JP2018027885A - Terahertz composite material and method for producing the same - Google Patents

Terahertz composite material and method for producing the same Download PDF

Info

Publication number
JP2018027885A
JP2018027885A JP2017156463A JP2017156463A JP2018027885A JP 2018027885 A JP2018027885 A JP 2018027885A JP 2017156463 A JP2017156463 A JP 2017156463A JP 2017156463 A JP2017156463 A JP 2017156463A JP 2018027885 A JP2018027885 A JP 2018027885A
Authority
JP
Japan
Prior art keywords
natural
composite material
silicon
terahertz
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017156463A
Other languages
Japanese (ja)
Inventor
耀南 葉
Yao Nan Ye
耀南 葉
連信 林
lian-xin Lin
連信 林
清伊 小泉
Kiyotada Koizumi
清伊 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2018027885A publication Critical patent/JP2018027885A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Radiation-Therapy Devices (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a terahertz composite material and a method for producing the same.SOLUTION: Provided are a terahertz(THz) composite material and a method for producing the same, in which the composite material comprises: nanocrystal silicon(nc-Si) of 50 to 65%; a natural silicon oxide of 6 to 10%; a natural silicate mineral of 4 to 8%; a natural carbonate mineral of 3 to 7%; and an auxiliary binder of 6 to 10%.The production method comprises: a step 1 where raw materials are prepared according to the ratios; a step 2 where the same is filtered; a step 3 where water is added, and polishing is performed till it is made into micro-nanometer; a step 4 where the water is dried; a step 5 where pulverizing(powdering) is performed; a step 6 where the same is charged to a heat-resistant crucible and is melted at a high temperature; a step 7 where the melt is charged to a mold(the inside of the mold is beforehand treated with a mold releasing agent); a step 8 where the surface is polished and is melted at a high temperature, and impurities floated up on the surface are removed; and a step 9 where the same is polished into a prescribed shape.SELECTED DRAWING: Figure 3

Description

本発明は複合材料に関し、より詳しくはテラヘルツ(Tear Hertz、THz)複合材料の製造方法及びその組成物に関するものである。   The present invention relates to a composite material, and more particularly, to a method for manufacturing a terahertz (Tear Hertz, THz) composite material and a composition thereof.

現在多くの遠赤外線製品が存在し、ギガヘルツ(Giga Hertz)波(10)の9乗で応用される製品である。この種の構造は応用されて久しいが、但し、より高いレベルでの広範な応用に関しては、それに適した検知器が存在しないため、テラヘルツ波の応用が限られた。実際の需要により見合った製品を提供するために、本発明者は研究開発を行い、従来の使用上の問題を解決することに至った。   There are many far-infrared products at present, and they are applied by the 9th power of the Giga Hertz wave (10). This type of structure has been applied for a long time, but for a wide range of applications at a higher level, there is no suitable detector, so the application of terahertz waves has been limited. In order to provide a product more suitable for actual demand, the present inventor has researched and developed to solve the conventional problems in use.

20世紀の80年代中後期にTHz波(テラヘルツTera Hertz波1012)またはTHz波ビーム(テラヘルツ波ビーム)と正式に命名され、それ以前には科学者達は遠赤外線と呼んでいた。テラヘルツ波とはサイクルが0.1THzから10THzの範囲の電磁波を指し、その波長の範囲は0.03から3mmであり、マイクロ波と赤外線との間に位置する。実際には、百年以上前に、科学者がこの周波帯の研究を行っていた。1896年及び1897年に、Rubens及びNicholsがその周波帯の研究を行い、赤外スペクトルが9μm(0.009mm)及び20μm(0.02mm)に達し、その後に50μmに達するものも記載されている。その後の百年あまりの間、遠赤外線技術は多くの成果をあげて産業化されるに至った。然しながら、主に有効なテラヘルツ波の発振源及び検知器の感度に制限されたために、テラヘルツ周波帯の研究結果及びデータが非常に少なく、この周波帯はTHzギャップと呼ばれた。80年代になると新技術が開発され、新材料も発展し、特に技術の発展は目覚ましく、広帯域の安定したパルスのTHz発振源の獲得が常用技術となり、THz技術が目覚ましい発展を遂げ、実際にTHz研究の大きな潮流が起こっている。 In the late 80's of the 20th century, it was officially named THz wave (Tera Hertz wave 10 12 ) or THz wave beam (Terahertz wave beam), and before that, scientists called far infrared rays. The terahertz wave refers to an electromagnetic wave having a cycle in the range of 0.1 THz to 10 THz, and the wavelength range is 0.03 to 3 mm, and is located between the microwave and the infrared ray. In fact, more than a hundred years ago, scientists were studying this frequency band. In 1896 and 1897, Rubens and Nichols conducted research on the frequency band, and the infrared spectrum reached 9 μm (0.009 mm) and 20 μm (0.02 mm), followed by 50 μm. . For the next 100 years or so, far-infrared technology has been industrialized with many achievements. However, the research results and data of the terahertz frequency band are very limited because the sensitivity of the effective terahertz wave oscillation source and detector is mainly limited, and this frequency band is called THz gap. In the 1980s, new technologies were developed, new materials developed, and the development of technologies was particularly remarkable. The acquisition of a wide-band stable pulsed THz oscillation source became a regular technology, and THz technology achieved remarkable development. There is a big trend in research.

本発明の主な目的はテラヘルツ(Tera Hertz、THz)複合材料を提供し、特殊なプロセスを発見し、組成物と組み合わせることで生物に有益なテラヘルツ遠赤外線(生育光波)を放射させることにより、人々がより使用しやすくするものである。   The main object of the present invention is to provide a Tera Hertz (THz) composite material, discover a special process, and combine it with the composition to emit beneficial terahertz far-infrared rays (growth light waves), It is intended to make it easier for people to use.

上述の目的を達成させるために、本発明は複合材料を提供する。前記複合材料の構成は、50〜65%のナノクリスタル珪素(nc-Si)と、6〜10%の天然珪素酸化物と、4〜8%の天然珪酸塩鉱物と、3〜7%の天然炭酸塩鉱物と、6〜10%の補助粘結剤とを含む。   To achieve the above object, the present invention provides a composite material. The composition of the composite material is 50-65% nanocrystalline silicon (nc-Si), 6-10% natural silicon oxide, 4-8% natural silicate mineral, 3-7% natural Contains carbonate mineral and 6-10% auxiliary binder.

