する液体供給部18の動作を制御するための制御部40を備える。
A. First embodiment:
FIG. 1 is an explanatory diagram schematically showing a vehicle 500 including a heating device 20 as a first embodiment of the present invention. The heating device 20 is a component of the heating control device 60. In addition to the heating device 20, the heating control device 60 includes a control unit 40 for controlling the operation of the heating device 20 and the liquid supply unit 18 described later.

車両500は、内燃機関としてのディーゼルエンジン(以下、「エンジン」と呼ぶ。)510と、4つの車輪520と、排気ガス浄化システム10と、を備えている。加温制御装置60は、排気ガス浄化システム10に備えられている。エンジン510は、軽油を燃料とし、燃料の爆発燃焼によって駆動力を出力する。爆発燃焼に伴いNOx(窒素酸化物)およびPM(粒子状物質)を含む排気ガスは、排気系統に備えられた排気ガス浄化システム10を介して大気に排出される。なお、第1実施形態において用いられる図1に示す車両構成は、他の実施形態においても同様に用いられ得る。   The vehicle 500 includes a diesel engine (hereinafter referred to as “engine”) 510 as an internal combustion engine, four wheels 520, and the exhaust gas purification system 10. The heating control device 60 is provided in the exhaust gas purification system 10. The engine 510 uses light oil as fuel, and outputs driving force by explosive combustion of the fuel. Exhaust gas containing NOx (nitrogen oxide) and PM (particulate matter) accompanying the explosion combustion is discharged to the atmosphere through an exhaust gas purification system 10 provided in the exhaust system. Note that the vehicle configuration shown in FIG. 1 used in the first embodiment can be used in other embodiments as well.

排気ガス浄化システム10は、排気流路(排気管)11の途中に設けられ、排気流路11の一部を構成する種々の排気ガス浄化装置を有する。排気流路11は、エンジン510側(排気ガス流れの上流側)において、マニフォールド11aを介してエンジン510と接続されている。また、排気流路11は、排気ガス流れの最下流側に配置されたマフラエンドパイプ11bを有する。本明細書において、「上流側」および「下流側」は、排気流路11を流れる排気ガスの流れ方向を基準とする。   The exhaust gas purification system 10 includes various exhaust gas purification devices that are provided in the middle of the exhaust flow path (exhaust pipe) 11 and constitute a part of the exhaust flow path 11. The exhaust passage 11 is connected to the engine 510 via the manifold 11a on the engine 510 side (upstream side of the exhaust gas flow). The exhaust passage 11 has a muffler end pipe 11b disposed on the most downstream side of the exhaust gas flow. In this specification, “upstream side” and “downstream side” are based on the flow direction of the exhaust gas flowing through the exhaust passage 11.

排気ガス浄化システム10は、上流側から順に、ディーゼル酸化触媒(DOC)12と、ディーゼル微粒子フィルタ(DPF)13と、加温装置20と、選択還元触媒(SCR)装置14と、アンモニアスリップ・ディーゼル酸化触媒(NHDOC)15と、を備える。これらの種々の排気ガス浄化装置である各要素12,13,20,14,15は、排気流路11の途中に設けられている。排気流路11のうち、DOC12の上流側には燃料噴射装置17が配置されている。DPF13には、DPF13内の下流側の温度を検出するための温度センサ192が配置されている。 The exhaust gas purification system 10 includes a diesel oxidation catalyst (DOC) 12, a diesel particulate filter (DPF) 13, a heating device 20, a selective reduction catalyst (SCR) device 14, an ammonia slip diesel, in order from the upstream side. Oxidation catalyst (NH 3 DOC) 15. Each of the various exhaust gas purifying devices 12, 13, 20, 14, 15 is provided in the middle of the exhaust passage 11. A fuel injection device 17 is disposed upstream of the DOC 12 in the exhaust passage 11. A temperature sensor 192 for detecting the temperature on the downstream side in the DPF 13 is disposed in the DPF 13.

DOC12は、白金(Pt)、パラジウム(Pd)等の貴金属を触媒として担持する。DOC12は、排気ガス中に含まれる未燃焼ガス成分である一酸化炭素(CO)および炭化水素(HC)を酸化して、二酸化炭素(CO)および水(HO)へと変換すると共に、排気ガス中に含まれる一酸化窒素(NO)を酸化して、二酸化窒素(NO)に変換する。 The DOC 12 supports a noble metal such as platinum (Pt) or palladium (Pd) as a catalyst. The DOC 12 oxidizes carbon monoxide (CO) and hydrocarbons (HC), which are unburned gas components contained in the exhaust gas, and converts them into carbon dioxide (CO 2 ) and water (H 2 O). Then, nitric oxide (NO) contained in the exhaust gas is oxidized and converted to nitrogen dioxide (NO 2 ).

DPF13は、排気ガス中に含まれる粒子状物質(PM)を多孔質セラミックスまたは金属の微細な間隙で捕集するフィルタである。フィルタの表面には白金等の金属触媒が塗布されている。DPF13は、DOC12により生成されるNOxの存在下において、粒子状物質が250〜300度の雰囲気中で触媒と化学反応を起こし、二酸化炭素(CO)および水(HO)に変換されることによって自然再生される。DPF13は、DOC12に対して燃料噴射装置17を介して直接または排気行程を経てエンジン510から間接的に燃料を供給し、燃料由来の炭化水素を触媒燃焼させて排気温度を450度以上として捕集された粒子状物質を酸化させる強制再生によっても再生され得る。 The DPF 13 is a filter that collects particulate matter (PM) contained in the exhaust gas through a fine gap between porous ceramics or metal. A metal catalyst such as platinum is applied to the surface of the filter. The DPF 13 is converted into carbon dioxide (CO 2 ) and water (H 2 O) in the presence of NOx produced by the DOC 12 by causing the particulate matter to chemically react with the catalyst in an atmosphere of 250 to 300 degrees. It is naturally regenerated. The DPF 13 supplies fuel to the DOC 12 directly from the engine 510 via the fuel injection device 17 or through an exhaust stroke, and captures the exhaust temperature at 450 degrees or more by catalytically burning fuel-derived hydrocarbons. It can also be regenerated by forced regeneration which oxidizes the particulate matter formed.

