JP2018030707A - Dispersion method for granular powder - Google Patents

Dispersion method for granular powder Download PDF

Info

Publication number
JP2018030707A
JP2018030707A JP2016165632A JP2016165632A JP2018030707A JP 2018030707 A JP2018030707 A JP 2018030707A JP 2016165632 A JP2016165632 A JP 2016165632A JP 2016165632 A JP2016165632 A JP 2016165632A JP 2018030707 A JP2018030707 A JP 2018030707A
Authority
JP
Japan
Prior art keywords
granular material
powder
hopper
granular
discharge port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016165632A
Other languages
Japanese (ja)
Other versions
JP6719336B2 (en
Inventor
良輔 真鍋
Ryosuke Manabe
良輔 真鍋
陽一 遠藤
Yoichi Endo
陽一 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2016165632A priority Critical patent/JP6719336B2/en
Publication of JP2018030707A publication Critical patent/JP2018030707A/en
Application granted granted Critical
Publication of JP6719336B2 publication Critical patent/JP6719336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dispersion method for granular powders capable of carrying out the volume regulating dispersion of the granular powder on a material to be dispersed at high dispersion accuracy.SOLUTION: A hopper 2 used in a dispersion method for granular powders in this invention has a storage part 20 capable of temporarily storing the granular powder P fed from a feeding part 1, and the storage part 20 has an inclined plane 20A inclining in a vertical direction Z. The dispersion method has a process of discharging the powder P from the lower end discharge port 2b of the hopper 2 while forming and maintaining a mount P0 of the granular powder by feeding the powder P from the feeding part 1 on a powder deposit P1 in such a state that the powder P is temporarily stored in the storage part 20 and the powder deposit P1 is formed. In the above powder discharging process, feeding of the powder P from the feeding part 1 is controlled so that the mount P0 of the powder on the deposit P1 does not overlap the extension area S of the discharge port 2b and does not contact the inclined plane 20A.SELECTED DRAWING: Figure 3

Description

本発明は、粉粒体の散布方法に関する。   The present invention relates to a method for spraying granular materials.

粉粒体を被散布物に定量的に散布する場合にホッパーが使用される場合がある。一般にホッパーは、上方から内部に向かって粉粒体を投入可能な上部開口を上端に有すると共に、投入した粉粒体を下方に排出可能な排出口を下端に有し、上方から下方に向かって内径が狭くなる内面を有する。ホッパーに関する従来技術として、例えば特許文献1には、被散布物に粉粒体を定量的に散布する定量フィーダ装置にホッパーを用いて粉粒体を供給する場合に、その重量圧力によって粉粒体の流動性が変化してしまい、粉粒体の散布精度が低下するという課題を解決するために、ホッパーと定量フィーダ装置との間に、ホッパーの排出口径よりも細径の部分を有するインナー管を介在させ、そのインナー管の下端の排出口を定量フィーダ装置内の粉粒体の堆積物に挿入することが記載されている。   A hopper may be used when a granular material is sprayed quantitatively on a material to be sprayed. In general, the hopper has an upper opening at the upper end through which powder particles can be charged from above to the inside, and a discharge port at the lower end from which the charged particles can be discharged downward. It has an inner surface with a narrow inner diameter. As a conventional technique related to a hopper, for example, in Patent Document 1, when supplying a granular material using a hopper to a quantitative feeder device that quantitatively distributes the granular material to an object to be dispersed, the granular material is caused by its weight pressure. In order to solve the problem that the flowability of the powder changes and the dispersion accuracy of the granular material decreases, the inner pipe having a portion smaller than the discharge diameter of the hopper between the hopper and the quantitative feeder device Is inserted, and the discharge port at the lower end of the inner pipe is inserted into the deposit of the granular material in the quantitative feeder apparatus.

また特許文献2には、ホッパー内に一時的に貯蔵されている粒状造粒体の量が少ない状態でホッパーの上部開口から粒状造粒体を追加投入した場合に、粒状造粒体の落下高さが高いために粒状造粒体に落下衝撃による潰れが発生するという課題を解決するために、ホッパー内に、投入された粒状造粒体を受けてホッパーの傾斜した内面に向け分散させて落下させる分散板を配置することが記載されている。また特許文献3には、粒度調整した粉粒体をホッパーに投入しても、ホッパー内で経時的に粒度構成の偏差が生じる結果、陶磁器質タイルなどの製品の品質に偏りが生じてしまうという課題を解決するために、ホッパーの上部開口に、上方から投入される粉粒体がホッパー内の中央で凸となることを阻止する阻流手段を設けることが記載されている。   Further, in Patent Document 2, when the granular granule is additionally charged from the upper opening of the hopper with a small amount of the granular granule temporarily stored in the hopper, the drop height of the granular granule is reduced. In order to solve the problem that the granular granule is crushed due to a drop impact due to its high height, the granular granule that has been put in the hopper is received and dispersed toward the inclined inner surface of the hopper and dropped. It is described that a dispersion plate is disposed. In addition, in Patent Document 3, even if a granular material whose particle size has been adjusted is introduced into the hopper, a deviation in the particle size composition occurs over time in the hopper, resulting in a bias in the quality of products such as ceramic tiles. In order to solve the problem, it is described that the upper opening of the hopper is provided with a baffle means for preventing the granular material charged from above from becoming convex at the center in the hopper.

特開2014−144781号公報JP 2014-144781 A 特開2003−63589号公報JP 2003-63589 A 特開2001−206552号公報JP 2001-206552 A

ホッパーの上部開口から粉粒体を供給して下端の排出口から定量的に排出する場合に、ホッパー内に粉粒体が一時的に貯蔵され粉粒体堆積物が形成された状態で、その粉粒体堆積物上に粉粒体を供給すると、その新たに供給された粉粒体の落下の衝撃によりホッパー内の粉圧変動が発生し、排出口からの粉粒体の排出量が変動するという問題がある。特許文献2及び3に記載の技術は、ホッパー内に、上部開口から供給された粉粒体をホッパーの内面側に分散させる「傘」を設置することで、粉粒体堆積物上に粉粒体が直接落下することによる衝撃を和らげるものであるが、この技術は、ホッパー内の粉粒体堆積物の上面を均一に保つことができないため、ホッパー内の粉粒体の流れが不均一になるおそれがあり、粉粒体の排出量の変動防止に有効ではない。また、ホッパーに振動を付与して、ホッパー内の粉粒体堆積物の上面を均一に保つ方法が考えられるが、この方法は、ホッパー内の分級や圧密を引き起こすおそれがある。   When powder is supplied from the upper opening of the hopper and discharged quantitatively from the discharge port at the lower end, the powder is temporarily stored in the hopper and the powder deposit is formed. When a granular material is supplied onto the granular material deposit, fluctuations in powder pressure in the hopper occur due to the impact of the newly supplied granular material falling, and the discharged amount of granular material from the discharge port varies. There is a problem of doing. In the techniques described in Patent Documents 2 and 3, the “hopper” that disperses the powder supplied from the upper opening on the inner surface side of the hopper is installed in the hopper, so that the powder on the powder deposit. Although this technique can reduce the impact of the body falling directly, this technology cannot keep the upper surface of the particulate deposit in the hopper uniform, so the powder flow in the hopper is uneven. This is not effective in preventing fluctuations in the discharge amount of the granular material. Moreover, although the method of giving a vibration to a hopper and keeping the upper surface of the granular material deposit in a hopper uniform can be considered, this method may cause classification and consolidation in a hopper.

本発明の課題は、被散布物上に粉粒体を高い散布精度で定量散布し得る粉粒体の散布方法を提供することに関する。   The subject of this invention is related with providing the spraying method of the granular material which can carry out fixed amount dispersion | distribution of a granular material with a high dispersion | distribution precision on to-be-spread material.

本発明者らは、上部開口から下端の排出口に向かって内径が狭くなる内面を有するホッパー内に粉粒体堆積物が形成された状態で、その粉粒体堆積物上に粉粒体を供給しつつ、該排出口から粉粒体を排出する場合に、その粉粒体堆積物に対する粉粒体の供給が、該排出口からの粉粒体の排出量に与える影響に着目し、主として斯かる影響を排除する観点から、前記課題を解決するべく種々検討した結果、粉粒体堆積物上に粉粒体を供給することによって形成される「粉粒体の山」が、該排出口及びホッパーの傾斜した内面との関係において適切な位置に存するように粉粒体の供給位置を制御することが有効であるとの知見を得た。   In the state where the granular material deposit is formed in the hopper having an inner surface whose inner diameter becomes narrower from the upper opening toward the discharge port at the lower end, the present inventors put the granular material on the granular material deposit. Paying attention to the influence that the supply of the granular material to the granular material deposit has on the discharge amount of the granular material from the discharge port, when discharging the granular material from the discharge port while supplying, From the viewpoint of eliminating such influences, as a result of various studies to solve the above-mentioned problems, the “powder of powder” formed by supplying the powder on the powder deposit is the outlet. And it was found that it is effective to control the supply position of the granular material so that it is in an appropriate position in relation to the inclined inner surface of the hopper.

本発明は、前記知見に基づきなされたもので、供給部からその下方のホッパーに粉粒体を供給し、該ホッパーの下端の排出口から粉粒体を排出して被散布物上に散布する、粉粒体の散布方法であって、前記ホッパーは、前記供給部から供給された粉粒体を一時的に貯蔵可能な貯蔵部を有し、該貯蔵部は、粉粒体の貯蔵空間を画成する内面として、鉛直方向に対して傾斜する傾斜面を有し、前記貯蔵部内に粉粒体が一時的に貯蔵され粉粒体堆積物が形成された状態で、その粉粒体堆積物上に前記供給部から粉粒体を供給して粉粒体の山を形成・維持しつつ、前記排出口から粉粒体を排出する粉粒体排出工程を有し、前記粉粒体排出工程において、前記粉粒体堆積物上の前記粉粒体の山が前記排出口の延長領域と重ならず且つ前記傾斜面と接触しないように、前記供給部からの粉粒体の供給を制御する、粉粒体の散布方法である。   The present invention has been made on the basis of the above-mentioned knowledge, and supplies the granular material from the supply unit to the lower hopper, discharges the granular material from the discharge port at the lower end of the hopper, and spreads it on the material to be dispersed. A method for spraying granular material, wherein the hopper has a storage unit capable of temporarily storing the granular material supplied from the supply unit, the storage unit having a storage space for the granular material The inner surface to be defined has an inclined surface that is inclined with respect to the vertical direction, and the granular material deposit is formed in a state where the granular material is temporarily stored in the storage portion and the granular material deposit is formed. It has a powder discharge process for discharging powder from the discharge port while supplying and supplying powder particles from the supply unit on top, and the powder discharge process The piles of the granular material on the granular material deposit do not overlap the extended region of the discharge port and are in contact with the inclined surface. In odd, to control the supply of particulate material from the supply unit, a scatter method granule.

