JP2018014706A - 分離光伝送ネットワークスイッチングシステム - Google Patents

分離光伝送ネットワークスイッチングシステム Download PDF

Info

Publication number
JP2018014706A
JP2018014706A JP2017084292A JP2017084292A JP2018014706A JP 2018014706 A JP2018014706 A JP 2018014706A JP 2017084292 A JP2017084292 A JP 2017084292A JP 2017084292 A JP2017084292 A JP 2017084292A JP 2018014706 A JP2018014706 A JP 2018014706A
Authority
JP
Japan
Prior art keywords
piu
odu
ethernet
piu module
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017084292A
Other languages
English (en)
Inventor
カイ・ビヤオドン
Biaodong Cai
ダンズモア・リチャード
Dunsmore Richard
ナファン・ロッド
Naphan Rod
リール・サム
Lisle Sam
パテル・ディーパック
Patel Deepak
サイド・イクバル
Syed Iqbal
メイベリー・ブレント
Mayberry Brent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JP2018014706A publication Critical patent/JP2018014706A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection [CSMA-CD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0659Management of faults, events, alarms or notifications using network fault recovery by isolating or reconfiguring faulty entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • H04L45/745Address table lookup; Address filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • H04L49/351Switches specially adapted for specific applications for local area network [LAN], e.g. Ethernet switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/70Virtual switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5038Address allocation for local use, e.g. in LAN or USB networks, or in a controller area network [CAN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0003Switching fabrics, e.g. transport network, control network
    • H04J2203/0012Switching modules and their interconnections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0003Switching fabrics, e.g. transport network, control network
    • H04J2203/0026Physical details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • H04J2203/0082Interaction of SDH with non-ATM protocols
    • H04J2203/0085Support of Ethernet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/618Details of network addresses
    • H04L2101/622Layer-2 addresses, e.g. medium access control [MAC] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0895Configuration of virtualised networks or elements, e.g. virtualised network function or OpenFlow elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • H04L45/745Address table lookup; Address filtering
    • H04L45/7452Multiple parallel or consecutive lookup operations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0066Provisions for optical burst or packet networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

【課題】プラグインユニバーサル(PIU)モジュールを用いるステップを有する分離光トランスポートネットワーク(OTN)スイッチングシステムの方法及びシステムを提供する。【解決手段】各PIUモジュールは、スイッチングコアとしてEthernetトランシービング及びEthernet構造へのOTNのための複数のポートを有する。PIUモジュールの各OTNoverEthernetモジュールは、複数のEthernetスイッチを含む構造を用いて種々のOTN機能を実現する。各PIUモジュールのi番目のポートは、Ethernetスイッチのi番目のEthernetスイッチに接続され、個々の順次的順序に関連付けられる。PIUモジュールは、i番目のEthernetスイッチに対応するi番目のポートからEthernetパケットを送信し、i番目のポートは、Ethernetスイッチの個々の順次的順序に基づき選択される。【選択図】図2

Description

[関連出願の参照]
本出願は、米国仮出願番号第62/325,723号、2016年4月21日出願、名称「DISAGGREGATED OPTICAL TRANSPORT NETWORK SWITCHING SYSTEM」の優先権を主張する。
[技術分野]
本開示は、概して、光通信ネットワークに関し、より詳細には、分離光トランスポートネットワークスイッチングシステムに関する。
電気通信、ケーブルテレビシステム、データ通信システムは、光トランスポートネットワーク(optical transport networks:OTN)を用いて、遠隔地点間で大量の情報を迅速に伝達する。OTNでは、情報は、光ファイバを通じて光信号の形式で伝達される。ここでは、複数のサブチャネルが1つの光信号の中で伝達できる。OTNは、増幅器、分散補償器、マルチプレクサ/デマルチプレクサフィルタ、波長選択スイッチ、光スイッチ、カプラ、等のような、ネットワーク内で種々の動作を実行するよう構成される種々のネットワークコンポーネントを有して良い。
特に、OTNは、例えば光アッドドロップマルチプレクサ(optical add−drop multiplexer:OADM)を用いて異なる個々のチャネルを送信するために再構成されて良い。このように、個々のチャネル(例えば、波長)は、光ネットワークに沿う様々な地点でアッドされ又はドロップされて良く、様々なネットワーク構成及びトポロジを可能にする。
さらに、標準的に、光トランスポートネットワーク(OTN)スイッチは、光信号の中で伝達されるサブチャネルの異なる宛先への電気的スイッチングを中央で実行するために使用される。
<分離光伝送ネットワークスイッチングシステム>
プラグインユニバーサル(PIU)モジュールを用いるステップを有する分離光トランスポートネットワーク(OTN)スイッチングシステムの方法及びシステムが開示される。各々のPIUモジュールは、スイッチングコアとしてEthernetトランシービング及びEthernet構造へのOTNのための複数のポートを有する。PIUモジュールの各々の中のOTN over Ethernetモジュールは、複数のEthernetスイッチを含み得るEthernet構造を用いて種々のOTN機能を実現させる。各々のPIUモジュールの複数のポートのうちi番目のポートは、Ethernetスイッチの各々のi番目のEthernetスイッチに接続されて良い。PIUモジュールは、Ethernetスイッチの個々の順次的順序に関連付けられて良い。PIUモジュールは、i番目のEthernetスイッチに対応するPIUモジュールのi番目のポートからEthernetパケットを送信して良い。ここで、i番目のポートは、Ethernetスイッチの個々の順次的順序に基づき選択される。
一態様では、Ethernetパケットのような光信号をスイッチングする開示の方法は、M個のEthernetスイッチを有するEthernet構造を含む光トランスポートネットワーク(optical transport networking:OTN)スイッチングシステムに含まれて良い。方法は、M個のEthernetスイッチのi番目のEthernetスイッチを示すために、1乃至Mの範囲の値を有する変数iを割り当てるステップであって、Mは1より大きい、ステップを更に有して良い。OTNスイッチングシステムは、第1、第2及び第3PIUモジュールを含む複数のプラグインユニバーサル(plug−in universal:PIU)モジュールであって、それぞれがM個のPIUポートを有する、複数のPIUモジュールを更に有して良い。OTNスイッチングシステムでは、複数のPIUモジュールの各々のi番目のPIUポートは、Ethernet構造のi番目のEthernetスイッチに接続されて良い。方法は、第1PIUモジュールから第3PIUモジュールへのEthernet構造を介する第1光データユニット(ODU)スイッチ接続、及び第2PIUモジュールから第3PIUモジュールへのEthernet構造を介する第2ODUスイッチ接続を確立するステップを更に有して良い。方法は、第1PIUモジュールについて、M個のEthernetスイッチの第1順次的順序を選択するステップを更に有して良い。方法は、第2PIUモジュールについて、M個のEthernetスイッチの第2順次的順序を選択するステップを更に有して良い。方法では、第2順次的順序は、第1順次的順序と異なって良い。方法は、第1PIUモジュールにおいて第1ODUを受信するステップと、第1ODUに対応する第1Ethernetパケットを生成するステップと、を更に有して良い。ここで、第1ODUは、第1ODUスイッチ接続を介する送信のためのものである。方法は、第1Ethernetパケットを第1PIUモジュールの第1ポートから送信するステップを更に有して良い。ここで、第1ポートは、第1順次的順序に基づき選択されて良い。方法は、第2PIUモジュールにおいて第2ODUを受信するステップと、第2ODUに対応する第2Ethernetパケットを生成するステップと、を更に有して良い。ここで、第2ODUは、第2ODUスイッチ接続を介する送信のためのものである。方法は、第2Ethernetパケットを第2PIUモジュールの第2ポートから送信するステップを更に有して良い。ここで、第2ポートは、第2順次的順序に基づき選択されて良い。
方法の開示の実施形態のうちの任意のものにおいて、第1順次的順序及び第2順次的順序は、それぞれ、第1PIUモジュール及び第2PIUモジュールにそれぞれ関連付けられるM個のポート識別子を指定して良い。
方法の開示の実施形態のうちの任意のものにおいて、第1順次的順序を選択するステップ及び第2順次的順序を選択するステップは、第3PIUモジュールにおいて実行されて良く、第3PIUモジュールから第1PIUモジュールへ第1順次的順序を送信するステップと、及び第3PIUモジュールから第2PIUモジュールへ第2順次的順序を送信するステップと、を更に有して良い。
開示の実施形態のうちの任意のものにおいて、方法は、第1PIUモジュールにおいて第3ODUを受信するステップを更に有して良い。方法は、第1PIUモジュールについて、第3ODUに関連付けられる第1ILTエントリを読み出すために、複数のILTエントリを有するイングレスルックアップテーブル(ingress lookup table:ILT)のテーブルルックアップを実行するステップを更に有して良い。方法は、第1PIUモジュールについて、第1ILTエントリに関連付けられる第1バンドリングバッファの第1位置に第3ODUを格納するステップを更に有して良い。方法は、第1PIUモジュールにおいて第4ODUを受信するステップを更に有して良い。方法は、第1PIUモジュールについて、第4ODUに関連付けられるILTの第2ILTエントリを読み出すために、ILTのテーブルルックアップを実行するステップを更に有して良い。方法は、第1PIUモジュールについて、第2ILTエントリに関連付けられる第1バンドリングバッファの順序内で次にある第2位置に第4ODUを格納するステップを更に有して良い。方法は、第1PIUモジュールについて、第1ILTエントリ及び第2ILTエントリに関連付けられる第1バンドリングバッファにある第3ODU及び第4ODUに対応する第3Ethernetパケットを生成するステップを更に有して良い。
開示の実施形態のうちの任意のものにおいて、方法は、第1PIUモジュールについて、第1順次的順序に基づき第3PIUモジュールへ送信するために、第1送信キューに第3Ethernetパケットを格納するステップを更に有して良い。
開示の実施形態の任意のものにおいて、方法は、第3PIUモジュールについて、第1受信キューに格納された第3Ethernetパケットを読み出すステップを更に有して良い。方法は、第3PIUモジュールについて、第3Ethernetパケットから第3ODU及び第4ODUを読み出すステップを更に有して良い。方法は、第3PIUモジュールについて、第3Ethernetパケットに関連付けられる第1ILTエントリを読み出すために、複数のELTエントリを有するイグレスルックアップテーブル(egress lookup table:ELT)のテーブルルックアップを実行するステップを更に有して良い。
開示の実施形態のうちの任意のものにおいて、方法は、第3PIUモジュールについて、第3Ethernetパケットの第1Ethernetパケットシーケンス番号に基づき、第1ELTエントリに関連付けられる第1再順序付けバッファの第1位置に、第3ODU及び第4ODUを格納するステップを更に有して良い。
開示の実施形態のうちの任意のものにおいて、方法は、Ethernet構造を介する複数のPIUモジュールのうちの第1PIUモジュールから第3PIUモジュールへの第3光データユニット(optical data unit:ODU)スイッチ接続を確立するステップを更に有して良い。方法は、第1PIUモジュールにおいて第3ODUを受信するステップを更に有して良い。ここで、第3ODUは、第3ODUスイッチ接続を介する送信のためのものである。方法は、第1PIUモジュールの第3ポートから第3ODUに対応する第3Ethernetパケットを送信するステップを更に有して良い。ここで、第3ポートは、連続送信ポートカウントに基づき選択されて良い。
方法の開示の実施形態のうちの任意のものにおいて、第3ODUスイッチ接続は、第1ODUスイッチ接続と異なる。
方法の開示の実施形態のうちの任意のものにおいて、連続送信ポートカウントは、単一ポートへの連続送信に基づいて良い。
