JP2018026197A - Microscopic observation method and microscopic observation auxiliary device - Google Patents

Microscopic observation method and microscopic observation auxiliary device Download PDF

Info

Publication number
JP2018026197A
JP2018026197A JP2016155245A JP2016155245A JP2018026197A JP 2018026197 A JP2018026197 A JP 2018026197A JP 2016155245 A JP2016155245 A JP 2016155245A JP 2016155245 A JP2016155245 A JP 2016155245A JP 2018026197 A JP2018026197 A JP 2018026197A
Authority
JP
Japan
Prior art keywords
microscope
sample
stage
solution
cup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016155245A
Other languages
Japanese (ja)
Other versions
JP6731668B2 (en
Inventor
佐藤 主税
Chikara Sato
主税 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016155245A priority Critical patent/JP6731668B2/en
Publication of JP2018026197A publication Critical patent/JP2018026197A/en
Application granted granted Critical
Publication of JP6731668B2 publication Critical patent/JP6731668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of providing microscopic observation at high resolution by stabilizing the position of an organic sample, such as a biological sample, in a solution, in microscopic observation, and a microscopic observation auxiliary device therefor.SOLUTION: A solution containing a sample is dropped on a stage, an elastic film is placed so as to cover the solution on the stage, and the sample is pressed to the stage by discharging the solution while deaerating between the stage and the film.SELECTED DRAWING: Figure 3

Description

本発明は、顕微鏡のステージ上で溶液中の試料を観察する方法及びその補助装置に関し、特に、試料の位置を安定させて高い分解能での顕微鏡観察を与える方法及びその顕微鏡観察補助装置に関する。   The present invention relates to a method for observing a sample in a solution on the stage of a microscope and an auxiliary device thereof, and more particularly to a method for stabilizing the position of a sample and providing a microscope observation with high resolution and a microscope observation auxiliary device therefor.

正立型に対して倒立型の光学顕微鏡が知られている。これはステージの下側に対物レンズが上向きに取り付けられており、例えば、生物試料のような溶液中に浮いた有機物試料であっても、ステージ上に置かれたシャーレの中に試料を入れて下から観察できる。このとき、対物レンズと試料との間にシャーレ底の薄いガラス層だけでなく溶液も存在するため、対物レンズ-試料間距離を小さく出来ず分解能が出ない。そこで、シャーレの底に試料だけを何らかの方法で沈降させ密着させることで高分解能観察することも行われている。   An inverted optical microscope is known for the upright type. This is because the objective lens is mounted upward on the lower side of the stage. For example, even if an organic sample floats in a solution such as a biological sample, the sample is placed in a petri dish placed on the stage. Observable from below. At this time, not only a thin glass layer with a petri dish bottom but also a solution exists between the objective lens and the sample, so the distance between the objective lens and the sample cannot be reduced, and the resolution does not come out. Therefore, high-resolution observation is also performed by allowing only a sample to settle and adhere to the bottom of the petri dish by some method.

ところで、電子線を下から上に向けて発射する倒立型の走査電子顕微鏡(SEM)も提案されている。しかしながら、電子銃からの電子線の経路を一定以上の高い真空状態に維持する必要があって光学顕微鏡に比べて構造が複雑となる。   By the way, an inverted scanning electron microscope (SEM) that emits an electron beam from below to above has also been proposed. However, the path of the electron beam from the electron gun needs to be maintained in a vacuum state higher than a certain level, and the structure becomes complicated compared to an optical microscope.

例えば、非特許文献1では、このような倒立型SEMとして、開放型の試料室を有する大気圧SEMについて述べられている。上側の光学顕微鏡部と下側のSEM部とを試料を挟んで同軸に配置して、同一視野で光学顕微鏡観察とSEM観察とを同時に与えることができるとしている。光学顕微鏡部とSEM部とを隔てる隔壁には電子線の通過する貫通穴が設けられており、電子線の透過可能な程度に非常に薄い膜がこれを閉塞している。この薄い膜は試料ステージを構成しており、この上に試料が配置される。つまり、試料は光学顕微鏡部側に配置されて大気圧下にあるため、試料に関わりなくSEM部側を真空引きできて、電子線の安定性に優れるから高分解能なSEM観察が可能となる。   For example, Non-Patent Document 1 describes an atmospheric pressure SEM having an open sample chamber as such an inverted SEM. The upper optical microscope section and the lower SEM section are arranged coaxially with the sample in between, so that the optical microscope observation and the SEM observation can be given simultaneously in the same field of view. The partition wall that separates the optical microscope portion and the SEM portion is provided with a through hole through which an electron beam passes, and this is blocked by a very thin film that allows the electron beam to pass therethrough. This thin film constitutes a sample stage on which the sample is placed. That is, since the sample is disposed on the optical microscope unit side and is under atmospheric pressure, the SEM unit side can be evacuated regardless of the sample, and the electron beam stability is excellent, so high-resolution SEM observation is possible.

一方で、上記した倒立型大気圧SEMでは、光学顕微鏡部側とSEM部側とを隔てる電子線透過膜を介して電子線が試料に照射されるため、かかる電子線透過膜の電子線透過性を高めるように薄く形成する必要がある。一方で、膜両側の気圧差に耐えるだけの機械強度を有することも必要となる。   On the other hand, in the above-described inverted atmospheric pressure SEM, the sample is irradiated with an electron beam through the electron beam transmission film that separates the optical microscope unit side and the SEM unit side. It is necessary to form thinly so as to increase the thickness. On the other hand, it is also necessary to have a mechanical strength that can withstand the pressure difference between both sides of the membrane.