また本発明は、前記の本発明の粉粒体の散布方法を用いて、前記被散布物としての基材上に前記粉粒体を散布する工程を有する、機能性シートの製造方法である。   Moreover, this invention is a manufacturing method of a functional sheet | seat which has the process of spraying the said granular material on the base material as said to-be-dispersed object using the dispersion | distribution method of the said granular material of this invention.

また本発明は、粉粒体の供給部と、該供給部の下方に配され、該供給部から供給された粉粒体を下端の排出口から排出するホッパーとを備えた粉粒体散布装置であって、前記ホッパーは、前記供給部から供給された粉粒体を一時的に貯蔵可能な貯蔵部を有し、該貯蔵部は、粉粒体の貯蔵空間を画成する内面として、鉛直方向に対して傾斜する傾斜面を有し、前記貯蔵部内に粉粒体が一時的に貯蔵され粉粒体堆積物が形成された状態で、その粉粒体堆積物上に前記供給部から粉粒体を供給して粉粒体の山を形成・維持しつつ、前記排出口から粉粒体を排出した場合に、該粉粒体堆積物上の該粉粒体の山が、該排出口の延長領域と重ならず且つ前記傾斜面と接触しないように、該供給部から粉粒体を供給する粉粒体散布装置である。   In addition, the present invention provides a granular material spraying device comprising: a granular material supply unit; and a hopper that is disposed below the supply unit and discharges the granular material supplied from the supply unit from a discharge port at a lower end. The hopper has a storage part capable of temporarily storing the powder and granular material supplied from the supply part, and the storage part is vertical as an inner surface defining a storage space for the powder and granular material. A powder having a sloping surface inclined with respect to the direction, wherein the powder is temporarily stored in the storage unit and a powder deposit is formed, and the powder from the supply unit is formed on the powder deposit. When a granular material is discharged from the outlet while supplying a granular body to form and maintain a granular pile, the pile of the granular material on the granular deposit is the outlet. It is a granular material dispersion | spreading apparatus which supplies a granular material from this supply part so that it may not overlap with the extension area | region of this, and the said inclined surface.

本発明によれば、ホッパーへの粉粒体の供給がホッパーからの粉粒体の排出に与える影響が最小限に抑えられ、ホッパー内の粉粒体堆積物の上面を均一に保ちつつ、ホッパーへの粉粒体の供給及びホッパーからの粉粒体の排出の両方がなされるため、ホッパー内の粉粒体の流れが不均一になり難く、被散布物上に粉粒体を高い散布精度で定量散布することができる。また、このような定量性に優れた粉粒体の散布方法は、基本的に、その実施に際して特殊な設備は不要で、既存の設備を用いて実施することができるため、製造コストなどの点でも有利である。   According to the present invention, the influence of the supply of the granular material to the hopper on the discharge of the granular material from the hopper is minimized, and the upper surface of the granular material deposit in the hopper is kept uniform, while the hopper is kept uniform. Since both the supply of powder to the hopper and the discharge of powder from the hopper are performed, the flow of the powder in the hopper is unlikely to be uneven, and the powder is highly sprayed on the material to be spread. Can be sprayed in a fixed amount. In addition, such a method of spraying powder with excellent quantitative properties basically requires no special equipment for its implementation, and can be implemented using existing equipment. But it is advantageous.

図1は、本発明の粉粒体の散布方法に使用可能な粉粒体散布装置の一実施態様を模式的に示す側面図である。FIG. 1 is a side view schematically showing one embodiment of a powder particle spraying apparatus that can be used in the powder particle spraying method of the present invention. 図2は、図1に示す粉粒体散布装置におけるホッパーの斜視図である。FIG. 2 is a perspective view of a hopper in the granular material spraying apparatus shown in FIG. 図3は、本発明の粉粒体の散布方法の一実施態様である、図1に示す粉粒体散布装置を用いた粉粒体の散布方法の要部の説明図である。FIG. 3 is an explanatory view of the main part of the powder particle spraying method using the powder particle spray device shown in FIG. 1, which is an embodiment of the powder particle spray method of the present invention. 図4は、図1に示す粉粒体散布装置における排出口及びその近傍を模式的に示す側面図である。FIG. 4 is a side view schematically showing a discharge port and the vicinity thereof in the powder particle distribution device shown in FIG. 1. 図5は、本発明の粉粒体の散布方法に使用可能な粉粒体散布装置の他の実施態様の要部(供給部及びホッパー)を模式的に示す斜視図である。FIG. 5: is a perspective view which shows typically the principal part (supply part and hopper) of the other embodiment of the powder distribution apparatus which can be used for the powder distribution method of this invention. 図6は、実施例及び比較例の散布定量性を示すグラフである。FIG. 6 is a graph showing the scattering quantitativeness of the examples and comparative examples.

以下、本発明について、その好ましい実施態様に基づき図面を参照しながら説明する。図1には、本発明の粉粒体の散布方法に使用可能な粉粒体散布装置の一実施態様の概略構成が示されている。図1に示す粉粒体散布装置10は、粉粒体Pの供給部1と、供給部1の下方に配され、供給部1から供給された粉粒体Pを下端の排出口2bから排出するホッパー2と、ホッパー2から排出された粉粒体Pを図中符号X1で示す方向に搬送し、その搬送中の粉粒体Pの下方を方向X1とは逆方向X2に連続搬送される被散布物としての基材100上に散布する粉粒体搬送手段3とを備える。   Hereinafter, the present invention will be described based on its preferred embodiments with reference to the drawings. FIG. 1 shows a schematic configuration of an embodiment of a powder particle spraying apparatus that can be used in the powder particle spraying method of the present invention. The granular material spraying apparatus 10 shown in FIG. 1 is arranged below the supply part 1 of the granular material P and the supply part 1, and discharges the granular material P supplied from the supply part 1 from the discharge port 2b at the lower end. The hopper 2 to be transported and the granular material P discharged from the hopper 2 are conveyed in the direction indicated by reference numeral X1 in the figure, and the lower part of the conveying granular material P is continuously conveyed in the direction X2 opposite to the direction X1. And a granular material transporting means 3 for spraying on a base material 100 as an object to be sprayed.

供給部1は、図示しない粉粒体Pの供給タンクと接続され、該供給タンクから供給された粉粒体Pを下端の排出口から排出してホッパー2内に供給する。供給部1は、粉粒体Pの排出量を調整するバルブを具備しており、そのバルブの開閉操作によってホッパー2に対する粉粒体Pの供給量を調整することができる。供給部1は円筒状をなし、粉粒体Pの排出口を有する下端部が、ホッパー2の上部開口2aからその内部(貯蔵部20)に挿入されている。   The supply unit 1 is connected to a supply tank for powder P (not shown), and discharges the powder P supplied from the supply tank from the discharge port at the lower end and supplies the powder P into the hopper 2. The supply unit 1 includes a valve that adjusts the discharge amount of the granular material P, and the supply amount of the granular material P to the hopper 2 can be adjusted by opening and closing the valve. The supply unit 1 has a cylindrical shape, and a lower end portion having a discharge port for the granular material P is inserted into the inside (storage unit 20) from the upper opening 2a of the hopper 2.

ホッパー2は、供給部1から供給された粉粒体Pを一時的に貯蔵可能な貯蔵部20と、貯蔵部20の下方に位置し、下端に粉粒体Pの排出口2bを有する排出部21とを含んで構成されている。   The hopper 2 is a storage unit 20 that can temporarily store the powder P supplied from the supply unit 1 and a discharge unit that is located below the storage unit 20 and has a discharge port 2b for the powder P at the lower end. 21.

ホッパー2の貯蔵部20は、粉粒体Pの貯蔵空間を画成する内面として、鉛直方向Zに対して傾斜する傾斜面20Aを有する。傾斜面20Aは図2に示すように、ホッパー2から排出された粉粒体Pの搬送方向X1(基材100の搬送方向X2)及び鉛直方向Zの双方に対して直交する、垂直方向Yに延びている。   The storage unit 20 of the hopper 2 has an inclined surface 20 </ b> A that is inclined with respect to the vertical direction Z as an inner surface that defines a storage space for the granular material P. As shown in FIG. 2, the inclined surface 20 </ b> A is perpendicular to the vertical direction Y, which is orthogonal to both the transport direction X <b> 1 (the transport direction X <b> 2 of the base material 100) and the vertical direction Z of the powder P discharged from the hopper 2. It extends.

より具体的には貯蔵部20は、図1に示す如き、粉粒体Pの搬送方向X1に沿う断面視ないし側面視において、上底が下底より長い台形形状をなしており、粉粒体Pの貯蔵空間を画成する内面として、図2に示すように、鉛直方向Z及び水平方向の双方に対して傾斜する傾斜面20Aと、該傾斜面20Aと対向する傾斜面対向面20Bと、搬送方向X1に延び且つ垂直方向Yに離間する一対の内側面20C,20Cとを有している。傾斜面20Aは搬送方向X1の上流側、傾斜面対向面20Bは搬送方向X1の下流側に位置している。貯蔵部20の傾斜面20A以外の3つの内面20B,20Cは、何れも鉛直方向Zに延びる鉛直面である。これら貯蔵部20の4つの内面20A,20B,20Cは、何れも粉粒体Pの移動路22を画成する内面210に連接されている。このように、貯蔵部20は上方から下方に向かって内径が狭くなる内面を有しているところ、斯かる構成において、粉粒体Pの上部開口2aからの供給量が、粉粒体Pの排出口2bからの排出量を上回るように制御することで、貯蔵部20内に粉粒体Pが一時的に貯蔵されるようになり、その際、貯蔵部20内に粉粒体堆積物P1が形成される。   More specifically, as shown in FIG. 1, the storage unit 20 has a trapezoidal shape in which the upper base is longer than the lower base in a cross-sectional view or a side view along the conveyance direction X1 of the granular material P. As shown in FIG. 2, an inclined surface 20A that is inclined with respect to both the vertical direction Z and the horizontal direction, and an inclined surface facing surface 20B that is opposite to the inclined surface 20A, as shown in FIG. It has a pair of inner side surfaces 20C, 20C extending in the transport direction X1 and spaced apart in the vertical direction Y. The inclined surface 20A is located on the upstream side in the conveying direction X1, and the inclined surface facing surface 20B is located on the downstream side in the conveying direction X1. The three inner surfaces 20B and 20C other than the inclined surface 20A of the storage unit 20 are all vertical surfaces extending in the vertical direction Z. All of the four inner surfaces 20A, 20B, and 20C of the storage unit 20 are connected to the inner surface 210 that defines the moving path 22 of the granular material P. Thus, the storage unit 20 has an inner surface whose inner diameter becomes narrower from the top to the bottom. In such a configuration, the supply amount from the upper opening 2a of the powder P is such that the powder P By controlling so that it may exceed the discharge amount from the discharge port 2b, the granular material P comes to be temporarily stored in the storage part 20, and in that case, the granular material deposit P1 in the storage part 20 Is formed.

