JP2018030128A - 比抵抗値調整装置 - Google Patents

比抵抗値調整装置 Download PDF

Info

Publication number
JP2018030128A
JP2018030128A JP2017157839A JP2017157839A JP2018030128A JP 2018030128 A JP2018030128 A JP 2018030128A JP 2017157839 A JP2017157839 A JP 2017157839A JP 2017157839 A JP2017157839 A JP 2017157839A JP 2018030128 A JP2018030128 A JP 2018030128A
Authority
JP
Japan
Prior art keywords
liquid
hollow fiber
fiber membrane
specific resistance
membrane module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017157839A
Other languages
English (en)
Other versions
JP6900834B2 (ja
Inventor
政人 齊藤
Masato Saito
政人 齊藤
和美 大井
Kazumi Oi
和美 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Publication of JP2018030128A publication Critical patent/JP2018030128A/ja
Application granted granted Critical
Publication of JP6900834B2 publication Critical patent/JP6900834B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】簡易な構成で、供給される液体が低流量になっても液体の比抵抗値が上昇するのを抑制する。
【解決手段】液体供給管3及びガス供給管5から中空糸膜モジュール2に液体L及び調整ガスGが供給され、中空糸膜モジュール2から第一液体排出管41に調整ガスGが溶解した液体Lが排出され、この排出された液体Lと、バイパス管6により中空糸膜モジュール2をバイパスした液体Lと、が合流装置8で合流し、第二液体排出管42に排出される。合流装置8は、バイパス管6と第二液体排出管42とに接続されて、バイパス管6よりも流路径の小さい絞り部81aを有する第一流路81と、第一液体排出管41と絞り部81aとに接続される第二流路82と、を備える。
【選択図】図1