天然珪素酸化物は玄武岩であり、天然珪酸塩鉱物は石英及びトルマリンであり、天然炭酸塩鉱物は石灰岩及び苦灰石であり、石灰岩は霰石及び方解石を含む。ナノクリスタル珪素のサイズは500ナノメートルより小さい。補助粘結剤は珪酸ナトリウム(Na2SiD3)である。   Natural silicon oxide is basalt, natural silicate minerals are quartz and tourmaline, natural carbonate minerals are limestone and dolomite, and limestone includes meteorite and calcite. Nanocrystalline silicon is smaller than 500 nanometers. The auxiliary binder is sodium silicate (Na2SiD3).

本発明は復合材料の製造方法を更に提供し、以下の工程を含む。1、原料を比率に応じて調合する。2、ふるいにかける。3、水を加えてマイクロ・ナノメートル化するまでローラーをかける。4、水分を蒸発される。5、粉砕(粉末化)する。6耐熱性るつぼに入れて高温で溶融される。7、溶融物を鋳型(鋳型内部は先に離型剤による処理が施される)に入れる。8、表面を研磨し、高温で溶融されて表面に浮かび上がった不純物を除去する。9.超微粒子に研磨加工され、研磨加工された後、水を含む余剰物を乾燥させ、ふるいにかけて収集する。   The present invention further provides a method for producing a composite material, and includes the following steps. 1. Prepare raw materials according to the ratio. 2. Sift. 3. Add water until water is added to make the micro / nanometer. 4. Water is evaporated. 5. Grind (powder). 6 Put in a heat-resistant crucible and melt at high temperature. 7. Put the melt into a mold (the inside of the mold is first treated with a release agent). 8. The surface is polished to remove impurities that have been melted at a high temperature and floated on the surface. 9. After being polished into ultrafine particles and polished, the surplus containing water is dried and collected by sieving.

本発明は、テラヘルツ複合材料及びその製造方法を更に提供する。複合材料の構成は、50〜60%のナノクリスタル珪素(nc-Si)と、6〜10%の天然珪素酸化物と、4〜8%の天然珪酸塩鉱物と、3〜7%の天然炭酸塩鉱物と、2〜5%の炭類アロトロピー体と、6〜10%の補助粘結剤とを含む。   The present invention further provides a terahertz composite material and a manufacturing method thereof. The composition of the composite material is 50-60% nanocrystalline silicon (nc-Si), 6-10% natural silicon oxide, 4-8% natural silicate mineral, 3-7% natural carbonic acid. Salt mineral, 2-5% charcoal allotrope, and 6-10% auxiliary binder.

天然珪素酸化物は玄武岩であり、天然珪酸塩鉱物は石英またはトルマリンであり、天然炭酸塩鉱物は方解石であり、炭素はグラファイトまたは人工生成物である。ナノクリスタル珪素のサイズは500ナノメートルより小さい。補助粘結剤は珪酸ナトリウムである。   Natural silicon oxide is basalt, natural silicate mineral is quartz or tourmaline, natural carbonate mineral is calcite, and carbon is graphite or an artificial product. Nanocrystalline silicon is smaller than 500 nanometers. The auxiliary binder is sodium silicate.

複合材料の製造方法は、以下の工程を含む。1、原料を比率に応じて調合する。2、ふるいにかける。3、水を加えてマイクロ・ナノメートル化するまでローラーをかける。4、水分を蒸発される。5、粉砕(粉末化)する。6耐熱性るつぼに入れて高温で溶融される。7、溶融物を鋳型(鋳型内部は先に離型剤による処理が施される)に入れる。8、表面を研磨し、高温で溶融されて表面に浮かび上がった不純物を除去する。9.超微粒子に研磨加工され、研磨加工された後、水を含む余剰物を乾燥させ、ふるいにかけて収集する。   The manufacturing method of a composite material includes the following steps. 1. Prepare raw materials according to the ratio. 2. Sift. 3. Add water until water is added to make the micro / nanometer. 4. Water is evaporated. 5. Grind (powder). 6 Put in a heat-resistant crucible and melt at high temperature. 7. Put the melt into a mold (the inside of the mold is first treated with a release agent). 8. The surface is polished to remove impurities that have been melted at a high temperature and floated on the surface. 9. After being polished into ultrafine particles and polished, the surplus containing water is dried and collected by sieving.

本発明は特殊なプロセスを発見し、組成物と組み合わせることで生物に有益なテラヘルツ遠赤外線(生育光波)を放射させることにより、人々がより使用しやすくする。   The present invention discovers special processes and makes them more usable by people by emitting terahertz far-infrared rays (growth light waves) beneficial to living organisms in combination with compositions.

本発明に係る単体珪素の放射率−波長図である。It is an emissivity-wavelength diagram of simple substance silicon according to the present invention. 本発明に係る炭素の放射率−波長図である。It is an emissivity-wavelength diagram of carbon according to the present invention. 本発明に係る完成品Aの反射率−サイクル図である。It is a reflectance-cycle figure of the finished product A which concerns on this invention. 本発明に係る完成品Bの反射率−サイクル図である。It is a reflectance-cycle diagram of the finished product B which concerns on this invention. 本発明を従来の技術と比較した放射率−波長図である。It is an emissivity-wavelength diagram which compared this invention with the prior art.

本発明の実施形態において、テラヘルツ(Tera Hertz、THz)複合材料は、その構成は、主原料である50〜60%のナノクリスタル珪素(nc-Si)と、6〜10%の天然珪素酸化物と、4〜8%の天然珪酸塩鉱物と、3〜7%の天然炭酸塩鉱物と、2〜5%の炭類アロトロピー体と、6〜10%の補助粘結剤とを含む。珪素酸化物は玄武岩であり、天然珪酸塩鉱物は石英及びトルマリンであり、天然炭酸塩鉱物は石灰岩及び苦灰石であり、石灰岩は霰石及び方解石を含み、炭素はグラファイトまたは人工生成物であり、補助粘結剤の成分は珪酸ナトリウム(水ガラス)である(図3は完成品Aの反射率‐サイクル図を示す)。   In an embodiment of the present invention, a Tera Hertz (THz) composite material is composed of 50-60% nanocrystalline silicon (nc-Si) as a main raw material and 6-10% natural silicon oxide. And 4-8% natural silicate mineral, 3-7% natural carbonate mineral, 2-5% charcoal allotrope, and 6-10% auxiliary binder. Silicon oxide is basalt, natural silicate minerals are quartz and tourmaline, natural carbonate minerals are limestone and dolomite, limestone includes meteorites and calcite, carbon is graphite or artificial products, The component of the auxiliary binder is sodium silicate (water glass) (FIG. 3 shows the reflectance-cycle diagram of the finished product A).