ホッパー2の排出部21は、図2に示すように、内部に粉粒体Pの移動路22を有すると共に、その移動路22の下端に粉粒体Pの排出口2bを有し、貯蔵部20の内部空間と排出口2bとが移動路22を介して連通している。排出部21は直方体形状をなし、排出口2bは、平面視において、垂直方向Yの長さWが搬送方向X1の長さSに比して長い長方形形状をなしている。移動路22を画成する4つの内面210は、何れも鉛直方向Zに延びる鉛直面である。尚、ホッパー2の垂直方向Yの長さWは、ホッパー2の高さ方向の全長にわたって一定である。   As shown in FIG. 2, the discharge unit 21 of the hopper 2 has a moving path 22 for the granular material P inside, and has a discharge port 2 b for the granular material P at the lower end of the moving path 22, and a storage unit The internal space 20 and the discharge port 2 b communicate with each other through the movement path 22. The discharge portion 21 has a rectangular parallelepiped shape, and the discharge port 2b has a rectangular shape in which the length W in the vertical direction Y is longer than the length S in the transport direction X1 in plan view. The four inner surfaces 210 that define the moving path 22 are all vertical surfaces extending in the vertical direction Z. The length W in the vertical direction Y of the hopper 2 is constant over the entire length of the hopper 2 in the height direction.

粉粒体搬送手段3は、図1に示すように、ホッパー2から排出された粉粒体Pを受け取る受取手段30と、受取手段30を振動させる振動発生手段31とを含んで構成されている。粉粒体搬送手段3は、ホッパー2の下端に位置する排出口2bに対して隙間Gを置いて配置されており、より具体的には、受取手段30の上面30a、即ち、ホッパー2から排出された粉粒体Pを受け取って搬送する面30aと排出口2bとの間に所定の隙間Gが形成されるように、配置されている。振動発生手段31は、受取手段30の下面30bに固定されている。受取手段30において、粉粒体Pの受け取り及び搬送に利用される(粉粒体Pと接触する)のは、ホッパー2の排出口2bの直下に位置する部分及びその近傍であり、それ以外の部分は基本的に粉粒体Pと接触しない粉粒体非接触部であるところ、振動発生手段31は、受取手段30の該粉粒体非接触部における下面30bに固定されている。   As shown in FIG. 1, the powder particle conveying means 3 includes a receiving means 30 that receives the powder particles P discharged from the hopper 2 and a vibration generating means 31 that vibrates the receiving means 30. . The granular material conveying means 3 is disposed with a gap G with respect to the discharge port 2b located at the lower end of the hopper 2, and more specifically, discharged from the upper surface 30 a of the receiving means 30, that is, from the hopper 2. It arrange | positions so that the predetermined clearance gap G may be formed between the surface 30a which receives and conveys the granular material P which was performed, and the discharge port 2b. The vibration generating means 31 is fixed to the lower surface 30 b of the receiving means 30. The receiving means 30 is used for receiving and transporting the granular material P (in contact with the granular material P) in a portion located immediately below the discharge port 2b of the hopper 2 and its vicinity, The portion is basically a powder non-contact portion that does not contact the powder P, and the vibration generating means 31 is fixed to the lower surface 30 b of the powder non-contact portion of the receiving means 30.

粉粒体搬送手段3は、振動発生手段31を作動させて受取手段30を振動させることによって、受取手段30上の粉粒体Pを所定の方向に搬送可能になされている。粉粒体散布装置10は、振動発生手段31に印加する電圧及び周波数を制御する制御部32を備えており、この制御部32によって、受取手段30の振動数及び振幅を制御し、延いては受取手段30上の粉粒体Pの搬送状態を制御する。即ち、制御部32による制御下、振動発生手段31の非作動時には、受取手段30は振動していないため、受取手段30上の粉粒体Pの搬送は停止又は抑制されているが、制御部32からの指令によって振動発生手段31が作動して受取手段30が振動を開始すると、受取手段30上の粉粒体Pの停止又は抑制が解除され、粉粒体Pは、図中符号X1で示す方向に搬送され、最終的には図1に示すように、受取手段30の搬送方向Xの先端部から落下して、受取手段30の下方を図中符号X2で示す方向に連続搬送されている基材100上に散布される。   The granular material conveying means 3 is configured to be able to convey the granular material P on the receiving means 30 in a predetermined direction by operating the vibration generating means 31 to vibrate the receiving means 30. The granular material spraying device 10 includes a control unit 32 that controls the voltage and frequency applied to the vibration generating unit 31, and the control unit 32 controls the frequency and amplitude of the receiving unit 30. The conveyance state of the granular material P on the receiving means 30 is controlled. That is, under the control of the control unit 32, when the vibration generating unit 31 is not in operation, the receiving unit 30 is not vibrating, so that the conveyance of the powder P on the receiving unit 30 is stopped or suppressed. When the vibration generating means 31 is actuated by the command from 32 and the receiving means 30 starts to vibrate, the stop or suppression of the powder P on the receiving means 30 is released, and the powder P is denoted by reference numeral X1 in the figure. As shown in FIG. 1, it is dropped from the leading end of the receiving means 30 in the conveying direction X and is continuously conveyed below the receiving means 30 in the direction indicated by X2 in the figure. It is spread | dispersed on the base material 100 which is.

制御部32は、ホッパー2内に貯蔵された粉粒体Pを含めた、ホッパー2の総重量を適宜測定して、ホッパー2内の粉粒体Pの経時的な重量変化等の情報を取得することが可能であり、その取得情報に基づいて振動発生手段31を制御する。また制御部32は、振動発生手段31のみならず、供給部1とも電気的に接続されており、前記取得情報に基づいて供給部1が備えるバルブの開閉度を調整し、それによってホッパー2に対する粉粒体Pの供給量を調整し得る。   The control unit 32 appropriately measures the total weight of the hopper 2 including the powder P stored in the hopper 2 and acquires information such as a change in weight over time of the powder P in the hopper 2. The vibration generating means 31 is controlled based on the acquired information. Further, the control unit 32 is electrically connected not only to the vibration generating means 31 but also to the supply unit 1, and adjusts the opening / closing degree of the valve included in the supply unit 1 based on the acquired information, and thereby to the hopper 2. The supply amount of the granular material P can be adjusted.

受取手段30としては、振動発生手段31によって発生する振動を受取手段30上の粉粒体Pに適切に伝えるようにする観点から、平板状のものが好ましく、より具体的には、図1に示す如き扁平な平板部材が好ましい。斯かる平板部材からなる受取手段30の材質は特に制限されないが、例えば、鉄、ステンレス、アルミニウム、プラスチック等が挙げられる。   The receiving means 30 is preferably a flat plate from the viewpoint of appropriately transmitting the vibration generated by the vibration generating means 31 to the powder P on the receiving means 30, and more specifically, FIG. A flat plate member as shown is preferred. Although the material of the receiving means 30 which consists of such a flat plate member is not restrict | limited in particular, For example, iron, stainless steel, aluminum, a plastic etc. are mentioned.

振動発生手段31としては、受取手段30上の粉粒体Pを所望の一方向に搬送させ得る振動成分を発生可能なものであれば良く、例えば、圧電セラミック等の圧電素子、振動フィーダ等の公知の振動発生手段が挙げられる。中でも振動フィーダは、振動発生手段31として好ましく用いられる。また、振動発生手段31の振動数は特に制限されないが、粉粒体の搬送性並びに散布の均一性及び定量性等の観点から、好ましくは50Hz以上、さらに好ましくは100Hz以上、そして、好ましくは500Hz以下、さらに好ましくは300Hz以下、より具体的には、好ましくは50〜500Hz、さらに好ましくは100〜300Hzである。   The vibration generating unit 31 may be any unit capable of generating a vibration component capable of transporting the granular material P on the receiving unit 30 in a desired direction. For example, a piezoelectric element such as a piezoelectric ceramic, a vibration feeder, or the like can be used. A well-known vibration generating means is mentioned. Among these, the vibration feeder is preferably used as the vibration generating means 31. Further, the vibration frequency of the vibration generating means 31 is not particularly limited, but is preferably 50 Hz or more, more preferably 100 Hz or more, and preferably 500 Hz, from the viewpoints of the transportability of the powder and the uniformity and quantitativeness of the dispersion. Hereinafter, it is more preferably 300 Hz or less, more specifically, preferably 50 to 500 Hz, and more preferably 100 to 300 Hz.

粉粒体Pの被散布物たる基材100は帯状シートであり、未使用状態ではロール状に巻回されたロール状物である。図1に示す形態においては、このロール状物から基材100を連続的に巻き出すと共に、接着剤塗布手段4により基材100の片面に接着剤101を塗布し、その基材100の接着剤塗布面に対して受取手段30から粉粒体Pを散布する。基材100上に散布された粉粒体Pは接着剤によって固定される。基材100の搬送方法は特に制限されず、例えば搬送ロールあるいはベルトコンベア等の公知の搬送装置により連続搬送することができる。尚、基材100及びその搬送装置は、粉粒体散布装置10を構成するものではない。   The base material 100, which is an object to be dispersed of the granular material P, is a belt-like sheet, and is a roll-like material wound in a roll shape when not in use. In the form shown in FIG. 1, the base material 100 is continuously unwound from the roll, and the adhesive 101 is applied to one surface of the base material 100 by the adhesive application means 4. The granular material P is sprayed from the receiving means 30 on the application surface. The granular material P spread | dispersed on the base material 100 is fixed with an adhesive agent. The transport method of the substrate 100 is not particularly limited, and can be continuously transported by a known transport device such as a transport roll or a belt conveyor. In addition, the base material 100 and its conveying apparatus do not constitute the powder particle distribution apparatus 10.