別の態様では、開示のOTNスイッチングシステムは、M個のEthernetスイッチを有するEthernet構造を有して良い。ここで、変数iは、M個のEthernetスイッチのうちのi番目のEthernetスイッチを示すために1乃至Mの範囲の値を有し、Mは1より大きい。OTNスイッチングシステムは、第1PIUモジュール、第2PIUモジュール及び第3PIUモジュールを含む複数のPIUモジュールであって、それぞれがM個のPIUポートを有する、複数のPIUモジュールを更に有して良い。OTNスイッチングシステムでは、複数のPIUモジュールの各々のi番目のPIUポートは、Ethernet構造のi番目のEthernetスイッチに接続されて良い。OTNスイッチングシステムは、第1PIUモジュールから第3PIUモジュールへのEthernet構造を介する第1ODUスイッチ接続、及び第2PIUモジュールから第3PIUモジュールへのEthernet構造を介する第2ODUスイッチ接続を確立して良い。OTNスイッチングシステムは、M個のEthernetスイッチの第1順次的順序を更に選択して良い。OTNスイッチングシステムは、M個のEthernetスイッチの第2順次的順序を更に選択して良い。OTNスイッチングシステムでは、第2順次的順序は、第1順次的順序と異なって良い。OTNスイッチングシステムは、第1PIUモジュールにおいて第1ODUを受信し、第1ODUに対応する第1Ethernetパケットを生成して良い。ここで、第1ODUは、第1ODUスイッチ接続を介する送信のためのものである。OTNスイッチングシステムは、さらに、第1Ethernetパケットを第1PIUモジュールの第1ポートから送信して良い。ここで、第1ポートは、第1順次的順序に基づき選択されて良い。OTNスイッチングシステムは、さらに、第2PIUモジュールにおいて第2ODUを受信し、第2ODUに対応する第2Ethernetパケットを生成して良い。ここで、第2ODUは、第2ODUスイッチ接続を介する送信のためのものである。OTNスイッチングシステムは、さらに、第2Ethernetパケットを第2PIUモジュールの第2ポートから送信して良い。ここで、第2ポートは、第2順次的順序に基づき選択されて良い。
OTNスイッチングシステムの開示の実施形態のうちの任意のものにおいて、第1順次的順序及び第2順次的順序は、それぞれ、第1PIUモジュール及び第2PIUモジュールにそれぞれ関連付けられるM個のポート識別子を指定して良い。
OTNスイッチングシステムの開示の実施形態のうちの任意のものにおいて、第1順次的順序の選択、及び第2順次的順序の選択は、第3PIUモジュールにおいて実行されて良い。OTNスイッチングシステムは、さらに、第3PIUモジュールから第1PIUモジュールへ第1順次的順序を送信し、第3PIUモジュールから第2PIUモジュールへ第2順次的順序を送信して良い。
開示の実施形態のうちの任意のものにおいて、OTNスイッチングシステムは、第1PIUモジュールにおいて第3ODUを受信して良い。OTNスイッチングシステムは、さらに、第3ODUに関連付けられる第1ILTエントリを読み出すために、複数のILTエントリを有するイングレスルックアップテーブル(ingress lookup table:ILT)のテーブルルックアップを実行して良い。OTNスイッチングシステムは、さらに、第1ILTエントリに関連付けられる第1バンドリングバッファの第1位置に第3ODUを格納して良い。OTNスイッチングシステムは、さらに、第1PIUモジュールにおいて第4ODUを受信して良い。OTNスイッチングシステムは、さらに、第4ODUに関連付けられる第2ILTエントリを読み出すために、ILTのテーブルルックアップを実行して良い。OTNスイッチングシステムは、さらに、第2ILTエントリに関連付けられる第1バンドリングバッファの順序内で次にある第2位置に第4ODUを格納して良い。OTNスイッチングシステムは、さらに、第1ILTエントリ及び第2ILTエントリに関連付けられる第1バンドリングバッファにある第3ODU及び第4ODUに対応する第3Ethernetパケットを生成して良い。
開示の実施形態のうちの任意のものにおいて、OTNスイッチングシステムは、第1順次的順序に基づき第3PIUモジュールへ送信するために、第1送信キューに第3Ethernetパケットを格納して良い。
開示の実施形態のうちの任意のものにおいて、OTNスイッチングシステムは、第1受信キューに格納された第3Ethernetパケットを読み出して良い。OTNスイッチングシステムは、さらに、第3Ethernetパケットから第3ODU及び第4ODUを読み出して良い。OTNスイッチングシステムは、さらに、第3Ethernetパケットに関連付けられる第1ELTエントリを読み出すために、複数のELTエントリを有するイグレスルックアップテーブル(egress lookup table:ELT)のテーブルルックアップを実行して良い。
開示の実施形態のうちの任意のものにおいて、OTNスイッチングシステムは、第3Ethernetパケットの第1Ethernetパケットシーケンス番号に基づき、第1ELTエントリに関連付けられる第1再順序付けバッファの第1位置に、第3ODU及び第4ODUを格納して良い。
開示の実施形態のうちの任意のものにおいて、OTNスイッチングシステムは、Ethernet構造を介する第1PIUモジュールから第3PIUモジュールへの第3光データユニット(optical data unit:ODU)スイッチ接続を確立して良い。OTNスイッチングシステムは、第1PIUモジュールにおいて第3ODUを受信して良い。ここで、第3ODUは、第3ODUスイッチ接続を介する送信のためのものである。OTNスイッチングシステムは、さらに、第1PIUモジュールの第3ポートから第3ODUに対応する第3Ethernetパケットを送信して良い。ここで、第3ポートは、連続送信ポートカウントに基づき選択されて良い。
OTNスイッチングシステムの開示の実施形態のうちの任意のものにおいて、第3ODUスイッチ接続は、第1ODUスイッチ接続と異なる。
OTNスイッチングシステムの開示の実施形態のうちの任意のものにおいて、連続送信ポートカウントは、単一ポートへの連続送信に基づいて良い。
<分離OTNスイッチングシステムにおけるEthernet構造保護>
プラグインユニバーサル(PIU)モジュールを用いるステップを有する分離(disaggregated)光トランスポートネットワーク(OTN)スイッチングシステムにおけるEthernet構造保護の方法及びシステムが開示される。各々のPIUモジュールは、スイッチングコアとしてEthernetトランシービング及びEthernet構造へのOTNのための複数のポートを有する。PIUモジュールの各々の中のOTN over Ethernetモジュールは、複数のEthernetスイッチを含み得るEthernet構造を用いて種々のOTN機能を実現させる。第1PIUモジュールは、Ethernet構造のEthernet構造プレーンにおける故障状態を検出して良い。検出に応答して、Ethernet構造プレーンにおける故障を避けて光データユニット(optical data unit:ODU)トラフィックをリダイレクトするために、OTNスイッチングシステムは、故障状態を他のPIUモジュールへ送信して良い。
一態様では、OTNスイッチングシステムにおけるEthernet構造保護のための方法が開示され、M個のEthernet構造プレーンを有するEthernet構造を含み得るOTNスイッチにおいて、M個のEthernet構造プレーンの各々は、M個のEthernetスイッチのうちの対応するEthernetスイッチを有して良い。OTNスイッチは、第1PIUモジュールを含む複数のPIUモジュールも有して良い。各PIUモジュールは、M個のPIUポートを有する。ここで、複数のPIUモジュールの各々のi番目のPIUポートは、Ethernet構造のi番目のEthernet構造プレーンのi番目のEthernetスイッチに接続されて良い。方法は、M番目のEthernet構造プレーンのうちi番目のEthernet構造プレーン、M個のEthernetスイッチのうちのi番目のEthernetスイッチ、及びM個のPIUポートのうちのi番目のPIUポートを示すために、1乃至Mの範囲に渡る値を有する変数iを割り当てるステップであって、Mは1より大きい、ステップも有して良い。方法は、第1PIUモジュールにより、i番目のEthernet構造プレーンにおける第1PIUモジュールのi番目のPIUポートに関連付けられる故障状態を検出するステップを更に有して良い。方法は、複数のPIUモジュールから第1PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するために、故障状態を送信するステップも有して良い。
方法の開示の実施形態のうちの任意のものにおいて、方法は、複数のPIUモジュールから第1PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するために、故障状態を送信するステップの後に、複数のPIUモジュールから第1PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するステップも有して良い。
方法の開示の実施形態のうちの任意のものにおいて、方法は、複数のPIUモジュールのうちの第2PIUモジュールにより、i番目のEthernet構造プレーンにおける第2PIUモジュールのi番目のPIUポートに関連付けられる故障状態を検出するステップを更に有して良い。方法は、複数のPIUモジュールから第2PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するために、第2故障状態を送信するステップも有して良い。
方法の開示の実施形態のうちの任意のものにおいて、故障状態を送信するステップ、及び第2故障状態を送信するステップは、同じ送信で送信されて良い。
方法の開示の実施形態のうちの任意のものにおいて、方法は、故障状態と、複数のPIUモジュールから第2PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するための、i番目のEthernet構造プレーンにおける複数のPIUモジュールのうちの第2PIUモジュールのi番目のPIUポートに関連付けられる第2故障状態と、を受信した後に、複数のPIUモジュールから第1PIUモジュールのi番目のPIUポート及び第2PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するステップも有して良い。
方法の開示の実施形態のうちの任意のものにおいて、方法は、複数のPIUモジュールから第1PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するために故障状態を送信するステップ、及び、複数のPIUモジュールから第2PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するためにi番目のEthernet構造プレーンにおける複数のPIUモジュールのうちの第2PIUモジュールのi番目のPIUポートに関連付けられる第2故障状態を送信するステップ、の前に、第1PIUモジュールのM個のPIUポート及び第2PIUモジュールのM個のPIUポートからのODUトラフィックの送信を停止するステップを更に有して良い。方法は、第1PIUモジュール及び第2PIUモジュールに関連付けられる遅延の終了の後に、複数のPIUモジュールから第2PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するために、第2故障状態を送信するステップも有して良い。
方法の開示の実施形態のうちの任意のものにおいて、方法は、第1PIUモジュール及び第2PIUモジュールに関連付けられる第2遅延の終了の後に、第1PIUモジュールのi番目のPIUポート以外の第1PIUモジュールのM個のPIUポートからODUトラフィックを送信し、第2PIUモジュールのi番目のPIUポート以外の第2PIUモジュールのM個のPIUポートからODUトラフィックを送信するステップであって、第2遅延の終了は遅延の終了の後である、ステップ、を更に有して良い。
方法の開示の実施形態のうちの任意のものにおいて、方法は、複数のPIUモジュールから第3PIUモジュールのj番目のPIUポートへのODUトラフィックの送信を停止するために、i番目のEthernet構造プレーンにおける第3PIUモジュールのj番目のPIUポートに関連付けられる第3故障状態を受信するステップを更に有して良い。方法は、第1PIUモジュール及び第2PIUモジュールに関連付けられる第2遅延の終了の後に、第1PIUモジュールのi番目のPIUポート以外の第1PIUモジュールのM個のPIUポートから、第1PIUモジュールのi番目のPIUポート、第2PIUモジュールのi番目のPIUポート、及び第3PIUモジュールのj番目のPIUポート以外の複数のPIUモジュールへ、ODUトラフィックを送信するステップも有して良い。方法は、第2遅延の終了の後に、第2PIUモジュールのi番目のPIUポート以外の第2PIUモジュールのM個のPIUポートから、第1PIUモジュールのi番目のPIUポート、第2PIUモジュールのi番目のPIUポート、及び第3PIUモジュールのj番目のPIUポート以外の複数のPIUモジュールへ、ODUトラフィックを送信するステップであって、第2遅延の終了は遅延の終了の後である、ステップも有して良い。
方法の開示の実施形態のうちの任意のものにおいて、方法は、複数のPIUモジュールから第1PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するために故障状態を送信するステップ、及び、複数のPIUモジュールから第2PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するためにi番目のEthernet構造プレーンにおける複数のPIUモジュールのうちの第2PIUモジュールのi番目のPIUポートに関連付けられる第2故障状態を送信するステップ、の前に、第1PIUモジュールのM個のPIUポート及び第2PIUモジュールのM個のPIUポートからのODUトラフィックの送信を停止するステップを更に有して良い。方法は、複数のPIUモジュールから第3PIUモジュールのj番目のPIUポートへのODUトラフィックの送信を停止するために、i番目のEthernet構造プレーンにおける第3PIUモジュールのj番目のPIUポートに関連付けられる第3故障状態を受信するステップも有して良い。方法は、第1PIUモジュール及び第2PIUモジュールに関連付けられる第2遅延の終了の後に、複数のPIUモジュールから第2PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するために、第2故障状態を送信するステップを更に有して良い。方法は、第2遅延の終了の後に、複数のPIUモジュールから第3PIUモジュールのj番目のPIUポートへのODUトラフィックの送信を停止するために、第3故障状態を送信するステップを更に有して良い。
方法の開示の実施形態のうちの任意のものにおいて、方法は、第1PIUモジュール及び第2PIUモジュールに関連付けられる第3遅延の終了の後に、第1PIUモジュールのi番目のPIUポート以外の第1PIUモジュールのM個のPIUポートからODUトラフィックを送信するステップを更に有して良い。方法は、第3遅延の終了の後に、第2PIUモジュールのi番目のPIUポート以外の第2PIUモジュールのM個のPIUポートから、第1PIUモジュールのi番目のPIUポート、第2PIUモジュールのi番目のPIUポート、及び第3PIUモジュールのj番目のPIUポート以外の複数のPIUモジュールへ、ODUトラフィックを送信するステップであって、第3遅延の終了は第2遅延の終了の後である、ステップも有して良い。
方法の開示の実施形態のうちの任意のものにおいて、方法は、故障状態と、複数のPIUモジュールから第2PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するための、i番目のEthernet構造プレーンにおける複数のPIUモジュールのうちの第2PIUモジュールのi番目のPIUポートに関連付けられる第2故障状態と、を受信した後に、複数のPIUモジュールのうちの第3PIUモジュールのM個のPIUポートからのODUトラフィックの送信を停止するステップを更に有して良い。方法は、第3PIUモジュールに関連付けられる遅延の終了の後に、第3PIUモジュールのM個のPIUポートから、第1PIUモジュールのi番目のPIUポート及び第2PIUモジュールのi番目のPIUポート以外の複数のPIUモジュールへ、ODUトラフィックを送信するステップも有して良い。
方法の開示の実施形態のうちの任意のものにおいて、方法は、i番目のEthernet構造プレーンの第2故障状態を検出するステップを更に有して良い。方法は、複数のPIUモジュールから他のEthernet構造プレーンへODUトラフィックを送信するステップも有して良い。