本発明の他の実施形態において、テラヘルツ(Tera Hertz、THz)複合材料は、その構成は、主原料である50〜65%のナノクリスタル珪素(nc-Si)と、6〜10%の天然珪素酸化物と、4〜8%の天然珪酸塩鉱物と、3〜7%の天然炭酸塩鉱物と、6〜10%の補助粘結剤とを含む。珪素酸化物は玄武岩であり、天然珪酸塩鉱物は石英及びトルマリンであり、天然炭酸塩鉱物は石灰岩及び苦灰石であり、石灰岩は霰石及び方解石を含み、(2〜5%の炭類アロトロピー体が更に加えられるのが好ましい)、補助粘結剤の成分は珪酸ナトリウム(水ガラス)である。(図4は完成品Bの反射率‐サイクル図を示す)。   In another embodiment of the present invention, the Tera Hertz (THz) composite material is composed of 50-65% nanocrystalline silicon (nc-Si) as the main raw material and 6-10% natural silicon. Contains oxide, 4-8% natural silicate mineral, 3-7% natural carbonate mineral, and 6-10% auxiliary binder. Silicon oxide is basalt, natural silicate minerals are quartz and tourmaline, natural carbonate minerals are limestone and dolomite, limestone contains meteorite and calcite (2-5% charcoal allotropic body Is preferably added), the auxiliary binder component is sodium silicate (water glass). (FIG. 4 shows the reflectance-cycle diagram of finished product B).

本発明の構成の主原料は、50〜65%のナノクリスタル珪素(nc-Si)である。ナノクリスタル珪素のサイズは500ナノメートルより小さい。   The main raw material of the constitution of the present invention is 50 to 65% nanocrystalline silicon (nc-Si). Nanocrystalline silicon is smaller than 500 nanometers.

また、珪素は化学元素であり、その化学記号はSiであり、地殻において2番目に豊富な元素であり、地殻を構成する総質量の25.7%を占める。結晶型の珪素は濃紺色を呈し、非常に脆く、典型的な半導体であり、化学的に非常に安定している。常温下ではフッ化水素以外の物質とは反応しにくい。ナノクリスタル珪素(nc-Si)及びアモルファス珪素(a-Si)は同じく珪素のアロトロピー体である。   Silicon is a chemical element, and its chemical symbol is Si. It is the second most abundant element in the crust, accounting for 25.7% of the total mass constituting the crust. Crystalline silicon has a dark blue color, is very brittle, is a typical semiconductor, and is chemically very stable. It is difficult to react with substances other than hydrogen fluoride at room temperature. Nanocrystalline silicon (nc-Si) and amorphous silicon (a-Si) are also silicon allotropes.

ナノクリスタル珪素とモルファス珪素との差異は、ナノクリスタル珪素は小さいアモルファスの珪素結晶粒を有する点である。比較すると、多結晶珪素は結晶粒界と完全に隔てられた珪素結晶顆粒で構成される。ナノクリスタル珪素は微結晶珪素(μc-Si)とも呼ばれる。差異は、結晶粒の顆粒の大きさのみである。大部分の顆粒の大きさがマイクロメートル級の材料は実際には精細な顆粒の多結晶珪素であり、よって、ナノクリスタル珪素のナノメートル化によってより高いレベルでより広く遠赤外線波を放射することが可能となる。   The difference between nanocrystalline silicon and morphous silicon is that nanocrystalline silicon has small amorphous silicon crystal grains. In comparison, polycrystalline silicon is composed of silicon crystal granules that are completely separated from the grain boundaries. Nanocrystalline silicon is also called microcrystalline silicon (μc-Si). The only difference is the size of the crystal granules. Most granule-sized materials are actually fine-grained polycrystalline silicon, and therefore emit far-infrared waves more widely at higher levels by nanometerization of nanocrystal silicon. Is possible.

珪素は即ち"石英鉱"(学名:二酸化珪素SiO2)であり、どこにでもある鉱物の元素である。珪素の半導体特性(珪素は平常状態においては不導体であり、導体と不導体との間のエネルギー準位は非常に短く、一旦エネルギーまたは熱量を与えると導体となる典型的な半導体である)は、化学的に非常に安定しており、珪素鉱(二酸化珪素)が精製されて物理的方法に利用される。粉碎、極微細な研磨、か焼、電極分解、酸洗い、抽出、結晶体再配列再結晶等の方式により、石英中の"酸素"元素及び不純物を除去し、珪素の純度が高められる。純珪素がナノメートル化された後に、より高いレベルでより広い遠赤外線波が放射され、珪素は5・m(図1)以上の波長では高い放射率を呈する。 Silicon is “quartz ore” (scientific name: silicon dioxide SiO 2 ), an element of minerals everywhere. The semiconductor characteristics of silicon (silicon is a non-conductor in normal conditions, the energy level between conductors and non-conductors is very short, and is a typical semiconductor that becomes a conductor once energy or heat is applied) It is chemically very stable and silicon ore (silicon dioxide) is purified and used in physical processes. The purity of silicon is increased by removing "oxygen" elements and impurities in quartz by methods such as powdering, ultrafine polishing, calcination, electrode decomposition, pickling, extraction, crystal rearrangement recrystallization. After pure silicon is nanometerized, wider far-infrared waves are radiated at higher levels, and silicon exhibits a high emissivity at wavelengths of 5 · m (FIG. 1) and above.

