JP2018030278A - Three-dimensional molding apparatus and method for manufacturing three-dimensional molded object - Google Patents

Three-dimensional molding apparatus and method for manufacturing three-dimensional molded object Download PDF

Info

Publication number
JP2018030278A
JP2018030278A JP2016163070A JP2016163070A JP2018030278A JP 2018030278 A JP2018030278 A JP 2018030278A JP 2016163070 A JP2016163070 A JP 2016163070A JP 2016163070 A JP2016163070 A JP 2016163070A JP 2018030278 A JP2018030278 A JP 2018030278A
Authority
JP
Japan
Prior art keywords
photocurable resin
light
liquid photocurable
transmission window
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016163070A
Other languages
Japanese (ja)
Other versions
JP6783586B2 (en
Inventor
新井 隆
Takashi Arai
隆 新井
伊藤 俊樹
Toshiki Ito
伊藤  俊樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016163070A priority Critical patent/JP6783586B2/en
Priority to KR1020170102078A priority patent/KR102233625B1/en
Priority to US15/677,160 priority patent/US20180056587A1/en
Priority to CN201710709428.7A priority patent/CN107756785B/en
Publication of JP2018030278A publication Critical patent/JP2018030278A/en
Application granted granted Critical
Publication of JP6783586B2 publication Critical patent/JP6783586B2/en
Priority to US17/242,698 priority patent/US11951677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To solve such problems that in a three-dimensional molding apparatus for forming a three-dimensional molded object by stacking a plurality of layers formed by a photo-curing process, it is difficult to quickly supply a liquid resin material for forming the subsequent layer after one layer is formed, and thereby, much time is required for three-dimensional molding.SOLUTION: A surface of a light-transmitting window to be in contact with a liquid resin material is subjected to a hydrophilic treatment, which reduces flow resistance of a liquid photo-curable resin and allows quick supply of the liquid resin material for forming the subsequent layer. Thus, time required for forming a three-dimensional molded object can be significantly reduced.SELECTED DRAWING: Figure 1

Description

本発明は、光硬化性の液状樹脂材料に露光画像を投射して、三次元造形物を製造する三次元造形装置に関する。   The present invention relates to a three-dimensional modeling apparatus that manufactures a three-dimensional structure by projecting an exposure image onto a photocurable liquid resin material.

近年、所謂3Dプリンタへの期待が高まっている。中でも、光硬化性の液状樹脂材料に露光画像を投射して三次元造形物を製造する方式の装置開発が盛んである。   In recent years, expectations for so-called 3D printers have increased. In particular, the development of a device for producing a three-dimensional structure by projecting an exposure image onto a photocurable liquid resin material is actively performed.

たとえば、特許文献1には、上面が開放された容器に液状光硬化性樹脂を収容し、自由液面の上から光線を照射して、自由液面近傍で光硬化させて樹脂硬化層を形成する装置が開示されている。かかる装置では、樹脂硬化層を形成した後に樹脂硬化層を支持する移動台を下降させ、液状光硬化性樹脂の液面から樹脂硬化層までの深さが所定の深さになるのを待ってから、再度光線を照射して樹脂硬化層を積層する。こうしたプロセスを繰り返して、三次元造形物を形成していた。   For example, in Patent Document 1, a liquid photocurable resin is accommodated in a container whose upper surface is opened, and a resin cured layer is formed by irradiating light from above the free liquid surface and photocuring in the vicinity of the free liquid surface. An apparatus is disclosed. In such an apparatus, after the resin cured layer is formed, the moving table that supports the resin cured layer is lowered, and waits until the depth from the liquid surface of the liquid photocurable resin to the resin cured layer reaches a predetermined depth. Then, the resin cured layer is laminated by irradiating light again. Such a process was repeated to form a three-dimensional structure.

また、特許文献2には、液状の光硬化性樹脂材料を充填した容器の底を光透過性にしておき、底を通して樹脂に露光画像を投射して所望形状の樹脂硬化層を形成する装置が開示されている。かかる装置では、樹脂硬化層を1層形成すると、造形物を持ち上げて、造形物と容器の底の間に液状の光硬化性樹脂を流入させて補充し、補充が完了すると次の露光画像を投射して樹脂硬化層を積層する。こうしたプロセスを繰り返して、三次元造形物を形成していた。   Patent Document 2 discloses an apparatus for forming a resin-cured layer having a desired shape by making a bottom of a container filled with a liquid photocurable resin material light-transmissive and projecting an exposure image onto the resin through the bottom. It is disclosed. In such an apparatus, when one cured resin layer is formed, the modeled object is lifted, and a liquid photocurable resin is poured between the modeled object and the bottom of the container to replenish, and when the replenishment is completed, the next exposure image is displayed. The resin cured layer is laminated by projecting. Such a process was repeated to form a three-dimensional structure.

特許文献2の装置の場合は、容器の底を通じて光を照射するので、樹脂の液面が変動したとしても光学的な露光条件は影響を受けないという利点がある。   In the case of the apparatus of Patent Document 2, since light is irradiated through the bottom of the container, there is an advantage that even if the liquid level of the resin fluctuates, the optical exposure conditions are not affected.

特開平5−96632号公報Japanese Patent Laid-Open No. 5-96632 米国特許出願公開 第2015/54198号US Patent Application Publication No. 2015/54198

ところで、3Dプリンタには、産業界から造形速度の高速化を求める要請が高まっており、光硬化性の液状樹脂材料を原料に用いる方式も例外ではない。   By the way, there is an increasing demand for a 3D printer to increase the modeling speed from the industry, and a method of using a photocurable liquid resin material as a raw material is no exception.

一般に、光硬化性の液状樹脂材料に光を照射して形成される硬化層の厚みは、一層あたり0.02mmから0.2mm程度である。三次元造形速度を高めるには、一層の硬化層を形成した後、次の硬化層を形成するための準備工程をいかに短時間で完了するかが重要である。言い換えれば、次の一層分の液状樹脂材料を、いかに高速に造形領域に補給するかが重要である。というのも、光硬化性の液状樹脂材料は、一般に粘度が高いため、流動に時間がかかるからである。   Generally, the thickness of a cured layer formed by irradiating light to a photocurable liquid resin material is about 0.02 mm to 0.2 mm per layer. In order to increase the three-dimensional modeling speed, it is important how to complete a preparation process for forming the next cured layer in a short time after forming a single cured layer. In other words, it is important how to supply the next one layer of liquid resin material to the modeling region at high speed. This is because a photocurable liquid resin material generally has a high viscosity and thus takes a long time to flow.

特に、大型の三次元造形物を形成する場合には、造形領域の面積が大型化するため、次の層形成のための光硬化性の液状樹脂材料の補給に要する時間が長くなる。また、積層する層数が大きくなれば、補給する回数もそれだけ増加し、三次元造形物の完成に要する時間が長くなる。   In particular, when forming a large three-dimensional structure, the area of the modeling region is increased, and therefore the time required for replenishing the photocurable liquid resin material for forming the next layer is increased. Further, as the number of layers to be stacked increases, the number of times of replenishment increases accordingly, and the time required to complete the three-dimensional structure becomes longer.

特許文献1の装置の場合は、液状樹脂材料を造形領域に補給する速度を上げるため、液状樹脂材料に超音波振動を与えて流動性を高めておく工夫をしている。しかしながら、特許文献1の装置は、樹脂の自由液面の上から光線を照射する装置系であるため、液面が変動すると光学的な露光条件に影響が出やすい。液状樹脂材料の流動性を高めて補給時間を短縮すると、硬化層の形状精度に問題が出る場合があった。   In the case of the apparatus of Patent Document 1, in order to increase the speed at which the liquid resin material is replenished to the modeling region, the liquid resin material is devised to increase the fluidity by applying ultrasonic vibration. However, since the apparatus of Patent Document 1 is an apparatus system that irradiates light from above the free liquid surface of the resin, if the liquid level fluctuates, the optical exposure conditions are likely to be affected. If the fluidity of the liquid resin material is increased to shorten the replenishment time, there may be a problem with the shape accuracy of the cured layer.

特許文献2の装置の場合は、先に述べたように、容器の底を通じて光を照射するので、樹脂の液面が変動したとしても光学的な露光条件は影響を受けないという利点がある。   In the case of the apparatus of Patent Document 2, since light is irradiated through the bottom of the container as described above, there is an advantage that even if the liquid level of the resin fluctuates, the optical exposure conditions are not affected.

その反面、次の層形成の準備のため硬化層を持ち上げた際に、容器の底と硬化層の間隔が狭いためコンダクタンスが小さく、周囲から液状樹脂材料が補給されるのに時間がかかるという問題があった。   On the other hand, when lifting the cured layer to prepare for the next layer formation, the gap between the bottom of the container and the cured layer is narrow, so the conductance is small and it takes time to replenish the liquid resin material from the surroundings. was there.

