JP2018026537A - Process liquid production device, and substrate processing device using the same - Google Patents

Process liquid production device, and substrate processing device using the same Download PDF

Info

Publication number
JP2018026537A
JP2018026537A JP2017124215A JP2017124215A JP2018026537A JP 2018026537 A JP2018026537 A JP 2018026537A JP 2017124215 A JP2017124215 A JP 2017124215A JP 2017124215 A JP2017124215 A JP 2017124215A JP 2018026537 A JP2018026537 A JP 2018026537A
Authority
JP
Japan
Prior art keywords
concentration
liquid
path
densitometer
processing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017124215A
Other languages
Japanese (ja)
Other versions
JP6918600B2 (en
JP2018026537A5 (en
Inventor
林 航之介
Konosuke Hayashi
航之介 林
邦浩 宮崎
Kunihiro Miyazaki
邦浩 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Mechatronics Corp
Original Assignee
Shibaura Mechatronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Mechatronics Corp filed Critical Shibaura Mechatronics Corp
Priority to TW106122352A priority Critical patent/TWI653661B/en
Priority to US15/661,480 priority patent/US11670522B2/en
Priority to CN201710624077.XA priority patent/CN107665839B/en
Priority to KR1020170096397A priority patent/KR101967055B1/en
Publication of JP2018026537A publication Critical patent/JP2018026537A/en
Publication of JP2018026537A5 publication Critical patent/JP2018026537A5/ja
Application granted granted Critical
Publication of JP6918600B2 publication Critical patent/JP6918600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking

Abstract

PROBLEM TO BE SOLVED: To provide a process liquid production device which enables the increase in reliability of the density of a produced process liquid.SOLUTION: A process liquid production device for producing a process liquid adjusted in concentration comprises: a process liquid adjustment part 11a for adjusting the concentration of the process liquid; a first process liquid path P1 for flowing the process liquid to the process liquid adjustment part; a second process liquid path P2 for flowing the process liquid to the process liquid adjustment part; a first densitometer for measuring a concentration of a component involved in concentration adjustment by the process liquid adjustment part as the concentration of the process liquid flowing through the first process liquid path; a second densitometer for measuring a concentration of the component involved in concentration adjustment, which is to be measured by the first densitometer as the concentration of the process liquid flowing through the second process liquid path; a first valve mechanism for opening/closing the first process liquid path; and a second valve mechanism for opening/closing the second process liquid path.SELECTED DRAWING: Figure 1

Description

本発明は、半導体ウェーハの処理工程等に用いられる処理液を生成する処理液生成装置及びそれを用いた基板処理装置に関する。   The present invention relates to a processing liquid generating apparatus that generates a processing liquid used in a semiconductor wafer processing process and the like, and a substrate processing apparatus using the same.

従来、特許文献1に記載される有機物の剥離装置(基板処理装置の一例)が知られている。この有機物の剥離装置は、半導体ウェーハ(基板の一例)の表面に薬液(剥離処理液)を供給してその半導体ウェーハの製造工程で形成されたフォトレジストやポリマー等の有機物を除去する。この有機物の剥離装置では、薬液を構成する各成分及び純水の濃度を濃度計(有機成分濃度計、水分濃度計)にて測定しながら、それら各成分を循環槽(薬液槽)にて混合しつつ循環させ、各成分及び純水の測定濃度値が所定の範囲に保持されるように各成分及び純水が循環槽に追加される。これにより、循環槽内において所定の濃度範囲に保持された各成分及び水分により構成される薬液(剥離処理液)が生成される(処理液生成装置としての機能)。そして、循環槽において生成される薬液が、剥離液供給管を通して回転ステージに支持される半導体ウェーハの表面に供給される。   Conventionally, an organic peeling apparatus (an example of a substrate processing apparatus) described in Patent Document 1 is known. This organic material peeling apparatus supplies a chemical solution (peeling solution) to the surface of a semiconductor wafer (an example of a substrate) to remove organic materials such as photoresist and polymer formed in the manufacturing process of the semiconductor wafer. In this organic peeling device, the concentration of each component constituting the chemical solution and pure water is measured with a densitometer (organic component concentration meter, moisture concentration meter), and these components are mixed in a circulation tank (chemical liquid tank). The components and pure water are added to the circulation tank so that the measured concentration values of the components and pure water are maintained within a predetermined range. Thereby, the chemical | medical solution (peeling process liquid) comprised by each component and the water | moisture content hold | maintained in the predetermined | prescribed density | concentration range in the circulation tank is produced | generated (function as a process liquid production | generation apparatus). And the chemical | medical solution produced | generated in a circulation tank is supplied to the surface of the semiconductor wafer supported by a rotation stage through peeling liquid supply pipe | tube.

このような有機物の剥離装置によれば、循環槽(薬液槽)に貯められた薬液の各成分の濃度が測定され、濃度が低くなった成分だけを循環槽に追加するので、循環槽に貯められた薬液の各成分の濃度をそれぞれ所定の範囲に保持することができる。従って、薬液の剥離性能を高く維持することができ、循環槽に貯められた薬液を半導体ウェーハに形成された有機物の剥離処理に繰り返し使用することができる。   According to such an organic substance peeling apparatus, the concentration of each component of the chemical solution stored in the circulation tank (chemical solution tank) is measured, and only the component having a reduced concentration is added to the circulation tank. The concentration of each component of the obtained chemical solution can be maintained within a predetermined range. Therefore, it is possible to maintain high chemical separation performance, and it is possible to repeatedly use the chemical stored in the circulation tank for the organic substance formed on the semiconductor wafer.

特開2005−347384号公報JP 2005-347384 A

上述したような有機物の剥離装置に適用される処理液(薬液)生成装置では、薬液(処理液)の各成分の濃度を単一の濃度計で測定しているので、濃度測定の信頼性が単一の濃度計に依存している。従って、生成される処理液の濃度の信頼性が必ずしも十分であるとはいえない。本発明は、このような事情に鑑みてなされたもので、生成される処理液の濃度の信頼性を向上させることのできる処理液生成装置を提供するものである。   In the processing liquid (chemical solution) generator applied to the organic substance peeling apparatus as described above, the concentration of each component of the chemical liquid (processing liquid) is measured with a single densitometer, so the reliability of concentration measurement is high. Rely on a single densitometer. Therefore, it cannot be said that the reliability of the concentration of the generated processing liquid is necessarily sufficient. The present invention has been made in view of such circumstances, and provides a processing liquid generation apparatus capable of improving the reliability of the concentration of the generated processing liquid.

また、本発明は、上記処理液生成装置により生成される処理液により基板を処理する基板処理装置を提供するものである。   Moreover, this invention provides the substrate processing apparatus which processes a board | substrate with the process liquid produced | generated by the said process liquid production | generation apparatus.

本発明に係る処理液生成装置は、濃度計での測定濃度に基づいて濃度の調整がなされた処理液を生成する処理液生成装置であって、前記処理液の濃度を調整する処理液調整部と、処理液を、前記処理液調整部に流す第1処理液路と、処理液を、前記処理液調整部に流す第2処理液路と、前記第1処理経路を流れる前記処理液の濃度であって、前記処理液調整部での濃度調整に係る成分の濃度を測定する第1濃度計と、前記第2処理液路を流れる前記処理液の濃度であって、前記第1濃度計により濃度測定されるべき、前記処理液調整部での濃度調整に係る成分の濃度を測定する第2濃度計と、前記第1処理液路の開閉を行う第1バルブ機構と、前記第2処理液路の開閉を行う第2バルブ機構と、を有する構成となる。   A processing liquid generation apparatus according to the present invention is a processing liquid generation apparatus that generates a processing liquid whose concentration is adjusted based on a concentration measured by a densitometer, and the processing liquid adjustment unit that adjusts the concentration of the processing liquid A first treatment liquid path for flowing the treatment liquid to the treatment liquid adjustment section, a second treatment liquid path for flowing the treatment liquid to the treatment liquid adjustment section, and a concentration of the treatment liquid flowing through the first treatment path. A first concentration meter that measures a concentration of a component related to concentration adjustment in the treatment liquid adjustment unit, and a concentration of the treatment liquid that flows through the second treatment liquid path, the first concentration meter A second densitometer that measures the concentration of a component related to the concentration adjustment in the processing liquid adjusting unit, a first valve mechanism that opens and closes the first processing liquid path, and the second processing liquid And a second valve mechanism that opens and closes the path.

このような構成により、第1バルブ機構及び第2バルブ機構によって第1処理液路及び第2処理液路を開状態にすると、処理液が第1処理液路を流れて処理液調整部に流れ込むとともに、処理液が第2処理液路を流れて処理液調整部に流れ込む。この状態では、前記処理液調整部は、前記第1処理液路を流れる処理液の濃度であって、その濃度調整に係る成分の濃度を測定する前記第1濃度計、及び前記第2処理液路を流れる処理液の濃度であって、前記第1濃度計により濃度測定されるべき、前記濃度調整に係る成分の濃度を計測する前記第2濃度計の少なくとも一方での測定濃度に基づいて処理液の濃度調整、即ち、処理液中の前記成分の濃度調整を行うことができる。   With such a configuration, when the first processing liquid path and the second processing liquid path are opened by the first valve mechanism and the second valve mechanism, the processing liquid flows through the first processing liquid path and into the processing liquid adjusting unit. At the same time, the processing liquid flows through the second processing liquid path and flows into the processing liquid adjusting unit. In this state, the treatment liquid adjustment unit is a concentration of the treatment liquid flowing through the first treatment liquid path, and the first concentration meter that measures the concentration of the component related to the concentration adjustment, and the second treatment liquid. Processing based on the measured concentration of at least one of the second densitometers that measures the concentration of the component related to the concentration adjustment, which is the concentration of the processing liquid flowing through the path and the concentration of which should be measured by the first densitometer Liquid concentration adjustment, that is, concentration adjustment of the components in the treatment liquid can be performed.

第1バルブ機構によって第1処理液路を開状態にするとともに第2バルブ機構によって第2処理液路を閉状態にすると、処理液が第2処理液路を流れずに、処理液が第1処理液路を流れて処理液調整部に流れ込む。この状態では、前記処理液調整部は、前記第1処理液路を流れる処理液の濃度であって、その濃度調整に係る成分の濃度を測定する前記第1濃度計での測定濃度に基づいて処理液の濃度調整、即ち、処理液中の前記成分の濃度調整を行うことができる。   When the first processing liquid path is opened by the first valve mechanism and the second processing liquid path is closed by the second valve mechanism, the processing liquid does not flow through the second processing liquid path and the first processing liquid flows. It flows in the processing liquid path through the processing liquid path. In this state, the processing liquid adjustment unit is based on the concentration of the processing liquid flowing through the first processing liquid path and measured by the first densitometer that measures the concentration of the component related to the concentration adjustment. The concentration of the treatment liquid, that is, the concentration of the component in the treatment liquid can be adjusted.

第1バルブ機構によって第1処理液路を閉状態にするとともに第2バルブ機構によって第2処理液路を開状態にすると、処理液が第1処理液路を流れずに第1濃度計を通ることなく、処理液が第2処理液路を流れて第2濃度計を通って処理液調整部に流れ込む。この状態では、前記処理液調整部は、前記第2濃度計での測定濃度に基づいて処理液の濃度調整、即ち、処理液中の濃度調整すべき成分の濃度調整を行うことができる。   When the first processing liquid path is closed by the first valve mechanism and the second processing liquid path is opened by the second valve mechanism, the processing liquid passes through the first concentration meter without flowing through the first processing liquid path. Instead, the processing liquid flows through the second processing liquid path, passes through the second concentration meter, and flows into the processing liquid adjusting unit. In this state, the processing liquid adjustment unit can adjust the concentration of the processing liquid, that is, the concentration of the component to be adjusted in the processing liquid, based on the concentration measured by the second densitometer.

また、本発明に係る基板処理装置は、濃度計での測定濃度に基づいて濃度の調整がなされた処理液を生成する処理液生成装置と、基板を保持するテーブルと、前記テーブルを回転させる駆動機構と、前記テーブルとともに回転する前記基板の表面に前記処理液生成装置により生成される処理液を供給する処理液供給機構とを有し、前記処理液生成装置は、前記処理液の濃度を調整する処理液調整部と、処理液を、前記処理液調整部に流す第1処理液路と、処理液を、前記処理液調整部に流す第2処理液路と、前記第1処理液路を流れる前記処理液の濃度であって、前記処理液調整部での濃度調整に係る成分の濃度を測定する第1濃度計と、前記第2処理液路を流れる前記処理液の濃度であって、前記第1濃度計により濃度測定されるべき、前記処理液調整部での濃度調整に係る成分の濃度を測定する第2濃度計と、前記第1処理液路の開閉を行う第1バルブ機構と、前記第2処理液路の開閉を行う第2バルブ機構とを有する、構成となる。   The substrate processing apparatus according to the present invention includes a processing liquid generating apparatus that generates a processing liquid whose concentration is adjusted based on a concentration measured by a densitometer, a table that holds the substrate, and a drive that rotates the table. And a processing liquid supply mechanism that supplies a processing liquid generated by the processing liquid generation apparatus to the surface of the substrate that rotates together with the table. The processing liquid generation apparatus adjusts the concentration of the processing liquid. A first processing liquid path for flowing the processing liquid to the processing liquid adjustment section, a second processing liquid path for flowing the processing liquid to the processing liquid adjustment section, and the first processing liquid path. A concentration of the treatment liquid flowing, a first concentration meter that measures a concentration of a component related to concentration adjustment in the treatment liquid adjustment unit, and a concentration of the treatment liquid flowing in the second treatment liquid path, Before concentration measurement by the first densitometer, A second densitometer that measures the concentration of a component related to concentration adjustment in the treatment liquid adjustment unit; a first valve mechanism that opens and closes the first treatment liquid path; and a second that opens and closes the second treatment liquid path. And a valve mechanism.

本発明に係る処理液生成装置によれば、生成される処理液の濃度の信頼性を向上させることができる。   According to the processing liquid generation apparatus according to the present invention, the reliability of the concentration of the generated processing liquid can be improved.

また、本発明に係る基板処理装置によれば、上記処理液生成装置にて生成される処理液により基板を処理することができる。   Moreover, according to the substrate processing apparatus which concerns on this invention, a board | substrate can be processed with the process liquid produced | generated by the said process liquid production | generation apparatus.

図1は、本発明の実施の形態に係る処理液生成装置を含む基板処理装置を示す図である。FIG. 1 is a diagram showing a substrate processing apparatus including a processing liquid generating apparatus according to an embodiment of the present invention. 図2Aは、図1に示す処理液生成装置における上流側第1バルブ群、上流側第2バルブ群、下流側第1バルブ群、及び下流側第2バルブ群の構成例を示す図である。FIG. 2A is a diagram illustrating a configuration example of an upstream first valve group, an upstream second valve group, a downstream first valve group, and a downstream second valve group in the processing liquid generation apparatus illustrated in FIG. 1. 図2Bは、図2Aに示す第1濃度計測部の構成例を示す図である。FIG. 2B is a diagram illustrating a configuration example of the first concentration measurement unit illustrated in FIG. 2A. 図2Cは、図2Aに示す第2濃度計測部の構成例を示す図である。FIG. 2C is a diagram illustrating a configuration example of the second concentration measurement unit illustrated in FIG. 2A. 図3は、図1、図2A乃至図2Cに示す処理液生成装置における各バルブを制御する制御系の構成例を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration example of a control system that controls each valve in the processing liquid generation apparatus illustrated in FIGS. 1 and 2A to 2C. 図4Aは、図3に示す制御系における制御ユニットの処理手順の一例を示すフローチャート(その1)である。4A is a flowchart (part 1) illustrating an example of a processing procedure of a control unit in the control system illustrated in FIG. 図4Bは、図3に示す制御系における制御ユニットの処理手順の一例を示すフローチャート(その2)である。FIG. 4B is a flowchart (part 2) illustrating an example of a processing procedure of the control unit in the control system illustrated in FIG. 3. 図5は、濃度計の校正処理の手順の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of a calibration process procedure of the densitometer.