そこで、例えば、特許文献1では、機械強度が高く薄くともこのような気圧差に耐え得るSiN膜を用いたディッシュが開示されている。これによれば、倒立型SEMを用いてディッシュ上の生物試料等を高分解能でSEM観察できる。   Therefore, for example, Patent Document 1 discloses a dish using a SiN film that can withstand such a pressure difference even if the mechanical strength is high and thin. According to this, the biological sample etc. on a dish can be observed by SEM with high resolution using an inverted SEM.

特開2008−267889号公報JP 2008-267889 A

小椋ら;大気圧電子顕微鏡ASEMによる水中観察法の開発;シンセシオロジー、第8巻、No.3、第116〜126頁Komine et al .; Development of underwater observation method using atmospheric pressure electron microscope ASEM; Synthesiology, Vol. 3, pages 116-126

上記したような倒立型大気圧SEMにおいて生物試料のような溶液中の有機物試料を観察するとき、試料がディッシュの電子線透過膜から浮き上がってしまうと、電子線が急激に減衰して分解能を低下させてしまう。そこで、試料の位置を電子線透過膜の上で安定させて観察する必要がある。   When observing an organic sample in a solution such as a biological sample in an inverted atmospheric pressure SEM as described above, if the sample is lifted from the electron beam transmission film of the dish, the electron beam is rapidly attenuated to lower the resolution. I will let you. Therefore, it is necessary to stably observe the position of the sample on the electron beam permeable film.

本発明は、上記したような状況に鑑みてなされたものであって、その目的とするところは、顕微鏡での観察において、生物試料のような溶液中の有機物試料の位置を安定させて高い分解能での顕微鏡観察を与え得る方法及びその顕微鏡観察補助装置に関する。   The present invention has been made in view of the situation as described above, and the object of the present invention is to stabilize the position of an organic sample in a solution such as a biological sample in high-resolution observation under a microscope. The present invention relates to a method capable of providing microscopic observation and a microscope observation auxiliary device.

本発明による観察方法は、顕微鏡のステージ上で溶液中の試料を観察する方法であって、前記ステージ上に前記試料を含む前記溶液を滴下し、これを前記ステージ上で覆うように弾性フィルムを載せ、前記ステージ及び前記フィルムの間を脱気しつつ前記溶液を排出せしめて前記試料を前記ステージに押し付けることを特徴とする。   An observation method according to the present invention is a method of observing a sample in a solution on a stage of a microscope, wherein the solution containing the sample is dropped on the stage, and an elastic film is applied so as to cover the sample on the stage. It is characterized in that the sample is pressed against the stage by discharging the solution while degassing between the stage and the film.

かかる発明によれば、溶液中の試料の位置を電子線透過膜のようなステージ上に安定させるように溶液を排出させつつ押圧して、高い分解能の顕微鏡観察を与え得るのである。   According to this invention, it is possible to give a high-resolution microscope observation by pressing while discharging the solution so that the position of the sample in the solution is stabilized on a stage such as an electron beam permeable film.

上記した発明において、前記顕微鏡は、走査型電子顕微鏡であることを特徴としてもよく、前記走査型電子顕微鏡は倒立型であることを特徴としてもよい。また、前記弾性フィルムはこれを間に介して前記試料を光学顕微鏡観察できる光透過性を有することを特徴としてもよい。かかる発明によれば、光学顕微鏡観察をも合わせて行うことができ、SEMによる観察の補助を与え得るのである。   In the above-described invention, the microscope may be a scanning electron microscope, and the scanning electron microscope may be an inverted type. Further, the elastic film may have a light transmission property through which the sample can be observed with an optical microscope. According to such an invention, observation with an optical microscope can be performed together, and observation assistance by SEM can be provided.

上記した発明において、前記弾性フィルムはシリコンゴムであることを特徴としてもよい。また、前記弾性フィルムは風船体であって、前記風船体を前記溶液の上に載せた上で、前記風船体を覆うように前記ステージ上に与えたカップの内部を減圧することを特徴としてもよい。かかる発明によれば、試料を痛めることなく溶液を効率よく排出できて、試料の位置を電子線透過膜のようなステージ上に安定させて、高い分解能の顕微鏡観察を与え得るのである。   In the above-described invention, the elastic film may be silicon rubber. The elastic film may be a balloon body, and the interior of the cup provided on the stage may be decompressed so as to cover the balloon body after the balloon body is placed on the solution. Good. According to this invention, the solution can be efficiently discharged without damaging the sample, and the position of the sample can be stabilized on a stage such as an electron beam permeable film, so that high-resolution microscope observation can be provided.

上記した発明において、前記風船体は前記カップの外部と通じる管路を有しその内部圧力を制御されることを特徴としてもよい。かかる発明によれば、より溶液を効率よく排出できて、試料の位置を電子線透過膜のようなステージ上に安定させて、より高い分解能の顕微鏡観察を与え得るのである。   In the above-described invention, the balloon body may have a conduit that communicates with the outside of the cup, and the internal pressure thereof may be controlled. According to this invention, the solution can be discharged more efficiently, the position of the sample can be stabilized on a stage such as an electron beam permeable film, and a higher resolution microscopic observation can be provided.