Description

本発明は、液体の比抵抗値を調整する比抵抗値調整装置に関する。
半導体又は液晶の製造工程では、超純水を使用して基板を洗浄する。この場合、超純水の比抵抗値が高いと、静電気が発生する。これにより、絶縁破壊して、又は微粒子が再付着して、製品歩留まりに著しく悪影響を及ぼす。このような問題を解決するために、疎水性の中空糸膜モジュールを用いた方法が提案されている。この方法は、中空糸膜モジュールを用いて超純水中に炭酸ガス又はアンモニアガス等のガスを溶解させる。すると、解離平衡によりイオンが発生し、この発生したイオンにより超純水の比抵抗値が低下する。
また、基板の洗浄、ダイシング等の工程では、超純水の流動変動が激しい。そこで、特許文献1及び2では、流量が変動しても比抵抗値を安定させる技術が提案されている。特許文献1に記載された技術では、小流量のガス付加超純水を生成する中空糸膜モジュールと、大流量の超純水を通過させるバイパス管路と、を設ける。そして、生成されたガス付加超純水とバイパス管路を通過した超純水とを合流する。これにより、容易に超純水の比抵抗値を調整できる。しかしながら、特許文献1に記載された技術では、超純水が低流量になると、中空糸膜モジュールをバイパスする超純水の流量に対して中空糸膜モジュールに供給される超純水の流量が低下するため、超純水の比抵抗値が上昇する場合がある。そこで、特許文献2に記載された技術では、複数のバイパス管路を設け、1又は複数のバイパス管路にシャット弁を設ける。そして、超純水の流量が低下すると、一部又は全部のシャット弁を開ける。これにより、超純水が低流量になっても、中空糸膜モジュールをバイパスする超純水の流量に対して中空糸膜モジュールに供給される超純水の流量が低下するのを抑制できるため、超純水の比抵抗値が上昇するのを抑制できる。
特許第3951385号公報 特開2012−223725号公報
しかしながら、特許文献2に記載された技術では、シャット弁が取り付けられた複数のバイパス配管を設ける必要があるとともに、供給される超純水が低流量になると、シャット弁を開閉する必要がある。このため、構成が複雑になるという問題がある。
そこで、本発明は、簡易な構成で、供給される液体が低流量になっても液体の比抵抗値が上昇するのを抑制できる比抵抗値調整装置を提供することを目的とする。
本発明の一側面に係る比抵抗値調整装置は、中空糸膜により、比抵抗値の調整対象である液体が供給される液相側領域と液体の比抵抗値を調整するための調整ガスが供給される気相側領域とに分けられて、中空糸膜を透過した調整ガスを液体に溶解させる中空糸膜モジュールと、中空糸膜モジュールに液体を供給する液体供給管と、中空糸膜モジュールから調整ガスが溶解した液体が排出される第一液体排出管と、中空糸膜モジュールに調整ガスを供給するガス供給管と、液体供給管から分岐して中空糸膜モジュールをバイパスするバイパス管と、第一液体排出管の液体とバイパス管の液体とを合流する合流装置と、合流装置から合流した液体が排出される第二液体排出管と、を備え、合流装置は、バイパス管と第二液体排出管とに接続されて、バイパス管よりも流路径の小さい絞り部を有する第一流路と、第一液体排出管と絞り部とに接続される第二流路と、を備える。
この比抵抗値調整装置では、比抵抗値の調整対象である液体は、液体供給管から中空糸膜モジュールに供給される液体と、中空糸膜をバイパスしてバイパス管に供給される液体と、に分配される。中空糸膜モジュールでは、ガス供給管から調整ガスが中空糸膜モジュールの気相側領域に供給されているため、液体供給管から液相側領域に供給された液体に、中空糸膜を透過した調整ガスが溶解される。中空糸膜モジュールにより調整ガスが溶解された液体と、バイパス管を通過した液体とは、合流装置により合流されて、第二液体排出管に排出される。これにより、液体の流量に関わらず、液体の比抵抗値を容易に調整できる。
そして、合流装置では、第一液体排出管に接続される第二流路が、バイパス管と第二液体排出管とに接続される第一流路の絞り部に接続される。つまり、合流装置では、エジェクタ効果(ベンチュリ効果ともいう)により、バイパス管から第二液体排出管に液体が流れることで、第一液体排出管に負圧が発生して、第一液体排出管から液体が吸引される。このため、供給される液体が低流量となっても、中空糸膜モジュールをバイパスする液体の流量に対して中空糸膜モジュールに供給される液体の流量が低下するのが抑制される。特に、供給される液体の流量が小さくなると、供給される液体の流量が十分に大きい場合に比べて、中空糸膜モジュールをバイパスする液体の流量に対する中空糸膜モジュールに供給される液体の流量の割合が小さくなる。すると、合流装置において、第二流路を流れる液体の流量に対する第一流路を流れる液体の流量の割合が大きくなる。その結果、合流装置のエジェクタ効果、つまり、第二流路から液体を吸引する効果が、供給される液体の流量が十分に大きい場合に比べて増大される。これにより、簡易な構成で、供給される液体が低流量になっても液体の比抵抗値が上昇するのを抑制することができる。