添加剤1は、6‐10%の天然珪素酸化物で、玄武岩である。玄武岩の主成分はアルミノ珪酸ナトリウムまたはアルミノ珪酸カルシウムであり、主に二酸化珪素、酸化アルミニウム、酸化鉄、酸化カルシウム、酸化マグネシウム、酸化カリウム、酸化ナトリウムで構成される。二酸化珪素の含量が最も多く、約45%〜52%前後を占める。このため、天然珪素酸化物により天然珪素のアイソフォームが形成され、成分材料の違いにより、遠赤外線波長域が最終的に平均的な高い放射率を示し、且つ前記珪素のアイソフォームによりテラヘルツ波長の不足部分が有効的に補われる。   Additive 1 is 6-10% natural silicon oxide and is basalt. The main component of basalt is sodium aluminosilicate or calcium aluminosilicate, which is mainly composed of silicon dioxide, aluminum oxide, iron oxide, calcium oxide, magnesium oxide, potassium oxide, and sodium oxide. The silicon dioxide content is the highest, accounting for about 45% to 52%. For this reason, natural silicon isoform is formed by natural silicon oxide, the far-infrared wavelength region finally shows an average high emissivity due to the difference in the component materials, and the terahertz wavelength is shown by the silicon isoform. The shortage is effectively compensated.

添加剤2は、4‐8%の陰イオン[SiO4]-4を有する天然珪酸塩鉱物である。珪酸塩の複雑さは陰イオンにあり、陰イオンの基本構造ユニットはSiO2と同じ珪酸四面体である。なお、珪酸塩鉱物の特徴は構造の中に異なる珪素及び酸素の比率を有することであり、これにより各珪酸塩類の構造及び成分が決定され、重合作用が形成される。すなわち、1つまたは2つ以上の珪酸四面体の間に酸素を共有する方式により結合され、1つのより大きな陰イオンの作用が生じ、大きな陰イオンの作用の放射特性は、主要構成成分の陰イオン物質により決定される。陰イオンの特性により広波長の幅を広げ、放射率がアップに対して大きな作用を有する。天然珪酸塩鉱物は石英(網目状珪酸塩類)及びトルマリン(環状珪酸塩類)である。 Additive 2 is a natural silicate mineral with 4-8% anions [SiO 4 ] -4 . The complexity of silicate is in the anion, and the basic structural unit of the anion is the same silicate tetrahedron as SiO 2 . The silicate mineral is characterized by having different silicon and oxygen ratios in the structure, which determines the structure and components of each silicate and forms a polymerization action. That is, one or more silicate tetrahedra are combined in a manner that shares oxygen, resulting in the action of one larger anion, and the radiative properties of the action of the larger anion are the anions of the main constituent Determined by ionic material. The wide wavelength range is widened by the characteristics of the anion, and the emissivity has a great effect on the increase. Natural silicate minerals are quartz (reticulated silicates) and tourmaline (cyclic silicates).

添加剤3は、3‐7%の陰イオン炭酸塩[CO3]-2を有する天然炭酸塩鉱物である。炭酸塩鉱物は石灰岩を指し、主な陰イオンは方解石(炭酸カルシウム)を主要成分とする陰イオン炭酸塩[CO3]-2鉱物である。石灰岩中には苦灰石、石膏、マグネサイト、黄鉄鉱、オパール、玉髄、石英、海緑石、蛍石等が混入していることがよくある。炭酸塩は炭酸イオン[CO3]-2及び他の金属イオンで構成される化合物であり、金属陽イオンは主にナトリウム、カルシウム、マグネシウム、バリウム、レアアース元素、鉄、銅、鉛、亜鉛、マンガン等を含み、金属が結合されて陰イオンとなる主要成分は炭酸塩の炭酸塩鉱物(方解石/炭酸カルシウム)であり、放射特性は主要構成成分の陰イオン物質により決定され、その陰イオン特性により波長の幅を広げる。天然炭酸塩鉱物は石灰岩及び苦灰石であり、石灰岩は霰石及び方解石を含む。 Additive 3 is a natural carbonate minerals with 3-7% of anionic carbonate [CO 3] -2. Carbonate mineral refers to limestone, and the main anion is an anion carbonate [CO 3 ] -2 mineral with calcite (calcium carbonate) as the main component. Limestone often contains dolomite, gypsum, magnesite, pyrite, opal, chalcedony, quartz, sea green stone, and fluorite. Carbonate is a compound composed of carbonate ion [CO 3 ] -2 and other metal ions, metal cations are mainly sodium, calcium, magnesium, barium, rare earth elements, iron, copper, lead, zinc, manganese The main component that becomes an anion by combining metals is carbonate carbonate mineral (calcite / calcium carbonate), and the radiation characteristics are determined by the main component anion substance, Widen the wavelength range. Natural carbonate minerals are limestone and dolomite, and limestone includes meteorites and calcite.

添加剤4は、2‐5%の炭類アロトロピー体である。炭素の無定形体は炭素原子が非結晶体形式で不規則の配列によって形成している。無定形炭素は粉末状を呈し、炭素の主要成分は正常な圧力ではグラファイトの形式で存在する。各炭素原子は全て他の3つの炭素原子に結合され、正六角形の平面構造が形成される。この網状平面構造は重層され、各層の間には弱いファンデルワールス力(vander waals' force)を有する。このため、グラファイトの性質は柔軟で、潤滑剤にもなる(層と層の間は容易に平行滑動できる)。グラファイト中の各炭素原子は全て1つの外殻非局在化電子を有し、全平面に広がるπ-電子雲を共同で形成される。このため、電気エネルギーはグラファイトの各共有結合平面上に伝導される。これにより、炭素全体の電導率が大部分の金属より低い。非局在化電子が含まれることにより、標準的な条件においては、グラファイトはダイヤモンドより更に安定している。炭素はグラファイトまたは人工生成物である。   Additive 4 is a 2-5% charcoal allotrope. The amorphous carbon is formed by an irregular arrangement of carbon atoms in an amorphous form. Amorphous carbon is in the form of powder and the main component of carbon is present in the form of graphite at normal pressure. Each carbon atom is all bonded to the other three carbon atoms to form a regular hexagonal planar structure. This reticulated planar structure is layered and has a weak vander waals' force between each layer. For this reason, the properties of graphite are flexible and can also be used as a lubricant (can easily slide between layers). Each carbon atom in graphite has one outer shell delocalized electron, and a π-electron cloud extending in the whole plane is jointly formed. For this reason, electrical energy is conducted on each covalent bond plane of graphite. This makes the overall carbon conductivity lower than most metals. The inclusion of delocalized electrons makes graphite more stable than diamond under standard conditions. Carbon is graphite or an artificial product.