本実施態様の粉粒体の散布方法は、前述した構成の粉粒体散布装置10を用い、供給部1からその下方のホッパー2に粉粒体Pを供給し、ホッパー2の下端の排出口2bから粉粒体Pを排出して被散布物たる基材100上に散布する方法であり、図3に示すように、ホッパー2の貯蔵部20内に粉粒体Pが一時的に貯蔵され粉粒体堆積物P1が形成された状態で、その粉粒体堆積物P1上に供給部1から粉粒体Pを供給して粉粒体の山P0を形成・維持しつつ、排出口2bから粉粒体Pを排出する粉粒体排出工程を有する。   The granular material spraying method of the present embodiment uses the granular material spraying apparatus 10 having the above-described configuration, supplies the granular material P from the supply unit 1 to the lower hopper 2, and discharges the lower end of the hopper 2. It is a method of discharging the powder P from 2b and spraying it on the base material 100 which is the material to be spread, and as shown in FIG. 3, the powder P is temporarily stored in the storage unit 20 of the hopper 2. In the state in which the granular material deposit P1 is formed, while supplying the granular material P from the supply unit 1 on the granular material deposit P1 to form and maintain the granular particle pile P0, the discharge port 2b A granular material discharging step of discharging the granular material P from

本実施態様の粉粒体の散布方法が解決しようとする主たる課題の1つは、粉粒体Pをホッパー2の上部開口2aから供給して下端の排出口2bから定量的に排出する場合に、ホッパー2内に粉粒体Pが一時的に貯蔵され粉粒体堆積物P1が形成された状態で、その粉粒体堆積物P1上に粉粒体Pを供給すると、その供給された粉粒体Pの落下の衝撃により粒体堆積物P1における粉圧変動が発生し、排出口2bからの粉粒体Pの排出量が変動するという課題である。この課題を解決するために、本実施態様では前記粉粒体排出工程において、粉粒体堆積物P1上の粉粒体の山P0が、排出口2bの延長領域S、即ち排出口2bを鉛直方向Zの上方に向けて仮想的に延長した場合のその延長領域と重ならず且つ傾斜面20Aと接触しないように、供給部1からの粉粒体Pの供給を制御する。このように、供給部1と粉粒体堆積物P1との間に形成される粉粒体の山P0に着目して、その粉粒体の山P0の位置を排出口2b及び傾斜面20Aとの関係において適切に制御するべく、粉粒体Pの供給を制御することで、ホッパー2への粉粒体Pの供給がホッパー2からの粉粒体Pの排出に与える影響が最小限に抑えられ、ホッパー2内の粉粒体堆積物P1の上面P1aを均一即ち実質的に凹凸の無い水平に保ちつつ、ホッパー2への粉粒体Pの供給及びホッパー2からの粉粒体Pの排出の両方がなされるため、ホッパー2内の粉粒体の流れが不均一になり難く、排出口2bから粉粒体Pを高い精度で定量的に排出することが可能となる。尚、前記の「粉粒体の山P0が排出口2bの延長領域Sと重ならない」というのは、粉粒体の山P0の傾斜面の接線の水平方向に対する角度が該粉粒体の山P0を構成する粉粒体Pの安息角となる、接線に着目し、該接線が排出口2bと重ならないことを意味する。つまり、粉粒体の山P0は通常、略円錐状をなし、粉粒体堆積物P1側の裾部と、粉粒体堆積物P1から最も遠い位置にある頂部とを有し、該裾部から該頂部に向かって漸次縮径するような傾斜面を有するところ、粉粒体Pの種類等によっては、該裾部において該頂部に近い側よりも該傾斜面の傾斜が若干緩やかになる場合があるが、前記の「粉粒体の山P0が排出口2bの延長領域Sと重ならない」は、そのような裾部即ち粉粒体の山P0の裾の縁で排出口2bと重なる場合までは排除していない、という意味である。   One of the main problems to be solved by the powder particle dispersion method of the present embodiment is when the powder material P is supplied from the upper opening 2a of the hopper 2 and discharged quantitatively from the lower discharge port 2b. When the granular material P is temporarily stored in the hopper 2 and the granular material deposit P1 is formed, and the granular material P is supplied onto the granular material deposit P1, the supplied powder This is a problem that the powder pressure fluctuation in the granular deposit P1 occurs due to the impact of the drop of the granular substance P, and the discharge amount of the granular substance P from the discharge port 2b changes. In order to solve this problem, in the present embodiment, in the granular material discharging step, the pile P0 of the granular material on the granular material deposit P1 vertically extends the extended region S of the discharge port 2b, that is, the discharge port 2b. The supply of the granular material P from the supply unit 1 is controlled so that it does not overlap with the extended region when virtually extending upward in the direction Z and does not contact the inclined surface 20A. Thus, paying attention to the powder peak P0 formed between the supply unit 1 and the powder deposit P1, the position of the powder peak P0 is defined as the outlet 2b and the inclined surface 20A. By controlling the supply of the granular material P in order to appropriately control the relationship, the influence of the supply of the granular material P to the hopper 2 on the discharge of the granular material P from the hopper 2 is minimized. The powder P is supplied to the hopper 2 and discharged from the hopper 2 while keeping the upper surface P1a of the powder deposit P1 in the hopper 2 uniform, that is, substantially horizontal with no unevenness. Therefore, the flow of the powder particles in the hopper 2 is unlikely to be uneven, and the powder particles P can be discharged from the discharge port 2b quantitatively with high accuracy. In addition, the above-mentioned “powder particle P0 does not overlap extension region S of discharge port 2b” means that the angle of the tangent to the inclined surface of powder particle peak P0 with respect to the horizontal direction is the peak of the powder particle. Focusing on the tangent that is the angle of repose of the granular material P constituting P0, it means that the tangent does not overlap the discharge port 2b. That is, the peak P0 of the granular material usually has a substantially conical shape, and has a skirt portion on the particle particle deposit P1 side and a top portion farthest from the particle particle deposit P1, and the skirt portion When the inclined surface gradually decreases in diameter from the top to the top, depending on the type of the granular material P, the slope of the inclined surface is slightly gentler than the side closer to the top at the bottom. However, the above-mentioned “powder pile P0 does not overlap with the extended region S of the discharge port 2b” is a case where such a skirt, that is, the hem edge of the powder pile P0, overlaps the discharge port 2b. It means that it is not excluded.

本実施態様では、前記粉粒体排出工程において、「粉粒体の山P0が、排出口2bの延長領域Sと重ならず且つ傾斜面20Aと接触しないようにする」ために、粉粒体Pの安息角を用いて粉粒体Pの供給を制御する。粉粒体Pの安息角は、粉粒体の山P0の傾斜面と粉粒体堆積物P1の上面P1aとのなす角度であり、粉粒体Pに固有の値である。より具体的には、図3に示す如き、傾斜面20Aが断面となるようなホッパー2の鉛直方向Zに沿う断面視(搬送方向X1に沿う断面視)において、供給部1の中央と傾斜面20Aの上端との間の離間距離Xを、粉粒体Pの水平方向における供給位置(粉粒体供給位置)の指標とし、この粉粒体供給位置Xについて、下記式Aで規定する大小関係が成立するように粉粒体Pの供給を制御する。下記式A中の符号の意味は下記の通りである。
・ホッパー上部幅D:ホッパー2の上部開口2aにおける、排出口2bと重複しない部分(図3中符号Sで示す幅を持った領域以外の領域)の搬送方向X1の長さ
・粉粒体供給幅d:供給部1の搬送方向X1の長さ
・粉粒体供給高さh:供給部1と粉粒体堆積物P1の上面P1aとの間の距離
・安息角θ:粉粒体Pの安息角
In the present embodiment, in the powder discharge process, in order to “make sure that the pile P0 of the powder does not overlap the extended region S of the discharge port 2b and does not contact the inclined surface 20A”, The supply of the granular material P is controlled using the angle of repose of P. The angle of repose of the granular material P is an angle formed by the inclined surface of the peak P0 of the granular material and the upper surface P1a of the granular material deposit P1, and is a value unique to the granular material P. More specifically, as shown in FIG. 3, in the cross-sectional view along the vertical direction Z (cross-sectional view along the transport direction X1) of the hopper 2 in which the inclined surface 20A has a cross section, the center and the inclined surface of the supply unit 1 The separation distance X between the upper end of 20A is used as an index of the supply position (powder supply position) in the horizontal direction of the powder P, and the size relationship defined by the following formula A for the powder supply position X The supply of the granular material P is controlled so that is established. The meanings of the symbols in the following formula A are as follows.
-Hopper upper width D: Length in the transport direction X1 of the portion (region other than the region having the width indicated by S in FIG. 3) that does not overlap with the discharge port 2b in the upper opening 2a of the hopper 2 Width d: Length in the conveying direction X1 of the supply unit 1 • Particle supply height h: Distance between the supply unit 1 and the upper surface P1a of the particle deposit P1 • Repose angle θ: The particle P Angle of repose

ホッパー上部幅D(図3参照)は、粉粒体供給幅dと同じかそれよりも大きいことが好ましく、粉粒体供給幅dの2倍以上がさらに好ましい。
粉粒体供給幅d(図3参照)は、粉粒体Pの最大粒子径rの3倍以上が好ましく、該最大粒子径rの2倍以上がさらに好ましい。最大粒子径rについては後述する。
粉粒体供給高さh(図3参照)は、0mmでも良く、即ち粉粒体の山P0が形成されないよう、粉粒体Pをホッパー2内に供給しても良い。また、粉粒体供給高さhの上限に関しては、特段の制限はないが、これに関連して、供給部1の下端部から排出された粉粒体Pの全量がホッパー2内に確実に入るようにする観点から、図3に示すように、粉粒体Pの排出口を有する下端部が、ホッパー2の上部開口2aよりも低い位置に存することが好ましい。
The hopper upper width D (see FIG. 3) is preferably the same as or larger than the granular material supply width d, and more preferably more than twice the granular material supply width d.
The granular material supply width d (see FIG. 3) is preferably at least 3 times the maximum particle diameter r of the granular material P, and more preferably at least 2 times the maximum particle diameter r. The maximum particle size r will be described later.
The granular material supply height h (see FIG. 3) may be 0 mm, that is, the granular material P may be supplied into the hopper 2 so that the granular material peak P0 is not formed. Further, the upper limit of the granular material supply height h is not particularly limited, but in connection with this, the entire amount of the granular material P discharged from the lower end of the supply unit 1 is surely contained in the hopper 2. From the viewpoint of entering, as shown in FIG. 3, it is preferable that the lower end portion having the discharge port for the granular material P exists at a position lower than the upper opening 2 a of the hopper 2.