一実施形態として、バイパス管の流路径をA、絞り部の流路径をBとすると、B/Aは0.3以上0.8以下の範囲としてもよい。この比抵抗値調整装置では、バイパス管の流路径に対する絞り部の流路径の割合を0.3以上0.8以下の範囲とすることで、供給される液体が低流量となった場合のエジェクタ効果を効果的に発生させることができる。
本発明によれば、簡易な構成で、供給される液体が低流量になっても液体の比抵抗値が上昇するのを抑制できる。
実施形態の比抵抗値調整装置の模式図である。 実施形態の合流装置の模式図である。 比較例の比抵抗値調整装置の模式図である。 比較例の合流装置の模式図である。 実施例1及び比較例1の計測結果を示す図である。 実施例2及び比較例2の計測結果を示す図である。
以下、図面を参照して、実施形態の比抵抗値調整装置について詳細に説明する。なお、全図中、同一または相当部分には同一符号を付し、重複する説明を省略する。
図1は、実施形態の比抵抗値調整装置の模式図である。図1に示すように、本実施形態の比抵抗値調整装置1は、中空糸膜モジュール2と、液体供給管3と、液体排出管4と、ガス供給管5と、バイパス管6と、分配装置7と、合流装置8と、を備える。
中空糸膜モジュール2は、比抵抗値の調整対象である液体Lに、液体Lの比抵抗値を調整するための調整ガスGを溶解させる。液体Lとして用いる液体は、特に限定されないが、例えば、半導体、液晶等を洗浄するための超純水とすることができる。通常、超純水の比抵抗値は、17.5[MΩ・cm]以上18.2[MΩ・cm]の範囲である。調整ガスGとしても用いるガスは、特に限定されないが、例えば、炭酸ガス又はアンモニアガスとすることができる。中空糸膜モジュール2は、複数本の中空糸膜21と、これらの中空糸膜21を内部に収容するハウジング22と、を備える。
中空糸膜21は、気体は透過するが液体は透過しない中空糸状の膜である。中空糸膜21の素材、膜形状、膜形態等は、特に制限されない。ハウジング22は、中空糸膜21を内部に収容する密閉容器である。
中空糸膜モジュール2のハウジング22内の領域は、中空糸膜21により、液相側領域と気相側領域とに分けられる。液相側領域は、中空糸膜モジュール2のハウジング22内内の領域のうち、比抵抗値を調整する液体Lが供給される領域である。気相側領域は、中空糸膜モジュール2のハウジング22内の領域のうち、比抵抗値を調整する調整ガスGが供給される領域である。中空糸膜モジュール2の種類としては、内部灌流型及び外部灌流型がある。本実施形態では、内部灌流型及び外部灌流型の何れであってもよい。外部灌流型の中空糸膜モジュール2では、中空糸膜21の内側(内表面側)が気相側領域となり、中空糸膜21の外側(外表面側)が液相側領域となる。内部灌流型の中空糸膜モジュール2では、中空糸膜21の内側(内表面側)が液相側領域となり、中空糸膜21の外側(外表面側)が気相側領域となる。
ハウジング22には、液体供給口23と、液体排出口24と、ガス供給口25と、が形成されている。液体供給口23は、液相側領域に液体Lを供給するためにハウジング22に形成された開口である。液体排出口24は、液相側領域から液体Lを排出するためにハウジング22に形成された開口である。ガス供給口25は、気相側領域に調整ガスGを供給するためにハウジング22に形成された開口である。このため、液体供給口23及び液体排出口24は、液相側領域に連通され、ガス供給口25は、気相側領域に連通される。液体供給口23、液体排出口24、及びガス供給口25の位置は特に限定されない。
液体供給管3は、内周側に液体Lが流れる流路が形成された管状の部材である。液体供給管3は、液体供給口23に接続されている。液体供給管3は、中空糸膜モジュール2の液相側領域に連通されており、中空糸膜モジュール2の液相側領域に液体Lを供給する。液体排出管4の素材、特性(硬さ、弾性等)、形状、寸法等は、特に限定されない。
液体排出管4は、内周側に液体Lが流れる流路が形成された管状の部材である。液体排出管4は、液体排出口24に接続されている。液体排出管4は、中空糸膜モジュール2の液相側領域に連通されており、中空糸膜モジュール2の液相側領域から液体Lが排出される。液体排出管4の素材、特性(硬さ、弾性等)、形状、寸法等は、特に限定されない。
ガス供給管5は、内周側に調整ガスGが流れる流路が形成された管状の部材である。ガス供給管5は、ガス供給口25に接続されている。ガス供給管5は、中空糸膜モジュール2の気相側領域に連通されており、中空糸膜モジュール2の気相側領域に調整ガスGを供給する。ガス供給管5の素材、特性(硬さ、弾性等)、形状、寸法等は、特に限定されない。
ガス供給管5には、圧力調整弁9と、圧力計P1と、が接続されている。圧力調整弁9は、ガス供給管5を流れる調整ガスGのガス圧を調整する。つまり、気相側領域における調整ガスGのガス圧は、圧力調整弁9により調整される。圧力調整弁9としては、周知の様々な圧力調整弁を採用することができる。圧力計P1は、ガス供給管5を流れる調整ガスGのガス圧を計測する。圧力計P1は、ガス供給管5における圧力計P1の下流側、すなわち、ガス供給管5における圧力計P1の気相側領域側に接続されている。圧力計P1としては、周知の様々な圧力計を採用することができ、例えば、ダイヤフラム弁を採用することができる。そして、比抵抗値調整装置1を制御する制御部(不図示)は、ガス供給管5を流れる調整ガスGのガス圧、すなわち、気相側領域における調整ガスGのガス圧が、所定値(又は所定範囲内)となるように、圧力計P1で計測した調整ガスGのガス圧に基づいて圧力調整弁9を制御する。