別の態様では、開示のEthernet構造保護のためのOTNスイッチングシステムは、M個のEthernet構造プレーンを有するEthernet構造を含むOTNスイッチを有して良く、M個のEthernet構造プレーンの各々は、M個のEthernetスイッチのうちの対応するEthernetスイッチを有する。OTNスイッチは、第1PIUモジュールを含む複数のPIUモジュールであって、それぞれM個のポートを有する複数のPIUモジュールも有して良い。ここで、複数のPIUモジュールの各々のi番目のPIUポートは、Ethernet構造のi番目のEthernet構造プレーンのi番目のEthernetスイッチに接続され、変数iは、1乃至Mの範囲の値を有し、M個のEthernet構造プレーンのうちのi番目のEthernet構造プレーン、M個のEthernetスイッチのうちのi番目のEthernetスイッチ、及びM個のPIUポートのうちのi番目のPIUポートを示し、Mは1より大きい。第1PIUモジュールは、i番目のEthernet構造プレーンにおける第1PIUモジュールのi番目のPIUポートに関連付けられる故障状態を検出して良い。OTNスイッチは、複数のPIUモジュールから第1PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するために、故障状態を送信して良い。
OTNスイッチングシステムの開示の実施形態のうちの任意のものにおいて、OTNスイッチングシステムは、複数のPIUモジュールのうちの第2PIUモジュールであって、i番目のEthernet構造プレーンにおける第2PIUモジュールのi番目のPIUポートに関連付けられる故障状態を検出し得る第2PIUモジュールを更に有して良い。OTNスイッチは、複数のPIUモジュールから第2PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するために、第2故障状態を送信して良い。
OTNスイッチングシステムの開示の実施形態のうちの任意のものにおいて、OTNスイッチングシステムは、OTNスイッチであって、故障状態と、複数のPIUモジュールから第2PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するための、i番目のEthernet構造プレーンにおける複数のPIUモジュールのうちの第2PIUモジュールのi番目のPIUポートに関連付けられる第2故障状態と、を受信した後に、複数のPIUモジュールのうちの第3PIUモジュールのM個のPIUポートからのODUトラフィックの送信を停止するOTNスイッチを更に有して良い。OTNスイッチは、故障状態及び第2故障状態を受信した後に、複数のPIUモジュールから第1PIUモジュールのi番目のPIUポート及び第2PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止して良い。
OTNスイッチングシステムの開示の実施形態のうちの任意のものにおいて、OTNスイッチングシステムは、OTNスイッチを更に有して良く、複数のPIUモジュールから第1PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するための故障状態の送信、及びi番目のEthernet構造プレーンにおける複数のPIUモジュールのうちの第2PIUモジュールのi番目のPIUポートに関連付けられる第2故障状態の送信の前に、複数のPIUモジュールから第2PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止して良い。OTNスイッチは、故障状態の送信及び第2故障状態の送信の前に、第1PIUモジュールのM個のPIUポート及び第2PIUモジュールのM個のPIUポートからのODUトラフィックの送信を停止して良い。OTNスイッチは、第1PIUモジュール及び第2PIUモジュールに関連付けられる遅延の終了の後に、複数のPIUモジュールから第2PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するために、第2故障状態を送信して良い。
OTNスイッチングシステムの開示の実施形態のうちの任意のものにおいて、OTNスイッチングシステムは、OTNスイッチを更に有して良く、第1PIUモジュール及び第2PIUモジュールに関連付けられる第2遅延の終了の後に、第1PIUモジュールのi番目のPIUポート以外の第1PIUモジュールのM個のPIUポートからODUトラフィックを送信して良い。OTNスイッチは、第2遅延の終了の後に、第2PIUモジュールのi番目のPIUポート以外の第2PIUモジュールのM個のPIUポートからODUトラフィックを送信して良い。ここで、第2遅延の終了の遅延の終了の後である。
OTNスイッチングシステムの開示の実施形態のうちの任意のものにおいて、OTNスイッチングシステムは、複数のPIUモジュールのうちの第3PIUモジュールを更に有して良い。OTNスイッチは、複数のPIUモジュールから第1PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するための故障状態の送信、及び複数のPIUモジュールから第2PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するためのi番目のEthernet構造プレーンにおける複数のPIUモジュールのうちの第2PIUモジュールのi番目のPIUポートに関連付けられる第2故障状態の送信の前に、第1PIUモジュールのM個のPIUポート及び第2PIUモジュールのM個のPIUポートからのODUトラフィックの送信を停止して良い。OTNスイッチは、複数のPIUモジュールから第3PIUモジュールのj番目のPIUポートへのODUトラフィックの送信を停止するために、i番目のEthernet構造プレーンにおける第3PIUモジュールのj番目のPIUポートに関連付けられる第3故障状態を受信して良い。OTNスイッチは、第1PIUモジュール及び第2PIUモジュールに関連付けられる第2遅延の終了の後に、複数のPIUモジュールから第2PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するために、第2故障状態を送信して良い。OTNスイッチは、第2遅延の終了の後に、複数のPIUモジュールから第3PIUモジュールのj番目のPIUポートへのODUトラフィックの送信を停止するために、第3故障状態も送信して良い。
OTNスイッチングシステムの開示の実施形態のうちの任意のものにおいて、OTNスイッチングシステムは、OTNスイッチを更に有して良く、第1PIUモジュール及び第2PIUモジュールに関連付けられる第3遅延の終了の後に、第1PIUモジュールのi番目のPIUポート以外の第1PIUモジュールのM個のPIUポートからODUトラフィックを送信して良い。OTNスイッチは、第3遅延の終了の後に、第2PIUモジュールのi番目のPIUポート以外の第2PIUモジュールのM個のPIUポートから、第1PIUモジュールのi番目のPIUポート、第2PIUモジュールのi番目のPIUポート、及び第3PIUモジュールのj番目のPIUポート以外の複数のPIUモジュールへ、ODUトラフィックを送信して良く、第3遅延の終了は第2遅延の終了の後である。
OTNスイッチングシステムの開示の実施形態のうちの任意のものにおいて、OTNスイッチングシステムは、複数のPIUモジュールのうちの第2PIUモジュールを更に有して良い。OTNスイッチングシステムは、複数のPIUモジュールのうちの第3PIUモジュールも有して良く、故障状態及びi番目のEthernet構造プレーンにおける第2PIUモジュールのi番目のPIUポートに関連付けられる第2故障状態を受信した後に、複数のPIUモジュールから第2PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止して良い。第3PIUモジュールは、故障状態及び第2故障状態を受信した後に、第3PIUモジュールのM個のPIUポートからのODUトラフィックの送信を停止しても良い。第3PIUモジュールは、第3PIUモジュールに関連付けられる遅延の終了の後に、第3PIUモジュールのM個のPIUポートから、第1PIUモジュールのi番目のPIUポート及び第2PIUモジュールのi番目のPIUポート以外の複数のPIUモジュールへ、ODUトラフィックを送信しても良い。
<分離OTNスイッチングシステムにおけるODU経路保護>
プラグインユニバーサル(PIU)モジュールを用いるステップを有する分離(disaggregated)光トランスポートネットワーク(OTN)スイッチングシステムにおけるODU経路保護の方法及びシステムが開示される。各々のPIUモジュールは、スイッチングコアとしてEthernetトランシービング及びEthernet構造へのOTNのための複数のポートを有する。PIUモジュールの各々の中のOTN over Ethernetモジュールは、複数のEthernetスイッチを含み得るEthernet構造を用いて種々のOTN機能を実現させる。イグレスPIUモジュールは、現用ODU経路からEthernet構造を介してEthernetパケットを受信して良い。保護ODU経路を用いる保護切替が現用ODU経路で実行され得ると決定することに応答して、イグレスPIUモジュールは、保護ODU経路からEthernet構造を介してEthernetパケットを受信して良い。
一態様では、開示の光データユニット(optical data unit:ODU)経路保護のための光トランスポートネットワーク(optical transport network:ODU)は、第2OTNスイッチからの現用ODU経路及び保護ODU経路に接続される第1OTNスイッチを有して良い。第1OTNスイッチは、第1イングレスプラグインユニバーサル(plug−in universal)モジュールであって、現用ODU経路を介して第2OTNスイッチからODUを受信でき、第1OTNスイッチに含まれるEthernet構造へEthernetパケットを送信できる、第1イングレスPIUモジュールと、保護ODU経路を介して第2OTNスイッチからODUを受信できる第2イングレスPIUモジュールであって、Ethernet構造に接続される第2イングレスPIUモジュールと、Ethernet構造からEthernetパケットを受信できる第1イグレスPIUモジュールと、を有して良い。第1OTNスイッチは、保護ODU経路を用いる保護切替が現用ODU経路で実行され得ると決定することに応答して、保護ODU経路から第2イングレスPIUモジュールからEthernet構造を介してEthernetパケットを受信するよう、保護切替を実行可能であって良い。
ODU経路保護のためのOTNの開示の実施形態のうちの任意のものにおいて、保護切替が実行され得ることを決定することは、第1OTNスイッチが、現用ODU経路に関連付けられる故障状態、保護切替を実行するためのOTNコマンド、現用ODU経路によるODU送信の中止、現用ODU経路によるODU送信の機能障害、及び保護ODU経路に関連付けられるキープアライブ遅延の終了、を検出可能であって良いことを更に有して良い。
ODU経路保護のためのOTNの開示の実施形態のうちの任意のものにおいて、OTNは、保護切替の前に、第2イングレスPIUモジュールが、Ethernet構造を介してEthernetパケットを第1イグレスPIUモジュールへ送信し得ることを更に有して良い。
ODU経路保護のためのOTNの開示の実施形態のうちの任意のものにおいて、OTNは、保護切替の後に、第1イングレスPIUモジュールが、Ethernet構造を介してEthernetパケットを第1イングレスPIUモジュールへ送信することを停止し得ることを更に有して良い。
ODU経路保護のためのOTNの開示の実施形態のうちの任意のものにおいて、第1イグレスPIUモジュールは、保護切替が実行されるべきであると決定して良い。
ODU経路保護のためのOTNの開示の実施形態のうちの任意のものにおいて、第1OTNスイッチは、ODUを第3OTNスイッチへ送信して良く、第1OTNスイッチにある第2イグレスPIUモジュールであって、現用ODU経路から第1イグレスPIUモジュールからEthernet構造を介してEthernetパケットを受信し、第1イグレスPIUモジュールを監視し、第1イグレスPIUモジュールが故障状態を有し及び保護切替が実行され得ることの指示に応答して、保護ODU経路から第2イングレスPIUモジュールからEthernet構造を介してEthernetパケットを受信するために保護切替を実行できる、第2イグレスPIUモジュールを更に有して良い。
ODU経路保護のためのOTNの開示の実施形態のうちの任意のものにおいて、OTNは、第2OTNスイッチからの第2現用ODU経路及び第2保護ODU経路に接続される第1OTNスイッチと、第2現用ODU経路から第1イングレスPIUモジュールからEthernet構造を介して第2Ethernetパケットを受信できる第2イグレスPIUモジュールと、を更に有して良く、保護切替を実行する第1OTNスイッチは、第2保護ODU経路から第2イングレスPIUモジュールからEthernet構造を介して第2Ethernetパケットを更に受信して良い。
ODU経路保護のためのOTNの開示の実施形態のうちの任意のものにおいて、第1イングレスPIUモジュール及び第2イングレスPIUモジュールのうちの少なくとも一方は、保護切替が実行されるべきであると決定して良い。
別の態様では、ODU経路保護のための開示の方法は、第2OTNスイッチからの現用光データユニット(optical data unit:ODU)経路に接続される第1光トランスポートネットワーク(optical transport network:OTN)スイッチにおいて、第1イングレスプラグインユニバーサル(plug−in universal:PIU)モジュールにより、現用ODU経路を介して第2OTNスイッチからODUを受信するステップと、第1OTNスイッチに含まれるEthernet構造へEthernetパケットを送信するステップと、を有して良い。方法は、第2イングレスPIUモジュールにより、保護ODU経路を介して第2OTNスイッチからODUを受信するステップであって、第2イングレスPIUモジュールはEthernet構造に接続される、ステップも有して良い。方法は、第1イグレスPIUモジュールにより、Ethernet構造からEthernetパケットを受信するステップを更に有して良い。方法は、保護ODU経路を用いる保護切替が現用ODU経路で実行され得ると決定することに応答して、第1OTNスイッチについて保護切替を実行するステップであって、保護ODU経路から第2イングレスPIUモジュールからEthernet構造を介してEthernetパケットを受信するステップを含む、ステップも有して良い。
方法の開示の実施形態のうちの任意のものにおいて、保護切替が実行され得ることを決定することは、現用ODU経路に関連付けられる故障状態、保護切替を実行するためのOTNコマンド、現用ODU経路によるODU送信の中止、現用ODU経路によるODU送信の機能障害、及び保護ODU経路に関連付けられるキープアライブ遅延の終了、を検出するステップを更に有して良い。
方法の開示の実施形態のうちの任意のものにおいて、方法は、保護切替の前に、第2イングレスPIUモジュールにより、Ethernet構造を介してEthernetパケットを第1イグレスPIUモジュールへ送信するステップを更に有して良い。
方法の開示の実施形態のうちの任意のものにおいて、方法は、保護切替の後に、第1イングレスPIUモジュールにより、Ethernet構造を介してEthernetパケットを第1イグレスPIUモジュールへ送信することを停止するステップを更に有して良い。
方法の開示の実施形態のうちの任意のものにおいて、第1イグレスPIUモジュールは、保護切替が実行されて良いことを決定して良い。
方法の開示の実施形態のうちの任意のものにおいて、方法は、第1OTNスイッチにより、第3OTNスイッチへODUを送信するステップを更に有して良い。方法は、第1OTNスイッチにある第2イグレスPIUモジュールにより、現用ODU経路からEthernetパケットを受信するステップと、第1イグレスPIUモジュールを監視するステップと、を更に有して良い。方法は、第1イグレスPIUモジュールが故障状態を有し及び保護切替が実行され得ることの指示に応答して、保護切替を実行するステップであって、保護ODU経路から第2イングレスPIUモジュールからEthernet構造を介してEthernetパケットを受信するステップを含む、ステップを更に有して良い。