前記粉粒体排出工程において、「粉粒体の山P0が、排出口2bの延長領域Sと重ならず且つ傾斜面20Aと接触しないようにする」ための前提として、ホッパー2内に粉粒体堆積物P1が形成される必要がある。この観点から前記粉粒体排出工程においては、供給部1からの粉粒体Pの単位時間当たりの供給量S1を、排出口2bからの粉粒体Pの単位時間当たりの排出量S2よりも多くすることが好ましい。   In the powder discharge process, as a premise for “the pile P0 of the powder does not overlap with the extended region S of the discharge port 2b and does not come into contact with the inclined surface 20A”, the powder in the hopper 2 The body deposit P1 needs to be formed. From this viewpoint, in the granular material discharge step, the supply amount S1 of the granular material P from the supply unit 1 per unit time is set to be larger than the discharge amount S2 of the granular material P from the discharge port 2b per unit time. It is preferable to increase it.

また前記粉粒体排出工程においては、「粉粒体の山P0が排出口2bの延長領域Sと重ならず且つ傾斜面20Aと接触しないようにする」ことに加えてさらに、「粉粒体の山P0が内側面20Cと接触しないようにする」ことが好ましく、そのように供給部1からの粉粒体Pの供給を制御することが好ましい。これにより、被散布物たる基材100上に粉粒体Pをより高い散布精度で定量散布することが可能となる。   In addition, in the powder and particle discharging process, in addition to “the powder peak P0 does not overlap the extended region S of the discharge port 2b and does not come into contact with the inclined surface 20A”, It is preferable to prevent the crest P0 from coming into contact with the inner side surface 20C, and it is preferable to control the supply of the granular material P from the supply unit 1 as such. Thereby, it becomes possible to carry out fixed quantity distribution of granular material P with higher distribution accuracy on base material 100 which is a thing to be distributed.

前述した本発明の特徴的な構成は、主として、ホッパーへの粉粒体の供給方法の工夫に関するものであったが、これに加えてさらに、ホッパーからの粉粒体の排出方法を工夫することも、被散布物上に粉粒体を高い散布精度で定量散布し得るようにする上で有効である。斯かる観点から、本実施態様の粉粒体の散布方法においては主に排出部21に関して、下記(1)〜(3)が採用されている。   The characteristic configuration of the present invention described above mainly relates to a device for supplying powder to the hopper. In addition to this, a method for discharging the powder from the hopper should be further devised. This is also effective in enabling the powder particles to be quantitatively dispersed on the material to be dispersed with high accuracy. From such a point of view, the following (1) to (3) are mainly employed for the discharge unit 21 in the method of spraying granular materials of the present embodiment.

(1)排出口2bは平面視(粉粒体Pの排出方向と直交する方向の断面視)において、垂直方向Yの長さWが搬送方向X1の長さSに比して長い、即ちW>Sである(図2参照)。
(2)移動路22は、搬送方向X1の最大幅Sが粉粒体Pの最大粒子径rの2倍以上5倍未満、即ち2≦S/r<5である(図4参照)。
(3)移動路22は、粉粒体Pの排出方向の長さTが粉粒体Pの最大粒子径rの1倍以上、即ちr≦Tである(図2及び図4参照)。
(1) The discharge port 2b has a length W in the vertical direction Y that is longer than a length S in the transport direction X1 in a plan view (a cross-sectional view in a direction orthogonal to the discharge direction of the granular material P). > S (see FIG. 2).
(2) The moving path 22 has a maximum width S in the transport direction X1 that is not less than 2 times and less than 5 times the maximum particle diameter r of the granular material P, that is, 2 ≦ S / r <5 (see FIG. 4).
(3) The moving path 22 has a length T in the discharge direction of the granular material P that is at least one time the maximum particle diameter r of the granular material P, that is, r ≦ T (see FIGS. 2 and 4).

粉粒体Pの最大粒子径rは公知の方法により測定することができ、具体的には例えば、乾式篩法(JIS Z8815−1994)、動的光散乱法、レーザー回折法、遠心沈降法、重力沈降法、画像イメージング法、FFF(フィールド・フロー・フラクショネーション)法、静電気検知体法、コールター法等が挙げられる。これらの中でも、レーザー回折法又はコールター法で測定した最大粒子径rを採用することが、再現性と精度の点から好ましい。特に、対象とする粉粒体の形状が不定形である場合、あるいは粉粒体の粒子径が5mm程度以下である場合は、レーザー回折法を用いて粉粒体の最大粒径rを測定することが好ましい。本発明の方法では、特に、最大粒子径が5mm以下の粉粒体を均一散布することが容易となるので好ましく、その場合にはレーザー回折法を用いて粉粒体の最大粒径rを測定することが好ましい。   The maximum particle diameter r of the granular material P can be measured by a known method. Specifically, for example, a dry sieving method (JIS Z8815-1994), a dynamic light scattering method, a laser diffraction method, a centrifugal sedimentation method, Gravity sedimentation method, image imaging method, FFF (field flow fractionation) method, electrostatic detector method, Coulter method and the like can be mentioned. Among these, it is preferable from the viewpoint of reproducibility and accuracy to employ the maximum particle diameter r measured by the laser diffraction method or the Coulter method. In particular, when the shape of the target granular material is indefinite, or when the particle diameter of the granular material is about 5 mm or less, the maximum particle diameter r of the granular material is measured using a laser diffraction method. It is preferable. In the method of the present invention, it is particularly easy to uniformly disperse particles having a maximum particle diameter of 5 mm or less. In this case, the maximum particle diameter r of the particles is measured using a laser diffraction method. It is preferable to do.

前記(1)に関し、排出部21の下端に位置する排出口2bの平面視形状は、排出部21内の移動路22における粉粒体Pの流れに少なからず影響を及ぼす。本発明者らの知見によれば、排出口2bの平面視形状が、長方形形状又はそれに準じた形状、即ち「一方向に長い形状」であると、真円形状や正方形形状の場合に比して、移動路22における粉粒体Pの流れが定常流化されやすく、前記課題の解決に繋がる。前記(1)は斯かる知見に基づき採用されたものであり、排出口2bにおいては、「垂直方向Yの長さW>搬送方向X1の長さS」なる大小関係が成立している。長さWと長さSとの比は、W/Sとして、好ましくは2以上、さらに好ましくは5以上、そして、好ましくは1000以下、さらに好ましくは100以下、より具体的には、好ましくは2〜1000、さらに好ましくは5〜100である。尚、長さWは、排出口23の幅方向Yにおける最大長さを意味する。   Regarding (1), the plan view shape of the discharge port 2 b located at the lower end of the discharge unit 21 has a considerable influence on the flow of the powder P in the movement path 22 in the discharge unit 21. According to the knowledge of the present inventors, the shape of the discharge port 2b in plan view is a rectangular shape or a shape equivalent thereto, that is, “a shape that is long in one direction”, compared to the case of a perfect circle shape or a square shape. Thus, the flow of the granular material P in the moving path 22 is easily made steady, which leads to the solution of the above problem. The above (1) is adopted based on such knowledge, and the discharge port 2b has a relationship of “length W in the vertical direction Y> length S in the transport direction X1”. The ratio of the length W to the length S is preferably 2 or more, more preferably 5 or more, and preferably 1000 or less, more preferably 100 or less, and more specifically preferably 2 as W / S. ˜1000, more preferably 5˜100. The length W means the maximum length of the discharge port 23 in the width direction Y.

前記(2)に関し、移動路22の最大幅Sが粉粒体Pの最大粒子径rを基準として短すぎると、移動路22において粉粒体Pの詰まりが発生するおそれがあり、また、移動路22の最大幅Sが粉粒体Pの最大粒子径rを基準として長すぎると、移動路22における粉粒体Pの流れを定常流化することが困難となり、基材100に対して粉粒体Pを垂直方向Yに均一に定量性良く散布できないおそれがある。移動路22の最大幅Sは、粉粒体Pの最大粒子径rを基準として、好ましくは3倍以上4倍未満である。   Regarding (2) above, if the maximum width S of the moving path 22 is too short on the basis of the maximum particle diameter r of the powder P, the clogging of the powder P may occur in the moving path 22, and the movement If the maximum width S of the path 22 is too long on the basis of the maximum particle diameter r of the granular material P, it is difficult to make the flow of the granular material P in the moving path 22 steady and the There is a possibility that the particles P cannot be uniformly dispersed in the vertical direction Y with good quantitativeness. The maximum width S of the moving path 22 is preferably 3 times or more and less than 4 times based on the maximum particle diameter r of the granular material P.

前記(3)に関し、移動路22の長さHが粉粒体Pの最大粒子径rを基準として短すぎると、移動路22内において粉粒体Pの流れが定常流化することが困難となり、基材100に対して粉粒体Pを垂直方向Yに均一に定量性良く散布できないおそれがある。移動路22の長さHは、粉粒体Pの最大粒子径rを基準として、好ましくは5倍以上、さらに好ましくは10倍以上である。移動路22の長さHの上限値としては、粉粒体Pの流れの定常流化の観点からは制限されないが、装置の適正な大さの観点から決定することができ、例えば、粉粒体Pの最大粒子径rの100倍以下であることが好ましい。   Regarding (3) above, if the length H of the moving path 22 is too short on the basis of the maximum particle diameter r of the granular material P, it becomes difficult for the flow of the granular material P to become a steady flow in the moving path 22. There is a possibility that the granular material P cannot be uniformly dispersed in the vertical direction Y with respect to the base material 100 with good quantitativeness. The length H of the moving path 22 is preferably 5 times or more, more preferably 10 times or more, based on the maximum particle diameter r of the powder P. The upper limit value of the length H of the moving path 22 is not limited from the viewpoint of steady flow of the flow of the granular material P, but can be determined from the viewpoint of the appropriate size of the apparatus. The maximum particle diameter r of the body P is preferably 100 times or less.