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の実施の一形態に係る処理液生成装置を含む基板処理装置は、図1に示すように構成される。   A substrate processing apparatus including a processing liquid generating apparatus according to an embodiment of the present invention is configured as shown in FIG.

図1において、この基板処理装置は、2つの処理液生成装置と、2系統の処理液供給(処理液供給機構)・回収系と、スピン装置100とを有している。一方の処理液生成装置は、第1供給タンク11a、2つの積算流量計14a、15a、2つの調整バルブ16a、17a、第1ポンプ18a、開閉バルブ19a、生成循環系の2つの三方バルブ21、22、上流側第1バルブ群12a、上流側第2バルブ群12b、第1濃度計側部20a、第2濃度計側部20b、下流側第1バルブ群13a及び下流側第2バルブ群13bを有する構成となっている。他方の処理液生成装置は、生成循環系の2つの三方バルブ21、22、上流側第1バルブ群12a、上流側第2バルブ群12b、第1濃度計側部20a、第2濃度計側部20b、下流側第1バルブ群13a及び下流側第2バルブ群13bを前記一方の処理液生成装置と共用する他、第2供給タンク11b、2つの積算流量計14b、15b、2つの調整バルブ16b、17b、第2ポンプ18b及び開閉バルブ19bを有する構成となっている。一方の系統の処理液供給・回収系は、第1供給タンク11a及び第1ポンプ18aを前述した一方の処理液生成装置と共用するとともに、三方バルブ23、24及び回収タンク10を有する構成となっている。また、他方の系統の処理液供給・回収系は、第2供給タンク11b及び第2ポンプ18bを前述した他方の処理液生成装置と共用するとともに、回収タンク10及び2つの三方バルブ23、24を前述した一方の系統の処理液供給・回収系と共用する構成となっている。   In FIG. 1, the substrate processing apparatus includes two processing liquid generation apparatuses, two systems of processing liquid supply (processing liquid supply mechanism) / recovery system, and a spin device 100. One processing liquid generator includes a first supply tank 11a, two integrating flow meters 14a and 15a, two adjustment valves 16a and 17a, a first pump 18a, an on-off valve 19a, and two three-way valves 21 of the generation circulation system, 22, upstream first valve group 12a, upstream second valve group 12b, first densitometer side 20a, second densitometer side 20b, downstream first valve group 13a and downstream second valve group 13b. It is the composition which has. The other processing liquid generation apparatus includes two three-way valves 21 and 22 of the generation circulation system, an upstream first valve group 12a, an upstream second valve group 12b, a first concentration meter side portion 20a, and a second concentration meter side portion. 20b, the downstream first valve group 13a and the downstream second valve group 13b are used in common with the one processing liquid generator, the second supply tank 11b, the two integrating flow meters 14b and 15b, and the two regulating valves 16b. 17b, a second pump 18b, and an open / close valve 19b. The processing liquid supply / recovery system of one system shares the first supply tank 11a and the first pump 18a with the above-described one processing liquid generation device, and has three-way valves 23 and 24 and a recovery tank 10. ing. The other processing liquid supply / recovery system shares the second supply tank 11b and the second pump 18b with the other processing liquid generator described above, and includes the recovery tank 10 and the two three-way valves 23 and 24. It is configured to be shared with the processing liquid supply / recovery system of one system described above.

後述するように第1供給タンク11a内で濃度調整されて生成される処理液は、三方バルブ23が第1供給タンク11a側に切り換わり、第1ポンプ18aが動作することにより、第1供給タンク11aから三方バルブ23を通してスピン装置100内のノズル111に供給され、そのノズル111から処理液が吐出される(処理液供給機構)。スピン装置100には、モータ等の駆動機構112によって回転する支持ステージ110(テーブル)が設けられ、支持ステージ110にその周縁部が支持された半導体ウェーハWに対向するようにノズル111が配置されている。支持ステージ110の側方から下方を覆うカップ115が設けられている。ノズル111から吐出される処理液(例えば、エッチング液)は、支持ステージ110とともに回転する半導体ウェーハWの表面にかけられ、その処理液により半導体ウェーハWの表面が処理(エッチング処理)される。回転する半導体ウェーハWの表面から飛散する使用済み処理液は、カップ115内に収容され、更に、排出経路(図示略)を通って回収タンク10に回収される。そして、回収タンク10内の使用済み処理液は、第1供給タンク11a側に切り換えられた三方バルブ24を通って第1供給タンク11aに戻される。   As will be described later, the treatment liquid produced by adjusting the concentration in the first supply tank 11a is switched to the first supply tank 11a side by switching the three-way valve 23 to the first supply tank 11a side. 11a is supplied to the nozzle 111 in the spin apparatus 100 through the three-way valve 23, and the processing liquid is discharged from the nozzle 111 (processing liquid supply mechanism). The spin device 100 is provided with a support stage 110 (table) that is rotated by a driving mechanism 112 such as a motor, and a nozzle 111 is disposed so as to face the semiconductor wafer W whose peripheral portion is supported by the support stage 110. Yes. A cup 115 that covers the lower side from the side of the support stage 110 is provided. A processing liquid (for example, etching liquid) discharged from the nozzle 111 is applied to the surface of the semiconductor wafer W that rotates together with the support stage 110, and the surface of the semiconductor wafer W is processed (etching process) by the processing liquid. The used processing liquid that scatters from the surface of the rotating semiconductor wafer W is accommodated in the cup 115 and further recovered in the recovery tank 10 through a discharge path (not shown). The used processing liquid in the collection tank 10 is returned to the first supply tank 11a through the three-way valve 24 switched to the first supply tank 11a side.

一方、2つの三方バルブ23、24が第2供給タンク11b側に切り換えられると、第2供給タンク11b内で濃度調整されて生成される処理液は、第2ポンプ18bの動作により、第2供給タンク11bから三方バルブ23を通してスピン装置100のノズル111に供給される(処理液供給機構)。そして、前述したのと同様に、ノズル111から吐出してスピン装置100内で回転する半導体ウェーハWの表面にかけられて使用済みとなった処理液は、回収タンク10に回収され、更に、回収タンク10から三方バルブ24を通して第2供給タンク11bに戻される。   On the other hand, when the two three-way valves 23 and 24 are switched to the second supply tank 11b side, the treatment liquid generated by adjusting the concentration in the second supply tank 11b is second supplied by the operation of the second pump 18b. It is supplied from the tank 11b to the nozzle 111 of the spin device 100 through the three-way valve 23 (processing liquid supply mechanism). In the same manner as described above, the processing liquid discharged from the nozzle 111 and applied to the surface of the semiconductor wafer W rotating in the spin apparatus 100 is collected in the collection tank 10 and further collected in the collection tank. 10 is returned to the second supply tank 11b through the three-way valve 24.

前述した第1供給タンク11aと第2供給タンク11bとによって分かれる2系統の処理液供給(処理液供給機構)・回収系のそれぞれは、各供給タンク11a、11b内の処理液の状態(量、濃度、不純物の量等)に応じて、三方バルブ23、24によって適宜切り換えられる。その結果、スピン装置100において、適正な状態(濃度等)の処理液による半導体ウェーハWの表面の処理を継続させることができる。   Each of the two systems of processing liquid supply (processing liquid supply mechanism) and recovery system divided by the first supply tank 11a and the second supply tank 11b described above is the state (amount, amount, etc.) of the processing liquid in each of the supply tanks 11a and 11b. Depending on the concentration, the amount of impurities, and the like, the three-way valves 23 and 24 can be switched as appropriate. As a result, in the spin apparatus 100, it is possible to continue processing the surface of the semiconductor wafer W with the processing solution in an appropriate state (concentration, etc.).

次に、処理液生成装置の具体的な構成について説明する。なお、2つの処理液生成装置は、上流側第1バルブ群12a、上流側第2バルブ群12b、下流側第1バルブ群13a、下流側第2バルブ群13b、第1濃度計側部20a、第2濃度計側部20b及び2つの三方バルブ21、22を共用する他、複数の同種の構成部品を備えて、同じ動作をするので、第1供給タンク11aを含む一方の処理液生成装置について説明する。   Next, a specific configuration of the processing liquid generation apparatus will be described. Note that the two processing liquid generation apparatuses include an upstream first valve group 12a, an upstream second valve group 12b, a downstream first valve group 13a, a downstream second valve group 13b, a first concentration meter side portion 20a, In addition to sharing the second concentration meter side part 20b and the two three-way valves 21 and 22, the same operation is provided with a plurality of the same kind of components, and therefore one processing liquid generating apparatus including the first supply tank 11a is provided. explain.

積算流量計14a及び調整バルブ16aの設けられた液路が第1供給タンク11aに接続されており、この液路を通して処理液(例えば、エッチング液としてのリン酸水溶液)の原液が第1供給タンク11aに供給されるようになっている。積算流量計15a及び調整バルブ17aの設けられた液路が第1供給タンク11aに接続されており、この液路を通して希釈液(例えば、純水)が第1供給タンク11aに供給されるようになっている。   A liquid path provided with the integrating flow meter 14a and the adjustment valve 16a is connected to the first supply tank 11a, and a raw liquid of the processing liquid (for example, phosphoric acid aqueous solution as an etching liquid) is passed through the liquid path to the first supply tank. 11a is supplied. A liquid path provided with the integrating flow meter 15a and the adjustment valve 17a is connected to the first supply tank 11a, and a dilution liquid (for example, pure water) is supplied to the first supply tank 11a through this liquid path. It has become.

第1供給タンク11aから出て、第1ポンプ18a及び開閉バルブ19aを介して第1供給タンク11aに戻る循環液路が形成されている。また、第1供給タンク11aから出て、第1ポンプ18a、三方バルブ21、上流側第1バルブ群12a、第1濃度計側部20a、下流側第1バルブ群13a、及び三方バルブ22を介して第1供給タンク11aに戻る液路P1が形成されている。この液路P1を、以下、第1循環液路P1(第1処理液路)という。更に、第1供給タンク11aから出て、第1ポンプ18a、三方バルブ21、上流側第2バルブ群12b、第2濃度計側部20b、下流側第2バルブ群13b、及び三方バルブ22を介して第1供給タンク11aに戻る液路P2が形成されている。この液路P2を、以下、第2循環液路P2(第2処理液路)という。   A circulating fluid path is formed that exits from the first supply tank 11a and returns to the first supply tank 11a via the first pump 18a and the opening / closing valve 19a. Also, the first pump 18a, the three-way valve 21, the upstream first valve group 12a, the first densitometer side portion 20a, the downstream first valve group 13a, and the three-way valve 22 exit from the first supply tank 11a. Thus, a liquid path P1 returning to the first supply tank 11a is formed. Hereinafter, the liquid path P1 is referred to as a first circulation liquid path P1 (first processing liquid path). Further, the fuel flows out of the first supply tank 11a, passes through the first pump 18a, the three-way valve 21, the upstream second valve group 12b, the second concentration meter side portion 20b, the downstream second valve group 13b, and the three-way valve 22. A liquid path P2 returning to the first supply tank 11a is formed. Hereinafter, the liquid path P2 is referred to as a second circulating liquid path P2 (second processing liquid path).

上流側第1バルブ群12a、上流側第2バルブ群12b、下流側第1バルブ群13a及び下流側第2バルブ群13bは、図2Aに示すように構成されている。   The upstream first valve group 12a, the upstream second valve group 12b, the downstream first valve group 13a, and the downstream second valve group 13b are configured as shown in FIG. 2A.

上流側第1バルブ群12aは、三方バルブ21から続く第1循環液路P1に設けられた開閉バルブ120aを含み、上流側第2バルブ群12bは、三方バルブ21から続く第2循環液路P2に設けられた開閉バルブ120bを含む。下流側第1バルブ群13aは、第1濃度計側部20aを通して三方バルブ22に向けて延びる第1循環液路P1に設けられた開閉バルブ130aを含み、下流側第2バルブ群13bは、第2濃度計側部20bを通して三方バルブ22に向けて延びる第2循環液路P2に設けられた開閉バルブ130bを含む。   The upstream first valve group 12 a includes an opening / closing valve 120 a provided in the first circulating fluid path P <b> 1 continuing from the three-way valve 21, and the upstream second valve group 12 b is a second circulating fluid path P <b> 2 continuing from the three-way valve 21. Includes an on-off valve 120b. The downstream first valve group 13a includes an opening / closing valve 130a provided in the first circulating fluid path P1 extending toward the three-way valve 22 through the first concentration meter side part 20a, and the downstream second valve group 13b includes 2 includes an on-off valve 130b provided in a second circulating fluid path P2 extending toward the three-way valve 22 through the concentration meter side portion 20b.

上流側第1バルブ群12aに含まれる開閉バルブ120aと下流側第1バルブ群13aに含まれる開閉バルブ130aとの組は、第1循環液路P1(第1処理液路)の開閉を行う第1バルブ機構として構成される。また、上流側第2バルブ群12bに含まれる開閉バルブ120bと下流側第2バルブ群13bに含まれる開閉バルブ130bとの組は、第2循環液路P2(第2処理液路)の開閉を行う第2バルブ機構として構成される。   The combination of the opening / closing valve 120a included in the upstream first valve group 12a and the opening / closing valve 130a included in the downstream first valve group 13a opens and closes the first circulation liquid path P1 (first processing liquid path). It is configured as a one-valve mechanism. The combination of the opening / closing valve 120b included in the upstream second valve group 12b and the opening / closing valve 130b included in the downstream second valve group 13b opens and closes the second circulating fluid path P2 (second processing fluid path). The second valve mechanism is configured.

図1には示されていないが、上流側第1バルブ群12a、上流側第2バルブ群12b、下流側第1バルブ群13a及び下流側第2バルブ群13bは、他の液路の開閉を行う複数の開閉バルブを含む。具体的には、図2Aに示されるように、第1循環液路P1の他、第1濃度計側部20aを通る2つの液路Pc1、Pp1が形成されており、第2循環液路P2の他、第2濃度計側部20bを通る2つの液路Pc2、Pp2が形成されている。液路Pc1は、第1濃度計側部20aにおける濃度計の校正に利用される校正液の液源から第1濃度計側部20aを通って排出部に向けて延びる液路であって、第1校正液路Pc1を構成する。なお、上記校正液として、処理液と同成分の液体を用いることができる。第1校正液路Pc1には、濃度が既知である校正液が供給される。なお、少なくとも濃度計を通過する際の校正液の濃度が既知であればよく、校正液の液源から校正液がそのまま供給されてもいいし、液源からの校正液が所定濃度に調整されてから供給されるものでもかまわない。液路Pc2は、同様の校正液の液源から第2濃度計側部20bを通って排出部に向けて延びる液路であって、この液路Pc2を流れる校正液も第2濃度計側部20bにおける濃度計の校正に用いられ、第2校正液路Pc2を構成する。液路Pp1は、純水の液源から第1濃度計側部20aを通って排出部に向けて延びる液路であって、第1洗浄液路Pp1を構成する。液路Pp2は、同様の純水の液源から第2濃度計側部20bを通って排出部に向けて延びる液路であって、第2洗浄液路Pp2を構成する。   Although not shown in FIG. 1, the upstream first valve group 12a, the upstream second valve group 12b, the downstream first valve group 13a, and the downstream second valve group 13b open and close other liquid paths. Includes multiple open / close valves to perform. Specifically, as shown in FIG. 2A, in addition to the first circulating fluid path P1, two fluid paths Pc1 and Pp1 passing through the first concentration meter side part 20a are formed, and the second circulating fluid path P2 is formed. In addition, two liquid paths Pc2 and Pp2 passing through the second concentration meter side part 20b are formed. The liquid passage Pc1 is a liquid passage that extends from the liquid source of the calibration liquid used for the calibration of the concentration meter in the first concentration meter side portion 20a, through the first concentration meter side portion 20a, toward the discharge portion. One calibration liquid path Pc1 is configured. Note that a liquid having the same component as the treatment liquid can be used as the calibration liquid. A calibration liquid having a known concentration is supplied to the first calibration liquid path Pc1. It is sufficient that at least the concentration of the calibration liquid when passing through the densitometer is known, the calibration liquid may be supplied as it is from the liquid source of the calibration liquid, or the calibration liquid from the liquid source is adjusted to a predetermined concentration. It may be supplied later. The liquid path Pc2 is a liquid path extending from the same calibration liquid source to the discharge section through the second concentration meter side part 20b, and the calibration liquid flowing through the liquid path Pc2 is also the second concentration meter side part. It is used for calibration of the densitometer at 20b and constitutes a second calibration liquid path Pc2. The liquid path Pp1 is a liquid path extending from the liquid source of pure water through the first concentration meter side part 20a toward the discharge part, and constitutes the first cleaning liquid path Pp1. The liquid path Pp2 is a liquid path extending from the same pure water source to the discharge section through the second concentration meter side part 20b, and constitutes the second cleaning liquid path Pp2.