なお、本実施形態では、中空糸膜モジュール2の気相側領域から調整ガスGが排出されないものとして説明するが、中空糸膜モジュール2の気相側領域から調整ガスGが排出されるものとしてもよい。この場合、中空糸膜モジュール2のハウジング22に、気相側領域から調整ガスGを排出するための開口であるガス排出口(不図示)を形成する。そして、このガス排出口に、中空糸膜モジュール2の気相側領域から調整ガスGが排出されるガス排出管(不図示)を接続する。ガス排出管は、内周側に調整ガスGが流れる流路が形成された管状の部材である。
バイパス管6は、内周側に液体Lが流れる流路が形成された管状の部材である。バイパス管6は、中空糸膜モジュール2をバイパスするように液体供給管3と液体排出管4とに接続されている。バイパス管6は、液体供給管3から分岐して中空糸膜モジュール2をバイパスする。バイパス管6の一方端部は、分配装置7により、中空糸膜モジュール2の上流側において液体供給管3に接続されている。バイパス管6の他方端部は、合流装置8により、中空糸膜モジュール2の下流側において液体排出管4に接続されている。
ここで、液体供給管3のうち、分配装置7よりも液体Lの上流側を第一液体供給管31とし、分配装置7よりも液体Lの下流側を第二液体供給管32とする。同様に、液体排出管4のうち、合流装置8よりも液体Lの上流側を第一液体排出管41とし、合流装置8よりも液体Lの下流側を第二液体排出管42とする。
第一液体排出管41には、流量調整バルブ10が接続されている。流量調整バルブ10は、第一液体排出管41の開度を調節するなどして、第一液体排出管41を流れる液体Lの流量を調整する。流量調整バルブ10としては、周知の様々な流量調整バルブを採用することができる。
分配装置7は、第一液体供給管31、第二液体供給管32及びバイパス管6に接続されている。分配装置7は、第一液体供給管31を流れる液体Lを、第二液体供給管32とバイパス管6とに分配する。分配装置7により第二液体供給管32に分配された液体Lは、中空糸膜モジュール2を通って第一液体排出管41に流れていく。分配装置7によりバイパス管6に分配された液体Lは、中空糸膜モジュール2を迂回して第一液体排出管41に流れていく。このとき、中空糸膜モジュール2を迂回して液体排出管4に流れていく液体Lの流量が、中空糸膜モジュール2を通って液体排出管4に流れていく液体Lの流量よりも大きくなるように、バイパス管6の流路径が設定される。バイパス管6の素材、特性(硬さ、弾性等)、形状、寸法等は、特に限定されない。
合流装置8は、第一液体排出管41、バイパス管6及び第二液体排出管42に接続されている。そして、合流装置8は、第一液体排出管41を流れる液体Lとバイパス管6を流れる液体Lを合流し、第二液体排出管42に排出する。
ここで、図2を参照して、合流装置8についてさらに詳しく説明する。
図2は、実施形態の合流装置の模式図である。図2に示すように、合流装置8は、バイパス管6から第二液体排出管42に至る液体Lの流れによるエジェクタ効果(ベンチュリ効果ともいう)により、第一液体排出管41に負圧ΔPを発生させて第一液体排出管41から液体Lを吸引するエジェクタである。合流装置8は、第一流路81と、第二流路82と、を備える。第一流路81及び第二流路82は、液体Lが流れる流路である。
第一流路81は、バイパス管6と第二液体排出管42とに接続されている。第一流路81には、バイパス管6よりも流路径(又は流路の断面積)の小さい絞り部81aが設けられている。絞り部81aのバイパス管6側には、絞り部81aに向かうに従い流路径(又は流路の断面積)が小さくなるテーパ部81bが設けられている。絞り部81aの第二液体排出管42側には、絞り部81aから離れるに従い流路径(流路の断面積)が大きくなる逆テーパ部81cが設けられている。このため、バイパス管6から第一流路81に供給された液体Lは、絞り部81aに向かうに従い、流速が高くなっていく。そして、絞り部81aを通過した液体Lは、絞り部81aから離れていくに従い、流速が低くなっていく。
第二流路82は、第一液体排出管41と絞り部81aとに接続されている。第一流路81に対する第二流路82の接続構造は、特に限定されるものではない。例えば、第二流路82は、第一流路81の中心軸線に対して直交する方向に第一流路81に接続されてもよい。
次に、比抵抗値調整装置1の作用効果について説明する。
第一液体供給管31に液体L(超純水)を供給すると、液体Lは、分配装置7により、第二液体供給管32から中空糸膜モジュール2に供給される液体Lと、中空糸膜モジュール2をバイパスしてバイパス管6に供給される液体Lと、に分配される。中空糸膜モジュール2では、ガス供給管5から調整ガスGが中空糸膜モジュール2の気相側領域に供給されているため、第二液体供給管32から液相側領域に供給された液体Lに、中空糸膜21を透過した調整ガスGが溶解される。中空糸膜モジュール2により調整ガスGが溶解された液体L(ガス付加超純水)と、バイパス管6を通過した液体L(超純水)とは、合流装置8により合流されて、第二液体排出管42に排出される。これにより、液体Lの流量に関わらず、液体Lの比抵抗値を容易に調整することができる。