なお、DPF13としては、粒子状物質を物理的に捕集して炭化水素の触媒燃焼により粒子状物質を酸化させるタイプの他、プラズマ生成装置において低温プラズマを発生させてOを中心とする活性種を生成し、生成された活性種をDPF13に供給し、HC、Cといった粒子状物質成分を、HO、COに変換(酸化)するプラズマDPFが用いられてもよい。プラズマDPFにおいては、燃料を用いることなく粒子状物質を酸化することができる一方で、物理的形状にて粒子状物質を捕集しないため、予め処理すべき粒子状物質量に応じた活性種量を生成できるようプラズマ生成装置を設計することが求められている。 In addition to the type in which particulate matter is physically collected and the particulate matter is oxidized by catalytic combustion of hydrocarbons, the DPF 13 generates low-temperature plasma in the plasma generator and activates mainly O 3. A plasma DPF that generates seeds, supplies the generated active species to the DPF 13, and converts (oxidizes) particulate matter components such as HC and C into H 2 O and CO 2 may be used. In the plasma DPF, the particulate matter can be oxidized without using fuel, but the particulate matter is not collected in the physical form, so the amount of active species corresponding to the amount of the particulate matter to be processed in advance. Therefore, it is required to design a plasma generating apparatus so as to be able to generate the above.

SCR装置14は、ゼオライト系触媒またはバナジウム系触媒を担持し、NOxを選択的に還元するNOx還元触媒を備える装置である。SCR装置14は、一般的に、SCR装置14の上流側(前段)から供給される尿素水の加水分解反応を経て生成されたアンモニア(NH)ガスと、NOx還元触媒とによって、排気ガス中のNOx成分を窒素(N)および水(HO)に変換する。したがって、尿素水の供給を受けるSCR装置14は、尿素水からアンモニアガスを得るための温度(活性化温度)、例えば、180度以上の温度でなければ所望のNOx還元機能を良好に得ることができない。 The SCR device 14 is a device that includes a NOx reduction catalyst that carries a zeolite catalyst or a vanadium catalyst and selectively reduces NOx. In general, the SCR device 14 includes an ammonia (NH 3 ) gas generated through a hydrolysis reaction of urea water supplied from the upstream side (previous stage) of the SCR device 14 and a NOx reduction catalyst. The NOx component of is converted to nitrogen (N 2 ) and water (H 2 O). Therefore, the SCR device 14 that receives the supply of urea water can obtain a desired NOx reduction function satisfactorily unless the temperature (activation temperature) for obtaining ammonia gas from the urea water, for example, a temperature of 180 ° C. or higher. Can not.

排気流路11のうち加温装置20とSCR装置14との間の供給流路19には、液体供給部18が配置されている。具体的には、液体供給部18は、SCR装置14と、加温装置20の後述する合流部との間に配置されている。液体供給部18は、制御部40からの指示に従って、図示しない尿素水タンクに貯留されている尿素水を供給流路19内に供給する。尿素水は、尿素と純水とを成分として含む。液体供給部18は、先端の噴射孔(供給孔)が供給流路19内に位置するように配置されている。液体供給部18は、電磁式またはピエゾ式のアクチュエータによって、噴射孔を開閉することで高圧での尿素水の噴射または噴射停止を実現する。   A liquid supply unit 18 is disposed in the supply flow channel 19 between the heating device 20 and the SCR device 14 in the exhaust flow channel 11. Specifically, the liquid supply part 18 is arrange | positioned between the SCR apparatus 14 and the junction part which the heating apparatus 20 mentions later. The liquid supply unit 18 supplies urea water stored in a urea water tank (not shown) into the supply flow path 19 in accordance with an instruction from the control unit 40. The urea water contains urea and pure water as components. The liquid supply unit 18 is disposed so that the tip injection hole (supply hole) is located in the supply flow path 19. The liquid supply unit 18 realizes injection or stoppage of urea water at a high pressure by opening and closing the injection hole with an electromagnetic or piezoelectric actuator.

加温装置20は、排気ガスの流れ方向において、DPF13とSCR装置14との間に配置されている。加温装置20は、SCR装置14が有するNOx還元機能を良好に発揮させるために、排気ガスを加温する機能を有する。具体的には、液体供給部18から供給(噴射)された尿素水からアンモニアガスを得るための温度以上に排気ガスを加温する機能を有する。生成されたアンモニアガスは、SCR装置14に供給され、NOxを還元するための還元剤として用いられる。加温制御装置60が備える加温装置20および制御部40の詳細については後述する。   The heating device 20 is disposed between the DPF 13 and the SCR device 14 in the exhaust gas flow direction. The heating device 20 has a function of heating the exhaust gas so that the NOx reduction function of the SCR device 14 can be satisfactorily exhibited. Specifically, it has a function of heating the exhaust gas to a temperature equal to or higher than the temperature for obtaining ammonia gas from the urea water supplied (injected) from the liquid supply unit 18. The generated ammonia gas is supplied to the SCR device 14 and used as a reducing agent for reducing NOx. Details of the heating device 20 and the control unit 40 included in the heating control device 60 will be described later.

NHDOC15は、DOC12と同様の触媒を担持し、SCR装置14において反応に供しなかったアンモニアを酸化分解して、窒素またはNOxを生成する。 NH 3 DOC 15 carries the same catalyst as DOC 12 and oxidizes and decomposes ammonia that has not been subjected to the reaction in the SCR device 14 to generate nitrogen or NOx.

図2は、加温装置20の概略構成を説明するための図である。図3は、図2のF2−F2断面図である。図2に示す矢印YGの向きは排気ガスの流れ方向を示している。なお、他の図においても必要に応じて排気ガスの流れ方向を矢印YGの向きで示している。   FIG. 2 is a diagram for explaining a schematic configuration of the heating device 20. 3 is a cross-sectional view taken along line F2-F2 of FIG. The direction of the arrow YG shown in FIG. 2 indicates the flow direction of the exhaust gas. In other figures, the flow direction of the exhaust gas is indicated by the direction of the arrow YG as necessary.

加温装置20(図2)は、ガス流路部材24と、ガス加温部材30と、熱回収部材28と、バイパス流路部材25と、分岐部20Aと、合流部20Bと、流路切替部80とを備える。   The heating device 20 (FIG. 2) includes a gas flow path member 24, a gas heating member 30, a heat recovery member 28, a bypass flow path member 25, a branching section 20A, a merging section 20B, and a flow path switching. Part 80.