上流側第1バルブ群12aは、第1洗浄液路Pp1に設けられた開閉バルブ121a、及び第1校正液路Pc1に設けられた開閉バルブ122aを含む。下流側第1バルブ群13aも、第1洗浄液路Pp1に設けられた開閉バルブ131a、及び第1校正液路Pc1に設けられた開閉バルブ132aを含む。また、上流側第2バルブ群12bは、第2洗浄液路Pp2に設けられた開閉バルブ121b、及び第2校正液路Pc2に設けられた開閉バルブ122bを含む。下流側第2バルブ群13bも、第2洗浄液路Pp2に設けられた開閉バルブ131b、及び第2校正液路Pc2に設けられた開閉バルブ132bを含む。   The upstream first valve group 12a includes an opening / closing valve 121a provided in the first cleaning liquid path Pp1 and an opening / closing valve 122a provided in the first calibration liquid path Pc1. The downstream first valve group 13a also includes an open / close valve 131a provided in the first cleaning liquid path Pp1 and an open / close valve 132a provided in the first calibration liquid path Pc1. The upstream second valve group 12b includes an opening / closing valve 121b provided in the second cleaning liquid path Pp2 and an opening / closing valve 122b provided in the second calibration liquid path Pc2. The downstream second valve group 13b also includes an opening / closing valve 131b provided in the second cleaning liquid path Pp2 and an opening / closing valve 132b provided in the second calibration liquid path Pc2.

上流側第1バルブ群12aの開閉バルブ122aと、下流側第1バルブ群13aの開閉バルブ132aとの組は、第1校正液路Pc1を開閉する第3バルブ機構として構成される。上流側第2バルブ群12bの開閉バルブ122bと、下流側第2バルブ群13bの開閉バルブ132bとの組は、第2校正液路Pc2を開閉する第4バルブ機構として構成される。また、上流側第1バルブ群12aの開閉バルブ121aと、下流側バルブ群13aの開閉バルブ131aとの組は、第1洗浄液路Pp1を開閉する第5バルブ機構として構成され、上流側第2バルブ群12bの開閉バルブ121bと、下流側第2バルブ群13bの開閉バルブ群131bとの組は、第2洗浄液路Pp2を開閉する第6バルブ機構として構成される。   A set of the opening / closing valve 122a of the upstream first valve group 12a and the opening / closing valve 132a of the downstream first valve group 13a is configured as a third valve mechanism for opening and closing the first calibration liquid passage Pc1. The set of the opening / closing valve 122b of the upstream second valve group 12b and the opening / closing valve 132b of the downstream second valve group 13b is configured as a fourth valve mechanism that opens and closes the second calibration liquid path Pc2. The set of the opening / closing valve 121a of the upstream first valve group 12a and the opening / closing valve 131a of the downstream valve group 13a is configured as a fifth valve mechanism for opening and closing the first cleaning liquid passage Pp1, and the upstream second valve The group of the opening / closing valve 121b of the group 12b and the opening / closing valve group 131b of the downstream second valve group 13b is configured as a sixth valve mechanism for opening and closing the second cleaning liquid path Pp2.

第1濃度計側部20aは、例えば、図2Bに示すように構成されており、また、第2濃度計側部20bは、例えば、図2Cに示すように構成されている。   The first densitometer side part 20a is configured as shown in FIG. 2B, for example, and the second densitometer side part 20b is configured as shown in FIG. 2C, for example.

図2Bに示すように、第1濃度計側部20aは、第1濃度計201a、上流側第1切換バルブ202a、及び下流側第1切換バルブ203aを有している。前述したように上流側第1バルブ群12a及び下流側第1バルブ群13aが設けられた第1循環液路P1、第1校正液路Pc1及び第1洗浄液路Pp1の3つの液路は、第1濃度計側部20a内において、上流側にて上流第1切換バルブ202aに並列的に接続するとともに、下流側にて下流側第1切換バルブ203aに並列的に接続することにより、それら上流側第1切換バルブ202aと下流側第1切換バルブ203aとを結合する1つの流路Pm1にまとまっている。そして、流路Pm1の部分に第1濃度計201aが設けられている。   As shown in FIG. 2B, the first concentration meter side unit 20a includes a first concentration meter 201a, an upstream first switching valve 202a, and a downstream first switching valve 203a. As described above, the three fluid paths of the first circulating fluid path P1, the first calibration fluid path Pc1, and the first cleaning fluid path Pp1 provided with the upstream first valve group 12a and the downstream first valve group 13a are In the one concentration meter side portion 20a, the upstream side is connected in parallel to the upstream first switching valve 202a and the downstream side is connected in parallel to the downstream first switching valve 203a. The first switching valve 202a and the downstream first switching valve 203a are combined in one flow path Pm1. And the 1st concentration meter 201a is provided in the part of flow path Pm1.

このような第1濃度計側部20aでは、上流側第1切換バルブ202a及び下流側第1切換バルブ203aの切換え動作により、第1循環液路P1に液路Pm1が連通されると、第1循環液路P1を流れる処理液が液路Pm1を流れるようになる。これにより、第1濃度計201aによって液路Pm1を流れる処理液の濃度、つまり第1循環液路P1を流れる処理液の濃度を計測することができる。また、上流側第1切換バルブ202a及び下流側第1切換バルブ203aの切換え動作により、第1校正液路Pc1に流路Pm1が連通されると、第1校正液路Pc1を流れる校正液が液路Pm1を流れるようになり、第1濃度計201aの校正を行うことができる。更に、上流側第1切換バルブ201a及び下流側第1切換バルブ203aの切換え動作により、第1洗浄液路Pp1に流路Pm1が連通されると、第1洗浄液路Pp1を流れる洗浄液が液路Pm1を流れるようになり、その洗浄液により液路Pm1及び第1濃度計201aを洗浄することができる。   In such a first concentration meter side portion 20a, when the fluid path Pm1 communicates with the first circulation fluid path P1 by the switching operation of the upstream first switching valve 202a and the downstream first switching valve 203a, The processing liquid flowing through the circulating liquid path P1 flows through the liquid path Pm1. Accordingly, the concentration of the processing liquid flowing through the liquid path Pm1, that is, the concentration of the processing liquid flowing through the first circulation liquid path P1 can be measured by the first concentration meter 201a. Further, when the flow path Pm1 is communicated with the first calibration liquid path Pc1 by the switching operation of the upstream first switching valve 202a and the downstream first switching valve 203a, the calibration liquid flowing through the first calibration liquid path Pc1 is liquid. The first concentration meter 201a can be calibrated by flowing through the path Pm1. Furthermore, when the flow path Pm1 communicates with the first cleaning liquid path Pp1 by the switching operation of the upstream first switching valve 201a and the downstream first switching valve 203a, the cleaning liquid flowing through the first cleaning liquid path Pp1 passes through the liquid path Pm1. The liquid path Pm1 and the first concentration meter 201a can be cleaned with the cleaning liquid.

また、図2Cに示すように、第2濃度計側部20bは、第2濃度計201b、上流側第2切換バルブ202b、及び下流側第2切換バルブ203bを有している。前述したように上流側第2バルブ群12b及び下流側第2バルブ群13bが設けられた第2循環液路P2、第2校正液路Pc2及び第2洗浄液路Pp2の3つの液路は、第2濃度計側部20b内において、上流側にて上流側第2切換バルブ202bに並列的に接続するとともに、下流側にて下流側第2切換バルブ203bに並列的に接続することにより、それら上流側第2切換バルブ202bと下流側第2切換バルブ203bとを結合する液路Pm2にまとまっている。そして、液路Pm2の部分に第2濃度計201bが設けられている。   As shown in FIG. 2C, the second densitometer side portion 20b includes a second densitometer 201b, an upstream second switching valve 202b, and a downstream second switching valve 203b. As described above, the three fluid paths of the second circulating fluid path P2, the second calibration fluid path Pc2, and the second cleaning fluid path Pp2 in which the upstream second valve group 12b and the downstream second valve group 13b are provided are In the two concentration meter side portion 20b, the upstream side is connected in parallel to the upstream side second switching valve 202b, and the downstream side is connected in parallel to the downstream side second switching valve 203b. The second side switching valve 202b and the downstream side second switching valve 203b are combined in a liquid path Pm2. And the 2nd concentration meter 201b is provided in the part of the liquid path Pm2.

このような第2濃度計側部20bでは、上流側第2切換バルブ202b及び下流側第2切換バルブ203bの切換え動作により、第2循環液路P2に液路Pm2が連通されると、第2循環液路P2を流れる処理液が液路Pm2を流れるようになり、第2濃度計201bによって液路Pm2を流れる処理液の濃度を計測することができる。また、上流側第2切換バルブ202b及び下流側第2切換バルブ203bの切換え動作により、第2校正液路Pc2に液路Pm2が連通されると、第2校正液路Pc2を流れる校正液が液路Pm2を流れるようになり、第2濃度計201aの校正を行うことができる。更に、上流側第2切換バルブ202b及び下流側第2切換バルブ203bの切換え動作により、第2洗浄液路Pp1に流路Pm2が連通されると、第2洗浄液路Pp2を流れる洗浄液が液路Pm2を流れるようになり、その洗浄液により液路Pm2及び第2濃度計201bを洗浄することができる。   In such a second concentration meter side portion 20b, when the fluid path Pm2 communicates with the second circulating fluid path P2 by the switching operation of the upstream second switching valve 202b and the downstream second switching valve 203b, The processing liquid flowing through the circulation liquid path P2 flows through the liquid path Pm2, and the concentration of the processing liquid flowing through the liquid path Pm2 can be measured by the second concentration meter 201b. Further, when the fluid path Pm2 communicates with the second calibration fluid path Pc2 by the switching operation of the upstream side second switching valve 202b and the downstream side second switching valve 203b, the calibration liquid flowing through the second calibration fluid path Pc2 is liquid. The second concentration meter 201a can be calibrated by flowing through the path Pm2. Further, when the flow path Pm2 communicates with the second cleaning liquid path Pp1 by the switching operation of the upstream second switching valve 202b and the downstream second switching valve 203b, the cleaning liquid flowing through the second cleaning liquid path Pp2 passes through the liquid path Pm2. The liquid path Pm2 and the second concentration meter 201b can be cleaned with the cleaning liquid.

第1濃度計側部20aに設けられた第1濃度計201aと第2濃度計側部20bに設けられた第2濃度計201bとは、異なる測定原理によってそれら濃度計側部20a、20bを流れる処理液(校正液)の濃度を測定し、その測定濃度に対応した測定信号を出力する。つまり、第1濃度計201aと第2濃度計201bとは、第1循環液路P1及び第2循環液路P2のそれぞれを流れる処理液(より詳細には、液路Pm1及びPm2のそれぞれを流れる処理液)の濃度を異なる測定原理によって測定する。第1濃度計201a(図2B参照)として、例えば、対象となる液体の電気伝導率に基づいて濃度を測定するものを用いることができる。第2濃度計201bとして、例えば、図2Cに示すように、液路Pm2の透明部TPを挟んで設けられたレーザ光源と受光部とによって構成され、対象となる液体の濃度を光学的に測定するものを用いることができる。第1濃度計201a及び第2濃度計201bのそれぞれとして、その他、例えば、超音波を利用して濃度を測定するもの、赤外線を利用して濃度を測定するものなどを用いることができる。   The first densitometer 201a provided on the first densitometer side part 20a and the second densitometer 201b provided on the second densitometer side part 20b flow through the densitometer side parts 20a and 20b according to different measurement principles. The concentration of the processing solution (calibration solution) is measured, and a measurement signal corresponding to the measured concentration is output. That is, the first concentration meter 201a and the second concentration meter 201b flow through the processing liquid flowing through the first circulation liquid path P1 and the second circulation liquid path P2, respectively (more specifically, through the liquid paths Pm1 and Pm2, respectively). The concentration of the processing solution is measured by different measurement principles. As the first concentration meter 201a (see FIG. 2B), for example, a device that measures the concentration based on the electric conductivity of the liquid to be processed can be used. As the second densitometer 201b, for example, as shown in FIG. 2C, the second densitometer 201b is configured by a laser light source and a light receiving unit provided with the transparent portion TP of the liquid path Pm2 interposed therebetween, and optically measures the concentration of the target liquid. Can be used. As each of the first densitometer 201a and the second densitometer 201b, for example, a device that measures the concentration using ultrasonic waves, a device that measures the concentration using infrared rays, and the like can be used.

また、第1濃度計201aと第2濃度計201bとは、処理液中の第1供給タンク11aまたは第2供給タンク11b(処理液調整部に含まれる)での濃度調整に係る同じ成分の濃度を当該処理液の濃度として測定するものである。例えば、処理液がリン酸水溶液であるエッチング処理液であって、そのエッチング処理液中のリン酸の濃度調整が当該処理液の濃度調整として行われる場合、第1濃度計201aと第2濃度計201bとは、エッチング処理液中のリン酸の濃度を当該処理液の濃度として測定する。また、一般に、処理液が複数の成分を含有する場合であっても、第1濃度計201aと第2濃度計201bとは、第1供給タンク11aまたは第2供給タンク11b(処理液調整部に含まれる)での濃度調整に係る同じ成分についての濃度を処理液の濃度として測定する。   Further, the first densitometer 201a and the second densitometer 201b are concentrations of the same components related to the concentration adjustment in the first supply tank 11a or the second supply tank 11b (included in the treatment liquid adjustment unit) in the treatment liquid. Is measured as the concentration of the treatment liquid. For example, when the treatment liquid is an etching treatment liquid that is a phosphoric acid aqueous solution, and the concentration adjustment of phosphoric acid in the etching treatment liquid is performed as the concentration adjustment of the treatment liquid, the first concentration meter 201a and the second concentration meter In 201b, the concentration of phosphoric acid in the etching processing solution is measured as the concentration of the processing solution. In general, even if the treatment liquid contains a plurality of components, the first concentration meter 201a and the second concentration meter 201b are connected to the first supply tank 11a or the second supply tank 11b (in the treatment liquid adjustment unit). The concentration of the same component related to the concentration adjustment is measured as the concentration of the treatment liquid.

また、第1濃度計201a及び第2濃度計201bの少なくともいずれか一方が、複数の成分(例えば、リン酸の濃度と水分濃度)の濃度測定が可能である場合があり得る。一方の濃度計が濃度調整に係る成分を含む複数の成分の濃度測定を行なう場合、他方の濃度計は、少なくとも前記濃度調整に係る成分の濃度測定を行なえばよい。これにより、第1濃度計201a及び第2濃度計201bの双方において、少なくとも前記濃度調整に係る成分の濃度測定が可能になり、第1濃度計201a及び第2濃度計201bの少なくとも一方での測定濃度に基づいて処理液中の成分濃度の調整が可能になる。   In addition, at least one of the first densitometer 201a and the second densitometer 201b may be capable of measuring concentrations of a plurality of components (for example, phosphoric acid concentration and water concentration). When one densitometer measures the concentration of a plurality of components including the component related to density adjustment, the other densitometer only needs to measure the concentration of at least the component related to density adjustment. Thereby, in both the first densitometer 201a and the second densitometer 201b, it becomes possible to measure at least the concentration of the component related to the density adjustment. It is possible to adjust the component concentration in the treatment liquid based on the concentration.

前述したように構成される処理液生成装置の制御系は、例えば、図3に示すように構成される。   The control system of the processing liquid generator configured as described above is configured as shown in FIG. 3, for example.