この問題を解決するため、粘度が低い液状樹脂材料を用いる試みもなされているが、固化時の収縮が大きくなり造形物の変形が起きたり、光硬化時の重合度が上がらずに十分な強度が得られなかったり、耐熱性が低下してしまう等の問題が発生していた。光硬化による造形の後処理工程として、光や熱を加えて強度を向上させるポストキュア法も試みられたが、寸法精度の低下や変形の問題が発生していた。   In order to solve this problem, attempts have been made to use a liquid resin material having a low viscosity, but the shrinkage at the time of solidification is increased, resulting in deformation of the molded article, and sufficient strength without increasing the degree of polymerization at the time of photocuring. Cannot be obtained or the heat resistance is lowered. As a post-processing step of modeling by photocuring, a post-cure method in which the strength is improved by applying light or heat has been attempted, but there has been a problem of deterioration in dimensional accuracy and deformation.

また、容器に充填した液状樹脂材料全体の温度を高めておき、流動性を高める試みもされたが、熱により樹脂材料が劣化したり硬化が進んでしまったり、固化後の冷却で造形物が変形してしまう問題があった。   Also, attempts have been made to increase the temperature of the entire liquid resin material filled in the container to increase the fluidity, but the resin material deteriorates or hardens due to heat, and the molded object is cooled by cooling after solidification. There was a problem of deformation.

このため、複数層を積層して三次元造形物を形成する際、造形領域に層形成のための液状樹脂材料を劣化させることなく速やかに補充する方法が求められていた。   For this reason, when laminating a plurality of layers to form a three-dimensional structure, there has been a demand for a method of quickly replenishing the modeling region without deteriorating the liquid resin material for layer formation.

本発明は、液状の光硬化性樹脂を保持する容器と、前記液状の光硬化性樹脂を光硬化させた固体造形物を支持する基台と、前記基台を移動させるための移動部と、前記液状の光硬化性樹脂を光硬化させる光を発光する光源ユニットと、前記光源ユニットと前記基台の間に設けられ、前記液状の光硬化性樹脂と接する光透過窓とを備え、前記光透過窓は、前記液状の光硬化性樹脂と接する領域に親水性表面を有する、ことを特徴とする三次元造形装置である。   The present invention includes a container that holds a liquid photocurable resin, a base that supports a solid shaped article obtained by photocuring the liquid photocurable resin, and a moving unit that moves the base. A light source unit that emits light for photocuring the liquid photocurable resin; and a light transmission window that is provided between the light source unit and the base and is in contact with the liquid photocurable resin. The transmission window is a three-dimensional modeling apparatus characterized by having a hydrophilic surface in a region in contact with the liquid photocurable resin.

また、本発明は、液状の光硬化性樹脂を保持する容器と、前記液状の光硬化性樹脂を光硬化させた固体造形物を支持する基台と、前記基台を移動させるための移動部と、前記液状の光硬化性樹脂を光硬化させる光を発光する光源ユニットと、前記光源ユニットと前記基台の間に設けられ、前記液状の光硬化性樹脂と接する光透過窓とを備えた三次元造形装置を用いる三次元造形物の製造方法であって、前記光源ユニットを発光させて前記容器の内に保持された前記液状の光硬化性樹脂の一部を光硬化させた後に、前記基台を移動させ、前記液状の光硬化性樹脂を前記光透過窓に設けられた親水性表面と接触させながら、前記液状の光硬化性樹脂を前記光透過窓と前記固体造形物との間に補充する、ことを特徴とする三次元造形物の製造方法である。   The present invention also includes a container that holds a liquid photocurable resin, a base that supports a solid shaped article obtained by photocuring the liquid photocurable resin, and a moving unit that moves the base. A light source unit that emits light for photocuring the liquid photocurable resin, and a light transmission window that is provided between the light source unit and the base and is in contact with the liquid photocurable resin. A method of manufacturing a three-dimensional structure using a three-dimensional modeling apparatus, wherein after the light source unit emits light and a part of the liquid photocurable resin held in the container is photocured, The liquid photocurable resin is moved between the light transmissive window and the solid shaped article while moving the base and bringing the liquid photocurable resin into contact with the hydrophilic surface provided on the light transmissive window. In a method for manufacturing a three-dimensional structure, That.

本発明によれば、複数層を積層して三次元造形物を形成する際、造形領域に層形成のための液状樹脂材料を劣化させることなく速やかに補充することができる。そのため、三次元造形物の形成に要する時間を、著しく短縮できる。   According to the present invention, when a plurality of layers are stacked to form a three-dimensional structure, the liquid resin material for layer formation can be quickly replenished in the modeling region without deteriorating. Therefore, the time required for forming the three-dimensional structure can be significantly shortened.

第一の実施形態の断面図。Sectional drawing of 1st embodiment. 第一の実施形態のブロック図。The block diagram of 1st embodiment. (a)実施例1の液滴実験の写真、(b)比較例1の液滴実験の写真、(c)比較例2の液滴実験の写真。(A) A photograph of a droplet experiment of Example 1, (b) a photograph of a droplet experiment of Comparative Example 1, and (c) a photograph of a droplet experiment of Comparative Example 2. 第二の実施形態の断面図。Sectional drawing of 2nd embodiment.

本発明の実施形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described with reference to the drawings.

尚、以下の説明では、固化していない液状の光硬化性樹脂を、液状光硬化性樹脂と記す。また、液状の光硬化性樹脂を光硬化させた固体造形物を、三次元造形物と記す。三次元造形物は、完成品に限らず、全層のうち途中層まで積層した半完成品も指す。   In the following description, a liquid photocurable resin that is not solidified is referred to as a liquid photocurable resin. Moreover, the solid modeling thing which photocured liquid photocurable resin is described as a three-dimensional modeling thing. The three-dimensional structure is not limited to a finished product, but also refers to a semi-finished product in which all layers are stacked up to an intermediate layer.

また、親水性表面とは、仮に表面を水と接触させたとすれば親水性を示すような表面状態を指す。つまり、表面の特性を表現しているのであって、装置の使用状態で表面が水と接触することを意味するものではない。   The hydrophilic surface indicates a surface state that exhibits hydrophilicity if the surface is brought into contact with water. That is, it represents the surface characteristics, and does not mean that the surface comes into contact with water in the usage state of the apparatus.

[第一の実施形態]
図1は、本発明の第一の実施形態にかかる三次元造形装置の構造を説明するため、装置の断面を模式的に示した図である。
[First embodiment]
FIG. 1 is a diagram schematically showing a cross section of the apparatus for explaining the structure of the three-dimensional modeling apparatus according to the first embodiment of the present invention.

(装置の構成)
図1において、1は容器、2は液状光硬化性樹脂、3は樹脂供給部、4は光透過窓、5は遮光部、6は親水性表面部、7は光源、8はミラー部、9はレンズ部、10は光源ユニット、11は基台、12は昇降アーム、13は昇降部、14は三次元造形物である。
(Device configuration)
In FIG. 1, 1 is a container, 2 is a liquid photocurable resin, 3 is a resin supply unit, 4 is a light transmission window, 5 is a light shielding unit, 6 is a hydrophilic surface unit, 7 is a light source, 8 is a mirror unit, 9 Is a lens unit, 10 is a light source unit, 11 is a base, 12 is a lifting arm, 13 is a lifting unit, and 14 is a three-dimensional structure.

容器1は、液状光硬化性樹脂2を保持するための容器であり、液状光硬化性樹脂を固化させる波長域の光を遮る材料で形成されている。   The container 1 is a container for holding the liquid photocurable resin 2, and is formed of a material that blocks light in a wavelength region that solidifies the liquid photocurable resin.

樹脂供給部3は、液状光硬化性樹脂を貯蔵するタンクとポンプを備え、容器1に適量の液状光硬化性樹脂2が保持されるように、液状光硬化性樹脂を供給する。   The resin supply unit 3 includes a tank and a pump for storing the liquid photocurable resin, and supplies the liquid photocurable resin so that an appropriate amount of the liquid photocurable resin 2 is held in the container 1.

液状光硬化性樹脂2は、特定の波長域の光を照射されると、硬化(固化)する液状の樹脂である。液状光硬化性樹脂2は、光透過窓4と遮光部5の下側表面まで容器1内に満たされており、気泡が入り込まないように保持されている。光透過窓4と遮光部5は、容器1の蓋として機能し、開閉可能である。   The liquid photocurable resin 2 is a liquid resin that is cured (solidified) when irradiated with light in a specific wavelength range. The liquid photocurable resin 2 is filled in the container 1 up to the lower surface of the light transmission window 4 and the light shielding portion 5 and is held so that bubbles do not enter. The light transmission window 4 and the light shielding part 5 function as a lid of the container 1 and can be opened and closed.