本発明による観察補助装置は、顕微鏡のステージ上で溶液中の試料を観察するための補助装置であって、前記ステージ上に滴下された前記試料を含む前記溶液を前記ステージ上で覆うように与えられる弾性フィルムと、前記ステージ及び前記フィルムの間を脱気する脱気手段と、とからなり、前記溶液を排出せしめて前記試料を前記ステージに押し付け可能とすることを特徴とする。   An observation auxiliary device according to the present invention is an auxiliary device for observing a sample in a solution on a stage of a microscope, and gives the solution containing the sample dripped on the stage so as to cover the stage. And a deaeration means for deaerating between the stage and the film, and the sample can be pressed against the stage by discharging the solution.

かかる発明によれば、溶液中の試料の位置を電子線透過膜のようなステージ上に安定させるように溶液を排出させつつ押圧して、高い分解能の顕微鏡観察を与え得るのである。   According to this invention, it is possible to give a high-resolution microscope observation by pressing while discharging the solution so that the position of the sample in the solution is stabilized on a stage such as an electron beam permeable film.

上記した発明において、前記顕微鏡は、走査型電子顕微鏡であることを特徴としてもよく、前記走査型電子顕微鏡は倒立型であることを特徴としてもよい。また、前記弾性フィルムはこれを間に介して前記試料を光学顕微鏡観察できる光透過性を有することを特徴としてもよい。かかる発明によれば、光学顕微鏡観察をも合わせて行うことができ、SEMによる観察の補助を与え得るのである。   In the above-described invention, the microscope may be a scanning electron microscope, and the scanning electron microscope may be an inverted type. Further, the elastic film may have a light transmission property through which the sample can be observed with an optical microscope. According to such an invention, observation with an optical microscope can be performed together, and observation assistance by SEM can be provided.

上記した発明において、前記弾性フィルムはシリコンゴムであることを特徴としてもよい。また、前記弾性フィルムは風船体であって、前記風船体を前記溶液の上に載せた上で、前記風船体を覆うように前記ステージ上に与えられるカップと、前記カップの内部を減圧する減圧手段とを含むことを特徴としてもよい。かかる発明によれば、試料を痛めることなく溶液を効率よく排出できて、試料の位置を電子線透過膜のようなステージ上に安定させて、高い分解能の顕微鏡観察を与え得るのである。   In the above-described invention, the elastic film may be silicon rubber. Further, the elastic film is a balloon body, the cup body is placed on the solution, and the cup is placed on the stage so as to cover the balloon body. Means. According to this invention, the solution can be efficiently discharged without damaging the sample, and the position of the sample can be stabilized on a stage such as an electron beam permeable film, so that high-resolution microscope observation can be provided.

上記した発明において、前記風船体は前記カップの外部と通じる管路を有しその内部圧力を制御可能としていることを特徴としてもよい。かかる発明によれば、より溶液を効率よく排出できて、試料の位置を電子線透過膜のようなステージ上に安定させて、より高い分解能の顕微鏡観察を与え得るのである。   In the above-described invention, the balloon body may have a conduit that communicates with the outside of the cup, and the internal pressure thereof may be controlled. According to this invention, the solution can be discharged more efficiently, the position of the sample can be stabilized on a stage such as an electron beam permeable film, and a higher resolution microscopic observation can be provided.

上記した発明において、前記カップは前記ステージに吸着する吸盤体であることを特徴としてもよい。かかる発明によれば、より溶液を効率よく排出できて、試料の位置を電子線透過膜のようなステージ上に安定させて、より高い分解能の顕微鏡観察を与え得るのである。   In the above-described invention, the cup may be a suction cup that is attracted to the stage. According to this invention, the solution can be discharged more efficiently, the position of the sample can be stabilized on a stage such as an electron beam permeable film, and a higher resolution microscopic observation can be provided.

倒立顕微鏡の構造を示す図である。It is a figure which shows the structure of an inverted microscope. 本発明の動作原理を示す図である。It is a figure which shows the principle of operation of this invention. 図2の要部の断面図である。It is sectional drawing of the principal part of FIG. 本発明の実施例を示す図である。It is a figure which shows the Example of this invention. 比較例としての生体試料の走査電子顕微鏡写真である。It is a scanning electron micrograph of the biological sample as a comparative example. 図4の装置を用いて観察した図5と同様の生体試料の走査電子顕微鏡写真である。FIG. 6 is a scanning electron micrograph of a biological sample similar to FIG. 5 observed using the apparatus of FIG.

以下に、本発明による1つの実施例である倒立型走査電子顕微鏡のステージ上で溶液中の試料、特に、生物試料のような溶液中の有機物試料の観察方法について、図1乃至図3を参照しつつ、説明する。   Hereinafter, a method for observing a sample in a solution, particularly an organic sample in a solution such as a biological sample, on the stage of an inverted scanning electron microscope according to one embodiment of the present invention will be described with reference to FIGS. However, it will be explained.