そして、合流装置8では、第一液体排出管41に接続される第二流路82が、バイパス管6と第二液体排出管42とに接続される第一流路81の絞り部81aに接続されている。このため、合流装置8では、エジェクタ効果(ベンチュリ効果ともいう)により、バイパス管6から第二液体排出管42に液体Lが流れることで、第一液体排出管41に負圧ΔPが発生して、第一液体排出管41から液体Lが吸引される。このため、第一液体供給管31に供給される液体Lが低流量となっても、中空糸膜モジュール2をバイパスする液体Lの流量に対して中空糸膜モジュール2に供給される液体Lの流量が低下するのが抑制される。特に、供給される液体Lの流量が小さくなると、供給される液体Lの流量が十分に大きい場合に比べて、中空糸膜モジュール2をバイパスする液体Lの流量に対する中空糸膜モジュール2に供給される液体Lの流量の割合が小さくなる。すると、合流装置8において、第二流路82を流れる液体Lの流量に対する第一流路81を流れる液体Lの流量の割合が大きくなる。その結果、合流装置8のエジェクタ効果、つまり、第二流路82から液体Lを吸引する効果が、供給される液体Lの流量が十分に大きい場合に比べて増大される。これにより、簡易な構成で、供給される液体Lが低流量になっても液体Lの比抵抗値が上昇するのを抑制することができる。
ここで、バイパス管6の流路径をA、絞り部81aの流路径をBとする。この場合、B/Aは、0.3以上0.8以下の範囲であることが好ましく、0.33以上0.75以下の範囲であることが更に好ましい。なお、Aをバイパス管6の流路の断面積とし、Bを絞り部81aの断面積としてもよい。このように、バイパス管の流路径Aに対する絞り部81aの流路径Bの割合を0.3以上0.8以下の範囲とし、更に0.33以上0.75以下の範囲とすることで、第一液体供給管31に供給される液体Lが低流量となった場合のエジェクタ効果を効果的に発生させることができる。
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態では、図2を参照して合流装置8の具体的な構成について説明したが、合流装置8は、図2と異なる構成であってもよい。また、上記実施形態では、流量調整バルブ10は、第一液体排出管41に接続するものとして説明したが、分配装置7から中空糸膜モジュール2を通って合流装置8に至る流路において、液体Lの流量を調整することができれば、流量調整バルブ10を当該流路の何れの位置に接続してもよく、また、流量調整バルブ10を他の部材に置き換えてもよい。
次に、本発明の実施例を説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
実施例1では、図1及び図2に示す上記の実施形態の比抵抗値調整装置1を用いた。
液体供給管3の第一液体供給管31に供給する液体Lとしては、25[℃]における比抵抗値が18.2[MΩ・cm]の超純水を用いた。第一液体供給管31に供給する超純水の流量は、1〜20[L/min]の間で変動させた。一定流量を維持する流量維持時間は、30秒とし、段階的に当該流量を変動させた。第一液体供給管31に供給する超純水の水圧は、0.2[MPa]とした。
ガス供給管5に供給する調整ガスGとしては、炭酸ガスを用いた。炭酸ガスの供給源には、7[m]の炭酸ガスボンベを用いた。圧力調整弁9として、二段式圧力調整器及びプレッシャーレギュレーティングバルブを用い、中空糸膜モジュール2の気相側領域に供給する炭酸ガスのガス圧を、0.1[MPa]とした。
中空糸膜モジュール2として、ポリ−4−メチルペンテン−1を素材とする内径200[μm]、外径250[μm]の中空糸膜21を束にし、PP樹脂製のハウジング22内で、中空糸膜21の束の両端を樹脂で固め、0.5[m]の膜面積を有する外部灌流型の気体給気用中空糸モジュール(DIC(株)製 SEPAREL PF−001L)を得た。中空糸膜21の炭酸ガス透過速度は、3.5×10−5[cm/cm・sec・cmHg]であった。
そして、第一液体供給管31に超純水を供給するとともに、ガス供給管5に炭酸ガスを供給した。第一液体供給管31に供給した超純水は、分配装置7により、第二液体供給管32から中空糸膜モジュール2の液相側領域に供給される比較的小流量の流れと、中空糸膜モジュール2をバイパスしてバイパス管6に供給される比較的大流量の流れと、に分配された。ガス供給管5に供給した炭酸ガスは、圧力調整弁9により0.1[MPa]に調整された後、中空糸膜モジュール2の気相側領域に供給された。中空糸膜モジュール2では、炭酸ガスは、中空糸膜21を透過して液相側領域を流れる超純水に溶解され、超純水は、炭酸ガスが溶解された炭酸ガス付加超純水となった。中空糸膜モジュール2から排出された炭酸ガス付加超純水と、バイパス管6を通過した超純水とは、合流装置8により合流されて目的とする比抵抗値調整超純水となり、第二液体排出管42に排出された。