光透過窓4は、液状光硬化性樹脂2を固化させる波長域の光を透過させる窓で、たとえばガラス板である。遮光部5は、液状光硬化性樹脂2を固化させる波長域の光を遮る部材より成る部分である。本実施形態では、蓋として機能する部分のうち、光源ユニット10と基台11の間の光路となる部分に光透過窓4を設け、それ以外の領域には遮光部5を形成しているが、装置外から不要な光が進入しない場合には、蓋全体を光透過窓と同じ材料で構成してもよい。   The light transmission window 4 is a window that transmits light in a wavelength region that solidifies the liquid photocurable resin 2 and is, for example, a glass plate. The light-shielding part 5 is a part made of a member that shields light in a wavelength region that solidifies the liquid photocurable resin 2. In the present embodiment, the light transmission window 4 is provided in a portion that functions as a lid and the light path between the light source unit 10 and the base 11 and the light shielding portion 5 is formed in other regions. When unnecessary light does not enter from outside the apparatus, the entire lid may be made of the same material as the light transmission window.

光透過窓4の下側表面には、後述するUV光透過性の親水性表面部6が設けられている。   On the lower surface of the light transmission window 4, a UV light-transmitting hydrophilic surface portion 6 described later is provided.

光源7、ミラー部8およびレンズ部9は、造形すべき三次元モデルの形状に対応させた光を液状光硬化性樹脂に照射するための光源ユニット10を構成している。光源7は、液状光硬化性樹脂を固化させる波長域の光を発する光源である。たとえば、光硬化性樹脂として紫外光に感度を有する材料を用いる場合には、He−CdレーザやArレーザ等の紫外光源が用いられる。ミラー部8は、光源7が発する光を造形すべき三次元モデルの形状に対応させて変調する部分で、マイクロミラーデバイスをアレイ状に配置したデバイスが用いられる。レンズ部9は、変調された光を、光透過窓4の下の所定位置にある液状光硬化性樹脂2に集光するためのレンズである。所定位置にある液状光硬化性樹脂2は、集光された十分な強度の紫外光を照射されると、硬化する。   The light source 7, the mirror unit 8, and the lens unit 9 constitute a light source unit 10 for irradiating the liquid photocurable resin with light corresponding to the shape of the three-dimensional model to be modeled. The light source 7 is a light source that emits light in a wavelength region that solidifies the liquid photocurable resin. For example, when a material having sensitivity to ultraviolet light is used as the photocurable resin, an ultraviolet light source such as a He—Cd laser or an Ar laser is used. The mirror unit 8 is a part that modulates the light emitted from the light source 7 in correspondence with the shape of the three-dimensional model to be modeled, and a device in which micromirror devices are arranged in an array is used. The lens unit 9 is a lens for condensing the modulated light onto the liquid photocurable resin 2 located at a predetermined position below the light transmission window 4. The liquid photocurable resin 2 in a predetermined position is cured when irradiated with a condensed ultraviolet light having a sufficient intensity.

硬化物の形状の精度を確保するためには、集光レンズの焦点位置は光透過窓の近傍とするのが望ましいが、近すぎると硬化した樹脂が光透過窓4に付着してしまう可能性がある。そこで、レンズ部9の焦点位置は、光透過窓4の下面から60μm乃至110μm下方に設定するのが望ましい。   In order to ensure the accuracy of the shape of the cured product, it is desirable that the focal position of the condenser lens is in the vicinity of the light transmission window, but if it is too close, the cured resin may adhere to the light transmission window 4. There is. Therefore, it is desirable that the focal position of the lens unit 9 is set 60 μm to 110 μm below the lower surface of the light transmission window 4.

尚、光源ユニット10は、液状光硬化性樹脂を固化させる波長域の光を、造形すべき三次元モデルの形状に対応させて変調し、所定の位置に集光する機能を有するものであれば、上記の例に限るものではない。たとえば、紫外光源と液晶シャッターの組み合わせや、半導体レーザダイオードアレイ、走査ミラー、結像ミラー等を用いたものでもよい。   The light source unit 10 may have any function for modulating the light in the wavelength region for solidifying the liquid photocurable resin in accordance with the shape of the three-dimensional model to be modeled and condensing it at a predetermined position. However, the present invention is not limited to the above example. For example, a combination of an ultraviolet light source and a liquid crystal shutter, a semiconductor laser diode array, a scanning mirror, an imaging mirror, or the like may be used.

基台11は、その上面に三次元造形物14を載せて支持する台で、昇降アーム12を介して昇降部13と連結している。昇降部13は、昇降アーム12を上下に移動させて基台11の高さを調整する機構であり、基台を移動させる移動部である。   The base 11 is a table that supports the three-dimensional structure 14 placed on the upper surface thereof, and is connected to the lifting unit 13 via the lifting arm 12. The elevating unit 13 is a mechanism that adjusts the height of the base 11 by moving the elevating arm 12 up and down, and is a moving unit that moves the base.

図2は、三次元造形装置のブロック図である。21は制御部、22は外部装置、23は操作パネル、3は樹脂供給部、10は光源ユニット、13は昇降部である。   FIG. 2 is a block diagram of the three-dimensional modeling apparatus. 21 is a control unit, 22 is an external device, 23 is an operation panel, 3 is a resin supply unit, 10 is a light source unit, and 13 is an elevating unit.

制御部21は、CPU、制御プログラムや制御用数値テーブルを記憶した不揮発性メモリであるROM、演算等に使用する揮発性メモリであるRAM、装置各部と通信するためのI/Oポート、等を備えている。なお、ROMには、3次元造形装置の基本動作を制御するためのプログラムが記憶されている。   The control unit 21 includes a CPU, a ROM which is a non-volatile memory storing a control program and a numerical value table for control, a RAM which is a volatile memory used for calculation, an I / O port for communicating with each unit of the device, and the like. I have. The ROM stores a program for controlling basic operations of the three-dimensional modeling apparatus.

外部装置22からは、三次元造形物の形状データが、I/Oポートを介して三次元造形装置の制御部21に入力される。   From the external device 22, the shape data of the three-dimensional structure is input to the control unit 21 of the three-dimensional structure apparatus via the I / O port.

操作パネル23は、三次元造形装置の操作者が装置に指示を与えるための入力部と、操作者に情報を表示するための表示部を有する。入力部は、キーボードや操作ボタンを備えている。表示部は、三次元造形装置の動作状況等を表示する表示パネルを備えている。   The operation panel 23 includes an input unit for an operator of the 3D modeling apparatus to give an instruction to the apparatus and a display unit for displaying information to the operator. The input unit includes a keyboard and operation buttons. The display unit includes a display panel that displays an operation status of the three-dimensional modeling apparatus.

制御部21は、樹脂供給部3、光源ユニット10、昇降部13を制御して、三次元造形プロセスを実行させる。   The control unit 21 controls the resin supply unit 3, the light source unit 10, and the elevating unit 13 to execute a three-dimensional modeling process.

(三次元造形プロセス)
次に、上記の三次元造形装置を用いた三次元造形プロセスについて説明する。
(Three-dimensional modeling process)
Next, a three-dimensional modeling process using the above three-dimensional modeling apparatus will be described.

まず、制御部21は、不図示のセンサーを用いて、容器1内に所定量の液状光硬化性樹脂が収容されているか確認する。不足している場合には、樹脂供給部3を動作させ、容器1内を所定量の液状光硬化性樹脂2で満たす。   First, the control unit 21 confirms whether a predetermined amount of the liquid photocurable resin is accommodated in the container 1 using a sensor (not shown). When the amount is insufficient, the resin supply unit 3 is operated to fill the container 1 with a predetermined amount of the liquid photocurable resin 2.

次に、制御部21は、昇降部13を動作させ、基台11の上面の高さが光源ユニット10の焦点位置よりもわずかに下になるように、基台11の位置をセットする。たとえば、積層造形で三次元造形物を形成する際の一層の厚みを40μmとするとき、焦点位置よりも10μm乃至30μm下方に基台11の上面が位置するように調整する。   Next, the control unit 21 operates the elevating unit 13 to set the position of the base 11 so that the height of the upper surface of the base 11 is slightly below the focal position of the light source unit 10. For example, when the thickness of one layer when forming a three-dimensional structure by layered modeling is 40 μm, the top surface of the base 11 is adjusted to be 10 μm to 30 μm below the focal position.

制御部21は、外部装置22から入力された三次元造形モデル形状データに基づいて、積層造形プロセスで用いる各層の形状データ(スライスデータ)を作成する。   The control unit 21 creates shape data (slice data) of each layer used in the additive manufacturing process based on the 3D modeling model shape data input from the external device 22.