ガス流路部材24は、金属(例えば、SUS304)によって形成された管状の部材である。本実施形態では、ガス流路部材24は、図3に示すように、自身が延びる方向と直交する断面形状が矩形の枠状である。ガス流路部材24は、排気流路11を流れる排気ガスを流通させる流路21を形成する。なお、ガス流路部材24の断面形状はこれに限定されるものではなく、排気ガスを流通させる流路21を形成できれば、他の形状であってもよい。例えば、ガス流路部材24の断面形状は、円形や楕円の枠状であってもよい。つまり、ガス流路部材24は、円筒状などであってもよい。   The gas flow path member 24 is a tubular member made of metal (for example, SUS304). In the present embodiment, as shown in FIG. 3, the gas flow path member 24 has a rectangular frame shape with a cross-sectional shape orthogonal to the direction in which the gas flow path member 24 extends. The gas flow path member 24 forms a flow path 21 through which the exhaust gas flowing through the exhaust flow path 11 flows. The cross-sectional shape of the gas flow path member 24 is not limited to this, and may be any other shape as long as the flow path 21 through which the exhaust gas flows can be formed. For example, the cross-sectional shape of the gas flow path member 24 may be a circular or elliptical frame shape. That is, the gas flow path member 24 may be cylindrical.

ガス加温部材30は、流路21を流れる排気ガスを加温するために用いられる。ガス加温部材30は、ガス流路部材24内である流路21の途中に配置されている。ガス加温部材30は、制御部40からの指示に従って放熱により周囲を加熱するヒーターである。ガス加温部材30は、通電により自身が発熱する抵抗発熱体(発熱部材)である。ガス加温部材30は、ニクロム線、銅線、タングステン線といった線状の、またはステンレス材、銅材、アルミニウム材といった板状の裸の金属材であってもよい。また、ガス加温部材30は、3次元に形成されたヒーターであってもよい。3次元に形成されたヒーターとしては、例えば、バリ(突起)を周縁に有する複数の貫通孔が形成された金属箔(金属板)を複数回巻くことで円板形状に形成することで作成できる。本実施形態では、ガス加温部材30は、板状の金属材(例えば、銅)を渦巻き状にした形状である。ガス加温部材30の形状はこれに限定されるものではなく、断面が枠状や円形形状であってもよい。図3に示すように、ガス加温部材30は、ガス流路部材24の流路21の上流側から下流側へと排気ガスを流通させるための第1ガス流路32を有する。第1ガス流路32は、渦巻き状に形成された板状の金属材のうちの隣り合う金属材の隙間によって形成されている。ガス加温部材30は、さらに、ガス流路部材24と対向する外周部34を有する。   The gas heating member 30 is used for heating the exhaust gas flowing through the flow path 21. The gas heating member 30 is disposed in the middle of the flow path 21 in the gas flow path member 24. The gas heating member 30 is a heater that heats the surroundings by radiating heat according to instructions from the control unit 40. The gas heating member 30 is a resistance heating element (heating member) that generates heat when energized. The gas heating member 30 may be a linear metal material such as a nichrome wire, a copper wire, or a tungsten wire, or a plate-like bare metal material such as a stainless steel material, a copper material, or an aluminum material. The gas heating member 30 may be a three-dimensional heater. The heater formed in a three-dimensional manner can be created by, for example, forming a disk shape by winding a metal foil (metal plate) having a plurality of through-holes having burrs (protrusions) at the periphery. . In the present embodiment, the gas heating member 30 has a spiral shape made of a plate-shaped metal material (for example, copper). The shape of the gas heating member 30 is not limited to this, and the cross section may be a frame shape or a circular shape. As shown in FIG. 3, the gas heating member 30 has a first gas flow path 32 for flowing exhaust gas from the upstream side to the downstream side of the flow path 21 of the gas flow path member 24. The first gas flow path 32 is formed by a gap between adjacent metal materials among plate-like metal materials formed in a spiral shape. The gas heating member 30 further has an outer peripheral portion 34 that faces the gas flow path member 24.

熱回収部材28は、ガス加温部材30から発せられた熱を回収するための部材である。つまり、熱回収部材28は、蓄熱体として機能する。熱回収部材28は、金属材料(例えば、ステンレス鋼)、セラミック、セラミックと金属とを含む混合材料などから選択される1種以上の材料によって形成されている。また、熱回収部材28は、Si、Mg、Al、C、又は、Siの酸化物、Mgの酸化物、Alの酸化物の少なくとも1種以上を含有する部材であってもよい。また、熱回収部材28は、熱伝導率をある程度高くして熱回収の効率を向上させるために、SiO、MgO、Alの少なくとも一種以上を含有する部材であってもよい。また、熱回収部材28の熱伝導率(W/m・K)は、ガス流路部材24の熱伝導率以下であることが好ましい。こうすることで、ガス加温部材30から放出され熱回収部材28に蓄えられた熱が、熱伝導によってガス流路部材24に移動することを抑制できる。よって、ガス加温部材30から放出される熱を排気ガスの加温のために有効に利用できる。なお、熱伝導率は、公知の熱伝導率測定器を用いて測定すればよい。 The heat recovery member 28 is a member for recovering heat generated from the gas heating member 30. That is, the heat recovery member 28 functions as a heat storage body. The heat recovery member 28 is formed of one or more materials selected from metal materials (for example, stainless steel), ceramics, mixed materials including ceramics and metals, and the like. The heat recovery member 28 may be a member containing at least one of Si, Mg, Al, C, or an oxide of Si, an oxide of Mg, and an oxide of Al. The heat recovery member 28 may be a member containing at least one of SiO 2 , MgO 2 , and Al 2 O 3 in order to increase the thermal conductivity to some extent and improve the efficiency of heat recovery. Further, the thermal conductivity (W / m · K) of the heat recovery member 28 is preferably equal to or lower than the thermal conductivity of the gas flow path member 24. By doing so, it is possible to suppress the heat released from the gas heating member 30 and stored in the heat recovery member 28 from moving to the gas flow path member 24 due to heat conduction. Therefore, the heat released from the gas heating member 30 can be effectively used for heating the exhaust gas. In addition, what is necessary is just to measure heat conductivity using a well-known heat conductivity measuring device.