このとき、第一液体供給管31に供給する超純水の流量が20[L/min]のときに、比抵抗値調整超純水の比抵抗値が0.7[MΩ・cm]となるように、流量調整バルブ10で第一液体排出管41の流量を調整した。
そして、第一液体供給管31に供給する超純水の流量を段階的に減少させて、各流量における比抵抗値調整超純水の比抵抗値を計測した。
(実施例2)
実施例2では、実施例1と同様に、図1及び図2に示す上記の実施形態の比抵抗値調整装置1を用いた。
この比抵抗値調整装置1において、第一液体供給管31に供給する超純水の流量が20[L/min]のときに、比抵抗値調整超純水の比抵抗値が0.5[MΩ・cm]となるように、流量調整バルブ10で第一液体排出管41の流量を調整した。その他の条件は、実施例1と同一とした。
そして、第一液体供給管31に供給する超純水の流量を段階的に減少させて、各流量における比抵抗値調整超純水の比抵抗値を計測した。
(比較例1)
比較例1では、図3及び図4に示す比抵抗値調整装置11を用いた。
比抵抗値調整装置11は、基本的に比抵抗値調整装置1(図1参照)と同様であり、合流装置8の代わりに合流装置18を用いた点のみ、比抵抗値調整装置1と相違する。
合流装置18は、合流装置8のような絞り部81aを備えていない。合流装置18は、単に、第一液体排出管41を流れる液体Lとバイパス管6を流れる液体Lを合流し、比抵抗値調整超純水である液体Lを第二液体排出管42に排出する。
この比抵抗値調整装置11において、実施例1と同様に、第一液体供給管31に供給する超純水の流量が20[L/min]のときに、比抵抗値調整超純水の比抵抗値が0.7[MΩ・cm]となるように、流量調整バルブ10で第一液体排出管41の流量を調整した。その他の条件も、実施例1と同一とした。
そして、第一液体供給管31に供給する超純水の流量を段階的に減少させて、各流量における比抵抗値調整超純水の比抵抗値を計測した。
(比較例2)
比較例2では、比較例1と同様に、図3及び図4に示す比抵抗値調整装置11を用いた。
この比抵抗値調整装置11において、第一液体供給管31に供給する超純水の流量が20[L/min]のときに、比抵抗値調整超純水の比抵抗値が0.5[MΩ・cm]となるように、流量調整バルブ10で第一液体排出管41の流量を調整した。その他の条件は、実施例1と同一とした。
そして、第一液体供給管31に供給する超純水の流量を段階的に減少させて、各流量における比抵抗値調整超純水の比抵抗値を計測した。
(計測結果)
図5に、実施例1及び比較例1の計測結果を示し、図6に、実施例2及び比較例2の計測結果を示す。図5及び図6において、横軸は、第一液体供給管31に供給する超純水の流量を示しており、縦軸は、比抵抗値調整超純水の比抵抗値を示している。
図5及び図6に示すように、超純水の流量が5[L/min]を超える場合は、実施例1及び実施例2と比較例1及び比較例2とで、比抵抗値調整超純水の比抵抗値に大きな違いは無かった。一方、超純水の流量が5[L/min]以下になると、比較例1及び比較例2では、比抵抗値調整超純水の比抵抗値が大きく上昇したのに対し、実施例1及び実施例2では、比較例1及び比較例2ほど比抵抗値調整超純水の比抵抗値が大きく上昇しなかった。この結果から、絞り部81aを備えた合流装置8を設けるという簡易な構成で、供給される超純水が低流量になっても比抵抗値調整超純水の比抵抗値が上昇するのを抑制することができることが分かった。
更に、実施例1及び実施例2では、超純水の流量が低下する程、比較例1及び比較例2に比べて比抵抗値調整超純水の比抵抗値の上昇割合が小さくなった。これは、次の理由にものであると推察される。つまり、超純水の流量が十分に大きい場合は、中空糸膜モジュール2に供給される超純水の流量と中空糸膜モジュール2をバイパスする超純水の流量との分配比率が安定する。しかしながら、超純水の流量が小さくなると、この分配比率が崩れてしまい、超純水の流量が十分に大きい場合に比べて、中空糸膜モジュール2をバイパスする超純水の流量に対する中空糸膜モジュール2に供給される超純水の流量の割合が小さくなる。すると、合流装置8において、第二流路82を流れる炭酸ガス付加超純水の流量に対する第一流路81を流れる超純水の流量の割合が大きくなる。その結果、合流装置8のエジェクタ効果、つまり、第二流路82から炭酸ガス付加超純水を吸引する効果が、超純水の流量が十分に大きい場合に比べて増大されたものと推察される。
1…比抵抗値調整装置、2…中空糸膜モジュール、21…中空糸膜、22…ハウジング、23…液体供給口、24…液体排出口、25…ガス供給口、3…液体供給管、31…第一液体供給管、32…第二液体供給管、4…液体排出管、41…第一液体排出管、42…第二液体排出管、5…ガス供給管、6…バイパス管、7…分配装置、8…合流装置、81…第一流路、81a…絞り部、81b…テーパ部、81c…逆テーパ部、82…第二流路、9…圧力調整弁、10…流量調整バルブ、11…比抵抗値調整装置、18…合流装置、G…調整ガス、L…液体、P1…圧力計。