図3において、この処理液供給装置は、制御ユニット30を有している。制御ユニット30は、第1濃度計側部20a(図2B参照)において第1循環液路P1に液路Pm1が連通され、第2濃度計側部20b(図2C参照)において第2循環経路P2に液路Pm2が連通されるように、第1濃度計側部20aの上流側第1切換バルブ202a及び下流側第1切換バルブ203aを制御し、第2濃度計側部20bの上流側第2切換バルブ202b及び下流側第2切換バルブ203bを駆動制御する。この状態で、制御ユニット30は、積算流量計14aからの処理液(例えば、リン酸水溶液であるエッチング処理液)の流量情報及び積算流量計15aからの希釈液(例えば、純水)の流量情報を監視しつつ、第1濃度計側部20a(第1濃度計201a:図2B参照)及び第2濃度計側部20b(第2濃度計201b:図2C参照)での測定濃度(例えば、リン酸の測定濃度)に基づいて、処理液及び希釈液を第1供給タンク11aに供給する2つの液路に設けられた調整バルブ16a、17aを駆動する駆動回路31aを制御する。これにより、第1供給タンク11a内で生成される処理液の濃度(例えば、リン酸の濃度)が調整される。また、制御ユニット30は、積算流量計14bからの処理液の流量情報及び積算流量計15bからの希釈液の流量情報を監視しつつ、第1濃度計側部20a及び第2濃度計側部20bでの測定値に基づいて、処理液及び希釈液を第2供給タンク11bに供給する2つの液路に設けられた調整バルブ16b、17bを駆動する駆動回路31bを制御する。これにより、第2供給タンク11b内で生成される処理液の濃度が調整される。なお、この濃度調整の詳細については、後述する。   In FIG. 3, the processing liquid supply apparatus has a control unit 30. In the control unit 30, the liquid path Pm1 communicates with the first circulation liquid path P1 in the first concentration meter side section 20a (see FIG. 2B), and the second circulation path P2 in the second concentration meter side section 20b (see FIG. 2C). The upstream first switching valve 202a and the downstream first switching valve 203a of the first concentration meter side portion 20a are controlled so that the liquid passage Pm2 is communicated with the second concentration meter side portion 20b. The switching valve 202b and the downstream second switching valve 203b are driven and controlled. In this state, the control unit 30 controls the flow rate information of the processing liquid (for example, an etching processing liquid that is an aqueous phosphoric acid solution) from the integrated flow meter 14a and the flow rate information of the diluted liquid (for example, pure water) from the integrated flow meter 15a. The concentration measured by the first densitometer side unit 20a (first densitometer 201a: see FIG. 2B) and the second densitometer side unit 20b (second densitometer 201b: see FIG. 2C) (for example, phosphorus Based on the measured acid concentration), the drive circuit 31a for driving the adjusting valves 16a and 17a provided in the two liquid passages for supplying the treatment liquid and the dilution liquid to the first supply tank 11a is controlled. As a result, the concentration of the treatment liquid generated in the first supply tank 11a (for example, the concentration of phosphoric acid) is adjusted. The control unit 30 also monitors the flow rate information of the processing liquid from the integrated flow meter 14b and the flow rate information of the diluent from the integrated flow meter 15b, while monitoring the first concentration meter side unit 20a and the second concentration meter side unit 20b. Based on the measured value, the drive circuit 31b for driving the adjusting valves 16b and 17b provided in the two liquid passages for supplying the treatment liquid and the dilution liquid to the second supply tank 11b is controlled. Thereby, the density | concentration of the process liquid produced | generated in the 2nd supply tank 11b is adjusted. Details of this density adjustment will be described later.

制御ユニット30は、スピン装置100(ノズル111)に対する処理液の供給源を第1供給タンク11a及び第2供給タンク11bのいずれかに切り換えるために、処理液供給・回収系の三方バルブ23を切換え駆動する駆動回路34aを制御する。また、制御ユニット30は、スピン装置100から回収タンク10に戻された使用済み処理液の送り先を第1供給タンク11a及び第2供給タンク11bのいずれか切り換えるために、処理液供給・回収系の三方バルブ24を切換え駆動する駆動回路34aを制御する。   The control unit 30 switches the three-way valve 23 of the processing liquid supply / recovery system in order to switch the processing liquid supply source for the spin apparatus 100 (nozzle 111) to either the first supply tank 11a or the second supply tank 11b. The drive circuit 34a to be driven is controlled. Further, the control unit 30 switches the processing liquid supply / recovery system in order to switch the destination of the used processing liquid returned from the spin apparatus 100 to the recovery tank 10 to either the first supply tank 11a or the second supply tank 11b. A drive circuit 34a for switching and driving the three-way valve 24 is controlled.

制御ユニット30は、第1濃度計側部20a及び第2濃度計側部20bを通して循環させて濃度調整すべき処理液の貯留源を第1供給タンク11a及び第2供給タンク11bのいずれかに切り換えるために、生成循環系の三方バルブ21、22の切換え制御する駆動回路34bを制御する。その濃度調整に際して、制御ユニット30は、第1循環液路P1(図2A参照)に設けられた上流側第1バルブ群12aの開閉バルブ120a及び下流側第1バルブ群13aの開閉バルブ130aの開閉駆動を行う駆動回路33aを制御する。また、その際、制御ユニット30は、第2循環液路P2(図2A参照)に設けられた上流側第2バルブ群12bの開閉バルブ120b及び下流側第2バルブ群13bの開閉バルブ130bの開閉駆動を行う駆動回路33bを制御する。   The control unit 30 switches the storage source of the processing liquid to be circulated through the first concentration meter side portion 20a and the second concentration meter side portion 20b to one of the first supply tank 11a and the second supply tank 11b. For this purpose, the drive circuit 34b for controlling the switching of the three-way valves 21 and 22 in the production circulation system is controlled. When adjusting the concentration, the control unit 30 opens and closes the open / close valve 120a of the upstream first valve group 12a and the open / close valve 130a of the downstream first valve group 13a provided in the first circulating fluid path P1 (see FIG. 2A). The drive circuit 33a that performs driving is controlled. At that time, the control unit 30 opens and closes the open / close valve 120b of the upstream second valve group 12b and the open / close valve 130b of the downstream second valve group 13b provided in the second circulating fluid path P2 (see FIG. 2A). The driving circuit 33b that performs driving is controlled.

更に、制御ユニット30は、第1濃度計側部20aの第1濃度計201aの校正に際して、第1校正液路Pc1(図2参照)に設けられた上流側第1バルブ群12aの開閉バルブ122a及び下流側第1バルブ群13aの開閉バルブ132aの開閉駆動と、第1洗浄液路Pp1(図2参照)に設けられた上流側第1バルブ群12aの開閉バルブ121a及び下流側第1バルブ群13aの開閉バルブ131aの開閉駆動とを行う駆動回路33aを制御する。その際、制御ユニット30は、第1濃度計側部20a(図2B参照)において、第1校正液路Pc1に液路Pm1が連通される状態と、第1洗浄液路Pp1に液路Pm1が連通される状態とを切り換えるように、上流側第1切換バルブ202a及び下流側第1切換バルブ203bの切換え制御を行なう。更に、また、制御ユニット30は、第2濃度計側部20bの第2濃度計201bの校正に際して、第2校正液路Pc2(図2参照)に設けられた上流側第2バルブ群12bの開閉バルブ122b及び下流側第2バルブ群13bの開閉バルブ132bの開閉駆動と、第2洗浄液路Pp2(図2A参照)に設けられた上流側第2バルブ群12bの開閉バルブ121b及び下流側第2バルブ群13bの開閉バルブ131bの開閉駆動とを行う駆動回路33bを制御する。その際、制御ユニット30は、第2濃度計側部20b(図2C参照)において、第2校正液路Pc2に液路Pm2が連通される状態と、第2洗浄液路Pp2に液路Pm2が連通される状態とを切り換えるように、上流側第2切換バルブ202b及び下流側第2切換バルブ203bの切換え制御を行なう。また、制御ユニット30は、第1ポンプ18aを駆動させる駆動回路35a及び第2ポンプ18bを駆動させる駆動回路35bを制御する。また、制御ユニット30は、開閉バルブ19aの開閉駆動を行う駆動回路32a及び開閉バルブ19bの開閉駆動を行う駆動回路32bを制御する。   Further, when the first concentration meter 201a of the first concentration meter side portion 20a is calibrated, the control unit 30 opens and closes the open / close valve 122a of the upstream first valve group 12a provided in the first calibration liquid path Pc1 (see FIG. 2). And the opening / closing drive of the opening / closing valve 132a of the downstream first valve group 13a, the opening / closing valve 121a of the upstream first valve group 12a and the downstream first valve group 13a provided in the first cleaning liquid passage Pp1 (see FIG. 2). The driving circuit 33a for opening and closing the open / close valve 131a is controlled. At that time, in the first concentration meter side part 20a (see FIG. 2B), the control unit 30 communicates the liquid path Pm1 with the first calibration liquid path Pc1 and the liquid path Pm1 with the first cleaning liquid path Pp1. Switching control of the upstream first switching valve 202a and the downstream first switching valve 203b is performed so as to switch the state to be performed. Furthermore, the control unit 30 opens and closes the upstream second valve group 12b provided in the second calibration liquid passage Pc2 (see FIG. 2) when calibrating the second concentration meter 201b of the second concentration meter side portion 20b. The opening / closing drive of the valve 122b and the opening / closing valve 132b of the downstream second valve group 13b, the opening / closing valve 121b and the downstream second valve of the upstream second valve group 12b provided in the second cleaning liquid path Pp2 (see FIG. 2A). A drive circuit 33b for controlling opening / closing of the opening / closing valve 131b of the group 13b is controlled. At that time, in the second concentration meter side portion 20b (see FIG. 2C), the control unit 30 communicates with the second calibration liquid path Pc2 and the liquid path Pm2 and the second cleaning liquid path Pp2. Switching control of the upstream side second switching valve 202b and the downstream side second switching valve 203b is performed so as to switch the state to be performed. The control unit 30 also controls a drive circuit 35a that drives the first pump 18a and a drive circuit 35b that drives the second pump 18b. The control unit 30 also controls a drive circuit 32a for opening / closing the opening / closing valve 19a and a drive circuit 32b for opening / closing the opening / closing valve 19b.

制御ユニット30は、図4A及び図4Bに示す手順に従って、第1供給タンク11a及び第2供給タンク11bで生成される処理液(例えば、エッチング処理液としてのリン酸水溶液)の濃度調整に係る処理を行なう。なお、以下、第1供給タンク11aで生成される処理液の濃度調整に係る処理について説明するが、第2供給タンク11bで生成される処理液の濃度調整に係る処理についても同様の手順にて行われる。   The control unit 30 performs processing related to the concentration adjustment of the processing liquid (for example, phosphoric acid aqueous solution as an etching processing liquid) generated in the first supply tank 11a and the second supply tank 11b according to the procedure shown in FIGS. 4A and 4B. To do. Hereinafter, the process related to the concentration adjustment of the processing liquid generated in the first supply tank 11a will be described, but the process related to the concentration adjustment of the processing liquid generated in the second supply tank 11b is also performed in the same procedure. Done.

制御ユニット30は、積算流量計14a、15aからの流量情報を監視しつつ、調整バルブ16a、17aを開状態にし、所定量の処理液(原液)及び希釈液が第1供給タンク11aに貯められると、調整バルブ16a、17aを閉状態にする。その後、制御ユニット30は、開閉バルブ19aを開状態にし、三方バルブ21、23の第1供給タンク11a側を閉じた状態で、第1ポンプ18aを駆動させる。これにより、第1供給タンク11aから出る処理液及び希釈液が開閉バルブ19aの設けられた循環液路を通って第1供給タンク11aに戻り、循環する。その過程で、処理液と希釈液とが混合されて希釈化された処理液が第1供給タンク11a内で生成される。第1供給タンク11a内において処理液と希釈液とを混合させて処理液の濃度(例えば、エッチング液中のリン酸濃度)を調整する仕組み全体が、つまり、第1供給タンク11a内において処理液を生成するときに関わる構成が、処理液調整部として機能する。   The control unit 30 monitors the flow rate information from the integrating flow meters 14a and 15a, opens the adjustment valves 16a and 17a, and stores a predetermined amount of processing liquid (raw solution) and dilution liquid in the first supply tank 11a. Then, the adjustment valves 16a and 17a are closed. Thereafter, the control unit 30 drives the first pump 18a with the open / close valve 19a opened and the three-way valves 21 and 23 closed on the first supply tank 11a side. As a result, the processing liquid and the diluting liquid exiting from the first supply tank 11a return to the first supply tank 11a through the circulation liquid path provided with the opening / closing valve 19a and circulate. In the process, the diluted processing liquid is generated in the first supply tank 11a by mixing the processing liquid and the diluent. The entire mechanism for adjusting the concentration of the processing liquid (for example, the phosphoric acid concentration in the etching liquid) by mixing the processing liquid and the dilution liquid in the first supply tank 11a, that is, the processing liquid in the first supply tank 11a. The configuration involved in generating the function functions as a processing liquid adjustment unit.

その後、制御ユニット30は、開閉バルブ19aを閉状態に切り換えるとともに、循環系の三方バルブ21、22を第1供給タンク11a側に切換える。また、このとき、制御ユニット30は、第1循環液路P1に設けられた上流側第1バルブ群12aの開閉バルブ120a及び下流側第1バルブ群13aの開閉バルブ130a(第1バルブ機構:図2A参照)を開状態するとともに、第2循環液路P2に設けられた上流側第2バルブ群12bの開閉バルブ120b及び下流側第2バルブ群13bの開閉バルブ130b(第2バルブ機構:図2A参照)を開状態にする。この状態で、第1供給タンク11aから出る処理液が第1循環液路P1及び第2循環液路P2を並列的に通って第1供給タンク11aに戻り、循環する。   Thereafter, the control unit 30 switches the open / close valve 19a to the closed state and switches the three-way valves 21 and 22 of the circulation system to the first supply tank 11a side. At this time, the control unit 30 opens and closes the opening / closing valve 120a of the upstream first valve group 12a and the opening / closing valve 130a of the downstream first valve group 13a (first valve mechanism: FIG. 2A) is opened, and the on-off valve 120b of the upstream second valve group 12b and the on-off valve 130b of the downstream second valve group 13b (second valve mechanism: FIG. 2A) provided in the second circulating fluid path P2. (See) open. In this state, the processing liquid exiting from the first supply tank 11a passes through the first circulation liquid path P1 and the second circulation liquid path P2 in parallel and returns to the first supply tank 11a and circulates.

このようにして、処理液の第1循環液路P1及び第2循環液路P2を通した循環が開始されると、制御ユニット30は、図4A及び図4Bに示す手順に従って処理を開始する。   In this way, when the circulation of the processing liquid through the first circulating liquid path P1 and the second circulating liquid path P2 is started, the control unit 30 starts processing according to the procedure shown in FIGS. 4A and 4B.

図4Aにおいて、制御ユニット30は、第1濃度計側部20a(第1濃度計201a:図2B参照)及び第2濃度計側部20b(第2濃度計201b:図2C参照)が校正中であるか否かを確認し(S11、S12)、第1濃度計側部20a及び第2濃度計側部20bの双方が校正中でなければ(S11でNO、S12でNO)、第1濃度計201a(第1濃度計側部20a)からの測定信号に基づいた濃度C1と、第2濃度計201b(第2濃度計側部20b)からの測定信号に基づいた濃度C2とを取得する(S13、S14)。そして、制御ユニット30は、それら2つの測定濃度C1、C2に基づいて、第2濃度計201bが正常であるか否か(S15:第2判定部(処理液用バルブ制御部))、及び第1濃度計201aが正常であるか否か(S16:第1判定部(処理液用バルブ制御部))を判定する。   4A, the control unit 30 is calibrating the first densitometer side 20a (first densitometer 201a: see FIG. 2B) and the second densitometer side 20b (second densitometer 201b: see FIG. 2C). It is confirmed whether or not there is (S11, S12). If both the first densitometer side 20a and the second densitometer side 20b are not being calibrated (NO in S11, NO in S12), the first densitometer A density C1 based on a measurement signal from 201a (first densitometer side 20a) and a density C2 based on a measurement signal from the second densitometer 201b (second densitometer side 20b) are acquired (S13). , S14). Then, the control unit 30 determines whether or not the second densitometer 201b is normal based on the two measured concentrations C1 and C2 (S15: second determination unit (processing liquid valve control unit)), and the second It is determined whether or not the one densitometer 201a is normal (S16: first determination unit (processing liquid valve control unit)).