また、ホッパー2内における粉粒体Pの流れの定常流化及び流動性のさらなる向上の観点から、前記(1)〜(3)を具備することに加えてさらに、排出口2bと粉粒体搬送手段3(受取手段30)の上面30aとの隙間G(図1及び図4参照)は、粉粒体Pの最大粒子径rの1倍以上、即ちr≦Gであることが好ましい。隙間Gが狭すぎると、隙間Gにおいて粉粒体Pの詰まりが発生し、基材100に対して粉粒体Pを垂直方向Yに均一に定量性良く散布できないおそれがある。隙間Gは、粉粒体Pの最大粒子径rを基準として、好ましくは1.5倍以上、さらに好ましくは2倍以上、そして、好ましくは10倍以下、さらに好ましくは5倍以下、より具体的には、好ましくは1.5倍以上10倍以下、さらに好ましくは2倍以上5倍以下である。隙間Gが粉粒体Pの最大粒子径rの10倍以下であると、粉粒体Pの排出速度を一定に保ち易い。特に、粉粒体搬送手段3に振動発生手段31を備えている場合、振動発生手段31の振幅又は振動数により粉粒体Pの排出量を制御できるが、隙間Gが最大粒子径rの10倍以下であると、ホッパー2の排出口2bから排出される粉粒体Pの排出量を制御し易いので好ましい。   Moreover, in addition to having said (1)-(3) from a viewpoint of the steady flow of the flow of the granular material P in the hopper 2, and the further improvement of fluidity | liquidity, the discharge port 2b and granular material are further provided. The gap G (see FIGS. 1 and 4) with the upper surface 30a of the conveying means 3 (receiving means 30) is preferably at least one times the maximum particle diameter r of the powder P, that is, r ≦ G. If the gap G is too narrow, the granular material P is clogged in the gap G, and there is a possibility that the granular material P cannot be uniformly distributed in the vertical direction Y with respect to the base material 100 with good quantitativeness. The gap G is preferably 1.5 times or more, more preferably 2 times or more, and preferably 10 times or less, more preferably 5 times or less, more specifically, based on the maximum particle diameter r of the granular material P. Is preferably 1.5 times or more and 10 times or less, more preferably 2 times or more and 5 times or less. When the gap G is 10 times or less of the maximum particle diameter r of the granular material P, the discharge speed of the granular material P is easily kept constant. In particular, in the case where the powder generating means 31 is provided with the vibration generating means 31, the discharge amount of the powder P can be controlled by the amplitude or frequency of the vibration generating means 31, but the gap G is 10 which is the maximum particle diameter r. When it is less than or equal to twice, the discharge amount of the granular material P discharged from the discharge port 2b of the hopper 2 can be easily controlled, which is preferable.

粉粒体Pとしては、吸水性ポリマー粒子、砂糖、活性炭、小麦粉、PEペレット、PPペレット、PETチップ、PCチップ、PEグラニュール、PBAビーズ、等の有機物の粉粒体や、金属粉、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネス、ガラス、石灰等の無機物の粉粒体が挙げられる。粉粒体Pの形状は特に制限されず、例えば、球状、碁石状、楕円形、楕円柱、針状、キュービック状等が挙げられる。粉粒体散布装置1によれば、粉粒体Pが真球状の場合は勿論のこと、真球状以外の形状であっても、基材100の幅方向Yに均一に定量性良く散布することができる。   As the powder P, water-absorbing polymer particles, sugar, activated carbon, wheat flour, PE pellets, PP pellets, PET chips, PC chips, PE granules, PBA beads, etc., organic powders, metal powders, chlorides, etc. Examples thereof include inorganic particles such as sodium, potassium chloride, calcium chloride, magnesium chloride, glass and lime. The shape of the granular material P is not particularly limited, and examples thereof include a spherical shape, a meteorite shape, an elliptical shape, an elliptical column, a needle shape, and a cubic shape. According to the powder particle distribution device 1, the powder particle P is uniformly distributed in the width direction Y of the base material 100 in the width direction Y even when the particle particle P has a true spherical shape, even if it has a shape other than the true spherical shape. Can do.

粉粒体Pと接触するホッパー2の内面、即ち貯蔵部20の内面20A〜20C及び排出部21の内面210の素材としては、粉粒体Pが付着しにくい素材であることが好ましい。例えば、粉粒体として、塩化ナトリウム等の潮解性を有するものや、吸水性ポリマーのように吸水による変性を来たすような材料を使用する場合には、ホッパー2の内面として、熱伝導性が比較的低い素材を用いることが好ましい。熱伝導率としては、粉粒体Pの散布が行われる作業時の温度下において、25W/m・K以下のものを使用すると好ましい。熱伝導性の低い材料をホッパー2の内面として使用することで、ホッパー2内の結露を防止しやすくなるからである。また、ホッパー2の内面の素材としては、該内面とは反対側の外面の素材よりも、熱伝導性の低い素材などを選択することも可能である。そのような相対的に熱伝導性の低い内面をホッパー2に採用した場合には、特に、粉粒体Pとして吸水性ポリマーを用いる場合では、吸水性ポリマーが吸水によって膨張する、吸水性ポリマーどうしが粘着性を発現して互いに結着する、という不都合が生じ難くなる。また、ホッパー2の内面の素材としては、粉粒体Pに起因する腐食が発生しにくいものであることが好ましく、具体的には例えば、ステンレス鋼、ガラス、ジルコニア、窒化ケイ素等のセラミック材料等が挙げられる。さらに例えば、樹脂粉体のような非導電性材料で、粉粒体Pどうしの間あるいは粉粒体Pとホッパー2の内面との接触により静電気が発生し得る材料を粉粒体Pとして使用する場合には、ホッパー2の内面として、導電性を有する素材を用いることが望ましく、そうすることにより静電気の発生を防止できる。そのような材料としては、たとえば、ステンレス鋼、アルミニウム、銅のような金属材料、導電性セラミック、導電性樹脂のような導電性を付与した材料等が挙げられる。   The material of the inner surface of the hopper 2 in contact with the granular material P, that is, the inner surfaces 20A to 20C of the storage unit 20 and the inner surface 210 of the discharge unit 21, is preferably a material to which the granular material P is difficult to adhere. For example, when using powders that have deliquescence such as sodium chloride or materials that are denatured by water absorption, such as water-absorbing polymers, the thermal conductivity is compared as the inner surface of the hopper 2. It is preferable to use a low material. As the thermal conductivity, it is preferable to use a thermal conductivity of 25 W / m · K or less at the temperature at which the powder P is dispersed. It is because it becomes easy to prevent dew condensation in the hopper 2 by using a material with low thermal conductivity as the inner surface of the hopper 2. Further, as the material for the inner surface of the hopper 2, a material having a lower thermal conductivity than the material for the outer surface opposite to the inner surface can be selected. When such an inner surface with relatively low thermal conductivity is adopted for the hopper 2, particularly when a water-absorbing polymer is used as the granular material P, the water-absorbing polymers expand due to water absorption. However, it is difficult to cause the inconvenience that they exhibit adhesiveness and bind to each other. Moreover, as a raw material of the inner surface of the hopper 2, it is preferable that it is hard to generate | occur | produce the corrosion resulting from the granular material P, Specifically, ceramic materials, such as stainless steel, glass, zirconia, silicon nitride, etc. Is mentioned. Further, for example, a non-conductive material such as a resin powder and a material that can generate static electricity between the particles P or between the particles P and the inner surface of the hopper 2 is used as the particles P. In some cases, it is desirable to use a conductive material as the inner surface of the hopper 2, so that generation of static electricity can be prevented. Examples of such materials include metal materials such as stainless steel, aluminum, and copper, conductive ceramics, and conductive materials such as conductive resins.

また、ホッパー2の内面としては、粉粒体Pが円滑に排出口2bへと流れ出るような表面性状を有することが好ましい。従って、ホッパー2の内面は、表面が滑らかであって、且つ動摩擦係数が低いことが好ましい。特に、ホッパー2の内面のうち、貯蔵部20の傾斜面20Aがそのような性状であることが好ましい。具体的には、ホッパー2の内面の表面粗さ(Ra)は、JIS B 0601−2001に従って測定された値で、10μm以下、特に1μm以下であることが好ましい。   Moreover, it is preferable that the inner surface of the hopper 2 has a surface property such that the powder P smoothly flows out to the discharge port 2b. Therefore, it is preferable that the inner surface of the hopper 2 has a smooth surface and a low coefficient of dynamic friction. In particular, it is preferable that the inclined surface 20 </ b> A of the storage unit 20 in the inner surface of the hopper 2 has such a property. Specifically, the surface roughness (Ra) of the inner surface of the hopper 2 is a value measured according to JIS B 0601-2001, and is preferably 10 μm or less, particularly preferably 1 μm or less.

本発明の粉粒体の散布方法は、基材上に機能性粉体が配された機能性シートの製造方法に適用することができる。斯かる機能性シートの製造方法は、例えば前記実施態様の粉粒体の散布方法を用いて、被散布物としての基材100上に粉粒体Pとしての機能性粉体を散布する工程を有する。   The method for spraying granular material of the present invention can be applied to a method for producing a functional sheet in which functional powder is arranged on a substrate. The method for producing such a functional sheet includes, for example, a step of spraying the functional powder as the granular material P on the base material 100 as the material to be sprayed using the powder particle spraying method of the above embodiment. Have.

粉粒体の被散布物たる基材100は、シート状の基材であることが好ましいが、シート状の基材に限られない。シート状の基材としては、各種製法による不織布、樹脂フィルム、織物、編み物、紙等、及びこれらのうちの同種又は異種のものを複数枚積層した積層体等が挙げられる。   The base material 100 that is an object to be dispersed is preferably a sheet-like base material, but is not limited to a sheet-like base material. Examples of the sheet-like base material include non-woven fabrics, resin films, woven fabrics, knitted fabrics, papers, and the like produced by various manufacturing methods, and laminates obtained by laminating a plurality of the same or different materials.