熱回収部材28は、上流側から下流側へと排気ガスを流通させるための第2ガス流路29を有する。本実施形態では、熱回収部材28は、網目状構造を有し、この構造によって第2ガス流路29が形成されている。熱回収部材28は、排気ガスの流れ方向に沿って所定の長さLa(図2)を有する。熱回収部材28は、ガス加温部材30の外周部34を取り囲むようにガス加温部材30とガス流路部材24との間に配置されている。本実施形態では、熱回収部材28は、ガス加温部材30の外周部34とガス流路部材24との隙間を埋めるように配置されている。つまり、熱回収部材28は、ガス加温部材30の外周部34とガス流路部材24の内面とに接している。   The heat recovery member 28 has a second gas passage 29 for circulating the exhaust gas from the upstream side to the downstream side. In the present embodiment, the heat recovery member 28 has a mesh structure, and the second gas flow path 29 is formed by this structure. The heat recovery member 28 has a predetermined length La (FIG. 2) along the exhaust gas flow direction. The heat recovery member 28 is disposed between the gas heating member 30 and the gas flow path member 24 so as to surround the outer peripheral portion 34 of the gas heating member 30. In the present embodiment, the heat recovery member 28 is disposed so as to fill a gap between the outer peripheral portion 34 of the gas heating member 30 and the gas flow path member 24. That is, the heat recovery member 28 is in contact with the outer peripheral portion 34 of the gas heating member 30 and the inner surface of the gas flow path member 24.

熱回収部材28は、流路21を流れる排気ガスの流れ方向において、ガス加温部材30よりも長いことが好ましい。本実施形態では、熱回収部材28の長さLaは、ガス加温部材30の長さLbよりも長い。これにより、ガス加温部材30から放出された熱のより多くを熱回収部材28によって回収できる。なお、流路21を流れる排気ガスの流れ方向とは、ガス流路部材24の上流端から下流端へと向かう方向であり、図2では左側から右側に向かう方向である。   The heat recovery member 28 is preferably longer than the gas heating member 30 in the flow direction of the exhaust gas flowing through the flow path 21. In the present embodiment, the length La of the heat recovery member 28 is longer than the length Lb of the gas heating member 30. Thereby, more of the heat released from the gas heating member 30 can be recovered by the heat recovery member 28. The flow direction of the exhaust gas flowing through the flow path 21 is a direction from the upstream end to the downstream end of the gas flow path member 24, and in FIG.

また、第2ガス流路29の圧力損失は、第1ガス流路の圧力損失以上であることが好ましい。こうすることで、ガス流路部材24の流路に排気ガスを流通させた場合に、第1ガス流路32を流通する排気ガスの量が少なくなる可能性を低減できる。これにより、排気ガスをガス加温部材30の熱によって効率良く加温できる。ここで、第2ガス流路29の圧力損失を第1ガス流路32の圧力損失以上とするためには、例えば、以下の方法が挙げられる。例えば、第2ガス流路29の流路断面積を第1ガス流路32の流路断面積以下とする。また例えば、第2ガス流路29の流路の一部を屈曲または蛇行させる。また例えば、第2ガス流路29の流路長を第1ガス流路32の流路長以上とする。   Moreover, it is preferable that the pressure loss of the 2nd gas flow path 29 is more than the pressure loss of the 1st gas flow path. By doing so, when exhaust gas is circulated through the flow path of the gas flow path member 24, the possibility that the amount of exhaust gas flowing through the first gas flow path 32 is reduced can be reduced. Thereby, the exhaust gas can be efficiently heated by the heat of the gas heating member 30. Here, in order to make the pressure loss of the second gas flow path 29 equal to or higher than the pressure loss of the first gas flow path 32, for example, the following method may be mentioned. For example, the channel cross-sectional area of the second gas channel 29 is set to be equal to or smaller than the channel cross-sectional area of the first gas channel 32. Further, for example, a part of the flow path of the second gas flow path 29 is bent or meandered. Further, for example, the channel length of the second gas channel 29 is set to be longer than the channel length of the first gas channel 32.

バイパス流路部材25(図2)は、排気流路11を流れる排気ガスを流通させる。バイパス流路部材25は、ガス流路部材24の流路21とは異なる流路(バイパス流路)22を形成する。バイパス流路部材25には、ガス流路部材24とは異なりガス加温部材30および熱回収部材28が配置されていない。バイパス流路部材25は、自身が延びる方向と直交する断面形状が矩形の枠状である。なお、バイパス流路部材25の断面形状はこれに限定されるものではなく、排気ガスを流通させる流路22を形成できれば、他の形状であってもよい。例えば、バイパス流路部材25の断面形状は、円形や楕円の枠状であってもよい。   The bypass flow path member 25 (FIG. 2) distributes the exhaust gas flowing through the exhaust flow path 11. The bypass channel member 25 forms a channel (bypass channel) 22 different from the channel 21 of the gas channel member 24. Unlike the gas flow path member 24, the gas heating member 30 and the heat recovery member 28 are not arranged in the bypass flow path member 25. The bypass channel member 25 has a rectangular frame shape with a cross-sectional shape orthogonal to the direction in which the bypass channel member 25 extends. The cross-sectional shape of the bypass flow path member 25 is not limited to this, and may be any other shape as long as the flow path 22 through which the exhaust gas flows can be formed. For example, the cross-sectional shape of the bypass flow path member 25 may be a circular or elliptical frame.

分岐部20Aは、ガス流路部材24およびバイパス流路部材25の上流側に位置する。分岐部20Aは、ガス流路部材24の流路21と、バイパス流路部材25のバイパス流路22とを分岐させる。分岐部20Aは、ガス流路部材24とバイパス流路部材25のそれぞれの上流端に接続され、排気流路11を流れる排気ガスを流路21またはバイパス流路22に導入する。   The branch portion 20 </ b> A is located upstream of the gas flow path member 24 and the bypass flow path member 25. The branch portion 20A branches the flow path 21 of the gas flow path member 24 and the bypass flow path 22 of the bypass flow path member 25. The branch portion 20A is connected to the upstream ends of the gas flow path member 24 and the bypass flow path member 25, and introduces exhaust gas flowing through the exhaust flow path 11 into the flow path 21 or the bypass flow path 22.

流路切替部80は、制御部40からの指示に従って、排気ガスの流通経路をガス流路部材24の流路21と、バイパス流路部材25のバイパス流路22とのいずれかに切り替える切替弁である。流路切替部80は、ガス流路部材24の上流端に形成された開口と、バイパス流路部材25の上流端に形成された開口とを選択的に塞ぐことで、排気ガスの流通経路を切り替える。   The flow path switching unit 80 switches the exhaust gas flow path to either the flow path 21 of the gas flow path member 24 or the bypass flow path 22 of the bypass flow path member 25 in accordance with an instruction from the control unit 40. It is. The flow path switching unit 80 selectively closes the opening formed at the upstream end of the gas flow path member 24 and the opening formed at the upstream end of the bypass flow path member 25, thereby reducing the flow path of the exhaust gas. Switch.