図1に示すように、顕微鏡1は、大気圧走査電子顕微鏡(ASEM:Atmospheric Scanning Electron Microscope)とも称され、試料室を低真空もしくは大気圧に解放しているものである。このことから、真空中に配置するには前処理を必要とするような試料、例えば、生物試料のような溶液中の有機物試料の観察に適している。   As shown in FIG. 1, the microscope 1 is also referred to as an atmospheric pressure scanning electron microscope (ASEM) and opens a sample chamber to a low vacuum or atmospheric pressure. Therefore, it is suitable for observing a sample that requires pretreatment to be placed in a vacuum, for example, an organic sample in a solution such as a biological sample.

顕微鏡1は、上部の光学顕微鏡部Aと、下部の真空チャンバ21を含む走査電子顕微鏡部Bと、からなる。   The microscope 1 includes an upper optical microscope section A and a scanning electron microscope section B including a lower vacuum chamber 21.

真空チャンバ21の上面には、駆動機構を図示していないが可動ステージ10が取り付けられ、この上には、ディッシュ12が配置されて水平面内を移動自在である。ディッシュ12の中央部には窓15が設けられて、電子線透過膜14がこれを閉塞している。電子線透過膜14は電子線を透過可能な程度に一部又は全体が薄く形成された薄膜体である一方、真空チャンバ21内部の真空引きによる負圧によっても破壊しない程度の強度を有する薄膜である。このような薄膜としては、無機材料系薄膜、例えば、SiNからなる薄膜などが知られている。   A movable stage 10 is attached to the upper surface of the vacuum chamber 21 (not shown), and a dish 12 is disposed on the movable stage 10 so as to be movable in a horizontal plane. A window 15 is provided at the center of the dish 12, and the electron beam permeable film 14 closes the window 15. The electron beam permeable film 14 is a thin film body that is partially or wholly thin enough to transmit an electron beam, and is a thin film that has a strength that does not break even by negative pressure due to evacuation inside the vacuum chamber 21. is there. As such a thin film, an inorganic material thin film, such as a thin film made of SiN, is known.

光学顕微鏡部Aでは、ディッシュ12の電子線透過膜14の上に試料2が配置されて、その上方から、対物レンズ3が上下左右動して光学顕微鏡観察を与える。なお、接眼レンズ等については図示しない。   In the optical microscope section A, the sample 2 is arranged on the electron beam transmission film 14 of the dish 12, and from above, the objective lens 3 moves up and down and right and left to give an optical microscope observation. Note that the eyepiece and the like are not shown.

走査電子顕微鏡部Bでは、真空チャンバ21は真空ポンプを含む真空手段21aによってその内部を真空引き可能となっており、制御部22aからの制御に基づいて電子銃22から電子線が上方に向けて発射される。電子銃22からの電子線は、電子線透過膜14を透過して試料2に照射される。試料2からの反射電子線等は、電子検出器23で検出され、適宜、画像表示手段23aで走査電子顕微鏡観察を与える。   In the scanning electron microscope section B, the inside of the vacuum chamber 21 can be evacuated by a vacuum means 21a including a vacuum pump, and an electron beam is directed upward from the electron gun 22 based on control from the control section 22a. Fired. An electron beam from the electron gun 22 passes through the electron beam transmissive film 14 and is irradiated to the sample 2. The reflected electron beam or the like from the sample 2 is detected by the electron detector 23, and is appropriately observed by a scanning electron microscope by the image display means 23a.

ここで、図2(a)に示すように、試料2は、溶液2a中にあって液滴Spとして電子線透過膜14上にある。このとき、溶液2a中で試料2は浮遊し得るから、その位置が安定せず高い分解能を持って電子顕微鏡得観察することができない。そこで、試料2を観察ステージとなる電子線透過膜14上に押圧してその位置を安定させることが必要となる。   Here, as shown in FIG. 2A, the sample 2 is in the solution 2a and is on the electron beam transmission film 14 as a droplet Sp. At this time, since the sample 2 can float in the solution 2a, its position is not stable and cannot be observed with an electron microscope with high resolution. Therefore, it is necessary to stabilize the position of the sample 2 by pressing it onto the electron beam transmission film 14 serving as an observation stage.

図2(b)に示すように、空気等でわずかに膨らませたシリコンゴムのような弾性フィルムからなる風船体32を入れたカップ30を液滴Spの上にかぶせ、カップ30の内部を図示しない減圧手段により脱気、減圧する。風船体32は内圧によって膨らむとともに、カップ30の内周に沿って形状が規制され、液滴Spに浮遊する試料2を電子線透過膜14に押圧させるのである。このとき、試料2を破壊しない程度に風船体32の内圧とカップ30の脱気・減圧状態を制御することが好ましい。   As shown in FIG. 2B, a cup 30 containing a balloon 32 made of an elastic film such as silicon rubber slightly inflated with air or the like is placed on the droplet Sp, and the inside of the cup 30 is not shown. Deaerate and depressurize by decompression means. The balloon body 32 is inflated by the internal pressure, the shape is regulated along the inner periphery of the cup 30, and the sample 2 floating in the droplet Sp is pressed against the electron beam permeable film 14. At this time, it is preferable to control the internal pressure of the balloon body 32 and the deaeration / depressurization state of the cup 30 so as not to destroy the sample 2.