そして、光源ユニット10を駆動して発光させ、三次元造形物の第一層目の形状データに基づいて変調された紫外光を、液状光硬化性樹脂2に照射する。照射された部位の液状光硬化性樹脂2が硬化し、基台11上に、三次元造形物の第一層目部分が形成される。   Then, the light source unit 10 is driven to emit light, and the liquid photocurable resin 2 is irradiated with ultraviolet light modulated based on the shape data of the first layer of the three-dimensional structure. The liquid photocurable resin 2 at the irradiated site is cured, and the first layer portion of the three-dimensional structure is formed on the base 11.

次に、第二層目を形成するための準備として、制御部21は昇降部13を動作させ、第一層目部分が形成された基台11を、40μm下降させる。下降する基台11と光透過窓4の間の空間には、周囲から液状光硬化性樹脂2が流入する。   Next, as preparation for forming the second layer, the control unit 21 operates the elevating unit 13 to lower the base 11 on which the first layer portion is formed by 40 μm. The liquid photocurable resin 2 flows from the surroundings into the space between the descending base 11 and the light transmission window 4.

本発明によれば、光透過窓4の下面、すなわち液状光硬化性樹脂2と接触する面が、親水性表面処理をされているため、液状光硬化性樹脂2の流動抵抗が低減されている。このため、液状光硬化性樹脂2の流入速度が速く、第二層目を形成するための準備工程の所要時間を短縮することが可能である。つまり、三次元造形物の製造する際に、光源ユニットを発光させて容器内に保持された液状の光硬化性樹脂の一部を光硬化させた後に、液状の光硬化性樹脂を光透過窓に設けられた親水性表面と接触させながら高速に補充するのである。   According to the present invention, the flow resistance of the liquid photocurable resin 2 is reduced because the lower surface of the light transmission window 4, that is, the surface in contact with the liquid photocurable resin 2 is subjected to a hydrophilic surface treatment. . For this reason, the inflow speed of the liquid photocurable resin 2 is fast, and it is possible to shorten the time required for the preparation process for forming the second layer. That is, when manufacturing a three-dimensional structure, after light-curing a part of the liquid photocurable resin held in the container by causing the light source unit to emit light, the liquid photocurable resin is passed through the light transmission window. It is replenished at high speed while making contact with the hydrophilic surface provided on the surface.

液状光硬化性樹脂2の流入すなわち補充が完了したタイミングで、制御部21は、光源ユニット10を駆動して、三次元造形物の第二層目の形状データに基づいて変調された紫外光を照射する。照射された部位の液状光硬化性樹脂2が硬化し、三次元造形物の第一層目の上に、第二層目部分が積層形成される。   At the timing when the inflow of the liquid photocurable resin 2, that is, the replenishment is completed, the control unit 21 drives the light source unit 10 to generate the ultraviolet light modulated based on the shape data of the second layer of the three-dimensional structure. Irradiate. The liquid photocurable resin 2 at the irradiated portion is cured, and the second layer portion is laminated on the first layer of the three-dimensional structure.

以下、同様の工程を繰り返すことで、多数層を積層し、所望の形状の三次元造形物を形成することが可能である。   Hereinafter, by repeating the same process, it is possible to laminate a large number of layers and form a three-dimensional structure having a desired shape.

本発明によれば、光透過窓の下面にUV光透過性の親水性処理を施すことにより、次の層形成のための液状光硬化性樹脂の注入を高速化できる。三次元造形物の形成に要する時間は、造形物の大きさや形状、使用する液状光硬化性樹脂の種類、温度等により変化するので、本発明による時間短縮の効果を普遍的な数値として表現するのは困難である。そこで、本発明と、本発明を非実施の装置との相対的な比較を行った。   According to the present invention, by applying a UV light-transmitting hydrophilic treatment to the lower surface of the light-transmitting window, the injection of the liquid photocurable resin for forming the next layer can be speeded up. Since the time required to form a three-dimensional structure varies depending on the size and shape of the structure, the type of liquid photocurable resin used, the temperature, etc., the time reduction effect according to the present invention is expressed as a universal numerical value. It is difficult. Therefore, a relative comparison was made between the present invention and an apparatus not implementing the present invention.

(実施例1)
UV透過性のガラス基板に、リン酸カルシウム系セラミクスより成るUV光透過性の親水性膜を蒸着することでガラス基板表面を親水性処理してから、光透過窓4として用いた。
Example 1
The glass substrate surface was subjected to hydrophilic treatment by depositing a UV light transmissive hydrophilic film made of calcium phosphate ceramic on a UV transmissive glass substrate, and then used as the light transmissive window 4.

親水性処理として、液状光硬化性樹脂と親和性の高い樹脂膜をあらかじめ付与することも可能であるが、リン酸カルシウム系セラミクスより成る膜は、UV光に対する透過性が高く、かつ耐久性にも優れるので、本発明を実施するうえで好適な材料である。   As a hydrophilic treatment, a resin film having a high affinity with a liquid photocurable resin can be applied in advance, but a film made of calcium phosphate ceramics is highly permeable to UV light and excellent in durability. Therefore, it is a suitable material for carrying out the present invention.

まず、あらかじめ洗浄されたUV透過性のガラス基板を真空蒸着装置にセットし、50度Cになるように加熱する。そして、2オングストローム/秒の蒸着レートで、10nmの厚みの下地層を蒸着した。次に、1.2×10−2Paの酸素を導入しつつ、全圧が2×10−3Pa以下の真空度でリン酸カルシウム電子銃を駆動し、2オングストローム/秒の蒸着レートで、100nmの厚みのリン酸カルシウム系セラミクス層を蒸着した。 First, a pre-cleaned UV transparent glass substrate is set in a vacuum vapor deposition apparatus and heated to 50 ° C. Then, an underlayer having a thickness of 10 nm was deposited at a deposition rate of 2 angstroms / second. Next, while introducing 1.2 × 10 −2 Pa of oxygen, the calcium phosphate electron gun was driven at a vacuum level of 2 × 10 −3 Pa or less at a total pressure of 100 nm at a deposition rate of 2 Å / sec. A thick calcium phosphate ceramic layer was deposited.

このセラミクス層は、UV光をほとんど減衰することなく透過させることができる。   This ceramic layer can transmit UV light with little attenuation.

(比較例1)
UV透過性のガラス基板の表面を、フッ素形のコート材で撥水コートし、光透過窓4として用いた。
(Comparative Example 1)
The surface of the UV transparent glass substrate was water-repellent coated with a fluorine-type coating material and used as the light transmission window 4.

(比較例2)
UV透過性のガラス基板の表面を、有機溶剤と純水で洗浄したものを、光透過窓4として用いた。
(Comparative Example 2)
A UV transparent glass substrate whose surface was washed with an organic solvent and pure water was used as the light transmission window 4.

まず、実施例1、比較例1、および比較例2のガラス基板に、液状光硬化性樹脂を滴下して液滴形状を観察する実験を行った。ガラス基板は、光透過窓4として図1の装置にセットされる時とは上下面を逆にして、21.8度Cの環境下で、100マイクロリットルのウレタンアクリレートを滴下し、基板上で液滴が安定した時点でその形状を観察した。   First, an experiment was conducted in which a liquid photocurable resin was dropped onto the glass substrates of Example 1, Comparative Example 1, and Comparative Example 2 to observe the droplet shape. The glass substrate is dropped upside down from the time when it is set in the apparatus of FIG. 1 as the light transmission window 4, and 100 microliters of urethane acrylate is dropped in an environment of 21.8 degrees C. on the substrate. The shape was observed when the droplet was stabilized.

図3(a)、(b)、(c)は、各々、実施例1、比較例1、比較例2の液滴形状を横から観察する実験をした際の写真である。液滴の形状測定結果を、表1に示す。   FIGS. 3A, 3B, and 3C are photographs of experiments in which the droplet shapes of Example 1, Comparative Example 1, and Comparative Example 2 are observed from the side, respectively. Table 1 shows the droplet shape measurement results.

表1で、液滴高さとは、ガラス基板面から液滴の頂点までの高さである。また、液滴直径とは、ガラス基板を上から見たときの液滴の直径である。 In Table 1, the droplet height is the height from the glass substrate surface to the top of the droplet. The droplet diameter is the diameter of the droplet when the glass substrate is viewed from above.