流路切替部80は、例えば以下の方式1〜3のいずれかを用いてもよい。
<方式1>
一端に備えられている軸を中心にして板状の弁体が揺動することによって流路を選択的に切り替える方式。
<方式2>
内部に連通路を有する回転弁体が1軸を中心に回動することによって流路を選択的に切り替える方式。
<方式3>
板状の弁体が直線移動することによって流路を選択的に切り替える方式。
The flow path switching unit 80 may use, for example, any of the following methods 1 to 3.
<Method 1>
A method of selectively switching the flow path when a plate-like valve body swings about an axis provided at one end.
<Method 2>
A system in which a flow path is selectively switched by rotating a rotary valve body having a communication path inside about one axis.
<Method 3>
A system that selectively switches the flow path when the plate-shaped valve element moves linearly.

弁体を駆動するアクチュエータとしては、ステッピングモータ等のモータ、電磁式のアクチュエータ、空気、オイルといった流体式のアクチュエータが挙げられる。なお、流路は選択的、すなわち、排他的に切り替えられなくてもよい場合がある。よって、流路切替部80として流路を選択的に切り替えない方式を採用してもよい。例えば、流路切替部80をガス流路部材24とバイパス流路部材25とのそれぞれに設けてもよい。この場合、流路切替部80は、弁体の開度を変更することでガス流路部材24の流路21やバイパス流路部材25のバイパス流路22の流路断面を調整できる構成であってもよい。   Examples of the actuator that drives the valve body include motors such as stepping motors, electromagnetic actuators, and fluid actuators such as air and oil. Note that the flow path may not be selectively switched, that is, not exclusively. Therefore, a method that does not selectively switch the flow channel as the flow channel switching unit 80 may be adopted. For example, the flow path switching unit 80 may be provided in each of the gas flow path member 24 and the bypass flow path member 25. In this case, the flow path switching unit 80 is configured to be able to adjust the flow path cross section of the flow path 21 of the gas flow path member 24 and the bypass flow path 22 of the bypass flow path member 25 by changing the opening of the valve body. May be.

合流部20Bは、ガス流路部材24およびバイパス流路部材25の下流側に位置し、ガス流路部材24の流路21とバイパス流路部材25のバイパス流路22とが合流する。合流部20Bは、排気流路11を流れる排気ガスを後段のSCR装置14に向けて排出する。   The junction 20B is located downstream of the gas flow path member 24 and the bypass flow path member 25, and the flow path 21 of the gas flow path member 24 and the bypass flow path 22 of the bypass flow path member 25 merge. The junction 20B discharges the exhaust gas flowing through the exhaust passage 11 toward the SCR device 14 at the subsequent stage.

制御部40は、例えば、イグニッションスイッチがONになり、エンジンが始動したことを起点として以下の処理を行う。また、以下の処理は、例えば、イグニッションスイッチがOFFになり、エンジンが停止することで終了する。   For example, the control unit 40 performs the following processing starting from the fact that the ignition switch is turned on and the engine is started. Further, the following processing ends when, for example, the ignition switch is turned OFF and the engine is stopped.

制御部40は、温度センサ192(図1)によって検出した検出温度に基づいて、流路切替部80の動作を制御して排気ガスの流通経路を切り替える。具体的には、制御部40は、温度センサ192の検出温度が200度以上の場合は、排気ガスの流通経路がバイパス流路部材25となるように流路切替部80によってガス流路部材24の上流端開口を塞ぐ。一方で、温度センサ192の検出温度が200度未満の場合は、排気ガスの流通経路がガス流路部材24となるように流路切替部80によってバイパス流路部材25の上流端開口を塞ぐ。また、制御部40は、排気ガスの流通経路がガス流路部材24のときに、ガス加温部材30に電力を供給してガス加温部材30を発熱させる。これにより、ガス流路部材24の流路21を通過する排気ガスを、SCR装置14のNOx還元機能が有効に発揮できる程度の温度(例えば、200度)以上に昇温させる。なお、制御部40は、液体供給部18を用いて一定時間ごとに供給流路19に尿素水を噴霧する。ここで、制御部40は、イグニッションスイッチがONになったことを起点として、常時、ガス加温部材30に電力を供給してガス加温部材30を発熱させてもよい。   Based on the detected temperature detected by the temperature sensor 192 (FIG. 1), the control unit 40 controls the operation of the flow path switching unit 80 to switch the flow path of the exhaust gas. Specifically, when the temperature detected by the temperature sensor 192 is 200 ° C. or higher, the control unit 40 uses the gas flow path member 24 by the flow path switching unit 80 so that the exhaust gas flow path becomes the bypass flow path member 25. Block the upstream end opening. On the other hand, when the detected temperature of the temperature sensor 192 is less than 200 degrees, the upstream end opening of the bypass flow path member 25 is closed by the flow path switching unit 80 so that the exhaust gas flow path becomes the gas flow path member 24. Further, when the exhaust gas flow path is the gas flow path member 24, the control unit 40 supplies power to the gas heating member 30 to cause the gas heating member 30 to generate heat. As a result, the exhaust gas passing through the flow path 21 of the gas flow path member 24 is raised to a temperature (for example, 200 degrees) or more that can effectively exhibit the NOx reduction function of the SCR device 14. The control unit 40 sprays urea water on the supply channel 19 at regular intervals using the liquid supply unit 18. Here, the control unit 40 may always supply power to the gas heating member 30 to cause the gas heating member 30 to generate heat, starting from the ignition switch being turned on.