減圧手段によるカップ30の内部の脱気、減圧は、走査電子顕微鏡部Bの真空チャンバ21のような減圧とは程度において全く異なることは言うまでも無い。なお、風船体32の膨らむ状態によってカップ30内の空間が小さくなって液滴Spの溶液2aだけがカップ30の外部に排出されるようにすることが好ましい。   Needless to say, the deaeration and decompression in the cup 30 by the decompression means are completely different from the decompression as in the vacuum chamber 21 of the scanning electron microscope section B. In addition, it is preferable that the space in the cup 30 is reduced by the state in which the balloon body 32 is expanded, and only the solution 2 a of the droplet Sp is discharged to the outside of the cup 30.

更に、図3には、液滴Sp中の試料2が電子線透過膜14に押圧される様子をより詳細に示した。   Further, FIG. 3 shows in more detail how the sample 2 in the droplet Sp is pressed against the electron beam permeable film 14.

図3(a)に示すように、カップ30内の脱気前もしくは脱気初期には、風船体32の弾性フィルムが液滴Spを電子線透過膜14の上で軽く包囲するように、つまり、これに「のっかる」ように存在することが好ましい。これには、シリコンゴムのような弾性フィルムの可撓性と内圧が調整されることになる。   As shown in FIG. 3A, before the degassing in the cup 30 or in the initial stage of degassing, the elastic film of the balloon body 32 surrounds the droplet Sp lightly on the electron beam permeable membrane 14, that is, It is preferable that it exists so as to “paste” it. For this purpose, the flexibility and the internal pressure of an elastic film such as silicon rubber are adjusted.

図3(b)に示すように、カップ30内を脱気していくと、溶液2aが外へ向けて排出され、試料2が電子線透過膜14に押圧される。このとき、試料2を風船体32の弾性フィルムが包み込むようにすることで試料2の電子線透過膜14上での位置がより安定するとともに、溶液2aが試料2と電子線透過膜14との間に介在せず、電子線の透過をより良好にする。つまり、より高分解能な走査電子顕微鏡観察を可能にするのである。   As shown in FIG. 3B, when the inside of the cup 30 is deaerated, the solution 2a is discharged outward, and the sample 2 is pressed against the electron beam permeable membrane 14. At this time, by wrapping the sample 2 with the elastic film of the balloon body 32, the position of the sample 2 on the electron beam permeable film 14 becomes more stable, and the solution 2a is formed between the sample 2 and the electron beam permeable film 14. It does not intervene, and makes the transmission of the electron beam better. That is, it enables scanning electron microscope observation with higher resolution.

また、風船体32の弾性フィルムが光透過性をも有する素材であれば、これを間に介して試料2を上方から光学顕微鏡観察も出来て、走査電子顕微鏡観察の観察補助を与えるのである。   Further, if the elastic film of the balloon body 32 is a material having optical transparency, the sample 2 can be observed with an optical microscope from above through this, and the observation assistance for the observation with the scanning electron microscope is given.

以上述べてきた実施例によれば、溶液2a中の試料2の位置を電子線透過膜14のようなステージ上に安定させるように溶液2aを排出させて押圧し、走査電子顕微鏡による高い分解能の観察を与え得るのである。   According to the embodiment described above, the solution 2a is discharged and pressed so as to stabilize the position of the sample 2 in the solution 2a on the stage such as the electron beam permeable film 14, and the high resolution by the scanning electron microscope is obtained. It can give observation.

次に、上記した実施例の更に他の実施例による走査電子顕微鏡観察の様子について述べる。   Next, the state of observation with a scanning electron microscope according to another embodiment of the above-described embodiment will be described.

図4(a)に示すように、顕微鏡観察補助装置50は、電子線透過膜14を含むステージに吸い付く蛇腹状の吸盤40bを有するカップ40と、その内部のシリコンゴムからなる風船体32とからなる。   As shown in FIG. 4A, the microscope observation auxiliary device 50 includes a cup 40 having a bellows-like suction cup 40b that is attached to a stage including the electron beam permeable membrane 14, and a balloon 32 made of silicon rubber inside the cup 40. Consists of.

カップ40の吸盤40bには、ドイツシュマルツ社製のFSGA22包装機械向けPVC製吸着パッドを用いた。これにシリコンチューブ40aを接続し、ポンプ(図示せず)に接続した。また、風船体32には、株式会社高研社製の後鼻腔用バルーンBタイプ#3204を用い、これにシリコンチューブ32aを接続し、カップ40のシリコンチューブ40aの内部を通って途中の穴から外部に引き出した。なお、穴の周囲はシリコン用接着剤で密封し、空気が漏れないようにした。   For the suction cup 40b of the cup 40, a PVC suction pad for FSGA22 packaging machine made by Schmalz, Germany was used. The silicon tube 40a was connected to this, and it connected to the pump (not shown). The balloon body 32 is a balloon B type # 3204 for posterior nasal cavity manufactured by Koken Co., Ltd., and a silicon tube 32a is connected to the balloon body 32 through a hole in the middle through the inside of the silicon tube 40a of the cup 40. Pulled out. The periphery of the hole was sealed with an adhesive for silicon so that air did not leak.