図3および表1から明らかなように、実施例1のガラス基板では、比較例1、比較例2のガラス基板に比べ、液状光硬化性樹脂の液滴が平坦になっている。リン酸カルシウム系セラミクスより成る親水性膜を被覆したことで、基板表面と液状光硬化性樹脂との親和性が高まり、液滴形状が平坦になったと言える。   As is clear from FIG. 3 and Table 1, in the glass substrate of Example 1, the liquid photocurable resin droplets are flat compared to the glass substrates of Comparative Example 1 and Comparative Example 2. By coating a hydrophilic film made of calcium phosphate-based ceramics, it can be said that the affinity between the substrate surface and the liquid photocurable resin is increased, and the droplet shape is flattened.

次に、実施例1、比較例1、および比較例2のガラス基板を、図1の三次元造形装置の光透過窓4として用い、光透過窓が異なる点を除いて全て同一の条件下で3次元造形を行い、造形に要する時間を比較した。   Next, the glass substrates of Example 1, Comparative Example 1, and Comparative Example 2 were used as the light transmissive window 4 of the three-dimensional modeling apparatus in FIG. 1, and all were under the same conditions except that the light transmissive windows were different. Three-dimensional modeling was performed and the time required for modeling was compared.

実施例1の光透過窓を用いる場合、親水性表面処理をされているため、比較例1や比較例2と比較して液状光硬化性樹脂2の流動抵抗が低減され、基台を下降させた時の光硬化性樹脂溶の流入速度が15%から25%程度速いことが確認された。たとえば、層数750で底面が5cm×5cm、高さが30mm程度の三次元物体を形成する場合、光硬化プロセスも含めた三次元造形に要する時間を、実施例1では比較例1に対して約60%、比較例2に対して約40%短縮することができた。   When the light transmission window of Example 1 is used, since the hydrophilic surface treatment is performed, the flow resistance of the liquid photocurable resin 2 is reduced as compared with Comparative Example 1 and Comparative Example 2, and the base is lowered. It was confirmed that the inflow rate of the photocurable resin solution was about 15% to 25% faster. For example, when forming a three-dimensional object having a number of layers of 750, a bottom surface of 5 cm × 5 cm, and a height of about 30 mm, the time required for three-dimensional modeling including the photocuring process is compared with Comparative Example 1 in Example 1. It was about 60% shorter than that of Comparative Example 2 by about 40%.

[第二の実施形態]
図4は、本発明の第二の実施形態にかかる三次元造形装置の構造を説明するため、装置の断面を模式的に示した図である。
[Second Embodiment]
FIG. 4 is a diagram schematically showing a cross section of the apparatus for explaining the structure of the three-dimensional modeling apparatus according to the second embodiment of the present invention.

(装置の構成)
第一の実施形態では、光透過窓は容器の蓋として機能したが、第二の実施形態では、光透過窓は容器の底に設けられている。また、第一の実施形態では、光透過窓の材料としてガラス板のように機密性の高い材料を用いたが、第二の実施形態では、たとえば酸素等のガスを透過する性質を備えた材料を用い、光透過窓近傍の液状光硬化性樹脂に光透過窓を通じてガスを供給する点が異なる。液状光硬化性樹脂として、たとえば酸素等のガスを含むと光硬化の感度が低下するラジカル重合型樹脂材料を使用すると、光透過窓近傍には硬化が阻害される領域が形成され、光透過窓に硬化物が付着しないという利点がある。
(Device configuration)
In the first embodiment, the light transmission window functions as a lid of the container. However, in the second embodiment, the light transmission window is provided at the bottom of the container. In the first embodiment, a highly confidential material such as a glass plate is used as a material for the light transmission window. However, in the second embodiment, for example, a material having a property of transmitting a gas such as oxygen. In that gas is supplied to the liquid photocurable resin in the vicinity of the light transmission window through the light transmission window. When a radically polymerizable resin material that decreases the photocuring sensitivity when containing a gas such as oxygen, for example, is used as the liquid photocurable resin, a region where curing is inhibited is formed in the vicinity of the light transmitting window. There is an advantage that the cured product does not adhere to.

図4において、1は容器、2は液状光硬化性樹脂、3は樹脂供給部、44は光透過窓、5は遮光部、46は親水性表面部、7は光源、8はミラー部、9はレンズ部、10は光源ユニット、11は基台、12は昇降アーム、13は昇降部、14は三次元造形物である。   In FIG. 4, 1 is a container, 2 is a liquid photocurable resin, 3 is a resin supply part, 44 is a light transmission window, 5 is a light shielding part, 46 is a hydrophilic surface part, 7 is a light source, 8 is a mirror part, 9 Is a lens unit, 10 is a light source unit, 11 is a base, 12 is a lifting arm, 13 is a lifting unit, and 14 is a three-dimensional structure.

容器1は、液状光硬化性樹脂2を保持するための容器であり、液状光硬化性樹脂を固化させる波長域の光を遮る材料で形成されている。   The container 1 is a container for holding the liquid photocurable resin 2, and is formed of a material that blocks light in a wavelength region that solidifies the liquid photocurable resin.

樹脂供給部3は、液状光硬化性樹脂を貯蔵するタンクとポンプを備え、容器1に適量の液状光硬化性樹脂2が保持されるように、液状光硬化性樹脂を供給する。   The resin supply unit 3 includes a tank and a pump for storing the liquid photocurable resin, and supplies the liquid photocurable resin so that an appropriate amount of the liquid photocurable resin 2 is held in the container 1.

液状光硬化性樹脂2は、特定の波長域の光を照射されると、硬化(固化)される液状の樹脂である。   The liquid photocurable resin 2 is a liquid resin that is cured (solidified) when irradiated with light in a specific wavelength range.

光透過窓4は、液状光硬化性樹脂2を固化させる波長域の光を透過させ、かつ液状光硬化性樹脂の硬化を阻害するガスを透過させる窓で、たとえばPFA,PTFE,PEなどの樹脂を材料とする板で構成される。   The light transmission window 4 is a window that transmits light in a wavelength range that solidifies the liquid photocurable resin 2 and transmits gas that inhibits the curing of the liquid photocurable resin. For example, a resin such as PFA, PTFE, and PE It consists of a plate made of

光透過窓4の近傍の液状光硬化性樹脂は、光透過窓44を透過した硬化阻害ガスの作用で、光硬化の感度が低下する。硬化阻害作用を発揮するガスは、たとえば酸素なので、光透過窓44の外には通常の大気が存在すればよい。ただし、ガスの作用をより効果的にするために、光透過窓の外気の組成や圧力を制御する機構を設けてもよい。   The liquid photocurable resin in the vicinity of the light transmission window 4 is reduced in photocuring sensitivity by the action of the curing inhibiting gas that has passed through the light transmission window 44. Since the gas exhibiting the curing inhibiting action is, for example, oxygen, it is sufficient that normal air exists outside the light transmission window 44. However, in order to make the action of gas more effective, a mechanism for controlling the composition and pressure of the outside air of the light transmission window may be provided.

光透過窓4の上側表面には、後述するUV光透過性の親水性表面部46が設けられている。   On the upper surface of the light transmission window 4, a UV light-transmitting hydrophilic surface portion 46 described later is provided.

遮光部5は、液状光硬化性樹脂2を固化させる波長域の光を遮る部材より成る部分である。   The light-shielding part 5 is a part made of a member that shields light in a wavelength region that solidifies the liquid photocurable resin 2.

光源7、ミラー部8およびレンズ部9は、造形すべき三次元モデルの形状に対応させた光を液状光硬化性樹脂に照射する光源ユニット10を構成している。光源7は、液状光硬化性樹脂を固化させる波長域の光を発する光源である。たとえば、光硬化性樹脂として紫外光に感度を有する材料を用いる場合には、He−CdレーザやArレーザ等の紫外光源が用いられる。ミラー部8は、光源7が発する光を造形すべき三次元モデルの形状に対応させて変調する部分で、マイクロミラーデバイスをアレイ状に配置したデバイスが用いられる。レンズ部9は、変調された光を、光透過窓4の下の所定位置にある液状光硬化性樹脂2に集光するためのレンズである。所定位置にある液状光硬化性樹脂2は、十分な強度の紫外光を照射されて硬化する。   The light source 7, the mirror unit 8, and the lens unit 9 constitute a light source unit 10 that irradiates the liquid photocurable resin with light corresponding to the shape of the three-dimensional model to be modeled. The light source 7 is a light source that emits light in a wavelength region that solidifies the liquid photocurable resin. For example, when a material having sensitivity to ultraviolet light is used as the photocurable resin, an ultraviolet light source such as a He—Cd laser or an Ar laser is used. The mirror unit 8 is a part that modulates the light emitted from the light source 7 in correspondence with the shape of the three-dimensional model to be modeled, and a device in which micromirror devices are arranged in an array is used. The lens unit 9 is a lens for condensing the modulated light onto the liquid photocurable resin 2 located at a predetermined position below the light transmission window 4. The liquid photocurable resin 2 at a predetermined position is cured by being irradiated with sufficiently intense ultraviolet light.