炭類アロトロピー体(グラファイト(天然)、竹炭、カーボンナノチューブを含む)。炭素の無定形体は炭素原子が非結晶体形式による不規則の表現である。炭素の波長は全体的に広い波長及び高い平均的放射率(図2)を呈する。竹炭及びカーボンナノチューブは共に人工製品である。   Carbon allotrope (including graphite (natural), bamboo charcoal, carbon nanotube). An amorphous form of carbon is an irregular representation of carbon atoms in an amorphous form. The wavelength of carbon generally exhibits a broad wavelength and a high average emissivity (FIG. 2). Bamboo charcoal and carbon nanotubes are both artificial products.

補助粘結剤は、4‐7%の人工珪酸ナトリウム(化学式:Na2SiO3)であり、珪酸ナトリウムが水ガラスと俗称され、アルカリ金属酸化物及び二酸化珪素が結合され、形成されたものである。可溶性アルカリ金属珪酸塩材料であり、人工珪素の結合物のアイソフォームであり、硬化した後に形成される二酸化珪素の網状構造により、焼結過程で失われた網状構造が補われ、且つナトリウムは放射特性上一定程度の補助がある。珪酸ナトリウムはアルカリ性であり、アルカリ性はマイナス電位が主であり、マイナス電位の放射特性は主要構成成分の陰イオン物質により決定され、その陰イオンの特性は広波長の幅を広げることに対して大いに補われる。 The auxiliary binder is 4-7% artificial sodium silicate (chemical formula: Na 2 SiO 3 ). Sodium silicate is commonly called water glass, and is formed by combining alkali metal oxide and silicon dioxide. is there. It is a soluble alkali metal silicate material, an isoform of an artificial silicon bond, and the silicon dioxide network formed after curing supplements the network lost in the sintering process, and sodium is radiated. There is a certain amount of assistance in terms of characteristics. Sodium silicate is alkaline, and alkalinity is mainly negative potential, and the radiation characteristics of negative potential are determined by the anionic substance of the main component, and the characteristics of the anion greatly increase the wide wavelength range. Be compensated.

本発明は主に高純度の珪素と無定形炭素及び炭素のアロトロピー体に、炭酸塩[CO3]-2鉱物中に含まれている陰イオン物質が組み合わせられるものである。天然珪酸塩鉱物の陰イオン([SiO4]-4)はアルカリ性であり、無色の珪酸ナトリウムは透明な粘着状を呈し、アルカリ性である。アルカリ性は陰イオンのマイナス電位が主である。玄武岩は主に、二酸化珪素、天然酸化物酸化アルミニウム、酸化鉄、酸化カルシウム、酸化マグネシウム、酸化カリウム、酸化ナトリウムによる天然酸化物構造が形成され、天然珪酸塩鉱物、炭酸塩鉱物、及び珪酸ナトリウム(水ガラス)に含まれたナトリウム塩の成分、炭酸塩鉱物に含まれる炭類アロトロピー体の成分、珪酸塩鉱物、炭酸塩鉱物、珪酸ナトリウム、及び玄武岩に含まれる珪素アロトロピー体は、成分の組み合わせにより、遠赤外線波長域では、最終的に高く平均的な放射率を示し、珪素のアイソフォームによりテラヘルツ波長の不足部分が有効的に補われ、全体的に加工反応を経てTHz放射特性を有する新たな複合材料となり、テラヘルツ波(Tera Hertz、THz)を発生させる複合材料が形成される。最良の比率配分を有し、天然鉱物から取得できるため、原料が入手しやすく、特殊な加工による精製する必要がなく、且つ正確な配合によって効用が発揮される。常温でも2μm〜1000μmの赤外線が平均0.9以上の放射率に達する材料である。 In the present invention, high-purity silicon, amorphous carbon, and an allotropic body of carbon are combined with an anionic substance contained in a carbonate [CO 3 ] -2 mineral. The anion ([SiO 4 ] -4 ) of the natural silicate mineral is alkaline, and the colorless sodium silicate is transparent and sticky and is alkaline. The alkalinity is mainly a negative potential of an anion. Basalt is mainly composed of silicon dioxide, natural oxide aluminum oxide, iron oxide, calcium oxide, magnesium oxide, potassium oxide, sodium oxide, natural oxide structure, natural silicate mineral, carbonate mineral, and sodium silicate ( The component of sodium salt contained in (water glass), component of charcoal allotrope contained in carbonate mineral, silicate mineral, carbonate mineral, sodium silicate, and silicon allotrope contained in basalt In the far-infrared wavelength region, it finally shows a high average emissivity, and the silicon isoform effectively compensates for the shortage of the terahertz wavelength. A composite material is formed which generates a terahertz wave (Tera Hertz, THz). Since it has the best proportion distribution and can be obtained from natural minerals, it is easy to obtain raw materials, there is no need for purification by special processing, and the utility is demonstrated by accurate blending. It is a material in which infrared rays of 2 μm to 1000 μm reach an average emissivity of 0.9 or more even at room temperature.

応用分野:1、広波長を広げ、熱放射の放熱能力を高め、熱容量を下げる。2、テラヘルツ波の透過能力が分子との共振により毛細血管を拡張させ、血液循環を向上させ、新陳代謝が促進される。3、テラヘルツ波による水質の浄化、細菌の繁殖の抑制、水分子のクラスター(Cluster)を共振により微細化させる。4、特殊な技術により大地の生物に有益なテラヘルツ遠赤外線(生育光波)が放射される。   Application field: 1. Widen wide wavelength, increase heat radiation ability, reduce heat capacity. 2. The ability to transmit terahertz waves expands capillaries by resonance with molecules, improves blood circulation, and promotes metabolism. 3. Purification of water quality by terahertz waves, suppression of bacterial growth, and refining of water molecule clusters by resonance. 4. Terahertz far-infrared rays (growth light waves) that are beneficial to earth creatures are emitted by special technology.