第1濃度計201aと第2濃度計201bとは、同じ処理液の濃度(具体的には、エッチング処理液中のリン酸の濃度)を測定しているので、測定濃度は、本来同じになる。このため、第1濃度計201aでの測定濃度C1と第2濃度計201bでの測定濃度C2との差が、予め設定された所定範囲内であれば、第1濃度計201aと第2濃度計201bとは正常であると判定することができる。一方、循環する処理液の濃度が急激に変動する可能性は低い。そして、第1濃度計201a及び第2濃度計201bの双方が同時に故障する可能性も低い。特に、第1濃度計201aの濃度測定原理と第2濃度計201bの濃度測定原理とが異なるので、同じような環境で使用される第1濃度計201aと第2濃度計201bとが同時に故障する可能性は更に低い。従って、一方の濃度計での測定濃度の推移が安定している状態において、他方の濃度計での測定濃度が急激に変動した場合(例えば、一方の濃度計と他方の濃度計からそれぞれ得られた測定濃度の差が、予め設定された所定範囲を超え、しかも、他方の濃度計で測定される濃度の単位時間当たりの変動幅が予め設定した許容値を超えた場合、あるいは他方の濃度計による測定濃度の単位時間当たりの変動幅が予め設定した許容値を超えた場合)、その他方の濃度計が正常でないと判定することができる。つまり、本実施の形態においては、濃度計に関して、自己診断機能を有している。なお、第1濃度計201aでの測定濃度C1と第2濃度計201bでの測定濃度C2とがともに急激に変動した場合で、測定濃度C1とC2の差が予め設定された許容範囲内であれば、第1濃度計201a、第2の濃度計201bはともに正常で、第1供給タンク11aでの処理液の濃度調整に不具合があると判定することができる。   Since the first concentration meter 201a and the second concentration meter 201b measure the concentration of the same processing solution (specifically, the concentration of phosphoric acid in the etching processing solution), the measured concentration is essentially the same. . Therefore, if the difference between the measured density C1 at the first densitometer 201a and the measured density C2 at the second densitometer 201b is within a predetermined range, the first densitometer 201a and the second densitometer. 201b can be determined to be normal. On the other hand, there is a low possibility that the concentration of the circulating processing liquid will fluctuate rapidly. And possibility that both the 1st concentration meter 201a and the 2nd concentration meter 201b will fail simultaneously is also low. Particularly, since the concentration measurement principle of the first densitometer 201a and the concentration measurement principle of the second densitometer 201b are different, the first densitometer 201a and the second densitometer 201b used in the same environment fail at the same time. The possibility is even lower. Therefore, when the measured concentration transition of one densitometer is stable and the measured concentration of the other densitometer fluctuates rapidly (for example, it can be obtained from one densitometer and the other densitometer, respectively). If the difference in measured concentration exceeds a preset range, and the fluctuation range per unit time of the concentration measured by the other densitometer exceeds a preset tolerance, or the other densitometer When the fluctuation range of the measured concentration per unit time exceeds a preset allowable value), it can be determined that the other densitometer is not normal. That is, in the present embodiment, the densitometer has a self-diagnosis function. Note that the difference between the measured concentrations C1 and C2 is within a preset allowable range when both the measured concentration C1 measured by the first densitometer 201a and the measured concentration C2 measured by the second densitometer 201b both suddenly fluctuate. For example, it can be determined that the first concentration meter 201a and the second concentration meter 201b are both normal and that there is a problem in the concentration adjustment of the processing liquid in the first supply tank 11a.

第2濃度計201b及び第1濃度計201aの双方が正常であると判定すると(S15でYES、S16でYES)、制御ユニット30は、第1濃度計201aからの測定濃度C1に基づいて処理液の濃度調整処理を行なう(S17)。具体的には、制御ユニット30は、測定濃度C1が目標濃度となるように、積算流量計14a、15bでの流量情報を監視しつつ、調整バルブ16a、17aの開閉状態を調整する。その後、制御ユニット30は、処理液の濃度調整のため循環を終了させるための条件、例えば、所定時間が経過した、あるいは、測定濃度C1が目標濃度を中心とした所定濃度範囲に達した等の条件が満たされたか否かを判定する(S18)。処理液の濃度調整のための循環を終了させる条件が満たされていないと判定すると(S18でNO)、制御ユニット30は、上述した手順と同様の手順(S11〜S18)に従って処理を実行する。そして、制御ユニット30は、第1濃度計201a及び第2濃度計201bが正常である状況において、同様の手順(S11〜S18)に従ってその処理を繰返し実行する。その結果、第1濃度計201aでの測定濃度C1に基づいて第1供給タンク11a(処理液調整部)内において処理液の濃度調整(具体的には、エッチング処理液中のリン酸の濃度調整)が行われ、予め設定された目標濃度に調整された処理液(具体的には、リン酸の濃度が目標濃度に調整されたエッチング処理液)が生成される。そして、処理液の濃度調整のための循環が開始されてから所定時間が経過した、あるいは、測定目標C1が目標濃度を中心とした所定濃度範囲に達した等の処理液の濃度調整のための循環を終了させるための条件が満たされると(S18でYES)、制御ユニット30は、第1ポンプ18aを停止させ、第1循環液路P1に設けられた上流側第1バルブ群12aの開閉バルブ120a及び下流側第1バルブ群13aの開閉バルブ130a(第1バルブ機構:図2A参照)を閉状態に切り換えるとともに、第2循環液路P2に設けられた上流側第2バルブ群12bの開閉バルブ120b及び下流側第2バルブ群13bの開閉バルブ130b(第2バルブ機構:図2A参照)を閉状態に切り換える。これにより、第1供給タンク11a内における処理液の濃度調整のための循環が停止する。   If it is determined that both the second densitometer 201b and the first densitometer 201a are normal (YES in S15, YES in S16), the control unit 30 treats the processing liquid based on the measured concentration C1 from the first densitometer 201a. Density adjustment processing is performed (S17). Specifically, the control unit 30 adjusts the open / close state of the adjustment valves 16a and 17a while monitoring the flow rate information in the integrated flow meters 14a and 15b so that the measured concentration C1 becomes the target concentration. Thereafter, the control unit 30 sets conditions for ending circulation for adjusting the concentration of the processing liquid, for example, a predetermined time has elapsed, or the measured concentration C1 has reached a predetermined concentration range centered on the target concentration. It is determined whether or not the condition is satisfied (S18). If it is determined that the condition for terminating the circulation for adjusting the concentration of the processing liquid is not satisfied (NO in S18), the control unit 30 executes the process according to the same procedure (S11 to S18) as described above. And the control unit 30 repeatedly performs the process according to the same procedure (S11-S18) in the condition where the 1st concentration meter 201a and the 2nd concentration meter 201b are normal. As a result, the concentration of the processing liquid is adjusted in the first supply tank 11a (processing liquid adjusting unit) based on the measured concentration C1 of the first concentration meter 201a (specifically, the concentration of phosphoric acid in the etching processing liquid is adjusted). ) Is performed, and a processing liquid adjusted to a preset target concentration (specifically, an etching processing liquid in which the concentration of phosphoric acid is adjusted to the target concentration) is generated. Then, the concentration of the processing liquid is adjusted such that a predetermined time has elapsed since the circulation for adjusting the concentration of the processing liquid is started, or the measurement target C1 reaches a predetermined concentration range centered on the target concentration. When the condition for terminating the circulation is satisfied (YES in S18), the control unit 30 stops the first pump 18a and opens and closes the upstream first valve group 12a provided in the first circulating fluid path P1. The opening / closing valve 130a (first valve mechanism: see FIG. 2A) of 120a and the downstream first valve group 13a is switched to the closed state, and the opening / closing valve of the upstream second valve group 12b provided in the second circulating fluid path P2. 120b and the on-off valve 130b (second valve mechanism: see FIG. 2A) of the downstream second valve group 13b are switched to the closed state. Thereby, the circulation for adjusting the concentration of the processing liquid in the first supply tank 11a is stopped.

上述した処理の過程で、制御ユニット30は、第2濃度計201bでの測定濃度C2が安定した状態において第1濃度計201aでの測定濃度C1が急激に変動する状況(例えば、第1濃度計201aと第2濃度計201bからそれぞれ得られた測定濃度の差が、予め設定された所定範囲を超え、しかも、第1濃度計201aで検出される濃度C1の単位時間当たりの変動幅が予め設定した許容値を超える状況)になる等により、第1濃度計201aが正常ではないと判定する(S16でNO)と、第1循環経路P1に設けられた上流側第1バルブ群12aの開閉バルブ120a及び下流側第1バルブ群13aの開閉バルブ130a(第1バルブ機構:図2A参照)を閉状態に切り換えた(第1バルブ制御部(処理液用バルブ制御部)としての機能)後、並行して第1濃度計201aの校正処理を開始する(S20)。この状態で、前述した第1濃度計測部20a(図2B参照)における上流側第1切換バルブ202a及び下流側第1切換バルブ203aの切換え動作により、第1濃度計201a(液路Pm1)に処理液が供給されることなく、第1濃度計201aの校正処理が行われる。なお、校正処理については後述する。その後、制御ユニット30は、処理液の濃度調整のための循環を終了させる条件が満たされていないと判定すると(S18でNO)、更に、第1濃度計201aが校正中であるか否かを判定する(S11)。   In the course of the above-described process, the control unit 30 makes a situation in which the measured concentration C1 in the first densitometer 201a changes rapidly in a state where the measured concentration C2 in the second densitometer 201b is stable (for example, the first densitometer The difference between the measured densities obtained from the 201a and the second densitometer 201b exceeds a preset predetermined range, and the fluctuation range per unit time of the density C1 detected by the first densitometer 201a is preset. If it is determined that the first concentration meter 201a is not normal (NO in S16), the open / close valve of the upstream first valve group 12a provided in the first circulation path P1. 120a and the on-off valve 130a (first valve mechanism: see FIG. 2A) of the first downstream valve group 13a are switched to the closed state (first valve control unit (processing liquid valve control unit)). After function), to initiate the calibration process of the first densitometer 201a in parallel (S20). In this state, the first concentration meter 201a (liquid path Pm1) is processed by the switching operation of the upstream first switching valve 202a and the downstream first switching valve 203a in the first concentration measuring unit 20a (see FIG. 2B). The calibration process of the first concentration meter 201a is performed without supplying the liquid. The calibration process will be described later. Thereafter, when the control unit 30 determines that the condition for terminating the circulation for adjusting the concentration of the processing liquid is not satisfied (NO in S18), it further determines whether or not the first concentration meter 201a is being calibrated. Determine (S11).

第1濃度計201aの校正処理が開始されているので、制御ユニット30は、第1濃度計201aが校正中であると判定すると(S11でYES)、図4Bに示す手順に移行し、第2濃度計201b(第2濃度計測部20b:図2C参照)が校正中であるか否かを判定する(S21)。第2濃度計201bが校正中でなければ(S21でNO)、制御ユニット30は、第2濃度計201bでの測定濃度C2が安定した状態を維持しているか否か(例えば、第2濃度計201bで検出される濃度C2の単位時間当たりの変動幅が予め設定した許容値を超えないか否か)に基づいて第2濃度計201bが正常であるか否かを判定する(S22)。第2濃度計201bが正常であると判定すると(S22でYES)、制御ユニット30は、第2濃度計201bから測定信号に基づいた濃度C2を取得し(S23)、その測定濃度C2に基づいて処理液の濃度調整処理を行なう(S24)。具体的には、制御ユニット30は、測定濃度C2が目標濃度となるように、積算流量計14a、15aでの流量情報を監視しつつ、調整バルブ16a、17aの開閉状態を調整する。その後、制御ユニット30は、図4Aの手順に戻って、処理液の濃度調整のため循環を終了させるための条件が満たされたか否かを判定し(S18)、処理液の濃度調整のための循環を終了させる条件が満たされていないと(S18でNO)、制御ユニット30は、上述した手順と同様の手順に従って処理を実行する。この場合、第1濃度計201aが校正中であるので、第2濃度計201bでの測定濃度C2に基づいて第1供給タンク11a(処理液調整部)内において処理液の濃度調整が行われ、その調整された濃度の処理液(具体的には、調整された濃度のリン酸を含有するエッチング処理液)が生成される。そして、測定濃度C2が目標濃度を中心とした所定濃度範囲に達した等の処理液の濃度調整のための循環を終了させるための条件が満たされると(S18でYES)、制御ユニット30は、同様に、第1ポンプ18aを停止させる等して、処理液の濃度調整のための循環を終了させる(S19)   Since the calibration process of the first densitometer 201a has started, if the control unit 30 determines that the first densitometer 201a is being calibrated (YES in S11), the process proceeds to the procedure shown in FIG. It is determined whether or not the densitometer 201b (second concentration measuring unit 20b: see FIG. 2C) is being calibrated (S21). If the second concentration meter 201b is not being calibrated (NO in S21), the control unit 30 determines whether or not the measured concentration C2 in the second concentration meter 201b is maintained in a stable state (for example, the second concentration meter). Whether or not the second concentration meter 201b is normal is determined based on whether or not the fluctuation range per unit time of the density C2 detected in 201b exceeds a preset allowable value (S22). If it is determined that the second densitometer 201b is normal (YES in S22), the control unit 30 acquires the concentration C2 based on the measurement signal from the second densitometer 201b (S23), and based on the measured concentration C2. Processing liquid concentration adjustment processing is performed (S24). Specifically, the control unit 30 adjusts the open / close state of the adjustment valves 16a and 17a while monitoring the flow rate information in the integrated flow meters 14a and 15a so that the measured concentration C2 becomes the target concentration. Thereafter, the control unit 30 returns to the procedure of FIG. 4A to determine whether or not a condition for ending circulation for adjusting the concentration of the processing liquid is satisfied (S18), and for adjusting the concentration of the processing liquid. If the condition for terminating the circulation is not satisfied (NO in S18), the control unit 30 executes the process according to the same procedure as described above. In this case, since the first concentration meter 201a is being calibrated, the concentration of the processing liquid is adjusted in the first supply tank 11a (processing liquid adjustment unit) based on the measured concentration C2 of the second concentration meter 201b. A treatment liquid having the adjusted concentration (specifically, an etching treatment liquid containing the adjusted concentration of phosphoric acid) is generated. When the condition for ending the circulation for adjusting the concentration of the processing liquid such that the measured concentration C2 reaches a predetermined concentration range centered on the target concentration is satisfied (YES in S18), the control unit 30 Similarly, the circulation for adjusting the concentration of the processing liquid is terminated by stopping the first pump 18a (S19).

なお、上述したように第2濃度計201bでの測定濃度C2に基づいて第1供給タンク11a内において処理液の濃度調整(具体的には、エッチング処理液中のリン酸の濃度調整)が行われている状況において、第1濃度計201aの校正処理が終了すると、制御ユニット30は、第1濃度計201a(第1濃度計測部20a)及び第2濃度計201b(第2濃度計測部20b)双方が校正中でない(S11でNO、S12でNO)、と判定するので、閉状態であった第1循環液路P1に設けられた上流側第1バルブ群12aの開閉バルブ120a及び下流側第1バルブ群13aの開閉バルブ130a(第1バルブ機構:図2A参照)を開状態に切り換えた後、前述した処理の手順と同様の手順(S11〜S18)を繰返し実行する。その結果、再び、第1濃度計201aでの測定濃度C1に基づいて第1供給タンク11内において処理液の濃度調整が行われるようになる。   As described above, the concentration of the processing solution (specifically, the concentration of phosphoric acid in the etching processing solution) is adjusted in the first supply tank 11a based on the measured concentration C2 of the second concentration meter 201b. When the calibration process of the first densitometer 201a is completed in the situation, the control unit 30 performs the first densitometer 201a (first concentration measuring unit 20a) and the second densitometer 201b (second concentration measuring unit 20b). Since it is determined that both are not being calibrated (NO in S11, NO in S12), the on-off valve 120a and the downstream side first valve group 12a of the upstream side first valve group 12a provided in the closed first circulation fluid path P1. After switching the open / close valve 130a (first valve mechanism: see FIG. 2A) of the one valve group 13a to the open state, the same procedure (S11 to S18) as the procedure of the process described above is repeatedly executed. As a result, the concentration of the processing liquid is again adjusted in the first supply tank 11 based on the measured concentration C1 of the first concentration meter 201a.