硬化物の形状の精度を確保するためには、集光レンズの焦点位置は光透過窓の近傍にするのが望ましいが、近すぎるとガスにより硬化が阻害される領域と重なる可能性がある。そこで、レンズ部9の焦点位置は、光透過窓4の上面から60μm乃至110μm上方に設定するのが望ましい。   In order to ensure the accuracy of the shape of the cured product, it is desirable that the focal position of the condensing lens is in the vicinity of the light transmission window, but if it is too close, there is a possibility of overlapping with a region where curing is inhibited by the gas. Therefore, it is desirable that the focal position of the lens unit 9 is set 60 μm to 110 μm above the upper surface of the light transmission window 4.

尚、光源ユニット10としては、液状光硬化性樹脂を固化させる波長域の光を造形すべき三次元モデルの形状に対応させて変調し、所定の位置に集光する機能を有するものであれば、上記の例に限るものではない。たとえば、紫外光源と液晶シャッターの組み合わせや、半導体レーザダイオードアレイ、走査ミラー、結像ミラー等を用いたものでもよい。   The light source unit 10 may be any unit that has a function of modulating light in a wavelength region for solidifying the liquid photocurable resin in accordance with the shape of the three-dimensional model to be modeled and condensing it at a predetermined position. However, the present invention is not limited to the above example. For example, a combination of an ultraviolet light source and a liquid crystal shutter, a semiconductor laser diode array, a scanning mirror, an imaging mirror, or the like may be used.

基台11は、その下面に三次元造形物14を吊り下げて支持する台で、昇降アーム12を介して昇降部13と連結している。昇降部13は、昇降アーム12を上下に移動させて基台11の高さを調整する機構であり、基台を移動させる移動部である。   The base 11 is a base that supports the three-dimensional structure 14 by suspending it on the lower surface thereof, and is connected to the lift unit 13 via the lift arm 12. The elevating unit 13 is a mechanism that adjusts the height of the base 11 by moving the elevating arm 12 up and down, and is a moving unit that moves the base.

第二の実施形態の三次元造形装置のブロック図は、第一の実施形態で説明した図2と概ね共通するため、説明を省略する。   Since the block diagram of the three-dimensional modeling apparatus of the second embodiment is generally the same as FIG. 2 described in the first embodiment, the description thereof is omitted.

(三次元造形プロセス)
次に、第二の実施形態の三次元造形装置を用いた三次元造形プロセスを説明する。
(Three-dimensional modeling process)
Next, a three-dimensional modeling process using the three-dimensional modeling apparatus of the second embodiment will be described.

まず、制御部21は、不図示のセンサーを用いて、容器1内に所定量の液状光硬化性樹脂が収容されているか確認する。不足している場合には、樹脂供給部3を動作させ、容器1内を所定量の液状光硬化性樹脂2で満たす。   First, the control unit 21 confirms whether a predetermined amount of the liquid photocurable resin is accommodated in the container 1 using a sensor (not shown). When the amount is insufficient, the resin supply unit 3 is operated to fill the container 1 with a predetermined amount of the liquid photocurable resin 2.

次に、制御部21は、昇降部13を動作させ、基台11の下面の位置が光源ユニット10の焦点よりもわずかに上になるように、基台11の位置をセットする。たとえば、積層造形で三次元造形物を形成する際の一層の厚みを40μmとするとき、焦点位置よりも10μm乃至30μm上方に基台11の下面が位置するように調整する。   Next, the control unit 21 operates the elevating unit 13 to set the position of the base 11 so that the position of the lower surface of the base 11 is slightly above the focal point of the light source unit 10. For example, when the thickness of one layer when forming a three-dimensional structure by layered modeling is 40 μm, the bottom surface of the base 11 is adjusted to be 10 μm to 30 μm above the focal position.

制御部21は、外部装置22から入力された三次元造形モデル形状データに基づいて、積層造形プロセスで用いる各層の形状データ(スライスデータ)を作成する。   The control unit 21 creates shape data (slice data) of each layer used in the additive manufacturing process based on the 3D modeling model shape data input from the external device 22.

制御部21は、光源ユニット10を駆動して、三次元造形物の第一層目の形状データに基づいて変調された紫外光を照射する。照射された部位の液状光硬化性樹脂2が硬化し、基台11の下面に、三次元造形物の第一層目部分が形成される。   The control unit 21 drives the light source unit 10 to emit ultraviolet light modulated based on the shape data of the first layer of the three-dimensional structure. The liquid photocurable resin 2 at the irradiated site is cured, and the first layer portion of the three-dimensional structure is formed on the lower surface of the base 11.

次に、第二層目を形成するための準備として、制御部21は昇降部13を動作させ、第一層目部分が形成された基台11を、40μm上昇させる。上昇する基台11と光透過窓44の間の空間には、周囲から液状光硬化性樹脂2が流入する。   Next, as preparation for forming the second layer, the control unit 21 operates the elevating unit 13 to raise the base 11 on which the first layer portion is formed by 40 μm. The liquid photocurable resin 2 flows from the surroundings into the space between the rising base 11 and the light transmission window 44.

本発明によれば、光透過窓4の上面、すなわち液状光硬化性樹脂2と接触する面が、親水性表面処理をされているため、液状光硬化性樹脂2の流動抵抗が低減されている。このため、液状光硬化性樹脂2の流入速度が速く、第二層目を形成するための準備工程の所要時間を短縮することが可能である。   According to the present invention, the flow resistance of the liquid photocurable resin 2 is reduced because the upper surface of the light transmission window 4, that is, the surface in contact with the liquid photocurable resin 2 is subjected to a hydrophilic surface treatment. . For this reason, the inflow speed of the liquid photocurable resin 2 is fast, and it is possible to shorten the time required for the preparation process for forming the second layer.

液状光硬化性樹脂2の流入が完了したタイミングで、制御部21は、三次元造形物の第二層目の形状データに基づき、光源ユニット10を駆動して、形状データに基づいて変調された紫外光を照射する。照射された部位の液状光硬化性樹脂2が硬化し、三次元造形物の第一層目の下に、第二層目部分が積層形成される。   At the timing when the inflow of the liquid photocurable resin 2 is completed, the control unit 21 drives the light source unit 10 based on the shape data of the second layer of the three-dimensional structure, and is modulated based on the shape data. Irradiate with ultraviolet light. The liquid photocurable resin 2 at the irradiated portion is cured, and a second layer portion is laminated and formed under the first layer of the three-dimensional structure.

以下、同様の工程を繰り返すことで、多数層を積層し、所望の形状の三次元造形物を形成することが可能である。   Hereinafter, by repeating the same process, it is possible to laminate a large number of layers and form a three-dimensional structure having a desired shape.

本発明によれば、光透過窓の下面に親水性処理を施すことにより、次の層形成のための液状光硬化性樹脂の注入を高速化できる。三次元造形物の形成に要する時間は、造形物の大きさや形状、使用する液状光硬化性樹脂の種類、温度等により変化するので、本発明による時間短縮の効果を普遍的な数値として表現するのは困難である。そこで、本発明を非実施の装置との相対的な比較を行った。   According to the present invention, by applying a hydrophilic treatment to the lower surface of the light transmission window, the injection of the liquid photocurable resin for forming the next layer can be speeded up. Since the time required to form a three-dimensional structure varies depending on the size and shape of the structure, the type of liquid photocurable resin used, the temperature, etc., the time reduction effect according to the present invention is expressed as a universal numerical value. It is difficult. Therefore, the present invention was compared with a non-implemented apparatus.

(実施例2)
UV透過性で、かつガス透過性のあるPFA基板にリン酸カルシウム系セラミクスより成るUV光透過性の親水性膜を蒸着し、表面を親水性処理してから、光透過窓44として用いた。
(Example 2)
A UV light permeable hydrophilic film made of calcium phosphate ceramics was deposited on a UV permeable and gas permeable PFA substrate, and the surface was subjected to hydrophilic treatment, and then used as a light transmissive window 44.

まず、あらかじめ洗浄されたPFA基板を真空蒸着装置にセットし、50度Cになるように加熱する。そして、2オングストローム/秒の蒸着レートで、10nmの厚みの下地層を蒸着した。次に、1.2×10−2Paの酸素を導入しつつ、全圧が2×10−3Pa以下の真空度でリン酸カルシウム電子銃を駆動し、2オングストローム/秒の蒸着レートで、100nmの厚みのリン酸カルシウム系セラミクス層を蒸着した。 First, a pre-cleaned PFA substrate is set in a vacuum deposition apparatus and heated to 50 degrees C. Then, an underlayer having a thickness of 10 nm was deposited at a deposition rate of 2 angstroms / second. Next, while introducing 1.2 × 10 −2 Pa of oxygen, the calcium phosphate electron gun was driven at a vacuum level of 2 × 10 −3 Pa or less at a total pressure of 100 nm at a deposition rate of 2 Å / sec. A thick calcium phosphate ceramic layer was deposited.