製造方法:1、原料が前述の2つの実施形態の比率で調合する。2、ふるいにかける。3、水を加えマイクロ・ナノメートル化するまで研磨する。4、水分を乾燥させる。5、粉砕(粉末化)する。6.耐熱性のるつぼに入れて高温で溶融させる。7、溶融物を鋳型に入れる(鋳型内部には先に離型剤による処理が施される)。8、表面を研磨し、高温で溶融された表面に浮かび上がった不純物を除去する。9、所定の形状に研磨加工し、研磨加工された後、水が含まれた余剰物を乾燥させ、ふるいにかけ収集して塗料やプラスチック等の添加剤とする。   Production method: 1. Raw materials are blended in the ratio of the two embodiments described above. 2. Sift. 3. Add water and polish until micronanometer. 4. Dry the moisture. 5. Grind (powder). 6). Place in a heat-resistant crucible and melt at high temperature. 7. Put the melt into the mold (the mold is first treated with a release agent). 8. The surface is polished to remove impurities floating on the surface melted at high temperature. 9. After polishing into a predetermined shape and polishing, the excess containing water is dried and collected by sieving to make additives such as paint and plastic.

測定条件:1、設備:テラヘルツ分光計による検測。テラヘルツ反射スペクトル(Reflectance)の取得に使用。2、環境:乾燥する空間。3、窒素充填により水蒸気を除去する1.5‐3THzの範囲で吸収を検証する。4、信号サイクル:パルス幅100FSEC(Pulse width 100sec)、重複サイクル50MHz(Reptition rate 50MHz)、走査速度1.6ミリメートル/秒(Scan velocity)1.6mm/sec(sampling rate 10khz))、解析度5.7GHz(Resolution 5.7GHz(0.191cm-2)。(測定結果は図3及び図4に示す)   Measurement conditions: 1, Equipment: Inspection with terahertz spectrometer. Used to obtain terahertz reflection spectrum (Reflectance). 2. Environment: A space to dry. 3. Verify the absorption in the range of 1.5-3 THz, which removes water vapor by filling with nitrogen. 4. Signal cycle: pulse width 100FSEC (Pulse width 100sec), overlap cycle 50MHz (Repetition rate 50MHz), scanning speed 1.6mm / sec (Scan velocity) 1.6mm / sec (sampling rate 10khz)), resolution 5. 7 GHz (Resolution 5.7 GHz (0.191 cm-2). (Measurement results are shown in FIGS. 3 and 4)

Figure 2018027885
Figure 2018027885

結論として、図3、図4及び図5を参照すると、本発明に係る材料のテラヘルツ波の反射率は87%から95%の間に達し、図5の破線に示されている従来の技術の対応する曲線は、本発明よりもはるかに低いことが示される。   In conclusion, referring to FIG. 3, FIG. 4 and FIG. 5, the terahertz wave reflectivity of the material according to the present invention reaches between 87% and 95%, and the prior art shown by the broken line in FIG. The corresponding curve is shown to be much lower than the present invention.

総エネルギー=吸収エネルギー+反射エネルギー+透過エネルギー=放射エネルギー(95%から87%の間)。   Total energy = absorbed energy + reflected energy + transmitted energy = radiant energy (between 95% and 87%).

周波数(Frequency)は0.2THz-3THzであり、サイクルが200Ghz(ギガヘルツ)から3Thz(テラヘルツ)の場合、好ましい反射率がある。波長が1000μm〜2μmの場合、1に近い反射率がある。   When the frequency is 0.2 THz-3 THz and the cycle is 200 Ghz (gigahertz) to 3 Thz (terahertz), there is a preferable reflectance. When the wavelength is 1000 μm to 2 μm, the reflectance is close to 1.

波長が5μm〜1mmであることは以下の表で証明する。   It is proved in the following table that the wavelength is 5 μm to 1 mm.

Figure 2018027885
Figure 2018027885

実線は本発明に係る波長の反射率を示し、何れも95%より高く、1に近い。破線は従来の技術による波長を示し、10μm前後しかなく、応用性が低いことが示される。上述の構造を総合すると、本発明は新しい配合及び製法を採用することによって、極めて好ましい放射率による応用性及び実用性を提供し、従来の技術とは全く異なる製造方法及び組成物である。   The solid line indicates the reflectance of the wavelength according to the present invention, and both are higher than 95% and close to 1. A broken line indicates a wavelength according to the conventional technique, which is only around 10 μm, indicating that the applicability is low. Taken together, the present invention is a manufacturing method and composition that is completely different from the prior art, by adopting a new formulation and manufacturing method, thereby providing applicability and practicality with extremely favorable emissivity.

Claims (8)