上記第1実施形態によれば、ガス加温部材30の外周部34を取り囲むように配置された熱回収部材28を有する(図2)。これにより、ガス加温部材30から放出された熱を熱回収部材28によって回収することで、熱回収部材28に熱を蓄えることができる。これにより、ガス流路部材24内を流通する排気ガスを、ガス加温部材30から放出される熱に加えて熱回収部材28に蓄えられた熱によっても加温できる。よって、ガス加温部材30から放出される熱を有効に利用して排気ガスを加温できる。特に、上記第1実施形態では、熱回収部材28は、ガス加温部材30の外周部34とガス流路部材24との隙間を埋めるように配置されている。これにより、ガス加温部材30の外周部34からの熱伝導によっても熱回収部材28に熱が蓄えられる。これにより、ガス加温部材30から放出される熱をさらに有効に利用できる。また、ガス流路部材24内を排気ガスが通過する際に、第1ガス流路32または第2ガス流路29を排気ガスが通過するので、排気ガスの加温を効率良くできる。   According to the said 1st Embodiment, it has the heat recovery member 28 arrange | positioned so that the outer peripheral part 34 of the gas heating member 30 may be surrounded (FIG. 2). Thereby, heat can be stored in the heat recovery member 28 by recovering the heat released from the gas heating member 30 by the heat recovery member 28. Thereby, the exhaust gas flowing through the gas flow path member 24 can be heated by the heat stored in the heat recovery member 28 in addition to the heat released from the gas heating member 30. Therefore, the exhaust gas can be heated by effectively using the heat released from the gas heating member 30. In particular, in the first embodiment, the heat recovery member 28 is disposed so as to fill a gap between the outer peripheral portion 34 of the gas heating member 30 and the gas flow path member 24. Thereby, heat is also stored in the heat recovery member 28 by heat conduction from the outer peripheral portion 34 of the gas heating member 30. Thereby, the heat released from the gas heating member 30 can be used more effectively. Further, when the exhaust gas passes through the gas passage member 24, the exhaust gas passes through the first gas passage 32 or the second gas passage 29, so that the exhaust gas can be heated efficiently.

また、上記第1実施形態によれば、流路切替部80によって、排気ガスの流通経路をガス流路部材24の流路21とバイパス流路部材25のバイパス流路22とのいずれかに切り替えることができる。これにより、車両500の運転状態に基づいて、排気ガスの流通経路をガス流路部材24の流路21とバイパス流路部材25のバイパス流路22とのいずれかに切り替えることができる。例えば、排気ガスの温度が、SCR装置14の機能が良好に発揮できる活性化温度未満である場合は、流路切替部80によって排気ガスの流通経路をガス流路部材24の流路21とすることで、排気ガスをガス加温部材30や熱回収部材28によって活性化温度以上に加温できる。なお、本実施形態では、加温装置20により排気ガスをSCR装置14のNOx触媒機能が有効に発揮できる程度の温度以上まで昇温させたが、これに限らず、加温装置20は触媒機能を有効に発揮させる為の補助的な加熱に用いてもよい。   Further, according to the first embodiment, the flow path switching unit 80 switches the flow path of the exhaust gas to either the flow path 21 of the gas flow path member 24 or the bypass flow path 22 of the bypass flow path member 25. be able to. Thereby, based on the driving | running state of the vehicle 500, the flow path of exhaust gas can be switched to either the flow path 21 of the gas flow path member 24, or the bypass flow path 22 of the bypass flow path member 25. FIG. For example, when the temperature of the exhaust gas is less than the activation temperature at which the function of the SCR device 14 can be satisfactorily performed, the flow path switching unit 80 sets the flow path of the exhaust gas as the flow path 21 of the gas flow path member 24. Thus, the exhaust gas can be heated to the activation temperature or higher by the gas heating member 30 or the heat recovery member 28. In the present embodiment, the heating device 20 raises the exhaust gas to a temperature at which the NOx catalytic function of the SCR device 14 can be effectively exhibited. However, the heating device 20 is not limited to this, and the heating device 20 has a catalytic function. You may use for the auxiliary heating for exhibiting effectively.

B.第2実施形態:
図4は、第2実施形態の加温装置20aについて説明するための図である。図4は、図3に相当する図である。加温装置20aと上記第1実施形態の加温装置20との異なる点は、熱回収部材28aの第2ガス流路29aの形状である。その他の構成については加温装置20aと加温装置20とは同様の構成であるので、同様の構成については同一符号を付すと共に説明を省略する。また、加温装置20aは、上記第1実施形態と同様に、図2に示すようなバイパス流路部材25や流路切替部80などの構成を有している。
B. Second embodiment:
FIG. 4 is a diagram for explaining the heating device 20a of the second embodiment. FIG. 4 corresponds to FIG. The difference between the heating device 20a and the heating device 20 of the first embodiment is the shape of the second gas flow path 29a of the heat recovery member 28a. Since the warming device 20a and the warming device 20 have the same configuration with respect to other configurations, the same configurations are denoted by the same reference numerals and description thereof is omitted. Moreover, the heating apparatus 20a has a configuration such as the bypass flow path member 25 and the flow path switching unit 80 as shown in FIG. 2 as in the first embodiment.

第2ガス流路29aは、ハニカム形状である。つまり、熱回収部材28aは、正六角柱を隙間なく並べたハニカム構造体である。これにより、第2ガス流路29aを形成する熱回収部材28aの強度を向上でき、また、排気ガスを全体的に均一に流す事ができるので熱回収の効率が向上する。なお、ハニカム形状とは本実施形態のように正六角柱に限られず、例えば正四角柱や正三角柱等でもよく、ハニカム構造体とは均一形状の集合体であればよい。   The second gas channel 29a has a honeycomb shape. That is, the heat recovery member 28a is a honeycomb structure in which regular hexagonal columns are arranged without gaps. As a result, the strength of the heat recovery member 28a forming the second gas flow path 29a can be improved, and the exhaust gas can be made to flow uniformly throughout, thereby improving the efficiency of heat recovery. Note that the honeycomb shape is not limited to a regular hexagonal prism as in the present embodiment, and may be, for example, a regular quadrangular prism or a regular triangular prism. The honeycomb structure may be an aggregate having a uniform shape.

C.変形例:
なお、この発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。
C. Variations:
In addition, this invention is not restricted to said embodiment, In the range which does not deviate from the summary, it can implement in a various aspect.

C−1.第1変形例:
上記各実施形態では、熱回収部材28,28aは、ガス加温部材30の外周部34とガス流路部材24との隙間を埋めるように配置されていたが、熱回収部材28,28aの配置はこれに限定されるものではない。熱回収部材28,28aは、ガス加温部材30の外周部34を取り囲むようにガス加温部材30の外周部34とガス流路部材24の間に配置されていれば、ガス加温部材30の外周部34やガス流路部材24の内面と隙間を有していてもよい。
C-1. First modification:
In each of the above embodiments, the heat recovery members 28 and 28a are disposed so as to fill the gap between the outer peripheral portion 34 of the gas heating member 30 and the gas flow path member 24. However, the heat recovery members 28 and 28a are disposed. Is not limited to this. If the heat recovery members 28 and 28 a are disposed between the outer peripheral portion 34 of the gas heating member 30 and the gas flow path member 24 so as to surround the outer peripheral portion 34 of the gas heating member 30, the gas heating member 30. A gap may be formed between the outer peripheral portion 34 and the inner surface of the gas flow path member 24.