方法の開示の実施形態のうちの任意のものにおいて、第1OTNスイッチは、第2OTNスイッチからの第2現用ODU経路及び第2保護ODU経路に接続され、方法は、第2イグレスPIUモジュールにより、第2現用ODU経路から第1イングレスPIUモジュールからEthernet構造を介して第2Ethernetパケットを受信するステップを更に有して良い。方法は、第1OTNスイッチについて保護切替を実行するステップであって、第2保護ODU経路から第2イングレスPIUモジュールからEthernet構造を介して第2Ethernetパケットを受信するステップを含む、ステップを更に有して良い。
方法の開示の実施形態のうちの任意のものにおいて、第1イングレスPIUモジュール及び第2イングレスPIUモジュールのうちの少なくとも一方は、保護切替が実行されて良いことを決定して良い。
<分離OTNスイッチングシステムにおける仮想回線カード>
スイッチングコアとしてEthernetトランシービング及びEthernet構造へのOTNのためのプラグインユニバーサル(PIU)モジュールを用いるステップを有する光トランスポートネットワーク(OTN)スイッチングシステムの方法及びシステムが開示される。PIUモジュールの各々の中のOTN over Ethernetモジュールは、複数のEthernetスイッチを含み得るEthernet構造を用いて種々のOTN機能を実現させる。仮想回線カードは、Ethernetスイッチの各々の対応するEthernetスイッチポートの各々のk番目のEthernetスイッチサブポートの論理アグリゲーションを有して良い。仮想スイッチ構造は、OTNスイッチングシステムのための複数の仮想回線カードを有して良い。仮想回線カードの各々は、個々のPIUモジュールに対応して良い仮想アドレスに関連付けられて良い。仮想アドレスは、個々のPIUモジュールに関連付けられる媒体アクセス制御アドレスを有して良い。
一態様では、開示の光トランスポートネットワーク(optical transport networking:OTN)スイッチングシステムは、Ethernet構造であって、プラグインユニバーサル(plug−in universal:PIU)モジュール及びPIUモジュールに関連付けられる仮想スイッチ構造を用いて光データユニットをEthernet構造を通じてスイッチングする、Ethernet構造を有して良い。Ethernet構造は、M個のEthernetスイッチを有して良い。M個のEthernetスイッチの各々はN個のEthernetスイッチポートを有し、N個のEthernetスイッチポートの各々はP個のEthernetスイッチサブポートを有し、1乃至Mの範囲の値を有する変数iは、M個のEthernetスイッチのうちの1つに対応するi番目のEthernetスイッチを示し、1乃至Nの範囲の値を有する変数jは、N個のEthernetスイッチポートのうちの1つに対応するj番目のEthernetスイッチポートを示し、1乃至Pの範囲の値を有する変数kは、P個のEthernetスイッチサブポートのうちの1つに対応するk番目のEthernetスイッチサブポートを示し、N、M、Pは1より大きい。OTNスイッチングシステムは、M個のPIUポートを有するPIUモジュールも有して良い。ここで、M個のPIUポートのうちのi番目のPIUポートは、i番目のEthernetスイッチに対応する。OTNスイッチングシステムは、PIUモジュール及びPIUモジュールに関連付けられる仮想スイッチ構造を用いてEthernet構造を通じて光データユニットをスイッチングして良い。仮想スイッチ構造は、仮想回線カードを有して良い。仮想回線カードは、M個のEthernetスイッチの各々の対応するEthernetスイッチポートの各々のk番目のEthernetスイッチサブポートの論理アグリゲーションを有して良い。仮想回線カードは、仮想スイッチ構造の中で仮想回線カードにユニークな仮想アドレスに関連付けられて良い。PIUモジュールの各々は、媒体アクセス制御(MAC)アドレスに関連付けられ、MACアドレスの少なくとも一部は、PIUモジュールに接続される仮想回線カードの仮想アドレスを有して良い。仮想回線カードは、M個のEthernetスイッチの各々の対応するEthernetスイッチポートの各々のk番目のEthernetスイッチポートで開始する複数の連続するEthernetスイッチサブポートの論理アグリゲーションを有して良い。
別の態様では、光トランスポートネットワークスイッチングのための開示のEthernet構造は、M個のEthernetスイッチを有して良い。M個のEthernetスイッチの各々はN個のEthernetスイッチポートを有し、N個のEthernetスイッチポートの各々はP個のEthernetスイッチサブポートを有し、1乃至Mの範囲の値を有する変数iは、M個のEthernetスイッチのうちの1つに対応するi番目のEthernetスイッチを示し、1乃至Nの範囲の値を有する変数jは、N個のEthernetスイッチポートのうちの1つに対応するj番目のEthernetスイッチポートを示し、1乃至Pの範囲の値を有する変数kは、P個のEthernetスイッチサブポートのうちの1つに対応するk番目のEthernetスイッチサブポートを示し、N、M、Pは1より大きい。Ethernet構造は、第1PIUモジュールを含む複数のPIUモジュールであって、それぞれM個のPIUポートを有する、複数のPIUモジュールに排他的に結合されて良く、第1PIUモジュールのi番目のPIUポートはi番目のEthernetスイッチに対応する。Ethernet構造は、PIUモジュール及びPIUモジュールに関連付けられる仮想スイッチ構造を用いて光データユニットをスイッチングするために使用されて良い。仮想スイッチ構造は、仮想回線カードを有して良い。仮想回線カードは、M個のEthernetスイッチのうちの各々の対応するEthernetスイッチポートの各々のk番目のEthernetスイッチサブポートの論理アグリゲーションを有して良い。仮想回線カードは、仮想スイッチ構造の中で仮想回線カードにユニークな仮想アドレスに関連付けられて良い。PIUモジュールの各々は、MACアドレスに関連付けられ、MACアドレスの少なくとも一部は、PIUモジュールに接続される仮想回線カードの仮想アドレスを有して良い。仮想回線カードは、M個のEthernetスイッチの各々の対応するEthernetスイッチポートの各々のk番目のEthernetスイッチポートで開始する複数の連続するEthernetスイッチサブポートの論理アグリゲーションを有して良い。
更なる態様では、光トランスポートネットワークスイッチングのためにEthernet構造を接続する開示の方法は、M個のEthernetスイッチを含むEthernet構造において、M個のEthernetスイッチの各々はN個のEthernetスイッチポートを有し、N個のEthernetスイッチポートの各々はP個のEthernetスイッチサブポートを有し、M個のEthernetスイッチのうちの1つに対応するi番目のEthernetスイッチを示すために1乃至Mの範囲の値を有する変数iを割り当てるステップであって、Mは1より大きい、ステップを有して良い。方法は、N個のEthernetスイッチポートのうちの1つに対応するj番目のEthernetスイッチポートを示すために、1乃至Nの範囲の値を有する変数jを割り当てるステップであって、Nは1より大きい、ステップを更に有して良い。方法は、P個のEthernetスイッチサブポートのうちの1つに対応するk番目のEthernetスイッチサブポートを示すために、1乃至Pの範囲の値を有する変数kを割り当てるステップであって、Pは1より大きい、ステップを更に有して良い。方法は、Ethernet構造を第1PIUモジュールを有する複数のPIUモジュールに排他的に接続するステップであって、各PIUモジュールは、M個のPIUポートを有する、ステップと、PIUモジュール及びPIUモジュールに関連付けられる仮想スイッチ構造を用いてEthernet構造を通じて光データユニットをスイッチングするステップと、を更に有して良い。仮想スイッチ構造は、仮想回線カードを有して良い。方法は、M個のEthernetスイッチの各々の対応するEthernetスイッチポートの各々のk番目のEthernetスイッチサブポートの論理アグリゲーションを有する仮想回線カードを定めるステップと、仮想回線カードを用いて光データユニットをスイッチングするステップと、を更に有する。方法は、仮想回線カードを、仮想スイッチ構造の中で仮想回線カードにユニークな仮想アドレスに関連付けるステップ、を更に有して良い。方法は、第1PIUモジュールをMACアドレスに関連付けるステップであって、MACアドレスの少なくとも一部は、第1PIUモジュールに接続される仮想回線カードの仮想アドレスを有して良い、ステップを更に有して良い。方法は、M個のEthernetスイッチの各々の対応するEthernetスイッチポートの各々のk番目のEthernetスイッチポートで開始する複数の連続するEthernetスイッチサブポートの論理アグリゲーションを有する仮想回線カードを定めるステップと、仮想回線カードを用いて光データユニットをスイッチングするステップと、を更に有して良い。
本発明並びにその特徴及び利点のより完全な理解のため、添付の図と共に以下の説明を参照する。
光トランスポートネットワーク(OTN)の一実施形態の選択された要素のブロック図である。 分離OTNスイッチングシステムの一実施形態の選択された要素のブロック図である。 OTNスイッチネットワーク要素の一実施形態の選択された要素のブロック図である。 OTNスイッチネットワーク要素の一実施形態の選択された要素のブロック図である。 PIU筐体の一実施形態の選択された要素のブロック図である。 PIUモジュールの実施形態の選択された要素のブロック図である。 PIUモジュールの実施形態の選択された要素のブロック図である。 PIUモジュールの実施形態の選択された要素のブロック図である。 ローカルOTNスイッチング機能の一実施形態の選択された要素のブロック図である。 ローカルOTNスイッチング機能の一実施形態の選択された要素のブロック図である。 Ethernet構造の一実施形態による光データユニット(ODU)転送の一例のブロック図である。 OTNスイッチングシステムにおけるEthernet構造の一実施形態による巡回歩行シーケンスを用いるODU転送の一例のブロック図である。 単一のPIUモジュールの一実施形態を通じる複数のODU切替接続のブロック図である。 Ethernetパケットとして光信号をスイッチングする方法の一実施形態の選択された要素のフローチャートである。 Ethernetスイッチ構造の中の仮想スロットの一実施形態のブロック図である。 OTNスイッチングシステムの一実施形態のODU経路保護の一例のブロック図である。 OTNスイッチングシステムの一実施形態のODU経路保護の連結の一例のブロック図である。 OTNスイッチングシステムの例示的な一実施形態のブロック図である。 OTNスイッチングシステムの一実施形態のEthernet構造保護の一例のブロック図である。 OTNスイッチングシステムのEthernet構造保護のための方法の一実施形態の選択された要素のフローチャートである。 OTNスイッチングシステムにおけるODU経路保護のための方法の一実施形態の選択された要素のフローチャートである。 プラグインユニバーサルモジュールとEthernet推知との間の相互接続の一実施形態の選択された要素のブロック図である。 高密度コネクタを有する仮想スイッチ構造の一実施形態のブロック図である。 光トランスポートネットワークスイッチングのためにEthernet構造を接続する方法の一実施形態である。
以下の説明では、開示の主題の議論を容易にするために例として詳細事項が説明される。しかしながら、当業者には、開示の実施形態が例示であること及び全ての可能な実施形態を網羅するものではないことが明らかである。
本開示を通じて、ハイフンで結んだ形式の参照符号は、1つの要素の特定のインスタンスを表し、ハイフンを有しない形式の参照符号は、要素を一般的又は集合的に表す。したがって、例として(図示しない)、装置12−1は、装置クラスのインスタンスを表し、装置12として集合的に言及されて良く、それらのうちの任意のものが装置12として一般的に言及されて良い。図及び説明の中で、同様の記号は同様の要素を表す。
図を参照すると、図1は、光通信システムを表し得る光トランスポートネットワーク101の例示的な実施形態を示す。光トランスポートネットワーク101は、光トランスポートネットワーク101のコンポーネントにより通信される1又は複数の光信号を運ぶよう構成される1又は複数の光ファイバ106を有して良い。光トランスポートネットワーク101のネットワーク要素は、ファイバ106により互いに結合され、1又は複数の送信機102、1又は複数のマルチプレクサ(MUX)104、1又は複数の光増幅器108、1又は複数の光アッド/ドロップマルチプレクサ(optical add/drop multiplexer:OADM)110、1又は複数のデマルチプレクサ(DEMUX)105、及び1又は複数の受信機112を有して良い。
光トランスポートネットワーク101は、端末ノードを有するポイントツーポイント型光ネットワーク、リング型光ネットワーク、メッシュ型光ネットワーク、又は任意の他の適切な光ネットワーク若しくは光ネットワークの組合せを有して良い。光ファイバ106は、非常に低損失で長距離に渡り信号を伝達可能なガラスの細い紐を有して良い。光ファイバ106は、光伝送のために種々の異なるファイバから選択される適切な種類のファイバを有して良い。
光トランスポートネットワーク101は、光ファイバ106を介して光信号を送信するよう構成される装置を有して良い。情報は、波長に関する情報を符号化するために1又は複数の光の波長の変調により、光トランスポートネットワーク101を通じて送信及び受信されて良い。光ネットワークでは、光の波長は、チャネルとも称される。各チャネルは、光トランスポートネットワーク101を通じて特定量の情報を伝達するよう構成されて良い。
光トランスポートネットワーク101の情報容量及び伝送能力を増大するために、複数のチャネルで送信される複数の信号は、単一の広帯域光信号に結合されて良い。複数のチャネルで情報を通信するプロセスは、光学的にWDM(wavelength division multiplexing)として言及される。CWDM(Coarse wavelength division multiplexing)は、通常20nmより大きく16個の波長より少ない、少ないチャネル数を有する広く間隔の開けられた波長の、1本のファイバへの多重化を表す。また、DWDM(dense wavelength division multiplexing)は、通常0.8nmより狭い間隔で40個より多い、多くのチャネル数を有する密な間隔の波長の、1本のファイバへの多重化を表す。WDM又は他の複数波長多重送信技術は、光ファイバ当たりの集約帯域幅を増大するために、光ネットワークで用いられる。WDM無しでは、光ネットワークにおける帯域幅は、たった1波長のビットレートに制限され得る。より大きな帯域幅により、光ネットワークは、より多くの情報を送信できる。光トランスポートネットワーク101は、WDM又は特定の他の適切な多チャネル多重化技術を用いて異なるチャネルを送信し、多チャネル信号を増幅するよう構成されても良い。
光トランスポートネットワーク101は、特定の波長又はチャネルで、光トランスポートネットワーク101を通じて光信号を送信するよう構成される1又は複数の光送信機(Tx)102を有して良い。送信機102は、電気信号を光信号に変換し該光信号を送信するよう構成されるシステム、機器、又は装置を有しても良い。例えば、送信機102は、それぞれ、レーザと、電気信号を受信し該電気信号に含まれる情報を特定の波長でレーザにより生成される光のビームに変調し光トランスポートネットワークを通じて信号を伝達するビームを送信する変調器と、を有して良い。
マルチプレクサ104は、送信機102に結合されても良く、送信機102により、例えばそれぞれ個々の波長で送信される信号を、WDM信号に結合するよう構成されるシステム、機器又は装置であって良い。
光増幅器108は、光トランスポートネットワーク101の中の多チャネル信号を増幅して良い。光増幅器108は、特定長のファイバ106の前又は後に置かれて良い。光増幅器108は、光信号を増幅するよう構成されるシステム、機器又は装置を有して良い。例えば、光増幅器108は、光信号を増幅する光リピータを有して良い。この増幅は、光−電気(O−E)又は電気−光(E−O)変換により実行されて良い。幾つかの実施形態では、光増幅器108は、希土類元素をドープされた光ファイバを有し、ドープ光ファイバ増幅素子を形成して良い。信号がファイバを通過するとき、外部エネルギがポンプ信号の形式で印可され、光ファイバのドープされた部分の原子を励起し、光信号の強度を増大する。一例として、光増幅器108は、エルビウムドープファイバ増幅器(erbium−doped fiber amplifier:EDFA)を有して良い。