また、基材100としては、シート状の材料の上に機能性を有する材料や組成物を積層したものが挙げられる。例えば、フィルムや不織布等のシート状材料の上に、被酸化性金属及び水を含む発熱組成物を塗布するなどして配置したものを、基材100とすることができ、このような基材100を用いた機能性シートは発熱シートとして有用である。即ち発熱シートの製造方法として、本発明の粉粒体の散布方法を用いて、連続搬送される繊維シートからなるシート状の基材上に、高吸水性ポリマーの粒子、金属粒子、塩化ナトリウム等固形の電解質からなる群から選択される1種以上の粉粒体を散布する工程を有するものが挙げられる。斯かる製造方法によって製造された発熱シートによれば、基材100上に粉粒体が高い散布精度で定量散布されているため、発熱ムラの少ない、優れた発熱特性を得られる。   Moreover, as the base material 100, what laminated | stacked the material and composition which have functionality on a sheet-like material is mentioned. For example, a base material 100 can be formed by applying a heat generating composition containing an oxidizable metal and water on a sheet-like material such as a film or a non-woven fabric. A functional sheet using 100 is useful as a heat generating sheet. That is, as a method for producing a heat generating sheet, a superabsorbent polymer particle, metal particle, sodium chloride, and the like are formed on a sheet-like base material composed of a fiber sheet continuously conveyed by using the powder particle dispersion method of the present invention. What has the process of spraying the 1 or more types of granular material selected from the group which consists of solid electrolytes is mentioned. According to the heat generating sheet manufactured by such a manufacturing method, since the granular material is quantitatively sprayed on the base material 100 with high spraying accuracy, excellent heat generation characteristics with less heat unevenness can be obtained.

図5には、本発明の粉粒体の散布方法に使用可能な粉粒体散布装置の他の実施態様が示されている。この他の実施態様については、前述した粉粒体散布装置10と異なる構成部分を主として説明し、同様の構成部分は同一の符号を付して説明を省略する。特に説明しない構成部分は、粉粒体散布装置10についての説明が適宜適用される。   FIG. 5 shows another embodiment of the powder particle spraying apparatus that can be used in the powder particle spraying method of the present invention. About this other embodiment, the different structure part from the granular material spreading | diffusion apparatus 10 mentioned above is mainly demonstrated, the same structure part attaches | subjects the same code | symbol and abbreviate | omits description. For the components not specifically described, the description of the powder particle distribution device 10 is appropriately applied.

図5に示す態様においては、供給部1Aは、垂直方向Yの長さが搬送方向X1の長さよりも長い形状(平板状)をなしている。供給部1Aの下端には図示しない粉粒体の排出口が形成されているところ、その粉粒体排出口を有する供給部1Aの下端部は、ホッパー2の貯蔵部20の一対の内側面20C,20C間を垂直方向Yに延びており、内側面20Cとは接触こそしていないものの、該下端部の垂直方向Yの両端はそれぞれ内側面20Cに近接している。このように、供給部1Aの粉粒体排出口が貯蔵部20の内側面20Cに近接配置されていると、該粉粒体排出口における内側面20Cの近傍から排出された粉粒体が、ホッパー2内の前記粉粒体堆積物上に供給される前に内側面20Cに直接接触するようになるところ、これは、供給部1Aからホッパー2への粉粒体の供給時にホッパー2内の粉粒体堆積物上に形成される前記「粉粒体の山」が、内側面20Cに接触することを意味し、前述した円筒状の供給部1による粉粒体のホッパー2への供給方法では前記「粉粒体の山」をホッパー2の内面の何れにも接触させなかったのとは対照的である。供給部1Aを用いてホッパー2内に粉粒体を供給した場合には、垂直方向Yにおける粉粒体堆積物の上面の偏りが効果的に防止され、粉粒体堆積物の上面の垂直方向Yでの均一性が向上し得る。斯かる効果をより確実に奏させるようにする観点から、供給部1Aの粉粒体排出口を有する下端部の垂直方向Yの長さW1と、貯蔵部20の内部空間を画成する一対の内側面20C,20Cの離間距離W2との差は、即ちW1−W2は、2h/tanθと同じかそれよりも大きいことが好ましく、また、粉粒体Pの最大粒子径rの2倍以下が好ましい。ここでいう「h」は粉粒体供給高さ(図3参照)であり、「θ」は粉粒体の安息角であり、詳細は前述した通りである。   In the aspect shown in FIG. 5, the supply unit 1 </ b> A has a shape (flat plate shape) in which the length in the vertical direction Y is longer than the length in the transport direction X <b> 1. A powder outlet (not shown) is formed at the lower end of the supply section 1A. The lower end of the supply section 1A having the powder outlet is a pair of inner side surfaces 20C of the storage section 20 of the hopper 2. 20C extends in the vertical direction Y and does not contact the inner side surface 20C, but both ends of the lower end portion in the vertical direction Y are close to the inner side surface 20C. Thus, when the granular material discharge port of the supply unit 1A is disposed close to the inner side surface 20C of the storage unit 20, the granular material discharged from the vicinity of the inner side surface 20C in the granular material discharge port is Before being supplied onto the granular material deposit in the hopper 2, it comes into direct contact with the inner surface 20 </ b> C. This is because the granular material in the hopper 2 is supplied from the supply unit 1 </ b> A to the hopper 2. Meaning that the “pile of granular material” formed on the granular material deposit is in contact with the inner surface 20C, and the method of supplying the granular material to the hopper 2 by the cylindrical supply unit 1 described above. This is in contrast to the case where the “powder of the granular material” was not brought into contact with any of the inner surfaces of the hopper 2. When the granular material is supplied into the hopper 2 using the supply unit 1A, the deviation of the upper surface of the granular material deposit in the vertical direction Y is effectively prevented, and the vertical direction of the upper surface of the granular material deposit. Uniformity in Y can be improved. From the viewpoint of more surely exhibiting such an effect, a pair of the length W1 in the vertical direction Y of the lower end portion having the powder outlet of the supply unit 1A and the internal space of the storage unit 20 are defined. The difference between the inner surfaces 20C and 20C and the separation distance W2, that is, W1-W2 is preferably equal to or larger than 2h / tan θ, and is not more than twice the maximum particle diameter r of the granular material P. preferable. Here, “h” is the granular material supply height (see FIG. 3), “θ” is the angle of repose of the granular material, and the details are as described above.

本発明は、前記実施態様に制限されず適宜変更可能である。例えば、ホッパー2の排出部21における排出口2bの平面視形状は、図3に示す如き長方形形状に限定されず、円形、楕円形、多角形形状等、任意に設定可能である。   This invention is not restrict | limited to the said embodiment, It can change suitably. For example, the planar view shape of the discharge port 2b in the discharge portion 21 of the hopper 2 is not limited to a rectangular shape as shown in FIG. 3, and can be arbitrarily set to a circular shape, an elliptical shape, a polygonal shape, or the like.

以下、本発明を実施例により更に具体的に説明するが、本発明は斯かる実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to such examples.

〔実施例1及び比較例1〜2〕
図1に示す粉粒体散布装置10と基本構成が同じ粉粒体散布装置を用い、粉粒体供給位置X(図3参照)を適宜変更して、ホッパーの下方を一方向に連続搬送される基材(不織布、搬送速度40.95m/秒)上に粉粒体を散布した。
粉粒体としては、最大粒子径及び安息角が下記表1に示す範囲にある吸水性ポリマー粒子を用いた。粉粒体の最大粒子径は、動的光散乱法によって測定し、測定装置として、HORIBA社製レーザー回折/散乱式粒子径分布測定装置LA950V2を用いた。尚、各実施例及び比較例の粉粒体散布装置におけるホッパーは、その内外面全体がステンレス鋼で形成されていた。
[Example 1 and Comparative Examples 1-2]
The granular material spraying apparatus 10 shown in FIG. 1 has the same basic structure as the granular material spraying apparatus, and the powder body supply position X (see FIG. 3) is changed as appropriate so that the lower part of the hopper is continuously conveyed in one direction. A granular material was spread on a base material (nonwoven fabric, conveyance speed 40.95 m / sec).
As the powder, water-absorbing polymer particles having a maximum particle diameter and an angle of repose within the ranges shown in Table 1 below were used. The maximum particle size of the granular material was measured by a dynamic light scattering method, and a laser diffraction / scattering particle size distribution measuring device LA950V2 manufactured by HORIBA was used as a measuring device. In addition, as for the hopper in the granular material spreading | diffusion apparatus of each Example and a comparative example, the whole inner and outer surface was formed with stainless steel.

〔評価試験〕
各実施例及び比較例について、市販のロードセル(A&D製)を用いて常法に従って、基材への粉粒体の散布重量を0.1秒間隔で測定した。その結果を図6に示す。図6の縦軸Cpは平均散布量に対して上下限±10%とした工程能力指数を示し、このCpの数値が大きいほど、粉粒体の散布量の経時的な変化が小さく、散布定量性は高評価となる。
図6に示す通り、実施例1は、粉粒体供給位置Xについて前記式Aで規定する大小関係が成立していることに起因して、斯かる大小関係が成立していない比較例1及び比較例2に比してCpが大きく、散布定量性に優れる結果となった。
〔Evaluation test〕
About each Example and the comparative example, the spreading | diffusion weight of the granular material to a base material was measured at intervals of 0.1 second according to the conventional method using the commercially available load cell (made by A & D). The result is shown in FIG. The vertical axis Cp in FIG. 6 indicates the process capability index with an upper and lower limit of ± 10% with respect to the average application amount. The larger the value of Cp, the smaller the change over time in the application amount of the granular material. Sex is highly evaluated.
As shown in FIG. 6, Example 1 is the result of Comparative Example 1 in which such a magnitude relationship is not established because the magnitude relationship defined by Formula A is established for the granular material supply position X. Compared with Comparative Example 2, Cp was large, and the result was excellent in spraying quantification.