図5は、熱回収部材28aの配置についての変形例を説明するための図である。熱回収部材28aは、第2実施形態の熱回収部材28aであり、第2ガス流路29aの流路方向が一方向(図5の左右方向)に形成されている。ガス流路部材24は、内面から内方に突出する環状の突出部243を有する。熱回収部材28aは、突出部243とガス加温部材30の外周部34とに接するように配置されている。熱回収部材28aは、ガス流路部材24の内面とは接していない。このようにしても、上記第各実施形態と同様の構成を有する点において同様の効果を奏する。例えば、ガス加温部材30から放出された熱を熱回収部材28によって回収することで、熱回収部材28に熱を蓄えることができる。これにより、ガス流路部材24内を流通する排気ガスを、ガス加温部材30から放出される熱に加えて熱回収部材28に蓄えられた熱によっても加温できる。よって、ガス加温部材30から放出される熱を有効に利用して排気ガスを加温できる。また、本変形例では、突出部243と、上流側から下流側へと向かう一方向に延びる第2ガス流路29aとによって、排気ガスが熱回収部材28aとガス流路部材24との隙間248に流入することを抑制できる。これにより、流路21を流れる排気ガスが第1ガス流路32と第2ガス流路29a以外の部分を通過することを抑制できるので、熱回収部材28aとガス加温部材30とを用いて排気ガスを効率良く加温できる。   FIG. 5 is a view for explaining a modified example of the arrangement of the heat recovery member 28a. The heat recovery member 28a is the heat recovery member 28a of the second embodiment, and the flow path direction of the second gas flow path 29a is formed in one direction (the left-right direction in FIG. 5). The gas flow path member 24 has an annular protrusion 243 that protrudes inward from the inner surface. The heat recovery member 28 a is disposed so as to contact the protruding portion 243 and the outer peripheral portion 34 of the gas heating member 30. The heat recovery member 28 a is not in contact with the inner surface of the gas flow path member 24. Even if it does in this way, there exists the same effect in the point which has the structure similar to the said each embodiment. For example, heat can be stored in the heat recovery member 28 by recovering heat released from the gas heating member 30 by the heat recovery member 28. Thereby, the exhaust gas flowing through the gas flow path member 24 can be heated by the heat stored in the heat recovery member 28 in addition to the heat released from the gas heating member 30. Therefore, the exhaust gas can be heated by effectively using the heat released from the gas heating member 30. Further, in the present modification, the gap 248 between the heat recovery member 28 a and the gas flow path member 24 is generated by the protrusion 243 and the second gas flow path 29 a extending in one direction from the upstream side to the downstream side. Can be prevented from flowing into Thereby, since it can suppress that the exhaust gas which flows through the flow path 21 passes through parts other than the 1st gas flow path 32 and the 2nd gas flow path 29a, the heat recovery member 28a and the gas heating member 30 are used. The exhaust gas can be heated efficiently.

C−2.第2変形例:
上記各実施形態では、加温装置20,20aは、流路切替部80、バイパス流路部材25、分岐部20A、および、合流部20Bを有していたが(図2)、省略してもよい。
C-2. Second modification:
In each of the above embodiments, the heating devices 20 and 20a have the flow path switching unit 80, the bypass flow path member 25, the branching section 20A, and the merging section 20B (FIG. 2), but may be omitted. Good.

C−3.第3変形例
上記各実施形態では、加温装置20,20aは、DPF13とSCR装置14との間に配置されていたが(図1)、上記に限定されるものではない。例えば、加温装置20,20aは、DOC12の前段に配置されていてもよい。
C-3. Third Modification In each of the above embodiments, the heating devices 20 and 20a are disposed between the DPF 13 and the SCR device 14 (FIG. 1), but are not limited to the above. For example, the heating devices 20 and 20a may be disposed in front of the DOC 12.

本発明は、上述の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。   The present invention is not limited to the above-described embodiments, examples, and modifications, and can be realized with various configurations without departing from the spirit thereof. For example, the technical features in the embodiments, examples, and modifications corresponding to the technical features in each embodiment described in the summary section of the invention are to solve some or all of the above-described problems, or In order to achieve part or all of the above effects, replacement or combination can be performed as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

10…排気ガス浄化システム
11…排気流路
11a…マニフォールド
11b…マフラエンドパイプ
12…ディーゼル酸化触媒
14…選択還元触媒装置
17…燃料噴射装置
18…液体供給部
19…供給流路
20,20a…加温装置
20A…分岐部
20B…合流部
21…流路
22…バイパス流路
24…ガス流路部材
25…バイパス流路部材
28,28a…熱回収部材
29,29a…第2ガス流路
30…ガス加温部材
32…第1ガス流路
34…外周部
40…制御部
60…加温制御装置
80…流路切替部
192…温度センサ
243…突出部
248…隙間
500…車両
510…エンジン
520…車輪
DESCRIPTION OF SYMBOLS 10 ... Exhaust gas purification system 11 ... Exhaust flow path 11a ... Manifold 11b ... Muffler end pipe 12 ... Diesel oxidation catalyst 14 ... Selective reduction catalyst apparatus 17 ... Fuel injection apparatus 18 ... Liquid supply part 19 ... Supply flow path 20, 20a ... Addition Temperature device 20A ... Branching portion 20B ... Merge portion 21 ... Channel 22 ... Bypass channel 24 ... Gas channel member 25 ... Bypass channel member 28, 28a ... Heat recovery member 29, 29a ... Second gas channel 30 ... Gas Heating member 32 ... 1st gas flow path 34 ... Outer peripheral part 40 ... Control part 60 ... Heating control apparatus 80 ... Flow path switching part 192 ... Temperature sensor 243 ... Protrusion part 248 ... Gap 500 ... Vehicle 510 ... Engine 520 ... Wheel

Claims (8)