複合材料の構成は、50〜65%のナノクリスタル珪素、6〜10%の天然珪素酸化物、4〜8%の天然珪酸塩鉱物、3〜7%の天然炭酸塩鉱物及び6〜10%の補助粘結剤を含むことを特徴とするテラヘルツ複合材料。   The composition of the composite material is 50-65% nanocrystalline silicon, 6-10% natural silicon oxide, 4-8% natural silicate mineral, 3-7% natural carbonate mineral and 6-10% A terahertz composite material comprising an auxiliary binder. 天然珪素酸化物は玄武岩であり、天然珪酸塩鉱物は石英またはトルマリンであり、天然炭酸塩鉱物は方解石であり、ナノクリスタル珪素のサイズは500ナノメートルより小さいことを特徴とする、請求項1に記載のテラヘルツ複合材料。   The natural silicon oxide is basalt, the natural silicate mineral is quartz or tourmaline, the natural carbonate mineral is calcite, and the size of nanocrystalline silicon is less than 500 nanometers, according to claim 1, The terahertz composite material described. 補助粘結剤は珪酸ナトリウムであることを特徴とする、請求項1に記載のテラヘルツ複合材料。   The terahertz composite material according to claim 1, wherein the auxiliary binder is sodium silicate. (1)原料を上述の請求項1に記載の比率で調合し、(2)ふるいにかけ、(3)水を加えマイクロ・ナノメートル化するまで研磨され、(4)水分を蒸発させ、(5)粉末化し、(6)耐熱性のるつぼに入れて高温で溶融され、(7)溶融物を鋳型に入れ(鋳型内部は先に離型剤による処理が施される)、(8)表面が研磨され、高温で溶融されて表面に浮かび上がった不純物を除去し、(9)所定の形状に研磨加工され、研磨加工された後に水を含む余剰物を乾燥し、ふるいにかけて収集することを特徴とする請求項1に記載のテラヘルツ複合材料の製造方法。   (1) The raw material is prepared in the ratio described in claim 1 above, (2) sifted, (3) polished until it is micronized by adding water, (4) water is evaporated, (5 ) Powdered, (6) put in a heat-resistant crucible and melted at high temperature, (7) put the melt into the mold (the inside of the mold is first treated with a release agent), (8) the surface is Impurities that have been polished and melted at a high temperature and removed from the surface are removed. (9) Polished to a predetermined shape, and after polishing, the excess containing water is dried and collected by sieving. The method for producing a terahertz composite material according to claim 1. 複合材料の構成は、50〜60%のナノクリスタル珪素、6〜10%の天然珪素酸化物、4〜8%の天然珪酸塩鉱物、3〜7%の天然炭酸塩鉱物、2〜5%の炭類アロトロピー体及び6〜10%の補助粘結剤とを含むことを特徴とするテラヘルツ複合材料。   The composition of the composite material is 50-60% nanocrystalline silicon, 6-10% natural silicon oxide, 4-8% natural silicate mineral, 3-7% natural carbonate mineral, 2-5% A terahertz composite material comprising a charcoal allotropic body and 6 to 10% of an auxiliary binder. 天然珪素酸化物は玄武岩であり、天然珪酸塩鉱物は石英またはトルマリンであり、天然炭酸塩鉱物は方解石であり、炭素はグラファイトまたは人工生成物であり、ナノクリスタル珪素のサイズは500ナノメートルより小さいことを特徴とする、請求項5に記載のテラヘルツ複合材料。   Natural silicon oxide is basalt, natural silicate mineral is quartz or tourmaline, natural carbonate mineral is calcite, carbon is graphite or artificial product, nanocrystal silicon size is less than 500 nanometers The terahertz composite material according to claim 5, wherein 補助粘結剤は珪酸ナトリウムであることを特徴とする、請求項5に記載のテラヘルツ複合材料。   The terahertz composite material according to claim 5, wherein the auxiliary binder is sodium silicate. (1)原料を上述の請求項5に記載の比率で調合し、(2)ふるいにかけ、(3)水を加えマイクロ・ナノメートル化するまで研磨され、(4)水分を蒸発させ、(5)粉末化し、(6)耐熱性のるつぼに入れて高温で溶融され、(7)溶融物を鋳型に入れ、鋳型内部は先に離型剤による処理が施され、(8)表面が研磨され、高温で溶融されて表面に浮かび上がった不純物を除去し、(9)所定の形状に研磨加工され、研磨加工された後に水を含む余剰物を乾燥し、ふるいにかけて収集することを特徴とする請求項5に記載のテラヘルツ複合材料の製造方法。   (1) The raw materials are blended in the proportions described in claim 5 above, (2) sifted, (3) polished until added to water and micronanometer, (4) water evaporated, (5 ) Powdered, (6) put in a heat-resistant crucible and melted at high temperature, (7) put the melt into the mold, the mold was first treated with a release agent, and (8) the surface was polished Removing impurities which have been melted at a high temperature and floating on the surface, and (9) polished into a predetermined shape, and after polishing, the excess containing water is dried and collected by sieving. The method for producing a terahertz composite material according to claim 5.
JP2017156463A 2016-08-18 2017-08-14 Terahertz composite material and method for producing the same Pending JP2018027885A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610688708.X 2016-08-18
CN201610688708.XA CN107759221B (en) 2016-08-18 2016-08-18 Terahertz (Tera Hertz, THz) composite material and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019113244A Division JP6757901B2 (en) 2016-08-18 2019-06-18 Terahertz composite material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2018027885A true JP2018027885A (en) 2018-02-22

Family

ID=61249012

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017156463A Pending JP2018027885A (en) 2016-08-18 2017-08-14 Terahertz composite material and method for producing the same
JP2019113244A Active JP6757901B2 (en) 2016-08-18 2019-06-18 Terahertz composite material and its manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019113244A Active JP6757901B2 (en) 2016-08-18 2019-06-18 Terahertz composite material and its manufacturing method

Country Status (2)

Country Link
JP (2) JP2018027885A (en)
CN (1) CN107759221B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164279A1 (en) * 2017-03-10 2018-09-13 株式会社遊心 Silicate mixture and combustion accelerator using same
CN108535210A (en) * 2018-06-19 2018-09-14 北京农业信息技术研究中心 A kind of sample grinding device for terahertz light spectrometry
CN109663217A (en) * 2018-12-29 2019-04-23 浙江万旭太赫兹技术有限公司 A kind of intelligence Terahertz moxibustion head and preparation method thereof
CN110128121A (en) * 2019-05-14 2019-08-16 江苏中兴国邦环保科技有限公司 A kind of preparation method of energy-saving active Terahertz composite material
KR20200128962A (en) * 2019-05-07 2020-11-17 김수원 Method for Manufacturing air filter for neutralization of antimicrobial and deodorant harmful components coated with metal silicon and air filter manufactured that method
CN113416056A (en) * 2021-02-02 2021-09-21 国启艾福佳健康科技(山东)有限公司 Ceramic energy storage tube and preparation method thereof
CN113526948A (en) * 2021-07-13 2021-10-22 泉州慈光科技有限公司 Terahertz source emitting material, terahertz emitter and terahertz bedding

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108689681A (en) * 2018-05-18 2018-10-23 李生春 A kind of Terahertz stone and preparation method thereof
CN112891754A (en) * 2019-11-18 2021-06-04 上海嘉巷新材料科技有限公司 Terahertz wave inorganic composite environment-friendly material and application thereof
CN110862602A (en) * 2019-11-29 2020-03-06 云南平海新材料科技有限公司 Biodegradable far infrared terahertz agricultural mulching film
CN111620670A (en) * 2020-06-23 2020-09-04 陕西新容康医疗器械有限公司 Argil particle material capable of generating terahertz waves and preparation method thereof
CN113443856B (en) * 2021-07-21 2022-12-27 泉州慈光科技有限公司 Terahertz wave resonance ceramic material, preparation method thereof and water purifier applying terahertz wave resonance ceramic material
CN116239372B (en) * 2023-03-21 2024-01-26 中国环境科学研究院 Preparation method of terahertz material for reducing emission of nitrogen oxides and volatile organic compounds