OADM110は、ファイバ106を介して光トランスポートネットワーク101に結合されて良い。OADM110は、ファイバ106から光信号を(つまり、個々の波長で)アッド又はドロップするよう構成されるシステム、機器又は装置を有しても良いアッド/ドロップモジュールを有して良い。OADM110を通過した後に、光信号は、ファイバ106に沿って宛先へと直接進んで良く、或いは、信号は、宛先に達する前に、1又は複数の追加OADM110及び/又は光増幅器108を通過して良い。
光トランスポートネットワーク101の特定の実施形態では、OADM110は、WDM信号の個々の又は複数の波長をアッド又はドロップできるROADM(reconfigurable OADM)を表して良い。個々の又は複数の波長は、例えば、ROADMに含まれ得るWSS(wavelength selective switch)(図示しない)を用いて光ドメインの中でアッド又はドロップされて良い。
図1に示すように、光トランスポートネットワーク101は、ネットワーク101の1又は複数の宛先に、1又は複数のデマルチプレクサ105を有して良い。デマルチプレクサ105は、単一の合成WDM信号をそれぞれの波長において個々のチャネルに分離することによりデマルチプレクサとして動作するシステム、機器又は装置を有して良い。例えば、光トランスポートネットワーク101は、40チャネルDWDM信号を伝送して良い。デマルチプレクサ105は、40個の異なるチャネルに従って、信号、40チャネルDWDM信号を40個の別個の信号に分割して良い。
図1で、光トランスポートネットワーク101は、デマルチプレクサ105に結合される受信機112も有して良い。各受信機112は、特定の波長又はチャネルで送信される光信号を受信し、該光信号をそれらが含む情報(つまり、データ)を得る(例えば、復調する)ために処理するよう構成されて良い。したがって、ネットワーク101は、ネットワークの各チャネル毎に少なくとも1つの受信機112を有して良い。
図1の光トランスポートネットワーク101のような光ネットワークは、光ファイバを介して光信号の中で情報を伝達するために、変調技術を用いて良い。このような変調方式は、変調技術の他の例の中でも特に、PSK(phase−shift keying)、FSK(frequency−shift keying)、ASK(amplitude−shift keying)、及びQAM(quadrature amplitude modulation)を有して良い。PSKでは、光信号により伝達される情報は、搬送波又は単にキャリアとしても知られる参照信号の位相を変調することにより変換されて良い。情報は、2レベル又はBPSK(binary phase−shift keying)、4レベル又はQPSK(quadrature phase−shift keying)、M−PSK(multi−level phase−shift keying)及びDPSK(differential phase−shift keying)を用いて信号自体の位相を変調することにより搬送されて良い。QAMでは、光信号により運ばれる情報は、搬送波の振幅と位相の両方を変調することにより伝達されて良い。PSKは、QAMの一部であると考えられる。ここで、搬送波の振幅は、一定に維持される。さらに、PDM(polarization division multiplexing)技術は、情報送信のために、より大きなビットレートを達成できる。PDM伝送は、チャネルに関連する光信号の種々の偏光成分に情報を変調することを含む。光信号の偏波は、通常、光信号の振動方向を表し得る。用語「偏波」は、通常、光信号の伝搬方向に垂直な、空間内のある点における光信号の電場ベクトルの先端により追跡される経路を表し得る。
図1の光トランスポートネットワーク101のような光ネットワークでは、管理プレーン、制御プレーン、及びトランスポートプレーン(物理層と呼ばれることが多い)を言及することが通常である。中央管理ホスト(図示しない)は、管理プレーンに存在して良く、制御プレーンのコンポーネントを構成し管理して良い。管理プレーンは、トランスポートプレーン及び制御プレーンのエンティティ(例えば、ネットワーク要素)全てに渡る最終的な制御を有する。一例として、管理プレーンは、1又は複数の処理リソース、データ記憶コンポーネント、等を含む中央処理センタ(例えば、中央管理ホスト)を有して良い。管理プレーンは、制御プレーンの要素と電気的に通信して良く、トランスポートプレーンの1又は複数のネットワーク要素と電気的に通信して良い。管理プレーンは、システム全体の管理機能を実行し、ネットワーク要素、制御プレーン及びトランスポートプレーンの間の調整を提供して良い。例として、管理プレーンは、要素の観点から1又は複数のネットワーク要素を取り扱うEMS(element management system)、ネットワークの観点から多くの装置を取り扱うNMS(network management system)、及びネットワーク全体の動作を取り扱うOSS(operational support system)を有して良い。
本開示の範囲から逸脱することなく、光トランスポートネットワーク101に対し変更、追加又は省略が行われて良い。例えば、光トランスポートネットワーク101は、図1に示すものより多くの又は少ない要素を有して良い。また、上述のように、ポイントツーポイントネットワークとして図示されたが、光トランスポートネットワーク101は、リング、メッシュ、又は階層構造のネットワークトポロジのような光信号を送信する任意の適切なネットワークトポロジを有して良い。
上述のように、光ネットワークを介して送信され得る情報量は、情報と共に符号化され1つの信号に多重化された光チャネルの数と共に変化して良い。したがって、WDM信号を用いる光ファイバは、単一チャネルにより情報を伝達する光ファイバよりも多くの情報を伝達できる。伝達されるチャネル数及び偏波成分の数に加えて、どれだけ多くの情報が光ネットワークを介して送信できるかに影響する別の要因は、送信のビットレートであり得る。ビットレートが高いほど、送信される情報容量は大きい。高いビットレートの達成は、広帯域電気ドライバ技術、デジタル信号プロセッサ技術の可用性により制限され、光トランスポートネットワーク101による送信のために要求されるOSNRを増大し得る。
図1に示すように、光トランスポートネットワーク101は、種々の固有プロトコルの中で生じ得る及びアドレッシング、管理、及び品質保証目的でパケット化したオーバヘッドを追加し得る既存のデータフレームをカプセル化するために、デジタルラッパ技術を用いて良い。結果として生じる光信号は、光データユニット(optical data unit:ODU)の形式で、次に、光トランスポートネットワーク101により個々の光波長を用いて伝送されて良い。パケット化されたオーバヘッドは、種々の異なるプロトコルのうちの任意のものを用いて伝送されている光信号を監視し及び制御するために使用されて良い。特定の実施形態では、光トランスポートネットワーク101の動作は、特にITU−T G.709「Interfaces for the Optical Transport Network」及びITU−T G.872「Architecture of the Optical Transport Network」のような、ITU(International Telecommunications Union)により発布された光トランスポートネットワーキング(optical transport networking:OTN)標準又は勧告に従い実行される。OTNの中の光波長は、搬送波波長効率を最適化するために、時分割多重(time−division multiplexing:TDM)の階層的実装に依存して良い。
OTNにおける光信号の階層的TDM構成の結果として、OTNスイッチングは、光トランスポートネットワーク101に沿って異なるサブ波長ビットレートで実行されて良い。本願明細書で使用されるとき、OTNスイッチングは、スイッチングの最小単位であるODUによる異なるビットレートのODU経路のスイッチングを表す。これに対して、IPルータによるようなIP(Internet protocol)スイッチングは、個々のIPパケットがスイッチングの最小単位である、ネットワーク信号のスイッチングを表す。光トランスポートネットワーク101におけるようなOTNスイッチングでは、ODUは、ネットワークイングレスからネットワークイグレスまでのOTNスイッチの外側の光ドメインの中にある。OTNスイッチの内側では、ODUは、電気ドメインオブジェクトとしてアクセスされて良く、OTNスイッチングは、電気的スイッチング技術を含み得る。
留意すべきことに、OTNスイッチングは概してDWDMドメインの中で行われるが、ROADM及びDWDMは、正式にはレイヤ0技術として参照されて良い(OSI(Open Systems Interconnection)基本参照モデルでは、OSI参照モデルとしても参照される)。これに対して、OTNは、OSI参照モデルの中でレイヤ1技術として記述されて良い。これは、光波長ドメイン(DWDM)と独立して動作して良い。例えば、OTNスイッチは、理論的には、未使用光ファイバ、(銅のような)ガルバニック導体を介して、又は(ミリメートルスケールの波、又は無線周波数のような)無線媒体を介して、動作して良い。
通常、用語「分散された」は、ネットワークにより相互接続される複数のノード又はネットワーク要素(NE)、及び協調ノード(又はNE)セットを参照して良い。本願明細書で使用されるとき、用語「離散(disaggregated)」は、集約された物理構造と比べるとき、物理的意味で離散したサブコンポーネントのセットに更に再編成される分散ネットワークの中のNEを参照して良く、一方で、論理的意味では統合NEの機能を維持している。幾つかの実施形態では、集合(aggregated)物理構造とは対照的に、分離(disaggregated)サブコンポーネントは、公開アクセス可能であって良い。
単一の中央位置にある単一の装置であるOTNスイッチの中央集中型の埋め込み型特性とは対照的に、分離OTNスイッチングシステムが本願明細書に開示される。本願明細書に開示の分離OTNスイッチングシステムは、コアスイッチング機能をネットワークインタフェース機能と分離可能にする。本願明細書に開示の分離OTNスイッチングシステムは、内部Ethernetスイッチングコア(本願明細書では「Ethernet構造(fabric)」としても参照される)に依存することにより、OTNスイッチングを可能にできる。本願明細書に開示の分離OTNスイッチングシステムは、したがって、特定位置又は異なる遠隔地における特定スイッチング機能の迅速なカスタマイズされた構成を可能にできる。本願明細書に開示の分離OTNスイッチングシステムは、OTNスイッチを使用することによるよりも、低価格のOTNスイッチングを可能にできる。本願明細書に開示の分離OTNスイッチングシステムは、利用されるEthernet構造が所望の能力に拡張可能なデータセンタスイッチングシステムのような外部ネットワーク基盤であって良いので、OTNスイッチに固有の固定されたスイッチング能力と比べて遙かに大きな拡張性を可能にできる。本願明細書に開示の分離OTNスイッチングシステムは、種々のOTN信号及びEthernet信号の間のインターフェース及びトランシーバ機能を提供する複数のプラグインユニバーサル(plug−in universal:PIU)モジュールを用いて実装され得る。本願明細書に開示の分離OTNスイッチングシステムは、多数のPIUモジュールにより装着されるインタフェーススロットを有するPIUブレード筐体を用いて更に実装されて良い。多数のPIUモジュールは、PIUブレード筐体を用いて相互接続され、電力供給され、及び制御される。本願明細書に開示のPIUモジュールのうちの特定のものは、コアEthernet構造を使用せずに、2以上のPIUモジュールをループバック構成で相互接続することにより、ローカライズされた直接OTNスイッチング機能を可能にできる。
図2を参照すると分離OTNスイッチングシステム200の一実施形態の選択された要素の概略ブロック図が示される。図2の分離OTNスイッチングシステム200は、光トランスポートネットワーク101(図1を参照)に関連付けられる光信号の外部スイッチングのために実装されて良く、説明目的のための概略図であり、縮尺通り又は透視図として描かれない。光信号の外部スイッチングは、スイッチングの最小単位であるODUを有する異なるビットレートのODU経路を切り替えることを表す。ここで、異なるビットレートは、サブ波長ビットレートであって良く、ODUは、ネットワークイングレスからネットワークイグレスへOTNスイッチ230の外部の光ドメイン内に残っている。分離OTNスイッチングシステム200の内側では、ODUは、電気ドメインオブジェクトとしてアクセスされて良く、OTNスイッチングは、電気的スイッチング技術を含み得る。
図2に示すように、分離OTNスイッチングシステム200は、OTNスイッチ230として機能するよう構成される。この中で、PIUモジュール204に接続される光データユニット(ODU)ストリームヘッダ232を有する光信号は、相互接続されPIUモジュール204の間で論理的にスイッチングされて良い。分離OTNスイッチングシステム200のコアにはEthernet構造220がある。PIUモジュール204は、通信機として機能して良く、OTN入力及び出力210(円筒形ポートとして示される)は、それぞれODUヘッダ224を有するODUから、それぞれEthernetスイッチングヘッダ222を有するEthernetパケットに、それぞれ変換され、したがって、1又は複数のEthernetスイッチ212によりスイッチング可能である。Ethernet構造220は、任意の種類のEthernetスイッチングアーキテクチャ又はEthernetスイッチングドメインの中でEthernetスイッチ212を利用して良い。種々の実施形態では、Ethernet構造220は、階層型スパイン−リーフアーキテクチャとして実装されて良い。これは、多くのデータセンタラックドメインにおいて一般的になってきている。したがって、各ラックは、比較的低いデータスループット能力で動作する、所謂、トップオブラック(top−of−rack:TOR)リーフスイッチを有して良い。一方で、TORリーフスイッチは、比較的高いデータスループット能力で動作するスパインスイッチを用いて相互接続される。このように、Ethernet構造220は、数十テラバイト又はそれ以上ものデータスループット能力を有し得る超高速スループット(very large throughput:VHT)Ethernet構造220へのアグリゲーションを含む、任意の所与のネットワークスイッチングアプリケーションのために、異なる数のTORリーフスイッチ及びスパインスイッチを用いて階層的に実装されて良い。
PIUモジュール204とEthernet構造220との間の相互接続は、他の可能な種類の銅線に基づくポートの中でも特に、1GB Ethernetのための1000BASE−CX、1000BASE−KX、1000BASE−T及び1000BASE−TXのような、10GB Ethernetのための10GBASE−CX4、小型プラグ可能+(SFP+)、10GBASE−T及び10GBASE−KX4のような、及び100GB Ethernetのための100GBASE−CR10、100GBASE−CR4、100GBASE−KR4及び100GBASE−KP4のような、銅線接続であって良い。幾つかの実施形態では、PIUモジュール204とEthernet構造220との間の相互接続は、光Ethernetポートのための種々のEthernet標準に従いサポートされる光ファイバEthernet接続であって良い。例えば、Ethernet構造との100GB Ethernet相互接続では、相互接続は、100GBASE−SR10、100GBASE−SR4、100GBASE−LR4、100GBASE−えR4、100GBASE−CWDM4、100GBASE−PSM4、100GBASE−ZR、100GBASE−KR4、及び100GBASE−KP4のうちの任意の1又は複数であって良い。例えば、Ethernet構造220との最大400GB Ethernet相互接続では、相互接続は、400GBASE−SR16、400GBASE−DR4、400GBASE−FR8、及び400GBASE−LR8のうちの任意の1又は複数であって良い。さらに、特定の実施形態では、Ethernet構造220との相互接続は、Ethernet構造220に渡る異なる送信レートを混合するために、FlexEthernet(FlexE)を利用して良い。