更に、第1濃度計201a及び第2濃度計201bの双方が正常であって、第1濃度計201aでの測定濃度C1に基づいて濃度調整処理がなされている過程(S11〜S18)において、例えば、その測定濃度C1の安定が維持された状態で、測定濃度C2が急激に変動する(これは例えば、第1濃度計201aと第2濃度計201bからそれぞれ得られた濃度の差が、予め設定された所定範囲を超え、しかも、第2濃度計201bで検出される濃度C2の単位時間当たりの変動幅が予め設定した許容値を超える)ことによって、第2濃度計201bが正常でないと判定されると(S15でNO)、制御ユニット30は、第2循環液路P2に設けられた上流側第2バルブ群12bの開閉バルブ120b及び下流側第2バルブ群13bの開閉バルブ130b(第2バルブ機構:図2A参照)を閉状態に切り換えた(第2バルブ制御部(処理液用バルブ制御部)としての機能)後、前述した第2濃度計測部20b(図2C参照)における上流側第2切換バルブ202b及び下流側第2切換バルブ203bの切換え動作を行って、第2濃度計201bの校正処理を並行して開始する(S25)。以後、制御ユニット30は、第1濃度計201aが校正中ではなく、第2濃度計201bが校正中であることを確認しつつ(S11でNO、S12でYES)、第1濃度計201aからの測定信号に基づいた濃度C1を取得し(S26)、その測定濃度C1が安定した状態を維持していること(この場合は、例えば、第1濃度計201aで検出される濃度C1の単位時間当たりの変動幅が予め設定した許容値を超えないこと)、即ち、第1濃度計201aが正常であることを確認しつつ(S16でYES)、測定濃度C1に基づいて第1供給タンク11aにおける処理液の濃度調整処理(具体的には、エッチング処理液中のリン酸の濃度調整処理)を行なう(S17)。   Furthermore, in the process (S11 to S18) in which both the first densitometer 201a and the second densitometer 201b are normal and the density adjustment processing is performed based on the measured density C1 in the first densitometer 201a, for example, The measured concentration C2 changes rapidly in a state where the measured concentration C1 is kept stable (for example, the difference between the concentrations obtained from the first densitometer 201a and the second densitometer 201b is set in advance). And the fluctuation range per unit time of the concentration C2 detected by the second densitometer 201b exceeds a preset allowable value), it is determined that the second densitometer 201b is not normal. Then (NO in S15), the control unit 30 opens and closes the opening / closing valve 120b of the upstream second valve group 12b and the downstream second valve group 13b provided in the second circulating fluid path P2. After the lube 130b (second valve mechanism: see FIG. 2A) is switched to a closed state (function as a second valve control unit (treatment liquid valve control unit)), the above-described second concentration measurement unit 20b (see FIG. 2C). The upstream second switching valve 202b and the downstream second switching valve 203b are switched to start calibration processing of the second densitometer 201b in parallel (S25). Thereafter, the control unit 30 confirms that the first densitometer 201a is not being calibrated and the second densitometer 201b is being calibrated (NO in S11, YES in S12), while the first densitometer 201a The concentration C1 based on the measurement signal is acquired (S26), and the measurement concentration C1 is maintained in a stable state (in this case, for example, per unit time of the concentration C1 detected by the first concentration meter 201a) Of the first supply tank 11a based on the measured concentration C1 while confirming that the first concentration meter 201a is normal (YES in S16). Liquid concentration adjustment processing (specifically, phosphoric acid concentration adjustment processing in the etching processing solution) is performed (S17).

なお、第1濃度計201aが校正中であって、測定濃度C2が安定していた第2濃度計201bの当該測定濃度C2が急激に変動(例えば、第2濃度計201bで検出される濃度C2の単位時間当たりの変動幅が予め設定した許容値を超えるなど)して、第2濃度計201bが正常でないと判定されると(図4BのS22でNO)、制御ユニット30は、更に、第2循環液路P2に設けられた上流側第2バルブ群12bの開閉バルブ120b及び下流側第2バルブ群13bの開閉バルブ130b(第2バルブ機構:図2A参照)を閉状態に切り換えた後、並行して第2濃度計201bの校正処理を開始する(S27)。この状況では、第1濃度計201a及び第2濃度計201bの双方が校正中であるので、制御ユニット30は、第1ポンプ18aを停止させる等して、処理液の濃度調整のための循環を終了させる(S19)。また、なお、第1濃度計201a及び第2濃度計201bの双方が校正中であると判定されると(図4AのS11でYES、図4BのS21でYES)、この場合も、制御ユニット30は、第1ポンプ18aを停止させる等して、処理液の濃度調整のための循環を終了させる(S19)   Note that the measured concentration C2 of the second densitometer 201b in which the first densitometer 201a is being calibrated and the measured concentration C2 is stable fluctuates rapidly (for example, the concentration C2 detected by the second densitometer 201b). If the second densitometer 201b is determined not to be normal (NO in S22 of FIG. 4B), for example, the control unit 30 further performs the first operation. (2) After switching the opening / closing valve 120b of the upstream second valve group 12b and the opening / closing valve 130b (second valve mechanism: see FIG. 2A) of the downstream second valve group 13b provided in the circulating fluid path P2 to the closed state, In parallel, the calibration process of the second densitometer 201b is started (S27). In this situation, since both the first densitometer 201a and the second densitometer 201b are being calibrated, the control unit 30 circulates for adjusting the concentration of the processing liquid, for example, by stopping the first pump 18a. End (S19). If it is determined that both the first densitometer 201a and the second densitometer 201b are being calibrated (YES in S11 in FIG. 4A, YES in S21 in FIG. 4B), the control unit 30 also in this case Terminates the circulation for adjusting the concentration of the processing liquid, for example, by stopping the first pump 18a (S19).

上述したような手順に従って濃度を調整して処理液を生成する装置(処理液生成装置)では、第1濃度計201aが正常でないと判定されても、正常と判定された第2濃度計201bでの測定濃度C2に基づいて処理液の濃度調整(具体的には、エッチング処理液中のリン酸の濃度調整)の処理が継続されるので、正常でない濃度計での測定濃度に基づいた処理液の濃度調整が継続的になされることが防止され、その生成される処理液の濃度の信頼性を向上させることができる。   In an apparatus (processing liquid generation apparatus) that generates a processing liquid by adjusting the concentration according to the procedure as described above, even if it is determined that the first concentration meter 201a is not normal, the second concentration meter 201b determined to be normal Since the process of adjusting the concentration of the processing liquid (specifically, adjusting the concentration of phosphoric acid in the etching processing liquid) is continued based on the measured concentration C2 of the liquid, the processing liquid based on the measured concentration with an abnormal concentration meter Thus, it is possible to prevent the concentration from being continuously adjusted, and to improve the reliability of the concentration of the generated processing liquid.

また、1つの濃度計が校正中のときでも、他の濃度計を使って正確な濃度を計測することができるので、処理液の濃度調整を中断させることなく、継続して行うことができる。   Even when one densitometer is being calibrated, the other concentration meter can be used to accurately measure the concentration, so that the concentration adjustment of the treatment liquid can be continuously performed without interruption.

また、一方の濃度計が故障しても、他方の濃度計での測定濃度に基づいて濃度調整の処理が継続されるので、処理液の濃度調整に係る処理の効率を向上させることができる。   Even if one of the densitometers fails, the concentration adjustment process is continued based on the measured concentration of the other densitometer, so that the efficiency of the process relating to the concentration adjustment of the processing liquid can be improved.

なお、前述した処理では、第1濃度計201a及び第2濃度計201bの双方が正常な場合、第1濃度計201aでの測定濃度C1に基づいて濃度調整の処理がなされた(S17参照)が、第1濃度計201a及び第2濃度計201bの双方での測定濃度C1、C2に基づいて、例えば、それらの平均値に基づいて濃度調整の処理を行なうこともできる。   In the process described above, when both the first densitometer 201a and the second densitometer 201b are normal, the density adjustment process is performed based on the measured density C1 of the first densitometer 201a (see S17). Based on the measured densities C1 and C2 in both the first densitometer 201a and the second densitometer 201b, for example, the density adjustment process can be performed based on the average value thereof.

上述した校正処理は、図5に示す手順に従って行われる。なお、第1濃度計側部20a(図2B参照)の第1濃度計201a及び第2濃度計側部20b(図2C参照)の第2濃度計201bの双方で校正処理は行われるが、それらの校正処理は同じであるので、以下、第1濃度計側部20a(図2B参照)の第1濃度計20aの校正処理を例に説明する。   The calibration process described above is performed according to the procedure shown in FIG. The calibration process is performed in both the first densitometer 201a of the first densitometer side 20a (see FIG. 2B) and the second densitometer 201b of the second densitometer side 20b (see FIG. 2C). Since the calibration process is the same, the calibration process of the first densitometer 20a of the first densitometer side part 20a (see FIG. 2B) will be described below as an example.

制御ユニット30は、第1循環液路P1に設けられた上流側第1バルブ群12aの開閉バルブ120a及び下流側第1バルブ群13aの開閉バルブ130a(第1バルブ機構:図2参照)を閉状態に切り換えた後、図5に示す手順に従って処理を実行する。図5において、制御ユニット30は、第1洗浄液路Pp1に設けられた上流側第1バルブ群12aの開閉バルブ121a及び下流側第1バルブ群13aの開閉バルブ131a(第5バルブ機構:図2参照)を開状態にするとともに、第1洗浄液路Pp1に第1濃度計側部20aにおける液路Pm1が連通されるように、上流側第1切換バルブ202a及び下流側第1切換バルブ203aを動作させる。そして、その第1洗浄液路Pp1に洗浄液(例えば、純水)を所定時間流した後に開閉バルブ121a、131a(第5バルブ機構)を閉状態に切り換える(S31(1))。これにより、第1洗浄液路Pp1を通る洗浄液が第1濃度計測部20aの第1濃度計201aが設けられた液路Pm1を流れ、その液路Pm1とともに第1濃度計20a(濃度検出部)が洗浄される。   The control unit 30 closes the opening / closing valve 120a of the upstream first valve group 12a and the opening / closing valve 130a (first valve mechanism: see FIG. 2) of the downstream first valve group 13a provided in the first circulating fluid path P1. After switching to a state, a process is performed according to the procedure shown in FIG. In FIG. 5, the control unit 30 includes an opening / closing valve 121a of the upstream first valve group 12a and an opening / closing valve 131a of the downstream first valve group 13a (fifth valve mechanism: see FIG. 2) provided in the first cleaning liquid path Pp1. ) Is opened, and the upstream first switching valve 202a and the downstream first switching valve 203a are operated so that the liquid path Pm1 in the first concentration meter side portion 20a communicates with the first cleaning liquid path Pp1. . Then, after a cleaning liquid (for example, pure water) is allowed to flow through the first cleaning liquid path Pp1 for a predetermined time, the open / close valves 121a and 131a (fifth valve mechanism) are switched to a closed state (S31 (1)). As a result, the cleaning liquid passing through the first cleaning liquid path Pp1 flows through the liquid path Pm1 provided with the first concentration meter 201a of the first concentration measuring section 20a, and the first concentration meter 20a (concentration detecting section) together with the liquid path Pm1. Washed.

その後、制御ユニット30は、第1洗浄液路Pp1に設けられた前記開閉バルブ121a及び131aを閉状態に切り換えた後、第1校正液路Pc1に設けられた上流側第1バルブ群12aの開閉バルブ122a及び下流側第1バルブ群13aの開閉バルブ132a(第3バルブ機構:図2A参照)を開状態にする(第1校正液用バルブ制御部(第2校正液用バルブ制御部に相当)としての機能)とともに、第1濃度計201aの設けられた液路Pm1が第1校正液路Pc1に連通されるように、上流側第1切換バルブ202a及び下流側第1切換バルブ203aを動作させる。そして、その第1校正液路Pc1に濃度が既知となる第1校正液Lc1を流す(S32(1))。これにより、第1校正液路Pc1を通る第1校正液Lc1が第1濃度計側部20aの第1濃度計20a(濃度検出部)が設けられた液路Pm1を流れる。この状態で、制御ユニット30は、第1濃度計201aから出力される測定信号の値(例えば、レベル値)を取得する(S33(1))。その後、制御ユニット30は、第1校正液Lc1の供給を停止させる(S34(1))。   Thereafter, the control unit 30 switches the open / close valves 121a and 131a provided in the first cleaning liquid passage Pp1 to the closed state, and then the open / close valves of the upstream first valve group 12a provided in the first calibration liquid passage Pc1. 122a and the open / close valve 132a (third valve mechanism: see FIG. 2A) of the downstream first valve group 13a are opened (first calibration solution valve control unit (corresponding to the second calibration solution valve control unit)). In addition, the upstream first switching valve 202a and the downstream first switching valve 203a are operated so that the liquid path Pm1 provided with the first concentration meter 201a communicates with the first calibration liquid path Pc1. Then, the first calibration liquid Lc1 having a known concentration is caused to flow through the first calibration liquid path Pc1 (S32 (1)). Accordingly, the first calibration liquid Lc1 passing through the first calibration liquid path Pc1 flows through the liquid path Pm1 provided with the first concentration meter 20a (concentration detection unit) of the first concentration meter side portion 20a. In this state, the control unit 30 acquires the value (for example, level value) of the measurement signal output from the first densitometer 201a (S33 (1)). Thereafter, the control unit 30 stops the supply of the first calibration liquid Lc1 (S34 (1)).

以後、濃度の異なる校正液を順次切り換えながら、n番目の校正液Lcnまで、同様の処理(S31(n)〜S34(n)を繰返し実行する。そして、制御ユニット30は、各校正液Lc1〜Lcnの濃度と対応する測定信号の値との関係(相関関係)に基づいて、測定信号値と濃度との対応情報を生成する(S35:第1校正処理部(第2校正処理部に相当))。そして、制御ユニット30は、その対応情報に基づいて第1濃度計201aに対して記憶している測定信号値との濃度との対応テーブルを更新する。このように、本実施の形態においては、正常ではないと判定された濃度計に関して、自己校正機能を有している。このような校正処理が終了した制御ユニット30は、その対応テーブルを参照して第1濃度計201aからの測定信号に基づいた濃度C1を取得する。   Thereafter, the same processing (S31 (n) to S34 (n) is repeated until the n-th calibration solution Lcn while sequentially switching the calibration solutions having different concentrations. Based on the relationship (correlation) between the Lcn concentration and the corresponding measurement signal value, correspondence information between the measurement signal value and the concentration is generated (S35: first calibration processing unit (corresponding to the second calibration processing unit)). Then, the control unit 30 updates the correspondence table with the density of the measurement signal value stored in the first densitometer 201a based on the correspondence information, as described above. Has a self-calibration function with respect to the densitometer determined to be not normal, and the control unit 30 that has completed such a calibration process refers to the correspondence table to perform measurement from the first densitometer 201a. Obtaining the concentration C1 based on No..