このセラミクス層は、UV光をほとんど減衰することなく透過させ、また酸素やオゾンのようなガスを透過させることができる。   This ceramic layer can transmit UV light with almost no attenuation, and can transmit gas such as oxygen and ozone.

(比較例3)
UV透過性で、かつガス透過性のあるPFA基板の表面を、有機溶剤と純水で洗浄し、光透過窓44として用いた。
(Comparative Example 3)
The surface of the PFA substrate having UV transparency and gas permeability was washed with an organic solvent and pure water and used as the light transmission window 44.

まず、実施例2、比較例3のPFA基板に、液状光硬化性樹脂を滴下して液滴形状を観察する実験を行った。PFA基板は、光透過窓44として図4の装置にセットされる時とは上下面を逆にして、21.8度Cの環境下で、100マイクロリットルのウレタンアクリレートを滴下し、基板上で液滴が安定した時点でその形状を観察した。   First, an experiment was conducted in which a liquid photocurable resin was dropped onto the PFA substrates of Example 2 and Comparative Example 3 to observe the droplet shape. The PFA substrate is turned upside down from when it is set in the apparatus of FIG. 4 as the light transmission window 44, and 100 microliters of urethane acrylate is dropped in an environment of 21.8 degrees C. on the substrate. The shape was observed when the droplet was stabilized.

液滴の形状測定結果を、表2に示す。   Table 2 shows the measurement results of the droplet shape.

表2で、液滴高さとは、ガラス基板面から液滴の頂点までの高さである。また、液滴直径とは、ガラス基板を上から見たときの液滴の直径である。 In Table 2, the droplet height is the height from the glass substrate surface to the top of the droplet. The droplet diameter is the diameter of the droplet when the glass substrate is viewed from above.

表2から明らかなように、実施例2のPFE基板では、比較例3のPFE基板に比べ、液状光硬化性樹脂の液滴が平坦になっている。リン酸カルシウム系セラミクスより成る親水性膜を被覆したことで、基板表面と液状光硬化性樹脂との親和性が高まり、液滴形状が平坦になったと言える。   As is clear from Table 2, in the PFE substrate of Example 2, the liquid photocurable resin droplets are flat compared to the PFE substrate of Comparative Example 3. By coating a hydrophilic film made of calcium phosphate-based ceramics, it can be said that the affinity between the substrate surface and the liquid photocurable resin is increased, and the droplet shape is flattened.

さらに、ウレタンアクリレートの他に、液状光硬化性樹脂2として、アクリルアクリレート、ポリエステルアクリレートについても実験したが、両者とも、比較例3のPFE基板よりも実施例2のPFE基板の方が、液滴が平坦化することが分かった。   Furthermore, in addition to urethane acrylate, the liquid photocurable resin 2 was also tested for acrylic acrylate and polyester acrylate. In both cases, the PFE substrate of Example 2 was more liquid droplets than the PFE substrate of Comparative Example 3. Was found to flatten.

3種類の液状光硬化性樹脂について、実施例2のPFE基板で観測された液滴形状を表3に示す。   Table 3 shows the droplet shapes observed on the PFE substrate of Example 2 for the three types of liquid photocurable resins.

次に、実施例2、比較例3のPFE基板を、図4の三次元造形装置の光透過窓44として用い、光透過窓が異なる以外は同一の条件下で3次元造形を行い、造形に要する時間を比較した。 Next, the PFE substrate of Example 2 and Comparative Example 3 is used as the light transmission window 44 of the three-dimensional modeling apparatus in FIG. 4, and three-dimensional modeling is performed under the same conditions except that the light transmission window is different. The time required was compared.

実施例2の光透過窓を用いる場合、親水性表面処理をされているため、比較例3と比較して液状光硬化性樹脂2の流動抵抗が低減され、基台を上昇させた時の光硬化性樹脂溶の流入速度が20%程度速いことが確認された。その結果、たとえば層数750で、底面が5cm×5cm、高さが30mm程度の三次元物体を形成する場合、光硬化プロセスも含めた三次元造形に要する所要時間を、実施例2では比較例3に対して約55%短縮することができた。   When the light transmission window of Example 2 is used, since the hydrophilic surface treatment is performed, the flow resistance of the liquid photocurable resin 2 is reduced as compared with Comparative Example 3, and the light when the base is raised. It was confirmed that the inflow rate of the curable resin solution was about 20% faster. As a result, for example, when forming a three-dimensional object having a number of layers of 750, a bottom surface of 5 cm × 5 cm, and a height of about 30 mm, the time required for three-dimensional modeling including the photocuring process is shown in Example 2 as a comparative example. It was about 55% shorter than 3.

[その他の実施形態]
第一の実施形態では、光透過窓を容器の上部に配置し、第二の実施形態では、容器の底面に配置した。本発明の親水性表面処理をした光透過窓の配置は、これらの例には限られず、たとえば容器の側面に配置し、容器の横から光を入射させてもよい。その場合には、基台は上下方向ではなく、横方向に移動して、光透過窓との距離を調整すればよい。
[Other Embodiments]
In the first embodiment, the light transmission window is disposed on the top of the container, and in the second embodiment, the light transmission window is disposed on the bottom surface of the container. The arrangement of the light transmission window subjected to the hydrophilic surface treatment of the present invention is not limited to these examples. For example, the light transmission window may be arranged on the side surface of the container and light may be incident from the side of the container. In that case, the base may be moved in the horizontal direction instead of the vertical direction to adjust the distance from the light transmission window.

これらのいずれの配置であっても、第一の実施形態のような機密性の高い窓材か、あるいは第二の実施形態のようなガス透過性のある窓材を用いることが可能である。   In any of these arrangements, a highly confidential window material as in the first embodiment or a gas permeable window material as in the second embodiment can be used.

また、第一の実施形態および第二の実施形態では、光源ユニット10と基台11の間の光路となる部分に光透過窓4を設け、この部分のみに親水性表面処理を行ったが、光路となる部分の周辺領域にも親水性表面処理を行ってもよい。   Further, in the first embodiment and the second embodiment, the light transmission window 4 is provided in a portion that becomes an optical path between the light source unit 10 and the base 11, and the hydrophilic surface treatment is performed only on this portion. A hydrophilic surface treatment may also be performed on the peripheral region of the portion that becomes the optical path.

1・・・容器/2・・・液状光硬化性樹脂/3・・・樹脂供給部/4・・・光透過窓/6・・・親水性表面部/10・・・光源ユニット/11・・・基台/12・・・昇降アーム/14・・・三次元造形物/44・・・光透過窓/46・・・親水性表面部   DESCRIPTION OF SYMBOLS 1 ... Container / 2 ... Liquid photocurable resin / 3 ... Resin supply part / 4 ... Light transmission window / 6 ... Hydrophilic surface part / 10 ... Light source unit / 11. ..Base / 12 ... Lifting arm / 14 ... Three-dimensional structure / 44 ... Light transmission window / 46 ... Hydrophilic surface part

Claims (6)