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117151A (en) * 1984-11-08 1986-06-04 株式会社ノリタケカンパニーリミテド Far infrared ray radiative material
US20090214659A1 (en) * 2006-03-07 2009-08-27 Johannes Hendrik Geesink Mineral composition
JP2012199053A (en) * 2011-03-22 2012-10-18 Rise Step:Kk Planar heating element
JP2013044186A (en) * 2011-08-25 2013-03-04 Shinto Co Ltd Tile for melting snow and roof structure
JP2015047595A (en) * 2013-09-04 2015-03-16 初一 松本 Water adjustor and water produced thereby
JP2016056461A (en) * 2014-09-05 2016-04-21 一夫 松村 Electromagnetic wave radiating dyed yarn manufacturing method and electromagnetic wave radiating dyed yarn
JP3204734U (en) * 2016-04-01 2016-06-09 株式会社Yunohana Balance cushion

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042726A (en) * 2010-08-19 2012-03-01 Nippon Shinku Kogaku Kk Terahertz band optical element
CN102174263A (en) * 2011-03-10 2011-09-07 周利坤 Far-infrared terahertz optical polymer material and preparation method and application thereof
CN103172956B (en) * 2013-03-18 2015-01-28 厦门大学 Synthetic method of terahertz wave material in terahertz frequency range

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117151A (en) * 1984-11-08 1986-06-04 株式会社ノリタケカンパニーリミテド Far infrared ray radiative material
US20090214659A1 (en) * 2006-03-07 2009-08-27 Johannes Hendrik Geesink Mineral composition
JP2012199053A (en) * 2011-03-22 2012-10-18 Rise Step:Kk Planar heating element
JP2013044186A (en) * 2011-08-25 2013-03-04 Shinto Co Ltd Tile for melting snow and roof structure
JP2015047595A (en) * 2013-09-04 2015-03-16 初一 松本 Water adjustor and water produced thereby
JP2016056461A (en) * 2014-09-05 2016-04-21 一夫 松村 Electromagnetic wave radiating dyed yarn manufacturing method and electromagnetic wave radiating dyed yarn
JP3204734U (en) * 2016-04-01 2016-06-09 株式会社Yunohana Balance cushion

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164279A1 (en) * 2017-03-10 2018-09-13 株式会社遊心 Silicate mixture and combustion accelerator using same
EP3598001A4 (en) * 2017-03-10 2021-03-03 Yushin Co. Ltd., Silicate mixture and combustion accelerator using same
US11370667B2 (en) 2017-03-10 2022-06-28 Yushin Co. Ltd. Silicate mixture and combustion accelerator using the same
CN108535210A (en) * 2018-06-19 2018-09-14 北京农业信息技术研究中心 A kind of sample grinding device for terahertz light spectrometry
CN108535210B (en) * 2018-06-19 2023-12-05 北京市农林科学院信息技术研究中心 Sample grinding device for terahertz spectrum measurement
CN109663217A (en) * 2018-12-29 2019-04-23 浙江万旭太赫兹技术有限公司 A kind of intelligence Terahertz moxibustion head and preparation method thereof
KR20200128962A (en) * 2019-05-07 2020-11-17 김수원 Method for Manufacturing air filter for neutralization of antimicrobial and deodorant harmful components coated with metal silicon and air filter manufactured that method
KR102314720B1 (en) 2019-05-07 2021-10-21 김수원 Method for Manufacturing air filter for neutralization of antimicrobial and deodorant harmful components coated with metal silicon and air filter manufactured that method
CN110128121A (en) * 2019-05-14 2019-08-16 江苏中兴国邦环保科技有限公司 A kind of preparation method of energy-saving active Terahertz composite material
CN113416056A (en) * 2021-02-02 2021-09-21 国启艾福佳健康科技(山东)有限公司 Ceramic energy storage tube and preparation method thereof
CN113526948A (en) * 2021-07-13 2021-10-22 泉州慈光科技有限公司 Terahertz source emitting material, terahertz emitter and terahertz bedding

Also Published As

Publication number Publication date
JP2019196304A (en) 2019-11-14
CN107759221B (en) 2020-06-30
CN107759221A (en) 2018-03-06
JP6757901B2 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6757901B2 (en) Terahertz composite material and its manufacturing method
Reddy Green synthesis, morphological and optical studies of CuO nanoparticles
Sczancoski et al. Morphology and blue photoluminescence emission of PbMoO4 processed in conventional hydrothermal
Samanta et al. Chemical growth of hexagonal zinc oxide nanorods and their optical properties
Khoa et al. Hydrothermally controlled ZnO nanosheet self-assembled hollow spheres/hierarchical aggregates and their photocatalytic activities
Liu et al. Controllable synthesis of small size Cs x WO 3 nanorods as transparent heat insulation film additives
Omar et al. Europium doped low cost Zn2SiO4 based glass ceramics: A study on fabrication, structural, energy band gap and luminescence properties
Boonchom et al. Nanocrystalline serrabrancaite (MnPO4· H2O) prepared by a simple precipitation route at low temperature
Gültekin et al. Synthesis and characterization of ZnO nanopowders and ZnO-CNT nanocomposites prepared by chemical precipitation route
Bakayoko et al. Synthesis and characterization of zinc oxide nanoparticles (ZnO NPs) in powder and in thin film using corn husk extract via green chemistry
JP4765051B2 (en) Tin-doped indium oxide powder
Parhi et al. Novel microwave initiated synthesis of Zn2SiO4 and MCrO4 (M= Ca, Sr, Ba, Pb)
Sharma et al. Biogenic silicate glass-ceramics: Physical, dielectric, and electrical properties
Rajyalakshmi et al. Synthesis and investigations for white LED material: VO2+ doped Calcium Cadmium phosphate hydrate nanophosphor
Kumarasamy et al. Synthesis and characterization of Cu–doped Cs2KBiBr6 double perovskite phosphors for photoluminescent applications
KR20160137530A (en) Production method for forsterite fine particles
Zhang et al. Natural iron embedded hierarchically porous carbon with thin–thickness and high-efficiency microwave absorption properties
Yuan et al. Synthesis and characterization of Nd3+-doped CaF2 nanoparticles
Zeng et al. ZnO clusters in situ generated inside mesoporous silica
Zhao et al. CsxWO3 nanoparticles for the near-infrared shielding film
Kozlova et al. Gold nanoparticles deposited on the surface of low-dimensional niobium trisulfide and vanadium tetrasulfide
Hivrekar et al. Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system
George et al. Synthesis and microwave dielectric properties of Li2MgSiO4 ceramics prepared using citrate gel route
Babu et al. Synthesis and characterization of ZnO-graphite nanocomposite
JP2014125415A (en) ITO powder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190219