まず、水2a中に試料2(マウスから肺を取り出して厚切り切片とした。肺組織には転移した乳ガン細胞を含む。)を与えた液滴Spを電子線透過膜14上に滴下する。そして、液滴Spを覆うようにして吸盤40bを被せた。風船体32のシリコンチューブ32aを閉じて、吸盤40bの内部をシリコンチューブ40aから脱気、減圧して行くと、風船体32を電子線透過膜14に押し付けるようにしつつ、吸盤40bの高さが減じられていく。このとき、風船体32の弾性フィルムが内圧によって吸盤40bの内面に沿って膨らむとともに、吸盤40bの収縮と釣り合って停止する。また、吸盤40bの先端部40b’がめくれ上がるようにして、水2aを外部に排出しつつ、試料2を電子線透過膜14上に押圧する。   First, a droplet Sp provided with sample 2 (the lung is taken out from the mouse into a sliced slice. The lung tissue contains metastasized breast cancer cells) is dropped onto the electron beam permeable membrane 14 in water 2a. And the suction cup 40b was covered so that the droplet Sp might be covered. When the silicon tube 32a of the balloon body 32 is closed and the inside of the suction cup 40b is degassed and depressurized from the silicon tube 40a, the height of the suction cup 40b is increased while pressing the balloon body 32 against the electron beam permeable membrane 14. It will be reduced. At this time, the elastic film of the balloon body 32 swells along the inner surface of the suction cup 40b due to internal pressure, and stops in balance with the contraction of the suction cup 40b. In addition, the sample 2 is pressed onto the electron beam permeable membrane 14 while discharging the water 2a to the outside so that the tip 40b 'of the suction cup 40b is turned up.

なお、風船体32のシリコンチューブ32aから空気を出し入れすることで、試料2の電子線透過膜14上への押圧力を調整できる。   Note that the pressure of the sample 2 on the electron beam permeable film 14 can be adjusted by taking air in and out of the silicon tube 32 a of the balloon body 32.

図5及び図6には、それぞれ上記した顕微鏡観察補助装置50を用いていないとき、及び用いたときの走査電子顕微鏡観察における写真を示している。図6では、視野全体にフォーカスが合っており広範囲に観察が可能である。図6(b)の白矢印で示される小さな核は正常肺胞細胞の核であり、図6(c)の白矢印は転移してきた乳がん細胞の大きな核を表している。一方、図5では、左下の一部以外は暗くなっており、ジャストフォーカスの範囲が非常に狭い。これは水2a中で試料2が浮遊しており、試料2を電子線透過膜14上に押圧出来ていないためである。   FIGS. 5 and 6 show photographs in the scanning electron microscope observation when the above-described microscope observation auxiliary device 50 is not used and when it is used. In FIG. 6, the entire field of view is in focus and observation is possible over a wide range. The small nuclei indicated by white arrows in FIG. 6 (b) are the nuclei of normal alveolar cells, and the white arrows in FIG. 6 (c) represent the large nuclei of breast cancer cells that have metastasized. On the other hand, in FIG. 5, it is dark except for a part of the lower left, and the range of just focus is very narrow. This is because the sample 2 is floating in the water 2 a and the sample 2 cannot be pressed onto the electron beam permeable film 14.

このように、顕微鏡観察補助装置50を用いることで容易に高分解能の走査電子顕微鏡観察を行うことが出来るようになるのである。なお、顕微鏡観察補助装置50は、電子線透過膜14上に下方から試料2を押圧するような場合であっても、これを上方に向けて設置することで対応できる。   As described above, by using the microscope observation auxiliary device 50, high-resolution scanning electron microscope observation can be easily performed. In addition, even if the microscope observation auxiliary device 50 is a case where the sample 2 is pressed onto the electron beam permeable film 14 from below, it can be dealt with by placing the sample 2 facing upward.

ここで、例えば、走査電子顕微鏡だけでなく、高分解能光学顕微鏡や超解像光学顕微鏡などの各種顕微鏡であっても、薄膜ガラス越しに反ってくる蛍光からの像を形成するものであれば同様に観察を行うことが出来る。また、光学システムが上下逆転して全体として正立している高分解能光学顕微鏡でも、本装置は同様に用い得るであろう。   Here, for example, not only a scanning electron microscope but also various microscopes such as a high-resolution optical microscope and a super-resolution optical microscope are applicable as long as they form an image from fluorescence that warps through a thin film glass. Can be observed. The apparatus could also be used in a high resolution optical microscope where the optical system is upside down and upright as a whole.

以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。   As mentioned above, although the Example by this invention and the modification based on this were demonstrated, this invention is not necessarily limited to this, A person skilled in the art will deviate from the main point of this invention, or the attached claim. Various alternative embodiments and modifications could be found without doing so.