特に、PIUモジュール204の中で使用されるポートの形状因子は、QFSP(quad small form−factor pluggable)、CFP、CFP2(C form−factor pluggable)、及びSFP+である。例えば、OTN回線側では、例えば100ギガビット(100GB)又は200ギガビット(200GB)コヒーレントOTN接続のために、アナログコヒーレント光(analog coherent optics:ACO)をサポートするCFP2ポートがPIUモジュール204の中で使用されて良い。
分離OTNスイッチングシステム200の中の各PIUモジュール204は、それぞれOTN over Ethernet(OTNoE)モジュール206を更に備えて良い。OTNoEモジュール206は、特定目的のためにカスタマイズされるASIC(application specific integrated circuit)、ASSP(application specific standard product)、又はFPGA(field−programmable gate array)であって良い。PIUモジュール204の中のOTNoEモジュール206は、OTNスイッチ230としての分離OTNスイッチングシステム200の全体的動作を可能にするための特定機能を提供して良い。OTNoEモジュール206は、分離OTNスイッチングシステム200の文脈で、Ethernet構造220による種々のOTN機能を実装可能にされて良い。OTNoEモジュール206は、Ethernet構造220を用いてOTN経路冗長及び経路保護切替のための機能をサポートし又は可能にして良い。OTNoEモジュール206は、OTN経路保護ドメインの連結のための機能をサポートし又は可能にして良い。OTNoEモジュール206は、OTNネットワーク経路及びネットワーク経路に関連付けられるODUの1:N Ethernet構造接続を介する配信のための機能をサポートし又は可能にして良い。ここで、N個の現用Ethernetスイッチ212のうちの任意の1個が障害を有する又はオフライン状態を生じ得る保守動作の実行を示す場合に、1個のEthernetスイッチ212は、N個の他の現用Ethernetスイッチ212を保護するために使用される。さらに、1:N及び0:N保護方式の両者がサポートされて良い。OTNアプリケーション及びEthernet構造220の両方のための超高速スイッチングの特性、並びに外部メモリをOTNoEモジュール206と共に使用するコスト及び複雑性が与えられると、待ち時間遅延変動がEthernetスイッチ212の間で経験され得る。Ethernet構造220による待ち時間遅延変動(又はジッタ)は、保護方式が使用されるときODU経路配信方式及び特定Ethernet構造220を選択するときに考慮すべき重要な因子であって良い。OTNoEモジュール206は、ジッタがEthernet構造220に渡り生じるときでも、Ethernet構造220に渡るODU経路及びデータ完全性を保証する機能をサポートし又は可能にして良い。OTNoEモジュール206は、より上位のODUのデータスループットがEthernet構造220の中の基本のEthernetポートよりも大きいときでも、Ethernet構造220によるより上位のODUをスイッチングする機能をサポートし又は可能にして良い。OTNoEモジュール206は、Ethernet構造220へのより効率的な接続を提供するためにOTNトラフィックを圧縮し、一方で、OTNスイッチングのためにEthernet構造220を使用できるように、Ethernet構造220を介して生じ得るジッタ及びBER(bit error rate)損失を補償する機能をサポートし又は可能して良い。
最後に、図2には、PIUブレード筐体202、PIUモジュール204及びEthernet構造220の動作を調整するOTNスイッチネットワーク要素制御部214(図3、4も参照)が示される。OTNスイッチネットワーク要素制御部214は、ソフトウェア定義ネットワーキング(software−defined networking:SDN)制御部、マイクロコントローラユニット(micro−controller unit:MCU)、仮想マイクロコントローラユニット(virtual micro−controller unit:vMCU)、又は種々の制御部であって良い。具体的には、OTNスイッチネットワーク要素制御部214における機能は、OTNスイッチング動作のためにPIU筐体202及びEthernet構造220と通信するために使用されて良い。OTNスイッチネットワーク要素制御部214は、したがって、OTNスイッチ230として分離OTNスイッチングシステム200の動作を可能にするよう、ソフトウェアコマンドを用いて、スイッチング経路及びスイッチング構成を構成して良い。
図3を参照すると、OTNスイッチネットワーク要素制御部300の一実施形態の選択された要素のブロック図が示される。図3のOTNスイッチネットワーク要素制御部300は、分離OTNスイッチングシステム200(図2を参照)を制御するために実装されて良く、説明の目的のための概略図である。
図3で、OTNスイッチネットワーク要素制御部300は、本願明細書に記載のような分離OTNスイッチングシステム200を実装する物理及び論理コンポーネントを含むコンピュータシステムとして表され、したがって、プロセッサ301、メモリ310、及びネットワークインタフェース322を有して良い。プロセッサ301は、1又は複数の個々の処理ユニットを表して良く、プログラム命令を実行し、データを解釈し、及び/又はメモリ310若しくはOTNスイッチネットワーク要素制御部300により格納されるデータを処理して良い。OTNスイッチネットワーク要素制御部300は異なる実施形態で実装されて良いことに留意する。例えば、幾つかの実施形態では、OTNスイッチネットワーク要素制御部300は、ネットワーク要素を用いて実装されて良い。特定の実施形態では、メモリ310は、プロセッサ301上で実行するソフトウェア制御部320を表して良い。
図3で、メモリ310は、プロセッサ601に通信可能に結合されて良く、プログラム命令又はデータをある期間の間保持するのに適するシステム、装置又は機器(例えば、コンピュータ可読媒体)を有して良い。メモリ310は、RAM(random access memory)、EEPROM(electrically erasable programmable read−only memory)、PCMCIAカード、フラッシュメモリ、固体ディスク、ハードディスクドライブ、磁気テープライブラリ、光ディスクドライブ、光磁気ディスクドライブ、コンパクトディスクドライブ、コンパクトディスクアレイ、ディスクアレイコントローラ、又は揮発性若しくは不揮発性メモリの任意の適切な選択又はアレイのような様々な種類のコンポーネント及び装置を有して良い。不揮発性メモリは、電源がオフにされた後にデータを保持するメモリを表す。留意すべきことに、種々の実施形態において、メモリ310は、異なる数の物理記憶装置を有して良い。図3に示すように、メモリ310は、実行のために利用可能な他のアプリケーション又はプログラムの中でも特に、ソフトウェア制御部320を有して良い。
図4を参照すると、OTNスイッチネットワーク要素制御部400の一実施形態の選択された要素のブロック図が示される。図4は、上述のような、分離OTNスイッチングシステム200に関連するSDN動作を実行するソフトウェア制御部320の更なる詳細事項を示す。
図4で、ソフトウェア制御部320は、説明上明確化のために他の抽象モデルの中で例として選択された任意の種々の異なる抽象モデル412を格納し得るレポジトリを有して示される。幾つかの実施形態では、抽象モデル412は、ネットワーク構成プロトコル(NETCONF)を通じてネットワーク装置を管理するために使用される構成及び状態データをモデル化するデータモデル化言語であるYANGを用いて定められる。具体的には、抽象モデル412は、光トランスポートネットワーク101と共に使用されるネットワークサービスのための構成及び状態データをモデル化し得るサービス抽象モデルを有して良い。抽象モデル412は、光トランスポートネットワーク101と共に使用されるネットワーク接続のための構成及び状態データをモデル化し得るネットワーク抽象モデルを有して良い。抽象モデル412は、光トランスポートネットワーク101と共に使用されるネットワーク装置420のための構成及び状態データをモデル化し得る装置抽象モデルを有して良い。制御機能410は、ネットワークサービス、ネットワーク接続、及びネットワーク装置420のための種々の制御機能を表して良い。API408は、制御ロジック406が、ネットワークサービス、ネットワーク接続、及びネットワーク装置420のための制御機能にアクセスすることを可能にして良い。
OTNスイッチネットワーク要素制御部400に示すように、API414は、制御ロジック406同士の及び外部アプリケーション416との間の通信を可能にして良い。ソフトウェア制御部320と共に使用され得る外部アプリケーション416の幾つかの非限定的な例は、オーケストレ−タ(NCX, Anuta Networks, Inc., Milpitas, CA, USA; Exanova Service Intelligence, CENX, Ottawa, Canada)、ワークフローマネジャ(Salesforce Service Cloud, salesforce.com, Inc., San Francisco, CA, USA; TrackVia, TrackVia, Inc., Denver, CO, USA; Integrify, Integrify Inc., Chicago, IL, USA)、分析アプリケーション(Cloud Analytics Engine, Juniper Networks, Inc., Sunnyvale, CA, USA; Nuage Networks Virtualized Services Directory (VSD), Nokia Solutions and Networks Oy, Espoo, Finland)を含む。
OTNスイッチネットワーク要素制御部400の実装では、制御ロジック406は、ソフトウェア制御部320内に独自仕様、内部、又は管理上保護された部分を残す内部制御ロジックを有して良い。制御ロジック406の内部又は保護部分の非限定的な例は、経路計算のような複雑な独自仕様アルゴリズム、及びネットワークオペレータの課金アルゴリズムのようなプライベートビジネスロジックを含んで良い。分離OTNスイッチングシステム200では、制御ロジック406は、上述のように、PIU筐体202及びEthernet構造220と通信する機能を有して良い。
さらに、ソフトウェア制御部320は、異なるネットワークプロトコルを使用する種々のネットワーク装置420と相互作用して良い。例えば、ソフトウェア制御部320は、NETCONFプロトコル、CLI(command line interface)、又はSNMP(simple network management protocol)であるソフトウェアプロトコル422を用いて、ネットワーク装置420と相互作用して良い。ネットワーク装置420は、ルータ、スイッチ、又は光トランスポートネットワーク101に含まれるネットワーク要素を表して良い。上述のように、ネットワーク抽象モデル412は、ソフトウェア制御部320によりサポートされる機能の表現を有するデータベースのようなレポジトリであって良い。一方で、機能の実際の実装は、制御機能410により実行される。したがって、制御機能410は、ネットワーク装置420にアクセスするために異なるネットワークプロトコル422を利用して良い。
ネットワーク装置420及びソフトウェアプロトコル422は、図4に、物理的視点ではなく論理的視点で示される。ネットワーク装置420とソフトウェア制御部320との間の実際の物理接続は、1又は複数のネットワーク接続を使用するように、異なる実施形態において異なって良い。
図5を参照すると、PIU筐体500の一実施形態の選択された要素の表現が示される。PIU筐体500は、内部バス及び内部プロセッサを有するラック搭載エンクロージャであって良い。PIU筐体500は、PIUモジュール204を内部バスに接続する個々のスロットを介してPIUモジュール204を受けて良い。内部バスは、電力及びPIUモジュール204の間の調整を提供して良い。特定の実施形態では、PIU筐体500は、OTNスイッチネットワーク要素制御部214との直接通信のためのネットワーク接続を有する。図示のように、PIU筐体500は、個々のPIUモジュール204を装着され得る4個のスロットを有する。異なる実施形態では、PIU筐体500は、異なるスロット数により実装されて良く、異なる形状因子で実装されて良いことに留意する。PIUモジュール204は、アクセスのために前面ネットワーク接続を有して良く、一方で、PIUモジュール204はPIU筐体500の中のスロットを装着する。
図6Aを参照すると、コヒーレントPIUモジュール601の一実施形態の選択された要素のブロック図が示される。図6Aは概略図である。コヒーレントPIUモジュール601は、1スロットPIUを筐体500に装着して良い。図6Aに示す例示的な実施形態では、コヒーレントPIUモジュール601は、OTN入力及び出力210、例えば100G又は200G OTN回線及び100G Ethernet、及び16×10G Ethernet/4×40G Ethernetポート208、及び100G Ethernetポート208をサポートする2個のアナログコヒーレント光(analog coherent optical:ACO)通信機604、を実装される。コヒーレントPIUモジュール601は、上述のように、100G Ethernet側に、OTNoEモジュール206と一緒に、DSP606及びOTNフレーマ+スイッチ608を更に有して良い。コヒーレントPIUモジュール601は、上述のように、光又は銅線に基づく接続のために種々のコネクタポートを有して良い。
図6Bを参照すると、クライアントPIUモジュール602の一実施形態の選択された要素のブロック図が示される。図6Bは概略図である。クライアントPIUモジュール602は、PIU筐体500の中に1スロットを装着して良い。図6Bに示す例示的な実施形態では、クライアントPIUモジュール602は、OTN入力及び出力210、16×10G Ethernet/4×40G Ethernetポート208、及び100G Ethernetポート208を実装される。クライアントPIUモジュール602は、上述のように、100G Ethernet側に、OTNoEモジュール206と一緒に、OTNフレーマ+スイッチ608を更に有して良い。クライアントPIUモジュール602は、上述のように、光又は銅線に基づく接続のために種々のコネクタポートを有して良い。
図6Cを参照すると、高密度PIUモジュール603の一実施形態の選択された要素のブロック図が示される。図6Cは概略図である。高密度PIUモジュール603は、PIU筐体500の中に2スロットを装着して良い。図6Cに示す例示的な実施形態では、高密度PIUモジュール603は、コヒーレントPIUモジュール601と同様であって良い2個のサブモジュールを実装される。しかし、各サブモジュールは、OTN入力及び出力210を有する2×100G OTN回線をサポートして良い。高密度PIUモジュール603は、上述のように、100G Ethernet側に、2個のOTNoEモジュール206と一緒に、2個のアナログコヒーレント光(ACO)通信機604、1×40G Ethernet/10×10G Ethernetクライアントポート208、16×10G Ethernetポート208、3個のDSP606、及び2個のOTNフレーマ+スイッチ608を更に有して良い。高密度PIUモジュール603は、上述のように、光又は銅線に基づく接続を発生するために種々のコネクタポートを有して良い。
図7Aを参照すると、コアEthernet構造220を有しないで、2個の直接接続されたPIUモジュール604を用いるローカルスイッチング構成の一実施形態の選択された要素のブロック図が示される。図7Aに示す構成では、OTNフレーマ+スイッチ608は、接続されたモジュールの間で、OTNoEモジュール206と一緒に、OTNスイッチングを実行して良い。図7Aには特定の直接接続が示されるが、PIUモジュール204を用いるローカルスイッチング構成は、メッシュの中の全ての参加者にクロス接続を可能にするために3又は4個のPIUモジュール204が直接接続される、内部接続及びメッシュ接続構成を利用して良いことが理解される。例えば、図7Bは、コアEthernet構造220を有しないで、4個の直接接続されたPIUモジュール204を用いるローカルスイッチングの一実施形態の選択された要素のブロック図を示す。この方法では、複数のスイッチングノードを用いる特定のローカルOTN双方向スイッチング機能は、低い複雑性及びコストにより実現できる。