なお、本実施の形態では、濃度計の自己校正機能について、濃度の異なる校正液を順次用い、各測定信号値と濃度との対応テーブルを更新する例を説明した。しかしながら、校正機能は、例えば、濃度が既知である特定濃度の校正液だけを用いて達成されるものでもよい。例えば、第1洗浄液路Pp1が流路Pm1に連通する状態で、予め設定された所定時間、洗浄液を流した後、第1校正液路Pc1を流路Pm1に連通させ、流路Pm1に特定濃度の校正液を流す。この状態で制御ユニット30は、第1濃度計201aから出力される測定信号の値を取得する。そして、第1濃度計201aが測定した濃度C1が、流路Pm1に流した特定濃度と一致すれば、濃度計の電極や、濃度計が設けられた流路内面に付着していたごみなどの除去が行われ、正常に校正されたと判断することができる。このような処理機能を校正機能としてもよい。さらには、第1濃度計201aが測定した濃度C1が、流路Pm1に流した特定濃度に一致しなかった場合には、流路Pm1への洗浄液の供給と、校正液の供給とを、予め設定された回数を上限に、繰り返すようにしてもよい。   In the present embodiment, the self-calibration function of the densitometer has been described with reference to an example in which calibration solutions having different concentrations are sequentially used and the correspondence table between each measurement signal value and the concentration is updated. However, the calibration function may be achieved by using only a calibration solution having a specific concentration whose concentration is known. For example, in a state where the first cleaning liquid path Pp1 communicates with the flow path Pm1, after flowing the cleaning liquid for a predetermined time set in advance, the first calibration liquid path Pc1 is communicated with the flow path Pm1, and the flow path Pm1 has a specific concentration Pour the calibration solution. In this state, the control unit 30 acquires the value of the measurement signal output from the first densitometer 201a. And if the density | concentration C1 which the 1st concentration meter 201a measured and the specific density | concentration which flowed into flow path Pm1, it will correspond to the electrode of a concentration meter, the dust which adhered to the flow path inner surface where the concentration meter was provided, etc. It can be determined that removal has been performed and calibration has been performed normally. Such a processing function may be a calibration function. Furthermore, when the concentration C1 measured by the first densitometer 201a does not match the specific concentration passed through the flow path Pm1, the supply of the cleaning liquid to the flow path Pm1 and the supply of the calibration liquid are performed in advance. The repetition may be repeated up to the set number of times.

上述したような校正処理が終了すると、制御ユニット30は、第1校正液路Pc1に設けられた開閉バルブ122a及び132aを閉状態に切り換えた後、第1循環経路P1に設けられた開閉バルブ120a、130aを開状態に切り換える(第1バルブ復帰制御手段(第2バルブ復帰制御手段に相当))。これにより、第1濃度計測部20aの第1濃度計201aを処理液の濃度調整に復帰させることができるようになる。   When the calibration process as described above is completed, the control unit 30 switches the open / close valves 122a and 132a provided in the first calibration liquid path Pc1 to the closed state, and then the open / close valve 120a provided in the first circulation path P1. , 130a is switched to the open state (first valve return control means (corresponding to second valve return control means)). As a result, the first concentration meter 201a of the first concentration measurement unit 20a can be returned to the concentration adjustment of the processing liquid.

図1に示す基板処理装置では、上述したようにして第1供給タンク11aでの処理液の濃度調整(具体的には、エッチング処理液中のリン酸の濃度調整)が終了すると、三方バルブ21、22が第2供給タンク11b(処理液調整部)側に切り換えられるとともに、三方バルブ23、24が第1供給タンク11a側に切り換えられる。この状態で、第1ポンプ18aの動作により、第1供給タンク11内で濃度調整がなされて生成された処理液(具体的には、エッチング処理液)がその第1供給タンク11aからスピン装置100(ノズル111)に供給され、スピン装置100内で第1供給タンク11aから供給される処理液により半導体ウェーハWの表面の処理(エッチング処理)が行われる。そして、スピン装置100から回収される使用済み処理液が回収タンク10を介して第1供給タンク11aに戻される。   In the substrate processing apparatus shown in FIG. 1, when the concentration adjustment of the processing liquid in the first supply tank 11a (specifically, the concentration adjustment of phosphoric acid in the etching processing liquid) is completed as described above, the three-way valve 21 is completed. , 22 are switched to the second supply tank 11b (processing liquid adjusting unit) side, and the three-way valves 23, 24 are switched to the first supply tank 11a side. In this state, the processing liquid (specifically, the etching processing liquid) generated by adjusting the concentration in the first supply tank 11 by the operation of the first pump 18a is supplied from the first supply tank 11a to the spin device 100. The processing (etching process) of the surface of the semiconductor wafer W is performed by the processing liquid supplied to the (nozzle 111) and supplied from the first supply tank 11a in the spin apparatus 100. Then, the used processing liquid recovered from the spin device 100 is returned to the first supply tank 11 a via the recovery tank 10.

このように第1供給タンク11aからスピン装置100に処理液が供給されている状態で、第2供給タンク11bでは、上述した手順(図4A、図4B等参照)に従って、処理液の濃度調整に係る処理が行われ、所定の濃度となる処理液が生成される。その後、第1供給タンク11a及び第2供給タンク11bでの処理液の濃度調整とスピン装置100への処理液の供給とが相互に切り換えられながら継続的に行われる。   With the processing liquid being supplied from the first supply tank 11a to the spin device 100 in this way, the second supply tank 11b adjusts the concentration of the processing liquid according to the above-described procedure (see FIGS. 4A, 4B, etc.). Such processing is performed, and a processing liquid having a predetermined concentration is generated. Thereafter, the concentration adjustment of the processing liquid in the first supply tank 11a and the second supply tank 11b and the supply of the processing liquid to the spin device 100 are continuously performed while being switched between each other.

上述したような手順に従って校正処理を行なう装置(処理液生成装置)では、正常でないと判定された濃度計であっても、自己校正機能を活用して、自己復帰させることができ、処理液の濃度の信頼性を高めることができる。しかも、先に述べた自己診断機能をも備えているため、処理液の信頼性を常に高めることができる。   In an apparatus that performs calibration processing according to the above-described procedure (processing liquid generation apparatus), even a densitometer that has been determined to be not normal can be self-recovered using the self-calibration function. Concentration reliability can be increased. In addition, since the above-described self-diagnosis function is provided, the reliability of the treatment liquid can always be improved.

また、濃度計自体、または濃度計が設けられた液路内面を洗浄する際に使用される洗浄液路を個別に備えているので、濃度計の校正中において、該濃度計を洗浄した際に該濃度計の伝導板(電極)及び流路内面に付着していたゴミが、処理液が流れる循環液路や校正液が流れる校正液路に混入することを防止することができる。   Also, since the concentration meter itself or a cleaning liquid path used for cleaning the inner surface of the liquid path provided with the concentration meter is individually provided, when the concentration meter is cleaned during calibration of the concentration meter, the concentration meter It is possible to prevent dust adhering to the conductive plate (electrode) of the densitometer and the inner surface of the flow path from entering the circulating liquid path through which the processing liquid flows and the calibration liquid path through which the calibration liquid flows.

なお、上記実施の形態においては、第1濃度計201aと第2濃度計201bとは、異なる測定原理によって処理液の濃度を測定するものを用いた。しかしながら、2つの濃度計が同時に正常でなくなる確率は低いことを考えると、同じ原理の濃度計としてもよい。   In the above embodiment, the first densitometer 201a and the second densitometer 201b are used to measure the concentration of the treatment liquid based on different measurement principles. However, considering that the probability that two densitometers are not normal at the same time is low, a densitometer based on the same principle may be used.

また、図2Aにおいては、第1循環液路P1、第1校正液路Pc1、第1洗浄液路Pp1を個別に設けたが、三方バルブを有する単一配管とし、第1濃度計側部20aに対して、処理液、校正液、純水を交互に流すようにしてもよい。第2濃度計20bに対して個別に設けられた第2循環液路P2、第2校正液路Pc2、第2洗浄液路Pp2についても同様である。   In FIG. 2A, the first circulating fluid passage P1, the first calibration fluid passage Pc1, and the first cleaning fluid passage Pp1 are individually provided. However, a single pipe having a three-way valve is used, and the first concentration meter side portion 20a is connected to the first concentration meter side portion 20a. On the other hand, the processing solution, the calibration solution, and the pure water may be alternately flowed. The same applies to the second circulating liquid path P2, the second calibration liquid path Pc2, and the second cleaning liquid path Pp2 that are individually provided for the second concentration meter 20b.

また、上記実施の形態において、第1濃度計201a(図2B参照)の例として、電気伝導率に基づく濃度計を、第2濃度計201b(図2C参照)の例として、レーザ光を用いた例を説明した。この場合、洗浄液による濃度計の洗浄についてみると、第1濃度計201aに関しては、例えば第1濃度計201aが有する伝導板(電極)の洗浄などが行われ、第2濃度計201bに関しては、洗浄液による液路内面が洗浄されることになる。   In the above embodiment, a density meter based on electrical conductivity is used as an example of the first densitometer 201a (see FIG. 2B), and laser light is used as an example of the second densitometer 201b (see FIG. 2C). An example was explained. In this case, when the concentration meter is cleaned with the cleaning liquid, the first concentration meter 201a is cleaned, for example, of the conductive plate (electrode) of the first concentration meter 201a, and the second concentration meter 201b is cleaned with the cleaning liquid. The inner surface of the liquid passage due to is washed.

また、上記実施の形態においては、処理液としてエッチング液(例えば、リン酸水溶液)を例としたが、濃度を検知しつつ処理を行なう処理液であれば、レジスト剥離液など他の処理液にでも適用できる。また、処理液は、純水以外の複数の成分を含むものであってもよい。この場合、各濃度計は、全ての成分の濃度を測定するものであっても、一または複数の部分的な成分のそれぞれの濃度を測定するものであってもよい。   In the above embodiment, the etching solution (for example, phosphoric acid aqueous solution) is used as an example of the processing solution. However, any other processing solution such as a resist stripping solution can be used as long as the processing solution is processed while detecting the concentration. But it can be applied. Further, the treatment liquid may contain a plurality of components other than pure water. In this case, each densitometer may measure the concentrations of all the components, or may measure the concentrations of one or more partial components.

上述した装置では、第1濃度計201aと第2濃度計201bの2つの濃度計が用いられたが、3つ以上の濃度計を用いることもできる。この場合、それら3つ以上の濃度計のうちのいずれか1つを第1濃度計して、他の1つを第2濃度計とすることができ、また、いずれか1つを第1濃度計または第2濃度計として、残りの濃度計の組を第2の濃度計または第1濃度計とすることもできる。   In the above-described apparatus, two densitometers, the first densitometer 201a and the second densitometer 201b, are used, but three or more densitometers can also be used. In this case, any one of the three or more densitometers can be the first densitometer and the other one can be the second densitometer, and any one can be the first densitometer. As the meter or the second densitometer, the remaining set of densitometers may be the second densitometer or the first densitometer.

上述した装置では、各開閉バルブ、三方バルブ、調整バルブは、制御ユニット30にて制御される駆動回路によって行われたが、それらのバルブは手動で切り換えられるものであってもよい。この場合、操作者は、第1濃度計201a及び第2濃度計201bでの測定濃度を観察しつつ、上述した手順と同様の手順に従って、各バルブを切り換える。   In the above-described apparatus, each on-off valve, three-way valve, and adjustment valve are driven by a drive circuit controlled by the control unit 30, but these valves may be manually switched. In this case, the operator switches each valve in accordance with the same procedure as described above while observing the measured concentrations with the first densitometer 201a and the second densitometer 201b.

また、上述した装置では、濃度調整の終了した処理液が供給タンク11a(11b)からスピン装置100に供給されると、使用済み処理液が回収液として、供給タンク11a(11b)に戻される構成となっている。このような構成では、供給タンク11a(11b)からスピン装置100に処理液を供給しているときも、供給タンク11a(11b)内の処理液の濃度調整を行なうようにすることが好ましい。この場合、例えば、三方バルブ23、24を第1供給タンク11a側に切り換えて第1供給タンク11a内の処理液をスピン装置100に供給しているとき、三方バルブ21、22も第1供給タンク11a側に切り換える。三方バルブ21、22を第1供給タンク11a側に切り換えた後の、第1供給タンク11a内の処理液の濃度調整、濃度計の自己校正機能は、図4A、図4B、図5を用いて説明した動作と同様である。また、第2供給タンク11bからスピン装置100に処理液を供給するときも同様である。このように構成すれば、スピン装置100への処理液の供給開始時だけでなく、供給中においても濃度管理を行なうことになり、基板処理を継続的に濃度管理された処理液で適切に処理することができる。また、2つの濃度計201a、201bの少なくとも一方が正常であれば、スピン装置100への処理液の供給を継続することができ、しかもその間に、正常ではないと判断された濃度計の校正も実施でき、歩留まり向上にも寄与する。   In the above-described apparatus, when the processing liquid whose concentration has been adjusted is supplied from the supply tank 11a (11b) to the spin device 100, the used processing liquid is returned to the supply tank 11a (11b) as a recovered liquid. It has become. In such a configuration, it is preferable to adjust the concentration of the processing liquid in the supply tank 11a (11b) even when the processing liquid is supplied from the supply tank 11a (11b) to the spin device 100. In this case, for example, when the three-way valves 23 and 24 are switched to the first supply tank 11a side to supply the processing liquid in the first supply tank 11a to the spin device 100, the three-way valves 21 and 22 are also in the first supply tank. Switch to the 11a side. The concentration adjustment of the processing liquid in the first supply tank 11a and the self-calibration function of the concentration meter after the three-way valves 21 and 22 are switched to the first supply tank 11a side are shown in FIGS. 4A, 4B and 5. The operation is the same as described. The same applies when the processing liquid is supplied from the second supply tank 11b to the spin apparatus 100. With this configuration, the concentration management is performed not only when the supply of the processing liquid to the spin apparatus 100 is started but also during the supply, and the substrate processing is appropriately performed with the processing liquid whose concentration is continuously controlled. can do. In addition, if at least one of the two densitometers 201a and 201b is normal, the supply of the processing liquid to the spin apparatus 100 can be continued, and the densitometer that is determined to be not normal can be calibrated during that time. It can be implemented and contributes to yield improvement.

以上、本発明のいくつかの実施形態及び各部の変形例を説明したが、この実施形態や各部の変形例は、一例として提示したものであり、発明の範囲を限定することは意図していない。上述したこれら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明に含まれる。   As mentioned above, although some embodiment of this invention and the modification of each part were described, this embodiment and the modification of each part are shown as an example, and are not intending limiting the range of invention. . These novel embodiments described above can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention and included in the invention described in the claims.