Claims (2)

  1. 中空糸膜により、比抵抗値の調整対象である液体が供給される液相側領域と前記液体の比抵抗値を調整するための調整ガスが供給される気相側領域とに分けられて、前記中空糸膜を透過した前記調整ガスを前記液体に溶解させる中空糸膜モジュールと、
    前記中空糸膜モジュールに前記液体を供給する液体供給管と、
    前記中空糸膜モジュールから前記調整ガスが溶解した前記液体が排出される第一液体排出管と、
    前記中空糸膜モジュールに前記調整ガスを供給するガス供給管と、
    前記液体供給管から分岐して前記中空糸膜モジュールをバイパスするバイパス管と、
    前記第一液体排出管を流れる前記液体と前記バイパス管を流れる前記液体とを合流する合流装置と、
    前記合流装置から合流した前記液体が排出される第二液体排出管と、を備え、
    前記合流装置は、
    バイパス管と前記第二液体排出管とに接続されて、前記バイパス管よりも流路径の小さい絞り部を有する第一流路と、
    前記第一液体排出管と前記絞り部とに接続される第二流路と、を備える、
    比抵抗値調整装置。
  2. 前記バイパス管の流路径をA、前記絞り部の流路径をBとすると、B/Aは0.3以上0.8以下の範囲である、
    請求項1に記載の比抵抗値調整装置。
JP2017157839A 2016-08-22 2017-08-18 比抵抗値調整装置 Active JP6900834B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016161971 2016-08-22
JP2016161971 2016-08-22