液状の光硬化性樹脂を保持する容器と、
前記液状の光硬化性樹脂を光硬化させた固体造形物を支持する基台と、
前記基台を移動させるための移動部と、
前記液状の光硬化性樹脂を光硬化させる光を発光する光源ユニットと、
前記光源ユニットと前記基台の間に設けられ、前記液状の光硬化性樹脂と接する光透過窓とを備え、
前記光透過窓は、前記液状の光硬化性樹脂と接する領域に親水性表面を有する、
ことを特徴とする三次元造形装置。
A container for holding a liquid photocurable resin;
A base for supporting a solid shaped article obtained by photocuring the liquid photocurable resin;
A moving unit for moving the base;
A light source unit that emits light for photocuring the liquid photocurable resin;
A light transmission window provided between the light source unit and the base, and in contact with the liquid photocurable resin;
The light transmission window has a hydrophilic surface in a region in contact with the liquid photocurable resin.
A three-dimensional modeling apparatus characterized by this.
前記親水性表面は、リン酸カルシウム系セラミクスの表面である、
ことを特徴とする請求項1に記載の三次元造形装置。
The hydrophilic surface is a surface of a calcium phosphate ceramic.
The three-dimensional modeling apparatus according to claim 1.
前記光透過窓は、機密性のガラス基板の上に親水性表面を設けた光透過窓である、
ことを特徴とする請求項1または2に記載の三次元造形装置。
The light transmission window is a light transmission window provided with a hydrophilic surface on a confidential glass substrate.
The three-dimensional modeling apparatus according to claim 1 or 2, characterized in that
前記光透過窓は、ガス透過性の基板上に親水性表面を設けた光透過窓である、
ことを特徴とする請求項1または2に記載の三次元造形装置。
The light transmission window is a light transmission window provided with a hydrophilic surface on a gas permeable substrate.
The three-dimensional modeling apparatus according to claim 1 or 2, characterized in that
液状の光硬化性樹脂を保持する容器と、
前記液状の光硬化性樹脂を光硬化させた固体造形物を支持する基台と、
前記基台を移動させるための移動部と、
前記液状の光硬化性樹脂を光硬化させる光を発光する光源ユニットと、
前記光源ユニットと前記基台の間に設けられ、前記液状の光硬化性樹脂と接する光透過窓とを備えた三次元造形装置を用いる三次元造形物の製造方法であって、
前記光源ユニットを発光させて前記容器の内に保持された前記液状の光硬化性樹脂の一部を光硬化させた後に、
前記基台を移動させ、前記液状の光硬化性樹脂を前記光透過窓に設けられた親水性表面と接触させながら、前記液状の光硬化性樹脂を前記光透過窓と前記固体造形物との間に補充する、
ことを特徴とする三次元造形物の製造方法。
A container for holding a liquid photocurable resin;
A base for supporting a solid shaped article obtained by photocuring the liquid photocurable resin;
A moving unit for moving the base;
A light source unit that emits light for photocuring the liquid photocurable resin;
A method for producing a three-dimensional structure using a three-dimensional structure forming apparatus provided between the light source unit and the base and having a light transmission window in contact with the liquid photocurable resin,
After light-curing a part of the liquid photocurable resin held in the container by emitting light from the light source unit,
The liquid photocurable resin is moved between the light transmissive window and the solid shaped article while moving the base and bringing the liquid photocurable resin into contact with the hydrophilic surface provided on the light transmissive window. Replenish in between,
A method for producing a three-dimensional structure characterized by that.
前記光透過窓を介して、前記光透過窓と接する前記液状の光硬化性樹脂に、ガスを供給する、
ことを特徴とする請求項5に記載の三次元造形物の製造方法。
Gas is supplied to the liquid photocurable resin in contact with the light transmissive window through the light transmissive window.
The manufacturing method of the three-dimensional structure according to claim 5.
JP2016163070A 2016-08-23 2016-08-23 Manufacturing method of 3D modeling equipment and 3D modeled objects Active JP6783586B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016163070A JP6783586B2 (en) 2016-08-23 2016-08-23 Manufacturing method of 3D modeling equipment and 3D modeled objects
KR1020170102078A KR102233625B1 (en) 2016-08-23 2017-08-11 Three dimensional manufacturing apparatus and method for manufacturing three dimensional manufactured product
US15/677,160 US20180056587A1 (en) 2016-08-23 2017-08-15 Three dimensional manufacturing apparatus and method for manufacturing three dimensional manufactured product
CN201710709428.7A CN107756785B (en) 2016-08-23 2017-08-18 Three-dimensional manufacturing apparatus and method for manufacturing three-dimensional article
US17/242,698 US11951677B2 (en) 2016-08-23 2021-04-28 Three dimensional manufacturing apparatus and method for manufacturing three dimensional manufactured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016163070A JP6783586B2 (en) 2016-08-23 2016-08-23 Manufacturing method of 3D modeling equipment and 3D modeled objects

Publications (2)

Publication Number Publication Date
JP2018030278A true JP2018030278A (en) 2018-03-01
JP6783586B2 JP6783586B2 (en) 2020-11-11

Family

ID=61304417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016163070A Active JP6783586B2 (en) 2016-08-23 2016-08-23 Manufacturing method of 3D modeling equipment and 3D modeled objects

Country Status (1)

Country Link
JP (1) JP6783586B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110126272A (en) * 2019-05-21 2019-08-16 广东石油化工学院 A kind of photocuring 3D printer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596632A (en) * 1991-10-08 1993-04-20 Daikin Ind Ltd Method and apparatus for optical shaping
JPH06226863A (en) * 1993-02-04 1994-08-16 Hitachi Ltd Optical shaping device
JPH09131799A (en) * 1995-11-09 1997-05-20 Teijin Seiki Co Ltd Optical molding device
JP2005074988A (en) * 2003-08-29 2005-03-24 Cmet Inc Photo-fabrication device
JP2007504856A (en) * 2003-09-09 2007-03-08 ボストン サイエンティフィック リミテッド Lubricant coating
JP2010207348A (en) * 2009-03-09 2010-09-24 Terumo Corp Guide wire
WO2016013594A1 (en) * 2014-07-24 2016-01-28 国立研究開発法人物質・材料研究機構 Bioabsorbable member for medical use and method for producing same
JP2016509964A (en) * 2013-02-12 2016-04-04 カーボンスリーディー,インコーポレイテッド Continuous liquid phase printing
JP2016055517A (en) * 2014-09-09 2016-04-21 セイコーエプソン株式会社 Method for manufacturing three-dimensional molded article, material set for three-dimensional molding, and three-dimensional molded article
JP2016112870A (en) * 2014-12-18 2016-06-23 株式会社リコー 3d modeling powder material and 3d modeling set, and 3d modeled object producing method and producing apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596632A (en) * 1991-10-08 1993-04-20 Daikin Ind Ltd Method and apparatus for optical shaping
JPH06226863A (en) * 1993-02-04 1994-08-16 Hitachi Ltd Optical shaping device
JPH09131799A (en) * 1995-11-09 1997-05-20 Teijin Seiki Co Ltd Optical molding device
JP2005074988A (en) * 2003-08-29 2005-03-24 Cmet Inc Photo-fabrication device
JP2007504856A (en) * 2003-09-09 2007-03-08 ボストン サイエンティフィック リミテッド Lubricant coating
JP2010207348A (en) * 2009-03-09 2010-09-24 Terumo Corp Guide wire
JP2016509964A (en) * 2013-02-12 2016-04-04 カーボンスリーディー,インコーポレイテッド Continuous liquid phase printing
WO2016013594A1 (en) * 2014-07-24 2016-01-28 国立研究開発法人物質・材料研究機構 Bioabsorbable member for medical use and method for producing same
JP2016055517A (en) * 2014-09-09 2016-04-21 セイコーエプソン株式会社 Method for manufacturing three-dimensional molded article, material set for three-dimensional molding, and three-dimensional molded article
JP2016112870A (en) * 2014-12-18 2016-06-23 株式会社リコー 3d modeling powder material and 3d modeling set, and 3d modeled object producing method and producing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110126272A (en) * 2019-05-21 2019-08-16 广东石油化工学院 A kind of photocuring 3D printer

Also Published As

Publication number Publication date
JP6783586B2 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
US11951677B2 (en) Three dimensional manufacturing apparatus and method for manufacturing three dimensional manufactured product
Kowsari et al. High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing
CN109689341B (en) Method and device for producing three-dimensional molded bodies on the basis of photolithographic accretion
KR101155684B1 (en) Rapid Layer upon layer form Stereolithography
CN104589651B (en) Photocuring printing device and method
JP6058819B2 (en) 3D object production
KR101968703B1 (en) Optical sheet having patterned phosphor and manufacturing method thereof
WO2016184284A1 (en) Light control device and manufacturing method therefor, and 3d printing system
JP2018039188A (en) Three-dimensional molding apparatus and method for manufacturing three-dimensional molded object
CN107443731A (en) Photocuring 3 D-printing device and its Method of printing based on ultraviolet LED micro display technology
JP4669843B2 (en) Stereolithography apparatus and stereolithography method
WO2007023724A1 (en) Stereolithography apparatus and stereolithography method
JP6783586B2 (en) Manufacturing method of 3D modeling equipment and 3D modeled objects
CN111168996A (en) Photosensitive resin dip-forming apparatus and method
CN111511530A (en) Three-dimensional printer and printing system
JP4828028B2 (en) 3D modeling apparatus and 3D modeling method
US20210299960A1 (en) Three-dimensional printing apparatus and manufacturing method thereof
KR20170028097A (en) Lcd unit of 3d printer
JP2004042546A (en) Method for lamination-molding functional material
JP6866152B2 (en) 3D modeling device and 3D modeling method
CN109203468A (en) A kind of rapid photocuring 3D printing device
JP7066459B2 (en) 3D modeling device and 3D modeling method
JP4626446B2 (en) Stereolithography apparatus and stereolithography method
KR20190023014A (en) 3d printer for photocurable and manufacturing method thereof
CN113276408A (en) Continuous photocuring forming additive manufacturing device in liquid and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201022

R151 Written notification of patent or utility model registration

Ref document number: 6783586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151