10 回収タンク
11a 第1供給タンク
11b 第2供給タンク
12a 上流側第1バルブ群
12b 上流側第2バルブ群
13a 下流側第1バルブ群
13b 下流側第2バルブ群
14a、14b、15a、15b 積算流量計
16a、16b、17a、17b 調整バルブ
18a 第1ポンプ
18b 第2ポンプ
19a、19b 開閉バルブ
20a 第1濃度計側部
20b 第2濃度計側部
21、22、23、24 三方バルブ
30 制御ユニット
31a、31b、32a、32b、33a、33b、34a、34b、35a、35b 駆動回路
100 スピン装置
120a、130a 第1バルブ機構
120b、130b 第2バルブ機構
122a、132a 第3バルブ機構
122b、132b 第4バルブ機構
201a 第1濃度計
201b 第2濃度計
P1 第1処理液路(第1循環液路)
P2 第2処理液路(第2循環液路)
Pc1 第1校正液路
Pc2 第2校正液路
10 recovery tank 11a first supply tank 11b second supply tank 12a upstream first valve group 12b upstream second valve group 13a downstream first valve group 13b downstream second valve group 14a, 14b, 15a, 15b integrated flow rate Total 16a, 16b, 17a, 17b Adjustment valve 18a First pump 18b Second pump 19a, 19b Open / close valve 20a First densitometer side 20b Second densitometer side 21, 22, 23, 24 Three-way valve 30 Control unit 31a , 31b, 32a, 32b, 33a, 33b, 34a, 34b, 35a, 35b Drive circuit 100 Spinning device 120a, 130a First valve mechanism 120b, 130b Second valve mechanism 122a, 132a Third valve mechanism 122b, 132b Fourth valve Mechanism 201a First densitometer 201b Second Degrees gauge P1 first process liquid passage (first circulating fluid path)
P2 Second treatment liquid path (second circulation liquid path)
Pc1 First calibration fluid path Pc2 Second calibration fluid path

Claims (12)

濃度計での測定濃度に基づいて濃度の調整がなされた処理液を生成する処理液生成装置であって、
前記処理液の濃度を調整する処理液調整部と、
処理液を、前記処理液調整部に流す第1処理液路と、
処理液を、前記処理液調整部に流す第2処理液路と、
前記第1処理経路を流れる前記処理液の濃度であって、前記処理液調整部での濃度調整に係る成分の濃度を測定する第1濃度計と、
前記第2処理液路を流れる前記処理液の濃度であって、前記第1濃度計により濃度測定されるべき、前記処理液調整部での濃度調整に係る成分の濃度を測定する第2濃度計と、
前記第1処理液路の開閉を行う第1バルブ機構と、
前記第2処理液路の開閉を行う第2バルブ機構と、を有する処理液生成装置。
A processing liquid generating device that generates a processing liquid whose concentration is adjusted based on a concentration measured by a densitometer,
A treatment liquid adjusting unit for adjusting the concentration of the treatment liquid;
A first treatment liquid path for flowing the treatment liquid to the treatment liquid adjustment unit;
A second treatment liquid path for flowing the treatment liquid to the treatment liquid adjustment unit;
A first concentration meter that measures the concentration of the treatment liquid flowing through the first treatment path, and the concentration of a component related to concentration adjustment in the treatment liquid adjustment unit;
A second concentration meter for measuring the concentration of the treatment liquid flowing through the second treatment liquid path and measuring the concentration of the component related to the concentration adjustment in the treatment liquid adjustment unit, the concentration of which should be measured by the first concentration meter When,
A first valve mechanism for opening and closing the first treatment liquid path;
And a second valve mechanism for opening and closing the second processing liquid path.
前記第1処理液路は、前記処理液を、前記処理液調整部から前記第1濃度計を通って当該処理液調整部に戻す第1循環液路を含み、
前記第2処理液路は、前記処理液を、前記処理液調整部から前記第2濃度計を通って当該処理液調整部に戻す第2循環液路を含む請求項1記載の処理液生成装置。
The first treatment liquid path includes a first circulation liquid path that returns the treatment liquid from the treatment liquid adjustment unit to the treatment liquid adjustment unit through the first concentration meter,
2. The processing liquid generation apparatus according to claim 1, wherein the second processing liquid path includes a second circulating liquid path that returns the processing liquid from the processing liquid adjustment unit to the processing liquid adjustment unit through the second concentration meter. .
前記第1濃度計と前記第2濃度計とは、異なる測定原理によって前記処理液の濃度を測定する請求項1または2記載の処理液生成装置。   The processing liquid generation apparatus according to claim 1, wherein the first concentration meter and the second concentration meter measure the concentration of the processing liquid based on different measurement principles. 前記第1濃度計に濃度が既知である校正液を流す第1校正液路と、
前記第2濃度計に濃度が既知である校正液を流す第2校正液路と、
前記第1校正液路を開閉する第3バルブ機構と、
前記第2校正液路を開閉する第4バルブ機構とを有する請求項1乃至3のいずれかに記載の処理液生成装置。
A first calibration fluid path for flowing calibration fluid having a known concentration to the first densitometer;
A second calibration liquid path for flowing a calibration liquid having a known concentration to the second densitometer;
A third valve mechanism for opening and closing the first calibration liquid path;
The processing liquid production | generation apparatus in any one of Claims 1 thru | or 3 which has a 4th valve mechanism which opens and closes the said 2nd calibration liquid path.
前記第1濃度計から得られた第1測定濃度と前記第2濃度計から得られた第2測定濃度とに基づいて前記第1バルブ機構及び前記第2バルブ機構の動作を制御する処理液用バルブ制御部を有する請求項1乃至4のいずれかに記載の処理液生成装置。   For processing liquid that controls the operation of the first valve mechanism and the second valve mechanism based on the first measured concentration obtained from the first densitometer and the second measured concentration obtained from the second densitometer The processing liquid production | generation apparatus in any one of Claims 1 thru | or 4 which has a valve | bulb control part. 前記処理液用バルブ制御部は、前記第1測定濃度及び前記第2測定濃度のうちの少なくとも第1測定濃度に基づいて、前記第1濃度計が正常であるか否かを判定する第1判定部と、
該第1判定部により前記第1濃度計が正常でないと判定されたときに、前記第1バルブ機構を前記第1処理液路が閉状態となるように制御する第1バルブ制御部とを有する請求項5記載の処理液生成装置。
The treatment liquid valve control unit determines whether or not the first concentration meter is normal based on at least a first measurement concentration of the first measurement concentration and the second measurement concentration. And
A first valve control unit that controls the first valve mechanism so that the first processing liquid path is closed when the first determination unit determines that the first concentration meter is not normal; The processing liquid production | generation apparatus of Claim 5.
前記処理液用バルブ制御部は、前記第1測定濃度及び前記第2測定濃度のうちの少なくとも第2測定濃度に基づいて、前記第2濃度計が正常であるか否かを判定する第2判定部と、
該第2判定部により前記第2濃度計が正常でないと判定されたときに、第2バルブ機構を前記第2処理液路が閉状態となるように制御する第2バルブ制御部とを有する請求項5または6記載の処理液生成装置。
The processing liquid valve control unit determines whether or not the second concentration meter is normal based on at least a second measured concentration of the first measured concentration and the second measured concentration. And
A second valve control unit configured to control the second valve mechanism so that the second processing liquid path is closed when the second determination unit determines that the second concentration meter is not normal. Item 7. A processing liquid generator according to Item 5 or 6.
前記第1判定部により前記第1濃度計が正常でないと判定されたときに、前記第3バルブ機構を、前記第1校正液路が開状態になるように制御する第1校正液用バルブ制御部と、
前記第1校正液路を流れる校正液が前記第1濃度計を通る際に当該第1濃度計の出力値に基づいて当該第1濃度計の校正を行う第1校正処理部と、を有する請求項6記載の処理液生成装置。
When the first determination unit determines that the first densitometer is not normal, the first calibration solution valve control controls the third valve mechanism so that the first calibration solution path is opened. And
A calibration unit that calibrates the first concentration meter based on an output value of the first concentration meter when the calibration solution flowing through the first calibration fluid path passes through the first concentration meter; Item 7. A processing solution generator according to Item 6.
前記第2判定部により前記第2濃度計が正常でないと判定されたときに、前記第4バルブ機構を、前記第2校正液路が開状態にあるように制御する第2校正液用バルブ制御部と、
前記第2校正液路を流れる校正液が前記第2濃度計を通る際に当該第2濃度計の出力値に基づいて前記当該第2濃度計の校正を行う第2校正処理部と、を有する請求項7記載の処理液生成装置。
Second calibration liquid valve control for controlling the fourth valve mechanism so that the second calibration liquid path is in an open state when the second determination unit determines that the second concentration meter is not normal. And
A second calibration processing unit that calibrates the second densitometer based on an output value of the second densitometer when the calibration liquid flowing through the second calibration liquid channel passes through the second densitometer. The processing liquid production | generation apparatus of Claim 7.
前記第1校正処理部による前記第1濃度計の校正が終了した後に、前記第1処理液路を開状態に復帰させる第1バルブ復帰制御手段を有する請求項8記載の処理液生成装置。   9. The processing liquid generation apparatus according to claim 8, further comprising a first valve return control unit configured to return the first processing liquid path to an open state after calibration of the first concentration meter by the first calibration processing unit is completed. 前記第2校正処理部による前記第2濃度計の校正が終了した後に、前記第2処理液路を開状態に復帰させる第2バルブ復帰制御手段を有する請求項9記載の処理液生成装置。   10. The processing liquid generation apparatus according to claim 9, further comprising a second valve return control unit configured to return the second processing liquid path to an open state after calibration of the second concentration meter by the second calibration processing unit is completed. 濃度計での測定濃度に基づいて濃度の調整がなされた処理液を生成する処理液生成装置と、
基板を保持するテーブルと、
前記テーブルを回転させる駆動機構と、
前記テーブルとともに回転する前記基板の表面に前記処理液生成装置により生成される処理液を供給する処理液供給機構とを有し、
前記処理液生成装置は、
前記処理液の濃度を調整する処理液調整部と、
処理液を、前記処理液調整部に流す第1処理液路と、
処理液を、前記処理液調整部に流す第2処理液路と、
前記第1処理液路を流れる前記処理液の濃度であって、前記処理液調整部での濃度調整に係る成分の濃度を測定する第1濃度計と、
前記第2処理液路を流れる前記処理液の濃度であって、前記第1濃度計により濃度測定されるべき、前記処理液調整部での濃度調整に係る成分の濃度を測定する第2濃度計と、
前記第1処理液路の開閉を行う第1バルブ機構と、
前記第2処理液路の開閉を行う第2バルブ機構とを有する、基板処理装置。
A treatment liquid generator for producing a treatment liquid whose concentration is adjusted based on the concentration measured by the densitometer;
A table for holding the substrate;
A drive mechanism for rotating the table;
A processing liquid supply mechanism that supplies a processing liquid generated by the processing liquid generation device to the surface of the substrate that rotates together with the table;
The treatment liquid generator is
A treatment liquid adjusting unit for adjusting the concentration of the treatment liquid;
A first treatment liquid path for flowing the treatment liquid to the treatment liquid adjustment unit;
A second treatment liquid path for flowing the treatment liquid to the treatment liquid adjustment unit;
A first concentration meter that measures the concentration of the treatment liquid flowing through the first treatment liquid path and is related to concentration adjustment in the treatment liquid adjustment unit;
A second concentration meter for measuring the concentration of the treatment liquid flowing through the second treatment liquid path and measuring the concentration of the component related to the concentration adjustment in the treatment liquid adjustment unit, the concentration of which should be measured by the first concentration meter When,
A first valve mechanism for opening and closing the first treatment liquid path;
A substrate processing apparatus, comprising: a second valve mechanism that opens and closes the second processing liquid path.
JP2017124215A 2016-07-29 2017-06-26 Processing liquid generator and substrate processing equipment using it Active JP6918600B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW106122352A TWI653661B (en) 2016-07-29 2017-07-04 Processing liquid generating device and substrate processing device using the same
US15/661,480 US11670522B2 (en) 2016-07-29 2017-07-27 Processing liquid generator and substrate processing apparatus using the same
CN201710624077.XA CN107665839B (en) 2016-07-29 2017-07-27 Processing liquid generating apparatus and substrate processing apparatus using the same
KR1020170096397A KR101967055B1 (en) 2016-07-29 2017-07-28 Treatment liquid production apparatus and substrate treatment apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016150832 2016-07-29
JP2016150832 2016-07-29

Publications (3)

Publication Number Publication Date
JP2018026537A true JP2018026537A (en) 2018-02-15
JP2018026537A5 JP2018026537A5 (en) 2018-07-12
JP6918600B2 JP6918600B2 (en) 2021-08-11

Family

ID=61193988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017124215A Active JP6918600B2 (en) 2016-07-29 2017-06-26 Processing liquid generator and substrate processing equipment using it

Country Status (3)

Country Link
JP (1) JP6918600B2 (en)
KR (1) KR101967055B1 (en)
TW (1) TWI653661B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326445A (en) * 2018-12-13 2020-06-23 东京毅力科创株式会社 Substrate processing method and substrate processing apparatus
KR20210001410A (en) * 2019-06-28 2021-01-06 홍석진 Developer control system having concentration measurement apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264729B2 (en) * 2019-05-31 2023-04-25 株式会社Screenホールディングス SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5924794A (en) * 1995-02-21 1999-07-20 Fsi International, Inc. Chemical blending system with titrator control
JP2003170034A (en) * 2001-12-05 2003-06-17 Fujitsu Ltd Chemical liquid-feeding apparatus and slurry preparation method
JP2005533639A (en) * 2002-07-19 2005-11-10 キネティック システムズ,インコーポレーテッド Method and apparatus for compounding process materials
JP2005347384A (en) * 2004-06-01 2005-12-15 Seiko Epson Corp System and method for stripping organic material
JP2007005472A (en) * 2005-06-22 2007-01-11 Sumitomo Electric Ind Ltd Surface processing method of substrate and manufacturing method of groups iii-v compound semiconductor
KR20080011910A (en) * 2006-08-01 2008-02-11 세메스 주식회사 Chemical mixing apparatus and method
JP2014527298A (en) * 2011-08-01 2014-10-09 ビーエーエスエフ ソシエタス・ヨーロピア A method of manufacturing a semiconductor device, comprising chemical mechanical polishing a material made of elemental germanium and / or Si1-xGex in the presence of a CMP composition having a pH value of 3.0 to 5.5

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103678A (en) * 2006-09-20 2008-05-01 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP5878051B2 (en) * 2012-03-21 2016-03-08 芝浦メカトロニクス株式会社 Substrate processing method and substrate processing system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5924794A (en) * 1995-02-21 1999-07-20 Fsi International, Inc. Chemical blending system with titrator control
JP2003170034A (en) * 2001-12-05 2003-06-17 Fujitsu Ltd Chemical liquid-feeding apparatus and slurry preparation method
JP2005533639A (en) * 2002-07-19 2005-11-10 キネティック システムズ,インコーポレーテッド Method and apparatus for compounding process materials
JP2005347384A (en) * 2004-06-01 2005-12-15 Seiko Epson Corp System and method for stripping organic material
JP2007005472A (en) * 2005-06-22 2007-01-11 Sumitomo Electric Ind Ltd Surface processing method of substrate and manufacturing method of groups iii-v compound semiconductor
KR20080011910A (en) * 2006-08-01 2008-02-11 세메스 주식회사 Chemical mixing apparatus and method
JP2014527298A (en) * 2011-08-01 2014-10-09 ビーエーエスエフ ソシエタス・ヨーロピア A method of manufacturing a semiconductor device, comprising chemical mechanical polishing a material made of elemental germanium and / or Si1-xGex in the presence of a CMP composition having a pH value of 3.0 to 5.5

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326445A (en) * 2018-12-13 2020-06-23 东京毅力科创株式会社 Substrate processing method and substrate processing apparatus
KR20210001410A (en) * 2019-06-28 2021-01-06 홍석진 Developer control system having concentration measurement apparatus
KR102374423B1 (en) * 2019-06-28 2022-03-15 홍석진 Developer control system having concentration measurement apparatus

Also Published As

Publication number Publication date
KR101967055B1 (en) 2019-04-08
TWI653661B (en) 2019-03-11
JP6918600B2 (en) 2021-08-11
TW201816835A (en) 2018-05-01
KR20180013807A (en) 2018-02-07

Similar Documents

Publication Publication Date Title
US10591935B2 (en) Substrate liquid processing apparatus and substrate liquid processing method
JP2018026537A (en) Process liquid production device, and substrate processing device using the same
JP2018026537A5 (en)
US11158525B2 (en) Substrate processing apparatus and substrate processing method
JP2009284813A (en) Microorganism detection method, microorganism detection apparatus and slurry supplying device obtained by using the same
CN107665839B (en) Processing liquid generating apparatus and substrate processing apparatus using the same
CN101528612A (en) Devices, systems, and methods for carbonation of deionized water
WO2019181339A1 (en) Processing liquid supply device, substrate processing device, and processing liquid supply method
JP2015166068A (en) Water treatment apparatus
KR20000062334A (en) Patterning chemical liquid centralized controller
JP2000021838A (en) Substrate treatment device
TWI810008B (en) Substrate processing apparatus
JP5780810B2 (en) Liquid management system
KR20090040782A (en) Wet station and operating method thereof
CN107665837B (en) Liquid treatment apparatus and liquid treatment method
KR100759017B1 (en) Apparatus for supplying chemical
JP6545841B2 (en) Flow rate adjustment mechanism, diluted chemical solution supply mechanism, liquid processing apparatus and operation method thereof
JP5791939B2 (en) Liquid management system
JP2009285773A (en) Slurry feeder
KR101005883B1 (en) Apparatus and method for supplying chemical liquid
JP2023142165A (en) Processing liquid supply device, substrate processing device, and inspection method for processing liquid supply device
JP2014120644A (en) Substrate processing apparatus and self diagnostic method thereof
JPH09106972A (en) Chemical liquid processing device
KR20080001859A (en) Portable apparatus for sterilizing and washing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210721

R150 Certificate of patent or registration of utility model

Ref document number: 6918600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150