<分離光トランスポートネットワークスイッチングシステム>
図8を参照すると、OTNスイッチングシステム800におけるEthernet構造を介する光データユニット(optical data unit:ODU)転送の一例のブロック図が示される。図8では、OTNスイッチングシステム800は、概略的表現で示され、縮尺通り又は透視図ではない。留意すべきことに、異なる実施形態では、OTNスイッチングシステム800は、追加の又はより少ない要素により動作されて良い。
図8で、ODU834を含む光データユニット(ODU)は、イングレスPIUモジュール204−1において、順序通りに(インシーケンス、in sequence)(834−1、834−2、834−3、834−4)、OTNスイッチングシステム800に入って良い。これは、イングレスPIUモジュール204−1におけるODU834のインシーケンス到着を表すODUスイッチ接続836−1により示される。ODU834は、ODUスイッチ接続836−1内と同一順序で、イグレスPIUモジュール204−2において、OTNスイッチングシステム800を出て良い。言い換えると、ODUスイッチ接続836−1は、イングレスPIUモジュール204−1におけるインシーケンス到着のとき、イグレスPIUモジュール204−2においてODU834の出発の同一順序を維持する。
図8で、OTNスイッチングシステム800は、PIUモジュール204−1からPIUモジュール204−2へのEthernet構造220−1を介するEthernetパケットのODU転送を可能にするために、ODUスイッチ接続836−1を確立して良い。ODUスイッチ接続836−1は、ポートP1 208−1からEthernetスイッチ212−1への接続、ポートP2 208−2からEthernetスイッチ212−2への接続、ポートP3 208−3からEthernetスイッチ212−3への接続、及びポートP4 208−4からEthernetスイッチ212−4への接続を含む、イングレスPIUモジュール204−1のポート208の各々からEthernetスイッチ212の各々への接続を有して良い。ODUスイッチ接続836−1は、Ethernetスイッチ212−1からポート208−5への接続、Ethernetスイッチ212−2からポート208−6への接続、Ethernetスイッチ212−3からポート208−7への接続、及びEthernetスイッチ212−4からポート208−8への接続を含む、Ethernetスイッチ212の各々からイグレスPIUモジュール204−2のポート208の各々への接続も有して良い。異なる実施形態では、OTNスイッチングシステム800は、複数のODUスイッチ接続836(図8に図示しない)を確立して良く、各ODUスイッチ接続836が、複数のPIUモジュール204のうちの1個のPIUモジュール204から複数のPIUモジュール204のうちの別のPIUモジュールへのEthernet構造220−1を介するODU転送を可能にすることに留意する。
OTNスイッチングシステム800のOTNoE206−1は、イングレスPIUモジュール204−1においてODU834を順序通りに受信して良い。各ODU834は、イングレス(本願明細書では送信元としても参照される)PIUモジュール204とイグレス(本願明細書では宛先としても参照される)PIUモジュール204とを示す情報を有するODUヘッダ224を有して良い。OTNoE206−1は、各ODU834に関連付けられる情報を使用して、宛先イグレスPIUモジュール204を決定する。例示的な実施形態では、ODU834は、それぞれ、イングレスPIUモジュール204がPIUモジュール204−1であること及びイグレスPIUモジュール204がPIUモジュール204−2であることを示す情報を有する。異なる実施形態では、関連するODU834のODUヘッダ224は、それぞれ、関連するイングレスPIUモジュール204がODU834の中で同一である又は異なる、及び関連するイグレスPIUモジュール204がODU834の中で同一である又は異なることを示す情報を有して良い。
OTNスイッチングシステム800では、各PIUモジュール204は、自身のユニークな識別子を割り当てられる。ユニークな識別子は、OTNスイッチングシステム800の構成処理中にOTNスイッチネットワーク要素制御部214により、又は各PIUモジュール204がOTNスイッチングシステム800に追加されるときOTNスイッチネットワーク要素制御部214により割り当てられて良い。PIUモジュール識別子は、媒体アクセス制御(MAC)アドレス、仮想ローカルエリアネットワーク(VLAN)識別子、等であって良い。例示的な実施形態では、PIUモジュール204−1はMACアドレスM1 826−1を割り当てられ、PIUモジュール204−2はMACアドレスM2 826−2を割り当てられる。
OTNoE206−1は、関連するODU834の各ODUヘッダ224に含まれる情報から、宛先イグレスPIUモジュール204がPIUモジュール204−2であることを決定し、各々の対応するODU834−1乃至ODU834−4から、それぞれPKT828−1乃至PKT828−4を含む各Ethernetパケット828(PKT)を生成する。例示的な実施形態では、ODU834−1乃至ODU834−4とPKT828−1乃至PKT828−4との間に1対1対応が存在する。各々の生成されたPKT828は、関連するODU834の各ODUヘッダ224からの情報を有して良いEthernetスイッチングヘッダ222を有する。生成されたPKT828の各Ethernetスイッチングヘッダ222は、イングレスPIUモジュールの送信元MACアドレス及びイグレスPIUモジュールの宛先MACアドレスを示す情報も有して良い。ここで、PKT828のM1及びM2により示されるように、送信元MACアドレスは、イングレスPIUモジュール204−1のMACアドレスM1 826−1であり、宛先MACアドレスは、イグレスPIUモジュール204−2のMACアドレスM2 826−2である。送信元及び宛先MACアドレスは、ユニキャストMACアドレス、マルチキャストMACアドレス、ブロードキャストMACアドレス、等であって良い。生成されたPKT828は、ODU834のインシーケンス到着に対応するPKT828のインシーケンス順序を示す、各PKT828に割り当てられるシーケンス番号を更に有して良い。各パケットのシーケンス番号は、以下に更に詳述するように、PIUモジュール204−1におけるODU834のインシーケンス到着順序を復元し及び維持するために、宛先イグレスPIUモジュール204により利用される。生成されたPKT828は、イングレスPIUモジュール204−1及びイグレスPIUモジュール204−2に対応するODUスイッチ接続836−1を介する送信のためであって良い。
OTNoE206−1は、PKT828のうちの各PKT828の送信のためにポート208のうちの1つを選択し、PKT828のうちの各PKT828を、選択されたポート208に対応するEthernetスイッチ212を介してPIUモジュール204−1のその選択されたポート208から送信する。例示的な実施形態では、OTNoE206−1は、PKT828−4の送信のためにポートP1 208−1を選択し、ポートP1 208−1からEthernetスイッチ212−1への破線矢印により示されるように、PKT828−4をポートP1 208−1からEthernetスイッチ212−1を介して送信する。同様に、OTNoE206−1は、ポートP2 208−2を選択し、ポートP1 208−2からEthernetスイッチ212−2への破線矢印により示されるように、PKT828−1をポートP2 208−2からEthernetスイッチ212−2を介して送信し、ポートP3 208−3を選択し、ポートP3 208−3からEthernetスイッチ212−3への破線矢印により示されるように、PKT828−3をポートP3 208−3からEthernetスイッチ212−3を介して送信し、ポートP4 208−4を選択し、ポートP4 208−4からEthernetスイッチ212−4への破線矢印により示されるように、PKT828−2をポートP4 208−4からEthernetスイッチ212−4を介して送信する。ポートP1 208−1乃至ポートP4 208−4とEthernetスイッチ212−1乃至212−4との間の接続は、イングレスPIUモジュール204が全ての利用可能なEthernetスイッチ212でPKT828を並列に送信することを可能にする。全てのN個のEthernetスイッチ212が通常動作中に利用可能であるとき、Ethernet構造220―1は0:N負荷共有モードである。例えば機器障害、相互接続ケーブル障害、又は保守により、Ethernetスイッチ212のうちの1個が利用不可能であるとき、イングレスPIUモジュール204は、PKT828を、全ての残りの利用可能なEthernetスイッチ212で送信し、したがって構造保護Ethernetスイッチングを実現する。
OTNoE206−2は、PIUモジュール204−2のポート208で受信されたPKT828を格納するために、再順序付けバッファ870−1を有して良い。OTNoE206−2は、PKT828をEthernetスイッチ212から、PIUモジュール204−1のポートP1 208に対応するPIUモジュール204−2のポート208において受信し、PKT828をOTNoE206−2の再順序付けバッファ870−1に格納する。例示的な実施形態では、OTNoE206−2は、PKT828−4をポートP1 208−5で、PKT828−1をポートP2 208−6で、PKT828−3をポートP3 208−7で、及びPKT828−2をポートP4 208−8で受信し、PKT828−1乃至PKT828−4を再順序付けバッファ870−1に格納する。動作中、Ethernet構造220−1は、負荷共有モードであって良く、複数のPKT828は複数のEthernetスイッチ212を介して送信されて良く、結果として、固有パケットジッタ又は外因性パケットジッタであって良い到着パケットジッタを生じる。
固有パケットジッタは、PIUモジュール204、相互接続、例えばケーブル、Ethernetスイッチ212、及びOTNスイッチングシステム800を構成し得る他のコンポーネントの間の相違に起因して良い。外因性パケットジッタは、複数のイングレスPIUモジュール204が複数のEthernetパケット828を同一イグレスPIUモジュール204の同一ポートへ送信し、結果として様々なEthernetパケット到着時間を生じることに起因して良い。言い換えると、固有パケットジッタは、外因性パケットジッタの原因として定義され得る、Ethernetパケット828衝突又は再送信以外の全ての原因から生じるとして定義できる。特に、OTNスイッチングシステム800は、外因性パケットジッタを最小化し又は除去するよう設計され及び作動される。したがって、イグレス受信時間838の変動は、比較的小さく、固有パケットジッタに起因すると考えられる。
負荷共有モードで動作するEthernet構造220−1は、結果として、PIUモジュール204−2のポート208に到着する、PIUモジュール204−1からの送信順序とは順序が狂ったEthernetパケット828を生じる。例示的な実施形態では、PKT828−1は、イグレス受信時間838に対するその到着時間により示されるとき最初に到着し、PKT828−3が次に到着し、PKT828−2が次に到着し、そしてPKT828−4が最後に到着する。図示のように、PKT828は、イグレス受信時間838に対して互いに重なり合う。
OTNoE206−2は、ODU834−1乃至ODU834−4を再構築し、再順序付けバッファ870−1に格納されたPKT828−1乃至PKT828−4の各々のODU834の各ODUヘッダ224を再構築することも含む。OTNoE206−2は、ODU834のインシーケンス到着順に対応する各PKT828に割り当てられるシーケンス番号に基づき、ODU834−1乃至ODU834−4を、PIUモジュール204−1におけるODU834のインシーケンス到着順に対応する同じ順序に再順序付けする。OTNoE206−2は、各PKT828の各Ethernetスイッチングヘッダ222に含まれる情報に基づき、各ODU834の各ODUヘッダ224を再構築する。ODU834が再構築され再順序付けされると、ODU834は、それらがイングレスPIUモジュール204−1でOTNスイッチングシステム800に入ったときと同じ順序で、イグレスPIUモジュール204−2においてOTNスイッチングシステム800を出て良い。
図9を参照すると、OTNスイッチングシステム900におけるEthernet構造220−1の一実施形態を介する巡回歩行シーケンス(cyclical walk sequence)を用いるODU834転送の一例のブロック図が示される。図9では、OTNスイッチングシステム900は、概略的表現で示され、縮尺通り又は透視図ではない。留意すべきことに、異なる実施形態では、OTNスイッチングシステム900は、追加の又はより少ない要素により動作されて良い。
1又は複数の実施形態では、前述のように、OTNスイッチングシステム900は、1又は複数のODUスイッチ接続836を確立して、1又は複数のイングレスPIUモジュール204から1又は複数のイグレスPIUモジュール204へのEthernet構造220−1を介するEthernetパケット828のODU転送を可能にして良い。例示的な実施形態では、OTNスイッチングシステム900は、イングレスPIUモジュール204−1からイグレスPIUモジュール204−2への第1ODUスイッチ接続836−1、及びイングレスPIUモジュール204−3からイグレスPIUモジュール204−2への第2ODUスイッチ接続836−2を確立して良い。第1ODUスイッチ接続836−1は、イングレスPIUモジュール204−1のポートP1 208−1乃至P4 208−4の各々から対応するEthernetスイッチ212−1乃至212−4の各々への接続、及びEthernetスイッチ212−1乃至212−4の各々からイグレスPIUモジュール204−2の対応するポートP1 208−5乃至P4 208−8への接続を有する。同様に、第2ODUスイッチ接続836−2は、イングレスPIUモジュール204−3のポートP1 208−9乃至P4 208−8の各々から対応するEthernetスイッチ212−1乃至212−4の各々への接続、及びEthernetスイッチ212−1乃至212−4の各々からイグレスPIUモジュール204−2の対応するポートP1 208−5乃至P4 208−8への接続を有する。
1又は複数の実施形態では、ODUスイッチ接続836を有するイングレスPIUモジュール204は、Ethernetパケット送信のために、巡回歩行シーケンス944に基づき、M個のEthernetスイッチ212(本願明細書ではEthernetプレーンとしても参照される)のEthernetスイッチ212を選択する方法を利用して良い。ここで、巡回歩行シーケンス944はODUスイッチ接続836に関連付けられる。巡回歩行シーケンス944は、M個のユニークなポート識別子の順次的順序を有して良い。ここで、M個のポート識別子の各々は、それぞれ、イングレスPIUモジュール212のM個のポート208の各々に関連付けられる。M個のユニークなポート識別子は、巡回歩行シーケンス944の中のN個の異なる可能な順次的順序のうちの1つであって良い。ここで、N個の異なる順次的順序はMの階乗をMで割ったもの(M!/M)に等しい。方法の一実施形態では、イングレスPIUモジュール204は、第1乃至第MのインシーケンスEthernetパケット828の送信のために、巡回歩行シーケンス944の第1乃至第Mのインシーケンスポート識別子に基づき、イングレスPIUモジュール204の第1ポート208乃至第Mポート208、及びそれらに対応する第1乃至第M Ethernetスイッチ212を選択して良い。イングレスPIUモジュール204は、同様に、第M+1のインシーケンスEthernetパケット828の送信のために、巡回歩行シーケンス944の第1のインシーケンスポート識別子に基づき、次のポート208及び次のEthernetスイッチ212を選択して良い。ここで、方法は、第M/最後のインシーケンスポート識別子から巡回歩行シーケンス944の第1のインシーケンスポート識別子に戻る。方法の別の実施形態では、ポート選択は、巡回歩行シーケンス944のランダムポート識別子に基づいて良い。