内燃機関の排気流路の途中に設けられ、前記排気流路を流通する排気ガスを加温するための加温装置であって、
前記排気流路を流れる前記排気ガスを流通させるためのガス流路部材と、
前記ガス流路部材内に配置された、前記ガス流路部材の上流側から下流側へと前記排気ガスを流通させるための第1ガス流路を有するガス加温部材と、
前記ガス加温部材の外周部を取り囲むように前記ガス加温部材と前記ガス流路部材との間に配置された、前記ガス加温部材からの熱を回収するための熱回収部材と、を備え、
前記熱回収部材は、前記上流側から前記下流側へと前記排気ガスを流通させるための第2ガス流路を有する、加温装置。
A heating device provided in the middle of an exhaust passage of an internal combustion engine for heating exhaust gas flowing through the exhaust passage,
A gas flow path member for circulating the exhaust gas flowing through the exhaust flow path;
A gas heating member disposed in the gas flow path member and having a first gas flow path for circulating the exhaust gas from the upstream side to the downstream side of the gas flow path member;
A heat recovery member for recovering heat from the gas heating member, disposed between the gas heating member and the gas flow path member so as to surround an outer periphery of the gas heating member; Prepared,
The heating device, wherein the heat recovery member has a second gas flow path for circulating the exhaust gas from the upstream side to the downstream side.
請求項1に記載の加温装置であって、
前記熱回収部材は、前記ガス加温部材の前記外周部と前記ガス流路部材との隙間を埋めるように配置されている、加温装置。
The heating device according to claim 1,
The said heat recovery member is a heating apparatus arrange | positioned so that the clearance gap between the said outer peripheral part of the said gas heating member and the said gas flow path member may be filled.
請求項1または請求項2に記載の加温装置であって、
前記第2ガス流路の圧力損失は、前記第1ガス流路の圧力損失以上である、加温装置。
The heating device according to claim 1 or 2,
The heating device, wherein the pressure loss of the second gas channel is greater than or equal to the pressure loss of the first gas channel.
請求項1から請求項3までのいずれか一項に記載の加温装置であって、
前記排気ガスの流れ方向において、前記熱回収部材は前記ガス加温部材よりも長い、加温装置。
It is a heating apparatus as described in any one of Claim 1- Claim 3, Comprising:
The heating device, wherein the heat recovery member is longer than the gas heating member in a flow direction of the exhaust gas.
請求項1から請求項4までのいずれか一項に記載の加温装置であって、
前記熱回収部材の熱伝導率は、前記ガス流路部材の熱伝導率以下である、加温装置。
It is a heating apparatus as described in any one of Claim 1- Claim 4, Comprising:
The heating device, wherein the heat recovery member has a heat conductivity equal to or less than a heat conductivity of the gas flow path member.
請求項1から請求項5までのいずれか一項に記載の加温装置であって、
前記第2ガス流路は、ハニカム形状である、加温装置。
It is a heating apparatus as described in any one of Claim 1- Claim 5, Comprising:
The heating device, wherein the second gas channel has a honeycomb shape.
請求項1から請求項6までのいずれか一項に記載の加温装置であって、
前記熱回収部材は、Si、Mg、Al、C、又は、Siの酸化物、Mgの酸化物、Alの酸化物の少なくとも1種以上を含有する、加温装置。
It is a heating apparatus as described in any one of Claim 1- Claim 6, Comprising:
The heat recovery member is a heating apparatus containing Si, Mg, Al, C, or at least one of an oxide of Si, an oxide of Mg, and an oxide of Al.
請求項1から請求項7までのいずれか一項に記載の加温装置であって、さらに、
前記排気流路を流れる前記排気ガスを流通させるためのバイパス流路部材であって、前記ガス流路部材の流路とは異なる流路を形成するバイパス流路部材と、
前記ガス流路部材および前記バイパス流路部材の上流側に位置し、前記ガス流路部材の前記流路と前記バイパス流路部材の前記流路とを分岐させる分岐部と、
前記ガス流路部材および前記バイパス流路部材の下流側に位置し、前記ガス流路部材の前記流路と前記バイパス流路部材の前記流路とが合流する合流部と、
前記排気ガスの流通経路を、前記ガス流路部材の前記流路と前記バイパス流路部材の前記流路とのいずれかに切り替え可能な流路切替部と、を備える加温装置。
The heating apparatus according to any one of claims 1 to 7, further comprising:
A bypass flow path member for circulating the exhaust gas flowing through the exhaust flow path, wherein the bypass flow path member forms a flow path different from the flow path of the gas flow path member;
A branching portion located upstream of the gas flow path member and the bypass flow path member and branching the flow path of the gas flow path member and the flow path of the bypass flow path member;
A merging portion located downstream of the gas flow path member and the bypass flow path member, where the flow path of the gas flow path member and the flow path of the bypass flow path member merge;
A heating apparatus comprising: a flow path switching unit capable of switching a flow path of the exhaust gas to one of the flow path of the gas flow path member and the flow path of the bypass flow path member.
JP2016161735A 2016-08-22 2016-08-22 Warming device Pending JP2018031262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016161735A JP2018031262A (en) 2016-08-22 2016-08-22 Warming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016161735A JP2018031262A (en) 2016-08-22 2016-08-22 Warming device

Publications (1)

Publication Number Publication Date
JP2018031262A true JP2018031262A (en) 2018-03-01

Family

ID=61303236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016161735A Pending JP2018031262A (en) 2016-08-22 2016-08-22 Warming device

Country Status (1)

Country Link
JP (1) JP2018031262A (en)

Similar Documents

Publication Publication Date Title
ES2737849T3 (en) Procedure of heating an exhaust gas in an exhaust post-treatment system
US10190466B2 (en) Pressure differentiated exhaust aftertreatment device
JP2010265862A (en) Exhaust emission control device
JP4450257B2 (en) Exhaust purification device
JP2011052611A (en) Device for controlling exhaust emission
JP6553405B2 (en) Ammonia generation controller
US20170198653A1 (en) Method and apparatus for improved lightoff performance of aftertreatment catalysts
JP2007023997A (en) Exhaust emission control device
JP5273303B1 (en) Exhaust gas purification device for internal combustion engine
JP2018115596A (en) Exhaust emission control system
JP2011033001A (en) Exhaust emission control device
JP2018009561A (en) Selective catalytic reduction device
JP2018031262A (en) Warming device
JP6086529B2 (en) Catalyst activation device and ship equipped with catalyst activation device
JP2014206079A (en) Exhaust emission control device for internal combustion engine, and process for manufacturing the device
JP4470746B2 (en) NOx purification device
JP6472991B2 (en) Heat storage body disposed in exhaust pipe of internal combustion engine and exhaust gas purification system
JP4844766B2 (en) Exhaust purification device
JP2010144631A (en) Exhaust emission control device
JP2018003735A (en) Heating apparatus and heating control device
JP2020148140A (en) Exhaust emission control device
JP6160257B2 (en) Exhaust purification device
JP2005105940A (en) Engine exhaust emission control device
JP5188477B2 (en) Exhaust purification device
JP7381423B2 (en) Exhaust purification device