1 顕微鏡
2 試料
2a 溶液
3 対物レンズ
10 可動ステージ
12 ディッシュ
14 電子線透過膜
15 窓
21 真空チャンバ
22 電子銃
23 電子検出器
23a 画像表示手段
30、40 カップ
32 風船体
40b 吸盤
50 顕微鏡観察補助装置
A 光学顕微鏡部
B 走査電子顕微鏡部
DESCRIPTION OF SYMBOLS 1 Microscope 2 Sample 2a Solution 3 Objective lens 10 Movable stage 12 Dish 14 Electron beam permeable film 15 Window 21 Vacuum chamber 22 Electron gun 23 Electron detector 23a Image display means 30, 40 Cup 32 Balloon body 40b Suction cup 50 Microscope observation auxiliary device A Optical microscope part B Scanning electron microscope part

Claims (15)

顕微鏡のステージ上で溶液中の試料を観察する方法であって、
前記ステージ上に前記試料を含む前記溶液を滴下し、これを前記ステージ上で覆うように弾性フィルムを載せ、前記ステージ及び前記フィルムの間を脱気しつつ前記溶液を排出せしめて前記試料を前記ステージに押し付けることを特徴とする顕微鏡観察方法。
A method of observing a sample in a solution on a microscope stage,
The solution containing the sample is dropped on the stage, an elastic film is placed so as to cover it on the stage, the solution is discharged while degassing between the stage and the film, and the sample is removed. A microscope observation method characterized by being pressed against a stage.
前記顕微鏡は、走査型電子顕微鏡であることを特徴とする請求項1記載の顕微鏡観察方法。   The microscope observation method according to claim 1, wherein the microscope is a scanning electron microscope. 前記走査型電子顕微鏡は倒立型であることを特徴とする請求項2記載の顕微鏡観察方法。   The microscope observation method according to claim 2, wherein the scanning electron microscope is an inverted type. 前記弾性フィルムはこれを間に介して前記試料を光学顕微鏡観察できる光透過性を有することを特徴とする請求項2記載の顕微鏡観察方法。   3. The microscope observation method according to claim 2, wherein the elastic film has a light transmission property through which the sample can be observed with an optical microscope. 前記弾性フィルムはシリコンゴムであることを特徴とする請求項1乃至4のうちの1つに記載の顕微鏡観察方法。   The microscope observation method according to claim 1, wherein the elastic film is silicon rubber. 前記弾性フィルムは風船体であって、前記風船体を前記溶液の上に載せた上で、前記風船体を覆うように前記ステージ上に与えたカップの内部を減圧することを特徴とする請求項5記載の顕微鏡観察方法。   The elastic film is a balloon body, wherein the inside of a cup provided on the stage is decompressed so as to cover the balloon body after the balloon body is placed on the solution. 5. The microscopic observation method according to 5. 前記風船体は前記カップの外部と通じる管路を有しその内部圧力を制御されることを特徴とする請求項6記載の顕微鏡観察方法。   The microscope observation method according to claim 6, wherein the balloon body has a pipe line communicating with the outside of the cup, and the internal pressure thereof is controlled. 顕微鏡のステージ上で溶液中の試料を観察するための補助装置であって、
前記ステージ上に滴下された前記試料を含む前記溶液を前記ステージ上で覆うように与えられる弾性フィルムと、前記ステージ及び前記フィルムの間を脱気する脱気手段と、とからなり、前記溶液を排出せしめて前記試料を前記ステージに押し付け可能とすることを特徴とする顕微鏡観察補助装置。
An auxiliary device for observing a sample in a solution on a microscope stage,
An elastic film provided so as to cover the solution containing the sample dropped on the stage on the stage, and degassing means for degassing the stage and the film, A microscope observation auxiliary device, wherein the sample can be ejected and the sample can be pressed against the stage.
前記顕微鏡は、走査型電子顕微鏡であることを特徴とする請求項8記載の顕微鏡観察補助装置。   9. The microscope observation auxiliary device according to claim 8, wherein the microscope is a scanning electron microscope. 前記走査型電子顕微鏡は倒立型であることを特徴とする請求項9記載の顕微鏡観察補助装置。   The microscope observation auxiliary device according to claim 9, wherein the scanning electron microscope is an inverted type. 前記弾性フィルムはこれを間に介して前記試料を光学顕微鏡観察できる光透過性を有することを特徴とする請求項9記載の顕微鏡補助装置。   10. The microscope auxiliary device according to claim 9, wherein the elastic film has a light transmission property through which the sample can be observed with an optical microscope. 前記弾性フィルムはシリコンゴムであることを特徴とする請求項11記載の顕微鏡補助装置。   12. The microscope auxiliary apparatus according to claim 11, wherein the elastic film is made of silicon rubber. 前記弾性フィルムは風船体であって、前記風船体を前記溶液の上に載せた上で、前記風船体を覆うように前記ステージ上に与えられるカップと、前記カップの内部を減圧する減圧手段とを含むことを特徴とする請求項12記載の顕微鏡観察補助装置。   The elastic film is a balloon body, and a cup is placed on the stage so as to cover the balloon body after the balloon body is placed on the solution, and a decompression means for decompressing the inside of the cup. The microscope observation auxiliary device according to claim 12, comprising: 前記風船体は前記カップの外部と通じる管路を有しその内部圧力を制御可能としていることを特徴とする請求項13記載の顕微鏡観察補助装置。   14. The microscope observation assisting apparatus according to claim 13, wherein the balloon body has a conduit communicating with the outside of the cup, and the internal pressure thereof can be controlled. 前記カップは前記ステージに吸着する吸盤体であることを特徴とする請求項13又は14に記載の顕微鏡補助装置。
The microscope auxiliary device according to claim 13 or 14, wherein the cup is a suction cup that is adsorbed to the stage.
JP2016155245A 2016-08-08 2016-08-08 Microscope observation method and microscope observation auxiliary device Active JP6731668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016155245A JP6731668B2 (en) 2016-08-08 2016-08-08 Microscope observation method and microscope observation auxiliary device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016155245A JP6731668B2 (en) 2016-08-08 2016-08-08 Microscope observation method and microscope observation auxiliary device