Publications (2)

Publication Number Publication Date
JP2018030128A true JP2018030128A (ja) 2018-03-01
JP6900834B2 JP6900834B2 (ja) 2021-07-07

Family

ID=61304291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017157839A Active JP6900834B2 (ja) 2016-08-22 2017-08-18 比抵抗値調整装置

Country Status (1)

Country Link
JP (1) JP6900834B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271789A (ja) * 1996-04-04 1997-10-21 Toyota Auto Body Co Ltd オゾン水製造装置
JPH10165961A (ja) * 1996-12-06 1998-06-23 Toyota Auto Body Co Ltd オゾン水製造装置
JPH10324502A (ja) * 1997-05-21 1998-12-08 Dainippon Ink & Chem Inc 超純水の炭酸ガス付加装置及び付加方法
JPH11128704A (ja) * 1997-11-04 1999-05-18 Dainippon Ink & Chem Inc 液体中の溶存ガス濃度の調整装置及び調整方法
JP2004097274A (ja) * 2002-09-05 2004-04-02 Mitsubishi Rayon Co Ltd 炭酸ガス溶解温水製造方法及び装置
JP2006167624A (ja) * 2004-12-16 2006-06-29 Gifu Prefecture 混合装置
US20110163124A1 (en) * 2008-10-13 2011-07-07 Leslie Richard Palmer Automatic dry granular chemical dispenser, for example for the chlorination of water in a swimming pool
JP2012223725A (ja) * 2011-04-21 2012-11-15 Dic Corp ガス溶解液体製造装置及びガス溶解液体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271789A (ja) * 1996-04-04 1997-10-21 Toyota Auto Body Co Ltd オゾン水製造装置
JPH10165961A (ja) * 1996-12-06 1998-06-23 Toyota Auto Body Co Ltd オゾン水製造装置
JPH10324502A (ja) * 1997-05-21 1998-12-08 Dainippon Ink & Chem Inc 超純水の炭酸ガス付加装置及び付加方法
JPH11128704A (ja) * 1997-11-04 1999-05-18 Dainippon Ink & Chem Inc 液体中の溶存ガス濃度の調整装置及び調整方法
JP2004097274A (ja) * 2002-09-05 2004-04-02 Mitsubishi Rayon Co Ltd 炭酸ガス溶解温水製造方法及び装置
JP2006167624A (ja) * 2004-12-16 2006-06-29 Gifu Prefecture 混合装置
US20110163124A1 (en) * 2008-10-13 2011-07-07 Leslie Richard Palmer Automatic dry granular chemical dispenser, for example for the chlorination of water in a swimming pool
JP2012223725A (ja) * 2011-04-21 2012-11-15 Dic Corp ガス溶解液体製造装置及びガス溶解液体の製造方法

Also Published As

Publication number Publication date
JP6900834B2 (ja) 2021-07-07

Similar Documents

Publication Publication Date Title
JPH10324502A (ja) 超純水の炭酸ガス付加装置及び付加方法
JP5862043B2 (ja) ガス溶解液体製造装置及びガス溶解液体の製造方法
US20230119706A1 (en) Resistivity value regulating device and resistivity value regulating method
JP6500998B2 (ja) 比抵抗値調整装置及び比抵抗値調整方法
JP6569731B2 (ja) 比抵抗値調整装置及び比抵抗値調整方法
US6884359B2 (en) Apparatus and method for controlling resistivity of ultra pure water
JP3690569B2 (ja) 超純水の比抵抗調整装置及び調整方法
JP2018030128A (ja) 比抵抗値調整装置
WO2021251199A1 (ja) 比抵抗値調整装置及び比抵抗値調整方法
WO2023276837A1 (ja) 比抵抗値調整装置及び比抵抗値調整方法
JP2002172318A (ja) 超純水の比抵抗調整装置及び調整方法
KR20000032664A (ko) 이산화탄소 가스를 초순수에 첨가하는 장치 및그 방법
CN112684675A (zh) 真空系统及使用该真空系统的浸没式光刻机
JP2013039497A (ja) 気体溶解装置および微細気泡生成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R151 Written notification of patent or utility model registration

Ref document number: 6900834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151