10 粉粒体散布装置
1,1A 供給部
2 ホッパー
2a 上部開口
2b 排出口
20 貯蔵部
20A 傾斜面
20B 傾斜面対向面
20C 内側面
21 排出部
22 移動路
3 粉粒体搬送手段
30 受取手段
31 振動発生手段
32 制御部
4 接着剤塗布手段
100 基材
101 接着剤
P 粉粒体
P0 粉粒体の山
P1 粉粒体堆積物
X1 粉粒体搬送手段による粉粒体の搬送方向
X2 被散布物の搬送方向
Y 垂直方向
DESCRIPTION OF SYMBOLS 10 Granule dispersion | distribution apparatus 1,1A Supply part 2 Hopper 2a Upper opening 2b Discharge port 20 Storage part 20A Inclined surface 20B Inclined surface opposing surface 20C Inner surface 21 Discharge part 22 Moving path 3 Granule conveyance means 30 Receiving means 31 Vibration Generating means 32 Control unit 4 Adhesive application means 100 Base material 101 Adhesive P Powder body P0 Pile of powder body P1 Powder body deposit X1 Direction of transport of powder body by powder body transport means X2 Transport direction Y Vertical direction

Claims (10)

供給部からその下方のホッパーに粉粒体を供給し、該ホッパーの下端の排出口から粉粒体を排出して被散布物上に散布する、粉粒体の散布方法であって、
前記ホッパーは、前記供給部から供給された粉粒体を一時的に貯蔵可能な貯蔵部を有し、該貯蔵部は、粉粒体の貯蔵空間を画成する内面として、鉛直方向に対して傾斜する傾斜面を有し、
前記貯蔵部内に粉粒体が一時的に貯蔵され粉粒体堆積物が形成された状態で、その粉粒体堆積物上に前記供給部から粉粒体を供給して粉粒体の山を形成・維持しつつ、前記排出口から粉粒体を排出する粉粒体排出工程を有し、
前記粉粒体排出工程において、前記粉粒体堆積物上の前記粉粒体の山が前記排出口の延長領域と重ならず且つ前記傾斜面と接触しないように、前記供給部からの粉粒体の供給を制御する、粉粒体の散布方法。
It is a method of spraying powder, supplying powder from the supply unit to the hopper below it, discharging the powder from the discharge port at the lower end of the hopper and spraying it on the material to be sprinkled,
The hopper has a storage unit capable of temporarily storing the granular material supplied from the supply unit, the storage unit as an inner surface defining a storage space for the granular material, with respect to the vertical direction Has an inclined surface,
In a state where the granular material is temporarily stored in the storage unit and the granular material deposit is formed, the granular material is supplied from the supply unit onto the granular particle deposit, and the pile of the granular material is collected. While forming and maintaining, having a granular material discharging step of discharging the granular material from the outlet,
In the granular material discharging step, the granular particles from the supply unit so that the piles of the granular material on the granular material deposit do not overlap with the extended region of the discharge port and do not contact the inclined surface. A method of spraying granular material that controls the body supply.
前記粉粒体排出工程における粉粒体の供給の制御を、粉粒体の安息角を用いて行う請求項1に記載の粉粒体の散布方法。   The method for spraying granular material according to claim 1, wherein the supply of the granular material in the granular material discharging step is controlled using an angle of repose of the granular material. 前記粉粒体排出工程において、前記供給部からの粉粒体の単位時間当たりの供給量を、前記排出口からの粉粒体の単位時間当たりの排出量以上とする請求項1又は2に記載の粉粒体の散布方法。   The said granular material discharge | emission process WHEREIN: Let the supply amount per unit time of the granular material from the said supply part be more than the discharge | emission amount per unit time of the granular material from the said discharge port. To disperse powder particles. 前記被散布物は所定方向に搬送されており、前記傾斜面は、該被散布物の搬送方向及び前記鉛直方向の双方に対して直交する、垂直方向に延びている請求項1〜3の何れか1項に記載の粉粒体の散布方法。   The sprinkled object is transported in a predetermined direction, and the inclined surface extends in a vertical direction orthogonal to both the transport direction of the sprinkled object and the vertical direction. The spraying method of the granular material of Claim 1. 前記貯蔵部は、粉粒体の貯蔵空間を画成する内面として、前記搬送方向に延び且つ前記垂直方向に離間する一対の内側面を有し、
前記粉粒体排出工程において、前記粉粒体の山が該内側面と接触しないように、前記供給部からの粉粒体の供給を制御する請求項4に記載の粉粒体の散布方法。
The storage unit has a pair of inner side surfaces that extend in the transport direction and are spaced apart in the vertical direction as inner surfaces that define a storage space for powder particles,
The method for spraying granular material according to claim 4, wherein in the granular material discharging step, supply of the granular material from the supply unit is controlled so that a crest of the granular material does not contact the inner surface.
前記貯蔵部は、粉粒体の貯蔵空間を画成する内面として、前記傾斜面と対向する鉛直面を有し、該傾斜面が前記搬送方向の上流側、該鉛直面が該搬送方向の下流側に位置している請求項4又は5に記載の粉粒体の散布方法。   The storage unit has a vertical surface opposite to the inclined surface as an inner surface that defines a storage space for the granular material, the inclined surface is upstream in the transport direction, and the vertical surface is downstream in the transport direction. The dispersion method of the granular material of Claim 4 or 5 located in the side. 前記排出口は平面視において、前記垂直方向の長さが前記搬送方向の長さに比して長い請求項4〜6の何れか1項に記載の粉粒体の散布方法。   The said discharge port is a spraying method of the granular material of any one of Claims 4-6 in which the length of the said perpendicular direction is long compared with the length of the said conveyance direction in planar view. 前記ホッパーは、前記貯蔵部と前記排出口との間を結ぶ粉粒体用移動路を有し、
前記移動路は、その前記搬送方向の最大幅が粉粒体の最大粒子径の2倍以上5倍未満、その粉粒体が排出される方向の長さが粉粒体の最大粒子径の1倍以上である請求項4〜7の何れか1項に記載の粉粒体の散布方法。
The hopper has a moving path for granular material that connects between the storage unit and the discharge port,
The moving path has a maximum width in the transport direction of 2 to less than 5 times the maximum particle diameter of the granular material, and a length in the direction in which the granular material is discharged is 1 of the maximum particle diameter of the granular material. It is more than twice, The spray method of the granular material of any one of Claims 4-7.
請求項1〜8の何れか1項に記載の粉粒体の散布方法を用いて、前記被散布物としての基材上に前記粉粒体を散布する工程を有する、機能性シートの製造方法。   The manufacturing method of a functional sheet which has the process of spraying the said granular material on the base material as said to-be-spread material using the dispersion method of the granular material of any one of Claims 1-8. . 粉粒体の供給部と、該供給部の下方に配され、該供給部から供給された粉粒体を下端の排出口から排出するホッパーとを備えた粉粒体散布装置であって、
前記ホッパーは、前記供給部から供給された粉粒体を一時的に貯蔵可能な貯蔵部を有し、該貯蔵部は、粉粒体の貯蔵空間を画成する内面として、鉛直方向に対して傾斜する傾斜面を有し、
前記貯蔵部内に粉粒体が一時的に貯蔵され粉粒体堆積物が形成された状態で、その粉粒体堆積物上に前記供給部から粉粒体を供給して粉粒体の山を形成・維持しつつ、前記排出口から粉粒体を排出した場合に、該粉粒体堆積物上の該粉粒体の山が、該排出口の延長領域と重ならず且つ前記傾斜面と接触しないように、該供給部から粉粒体を供給する粉粒体散布装置。
A granular material spraying device comprising a powder supply unit, and a hopper that is arranged below the supply unit and discharges the granular material supplied from the supply unit from a discharge port at a lower end,
The hopper has a storage unit capable of temporarily storing the granular material supplied from the supply unit, the storage unit as an inner surface defining a storage space for the granular material, with respect to the vertical direction Has an inclined surface,
In a state where the granular material is temporarily stored in the storage unit and the granular material deposit is formed, the granular material is supplied from the supply unit onto the granular particle deposit, and the pile of the granular material is collected. When the granular material is discharged from the discharge port while forming and maintaining, the pile of the granular material on the granular material deposit does not overlap the extended region of the discharge port and the inclined surface. The granular material dispersion | distribution apparatus which supplies a granular material from this supply part so that it may not contact.
JP2016165632A 2016-08-26 2016-08-26 How to spread powder Active JP6719336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016165632A JP6719336B2 (en) 2016-08-26 2016-08-26 How to spread powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016165632A JP6719336B2 (en) 2016-08-26 2016-08-26 How to spread powder

Publications (2)

Publication Number Publication Date
JP2018030707A true JP2018030707A (en) 2018-03-01
JP6719336B2 JP6719336B2 (en) 2020-07-08

Family

ID=61304519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016165632A Active JP6719336B2 (en) 2016-08-26 2016-08-26 How to spread powder

Country Status (1)

Country Link
JP (1) JP6719336B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101891515B1 (en) * 2018-04-06 2018-08-27 (주)싸이젠텍 Apparatus for sorting pellet with foreign matter
WO2021166731A1 (en) * 2020-02-21 2021-08-26 花王株式会社 Method for spraying particulate matter and method for producing article containing particulate matter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101891515B1 (en) * 2018-04-06 2018-08-27 (주)싸이젠텍 Apparatus for sorting pellet with foreign matter
WO2021166731A1 (en) * 2020-02-21 2021-08-26 花王株式会社 Method for spraying particulate matter and method for producing article containing particulate matter

Also Published As

Publication number Publication date
JP6719336B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
TWI682884B (en) Powder and granule dispersion device, powder and granule dispersion method, and method for manufacturing powder and granule-containing article
WO2017061339A1 (en) Particulate matter spraying device, particulate matter spraying method, and method for producing particulate matter-containing article
JP2013139337A5 (en)
JP2018030707A (en) Dispersion method for granular powder
NL8302912A (en) METHOD AND APPARATUS FOR FILLING A FILLED POWDER WITH A SHEET METAL STARTING MATERIAL
Salikov et al. Investigations on the spouting stability in a prismatic spouted bed and apparatus optimization
Valverde et al. Effect of vibration on agglomerate particulate fluidization
JP2019052013A (en) Powder particle spraying device and method for producing powder particle-containing article
KR20190003494A (en) Method and apparatus for forming layers of particles for use in integrated type fabrication
JP2015205744A (en) Fixed volume discharge device of bulk raw material
JP6688710B2 (en) Powder-granulating device and powder-granulating method
JP6882125B2 (en) Granule spraying device
Labowsky et al. Diffusive transfer between two intensely interacting cells with limited surface kinetics
Stichel et al. Mass flow characterization of selective deposition of polymer powders with vibrating nozzles for laser beam melting of multi-material components
WO2021166375A1 (en) Particulate spraying apparatus and particulate spraying method
Wildeboer et al. A novel nucleation apparatus for regime separated granulation
JP2016120987A (en) Granule spraying apparatus and spraying method of granule
JP7228475B2 (en) Granule sprayer
JP2019073373A (en) Granular material sprayer
WO2021166731A1 (en) Method for spraying particulate matter and method for producing article containing particulate matter
Aguirre et al. Granular packing: influence of different parameters on its stability
JP2004333365A (en) Inspection method of foreign matter in granular body, inspection device of foreign matter in granular body, removal method of foreign matter in granular body and removal device of foreign matter in granular body
JP2021046305A (en) Sprinkling method of granular powder
JP2002221481A (en) Particle size measuring apparatus
KR101590002B1 (en) Continuous feeder of uniformly fine powder having a cohesion prevent unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200616

R151 Written notification of patent or utility model registration

Ref document number: 6719336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250