Publications (2)

Publication Number Publication Date
JP2018026197A true JP2018026197A (en) 2018-02-15
JP6731668B2 JP6731668B2 (en) 2020-07-29

Family

ID=61194866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016155245A Active JP6731668B2 (en) 2016-08-08 2016-08-08 Microscope observation method and microscope observation auxiliary device

Country Status (1)

Country Link
JP (1) JP6731668B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021256412A1 (en) * 2020-06-16 2021-12-23
KR20220069368A (en) * 2020-11-20 2022-05-27 대한민국(질병관리청장) Methods for investigating pathogen infection of Micro insect

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167245A (en) * 1984-02-10 1985-08-30 Hitachi Ltd Sample holding device
JPH0463583A (en) * 1990-06-29 1992-02-28 P C C Technol:Kk Aseptic chamber for microscope observation
JP2004229548A (en) * 2003-01-29 2004-08-19 National Food Research Institute Preparation for microscope and method for making the same
JP2008210715A (en) * 2007-02-27 2008-09-11 Ebara Corp Charged particle beam device, and sample surface observation method using the same
JP2009236513A (en) * 2008-03-26 2009-10-15 Ihi Corp Sampler and sampling method using it
JP2014103014A (en) * 2012-11-21 2014-06-05 Hitachi High-Technologies Corp Charged particle beam device, sample table unit, and sample observation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167245A (en) * 1984-02-10 1985-08-30 Hitachi Ltd Sample holding device
JPH0463583A (en) * 1990-06-29 1992-02-28 P C C Technol:Kk Aseptic chamber for microscope observation
JP2004229548A (en) * 2003-01-29 2004-08-19 National Food Research Institute Preparation for microscope and method for making the same
JP2008210715A (en) * 2007-02-27 2008-09-11 Ebara Corp Charged particle beam device, and sample surface observation method using the same
JP2009236513A (en) * 2008-03-26 2009-10-15 Ihi Corp Sampler and sampling method using it
JP2014103014A (en) * 2012-11-21 2014-06-05 Hitachi High-Technologies Corp Charged particle beam device, sample table unit, and sample observation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
小椋俊彦、西山英利、須賀三雄、佐藤主税: "大気圧電子顕微鏡ASEMによる水中観察法の開発", シンセシオロジー, vol. 8, no. 3, JPN6020010332, August 2015 (2015-08-01), JP, pages 116 - 126, ISSN: 0004235578 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021256412A1 (en) * 2020-06-16 2021-12-23
WO2021256412A1 (en) * 2020-06-16 2021-12-23 学校法人中部大学 Observation method employing scanning electron microscope, and sample holder for same
JP7142404B2 (en) 2020-06-16 2022-09-27 学校法人中部大学 Observation method using scanning electron microscope and sample holder therefor
KR20220069368A (en) * 2020-11-20 2022-05-27 대한민국(질병관리청장) Methods for investigating pathogen infection of Micro insect
KR102475352B1 (en) 2020-11-20 2022-12-08 대한민국 Methods for investigating pathogen infection of Micro insect

Also Published As

Publication number Publication date
JP6731668B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP6239246B2 (en) Charged particle beam apparatus, sample observation method, sample stage, observation system, and light emitting member
US9508527B2 (en) Sample base, charged particle beam device and sample observation method
JP6731668B2 (en) Microscope observation method and microscope observation auxiliary device
US10879036B2 (en) Charged particle beam system, opto-electro simultaneous detection system and method
US20160126058A1 (en) Charged-Particle-Beam Device and Specimen Observation Method
JP6035602B2 (en) Charged particle beam apparatus, sample stage unit, and sample observation method
US11959834B2 (en) Manufacturing method of sample collection component
JP2007165269A (en) Semi-hermetically sealed observation environment forming device of electron microscope
JP2010524799A5 (en) Ventilation device
GB2519038A (en) Charged particle beam device and sample observation method
US20150228448A1 (en) Observation Apparatus and Optical Axis Adjustment Method
US9824854B2 (en) Charged particle beam device, image generation method, observation system
JP2016096142A (en) Charged particle beam microscope performing pressure correction
WO2017033219A1 (en) Observation support unit for charged particle microscope and sample observation method using same
KR20160031492A (en) Floating Construction
TW201640103A (en) Specimen holder for electron microscope and manufacturing method thereof
JPS63263500A (en) Sample vessel for microscope observation
JP6500143B2 (en) Sample observation method
JPS63298200A (en) Specimen vessel for soft roentgen ray microscope observation
US20080073532A1 (en) Observational liquid/gas environment combined with specimen chamber of electron microscope
JP5698712B2 (en) Sample holder, sample inspection apparatus, and sample inspection method
JP5750763B2 (en) Sample storage cell for X-ray microscope and observation method of X-ray microscope image
JP3668776B2 (en) X-ray microscope
JP6330074B2 (en) Charged particle beam apparatus, sample observation method, sample stage, observation system, and light emitting member
JP2890580B2 (en) Sample capsule for X-ray microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200318

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200630

R150 Certificate of patent or registration of utility model

Ref document number: 6731668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250