1又は複数の実施形態では、イングレスPIUモジュール204は、イングレスPIUモジュール204の各OTNスイッチ接続836について巡回歩行シーケンス944を割り当てられる。一実施形態では、イグレスPIUモジュール204は、巡回歩行シーケンス944を選択して、イングレスPIUモジュール204へ送信する。ここで、巡回歩行シーケンス944は、イングレスPIUモジュール204において受信され格納される。別の実施形態では、OTNスイッチネットワーク要素制御部214は、イグレスPIUモジュール204を代表して、イグレスPIUモジュール204に格納されるべき巡回歩行シーケンス944を選択する。図9では、イグレスPIUモジュール204−2は、PIUモジュール204−1のために第1巡回歩行シーケンス944−1を選択し、PIUモジュール204−3のために第2巡回歩行シーケンス944−2を選択する。
複数のPIUモジュール204の複数のODUスイッチ接続836が、それぞれ、単一のイグレスPIUモジュール204を指定するとき、各イングレスPIUモジュール204は、自身の割り当てられた巡回歩行シーケンス944を利用でき、各イングレスPIUモジュール204が同じEthernetスイッチ212の選択を他のイングレスPIUモジュール204と同期してしまうこと、及び同じEthernetスイッチ212から単一のイグレスPIUモジュール204にEthernetパケット828が殺到していまうことを回避するのを助ける。各イングレスPIUモジュール204に異なる巡回歩行シーケンス944を割り当てることにより、Ethernetスイッチ選択が同期する確率が最小化される。これは、イングレスPIUモジュール204がそれらのEthernetスイッチ選択を同期するとき、Ethernetパケット828の相当量の流入に耐えるために、OTNスイッチングシステム900がより少ないバッファを使用することを可能にする。
1又は複数の実施形態では、イングレスPIUモジュール204は、イングレスPIUモジュール204の各ポート208について連続送信ポートカウントを維持して良い。各連続送信ポートカウントは、単一ポート208への連続Ethernetパケット828送信に基づく。ここで、Ethernetパケット828送信は、異なるEthernetスイッチ接続836に関連付けられる。イングレスPIUモジュール204は、自身がEthernetパケット828をイングレスPIUモジュールの同一ポート208へ送信していると決定すると、関連する連続送信ポートカウントはインクリメントされる。
イングレスPIUモジュール204が、巡回歩行シーケンス944の現在インシーケンスポート識別子に基づき、インシーケンスEthernetパケット828の送信のために次のポート208を選択しており、イングレスPIUモジュール204が、連続送信ポートカウントが次のポート208に関連付けられる連続送信ポートカウント閾値を超えることを決定すると、PIUモジュール204は、現在インシーケンスポート識別子をスキップし、巡回歩行シーケンス944の次のインシーケンスポート識別子に基づき次のポート208を選択する。上述の方法でポート208を選択すると、Ethernetスイッチ212選択の同期の確率が最小化できる。
図9では、OTNスイッチングシステム900は、イングレスPIUモジュール204−1について、イングレスPIUモジュール204−1からイグレスPIUモジュール204−2へのEthernetパケットPKT828−1乃至PKT828−4のODU転送のためにポートP1 208−1乃至P4 208−4の第1順次的順序を有する第1巡回歩行シーケンス944−1を選択して良い。ここで、それぞれ、第1巡回歩行シーケンス944−1は第1ODUスイッチ接続836−1に対応し、PIUモジュール204−1のポートP1 208−1乃至P4 208−4はEthernetスイッチ212−1乃至212−4に対応し、各PKT828−1乃至PKT828―4はODU834−1乃至ODU834−4に対応する。同様に、OTNスイッチングシステム900は、イングレスPIUモジュール204−3について、イングレスPIUモジュール204−3からイグレスPIUモジュール204−2へのEthernetパケットPKT228−5乃至PKT228−8のODU転送のためにポートP1 208−9乃至P4 208−12の第2順次的順序を有する第2巡回歩行シーケンス944−2を選択して良い。ここで、それぞれ、第2巡回歩行シーケンス944−2は第2ODUスイッチ接続836−2に対応し、PIUモジュール204−3のポートP1 208−9乃至P4 208−12はEthernetスイッチ212−1乃至212−4に対応し、各PKT228−5乃至PKT228−8はODU834−5乃至ODU834−8に対応する。
図9では、第1巡回歩行シーケンス944−1は、P1、P2、P3及びP4の第1順次的順序の4個のポート識別子を有する。ここで、ポート識別子P1はP1 208−1及びEthernetスイッチ212−1に対応し、ポート識別子P2はP2 208−2及びEthernetスイッチ212−2に対応し、ポート識別子P3はP3 208−3及びEthernetスイッチ212−3に対応し、ポート識別子P4はP4 208−4及びEthernetスイッチ212−4に対応する。第2巡回歩行シーケンス944−2は、P3、P1、P4及びP2の第2順次的順序の4個のポート識別子を有する。ここで、ポート識別子P1はP1 208−9及びEthernetスイッチ212−1に対応し、ポート識別子P2はP2 208−10及びEthernetスイッチ212−2に対応し、ポート識別子P3はP3 208−11及びEthernetスイッチ212−3に対応し、ポート識別子P4はP4 208−12及びEthernetスイッチ212−4に対応する。第1順次的順序及び第2順次的順序は、4個のポート識別子の、6個の可能な順次的順序のうちの2つであり、4の階乗を4で除算したものである(4!/4)。
図9で、OTNスイッチングシステム900のOTNoE206−1は、イングレスPIUモジュール204−1においてインシーケンスODU834−1乃至834−4を受信して良い。また、OTNoE206−2は、イングレスPIUモジュール204−3でインシーケンスODU834−5乃至834−8を受信して良い。ODU834−1乃至834−4、及び834−5乃至834−8は、一定データビットレートを有して良く、ODUスイッチ接続836がイングレスPIUモジュール204のM個のポート208からM個のEthernetスイッチ212へのEthernetパケット828へ、整合したデータレートで送信を可能にするので、良好に機能できる。これは、イグレスPIUモジュール204においてODU834の復元に対する遅延変動を生じ得る最少輻輳をもたらすことができる。OTNoE206−1は、ODU834−1乃至834−4に対応するPKT828−1乃至828−4を生成する。ここで、ODU834−1乃至834−4は、第1ODUスイッチ接続836−1を介する送信のためである。同様に、OTNoE206−2は、ODU834−5乃至834−8に対応するPKT828−5乃至828−8を生成する。ここで、ODU834−5乃至834−8は、第2ODUスイッチ接続836−2を介する送信のためである。
OTNoE206−1は、第1PKT828−1を、イングレスPIUモジュール204−1のポートP1 208−1からイグレスPIUモジュール204−2へ、Ethernetスイッチ212−1を介して送信して良い。ここで、ポートP1 208−1は、第1巡回歩行シーケンス944−1の第1順次的順序の中の第1ポート識別子P1に基づき選択されて良い。OTNoE206−1は、第2、第3、及び第4PKT828−2乃至828−4を、イングレスPIUモジュール204−1のポートP2 208−2、P3 208−3及びP4 208−4から、イグレスPIUモジュール204−2へ、Ethernetスイッチ212−2、212−3、及び212−4を介して送信して良い。ここで、ポートP2 208−2、P3 208−3及びP4 208−4は、第1巡回歩行シーケンス944−1の第1順次的順序の中の第2、第3及び第4ポート識別子P2、P3、及びP4に基づき選択されて良い。OTNoE206−1は、ポートP1 208−1から次のインシーケンスPKT828を送信して良い。ここで、P1 208−1は、第1巡回歩行シーケンス944−1の第1順次的順序の中の第4/最後のインシーケンスポート識別子P4から第1/次のポート識別子P1への循環に基づき選択されて良い。
同様に、OTNoE206−2は、第1、第2、第3、及び第4PKT828−5乃至828−8を、イングレスPIUモジュール204−3のポートP3 208−11、P1 208−9、P4 208−8、及びP2 208−10から、イグレスPIUモジュール204−2へ、Ethernetスイッチ212−3、212−1、212−4及び212−2を介して送信して良い。ここで、ポートP3 208−11、P1 208−9、P4 208−8、及びP2 208−10は、第2巡回歩行シーケンス944−2の第2順次的順序の中の第1、第2、第3及び第4ポート識別子P3、P1、P4及びP2に基づき選択されて良い。OTNoE206−2は、ポートP3 208−11から次のインシーケンスPKT828を送信して良い。ここで、P3 208−11は、第2巡回歩行シーケンス944−2の第2順次的順序の中の第4/最後のインシーケンスポート識別子P2から第1/次のポート識別子P3への循環に基づき選択されて良い。図9では、イングレスPIUモジュール204−1の各々の選択されたポート208からEthernetスイッチ212へのPKT828−1乃至828−4、及びイングレスPIUモジュール204−3の各々の選択されたポート208からEthernetスイッチ212へのPKT828−5乃至828−8の送信は、各々の選択されたポート208と各々の対応するEthernetスイッチ212との間の破線矢印により示される。
図9において、イグレスPIUモジュール204−2のOTNoE206−2は、Ethernetスイッチ212−1からポートP1 208−5への破線矢印により示すように、PKT828−1及び828−6をイングレスPIUモジュール204−1及び204−3からEthernetスイッチ212−1を介してポートP1 208−5において、Ethernetスイッチ212−2からポートP2 208−6への破線矢印により示すように、PKT828−2及び828−8をEthernetスイッチ212−2からポートP2 208−6において、Ethernetスイッチ212−3からポートP3 208−7への破線矢印により示すように、PKT828−3及び828−5をEthernetスイッチ212−3からポートP3 208−7において、Ethernetスイッチ212−4からポートP4 208−8への破線矢印により示すように、PKT828−4及び828−7をEthernetスイッチ212−4からポートP4 208−8において、受信して良い。
図10を参照すると、OTNスイッチングシステム1000における単一のPIUモジュール204を通じる複数のODUスイッチ接続836の一例のブロック図が示される。図10では、OTNスイッチングシステム1000は、概略的表現で示され、縮尺通り又は透視図ではない。留意すべきことに、異なる実施形態では、OTNスイッチングシステム1000は、追加の又はより少ない要素により動作されて良い。
OTNスイッチングシステム1000では、Ethernet構造220を介するEthernetパケット送信の待ち時間を最小化するために、及びこれらの送信のために利用されるメモリを最小化するために、複数のODU834は、単一のEthernetパケット828にバンドルされて良い。同じEthernetスイッチ接続836に関連付けられるODU834のみが、単一のEthernetパケットPKT828にバンドルされて良い。ODU834のインシーケンス順序は、インシーケンス順序の中で同じEthernetパケットPKT828にバンドルされる。
OTNoE206−1及び206−2は、それぞれ、以下に更に詳述されるように単一のルックアップサイクルの中でテーブルルックアップ関数が確定的であるようにローカルインデックス付けを有するイングレスルックアップテーブル1054及びイグレスルックアップテーブル1065を利用して良い。OTNoE206がFPGA(field programmable gate array)として実装され、及びこの方法で作動されるとき、FPGAメモリの大きさは削減され得る。OTNスイッチングシステム1000は、OTNスイッチングシステム1000の中の全てのイングレスPIUモジュール204及びイグレスPIUモジュール204についての全てのEthernetスイッチ接続836のエントリを含む個々のEthernetスイッチ接続836ID(identification)を有するEthernetスイッチ接続836のシステム全体のルックアップテーブルを有する。効率的なルックアップ機能がOTNoE206により実行できるように、各OTNoE206は、システム全体のルックアップテーブルの一部に基づく、ローカルイングレスルックアップテーブル1054及びイグレスルックアップテーブル1065を有する。ここで、ローカルイングレスルックアップテーブル1054は、PIUモジュール204−1に関連するEthernetスイッチ接続836及びそれに関連するイグレスPIUモジュール204−2についてのエントリを含む。また、ローカルイグレスルックアップテーブル1065は、イグレスPIUモジュール204−2に関連付けられるEthernetスイッチ接続836及びそれに関連するイングレスPIUモジュール204−1についてのエントリを含む。システム全体のルックアップテーブルをイングレスOTNoE206−1のローカルイングレスルックアップテーブル1054及びイグレスOTNoE206−2のローカルイグレスルックアップテーブル1065に分配することにより、ローカルテーブルのサイズは縮小され、これらのローカルルックアップテーブル1054を用いて実行されるルックアップ機能はより効率的且つ確定的になり得る。
OTNスイッチングシステム1000のOTNoE206−1は、入力制御1052において第1ODUヘッダ224−1を有する第1ODU834−1を受信して良い。ここで、第1ODUヘッダ224−1は、PIUモジュール204−2が第1ODU834−1の宛先イグレスPIUモジュール204−2であることを示す情報を含む。入力制御1052は、複数のイングレスルックアップテーブル(ILT)エントリを有するILT1054のテーブルルックアップを実行して、第1ODU834−1の宛先イグレスPIUモジュール204−2であるイグレスPIUモジュール204−2に基づき、第1ILTエントリを読み出して良い。一実施形態では、入力制御1052は、ILT1054の第1ILTエントリへの直接インデックスとしてILTテーブルインデックスを使用することにより、テーブルルックアップを実行して良い。ここで、ILTテーブルインデックスは、イグレスPIUモジュール204−2に基づく。OTNoE206−1は、バンドリングバッファ1 1056−1の第1位置に第1ODU828を格納して良い。ここで、第1ILTエントリに含まれる情報は、イグレスPIUモジュール206−2に関連付けられるODU834を格納するためにバンドリングバッファ1 1056−1が使用されるべきであることを示す。
OTNoE206−1は、イグレスPIUモジュール204−2が宛先イグレスPIUモジュール204−2であることを示す第2ODU834−2を受信して良い。入力制御1052は、上述のように、ODU834−2に基づきILT1054の第2ILTエントリを読み出して良い。OTNoE206−1は、第2ILTエントリに基づき、バンドリングバッファ1 1056−1の次のインシーケンス第2位置にODU834−2を格納して良い。Ethernetフレーマ1058は、上述のように、第1及び第2ILTエントリに基づき、バンドリングバッファ1 1056−1の第1及び第2位置に格納された第1ODU834−1及び第2ODU834−2に対応する第1Ethernetスイッチングヘッダ222−1を含む第1EthernetパケットPKT828−1を生成して良い。ここで、第1Ethernetスイッチングヘッダ222−1は、第1シーケンス番号、第1ILTテーブルインデックス、第1ILTエントリに格納された第1イグレスルックアップテーブル(ELT)インデックス、及び第1ILTエントリに格納されるEthernetスイッチ接続836−1を含む。Ethernetフレーマ1058は、イグレスPIUモジュール206−2への送信のために、第1EthernetパケットPKT828−1を、TX Q Ethernetスイッチ1 1061−1乃至TX Q Ethernetスイッチ4 1061−4を含む複数の送信キューのうちの第1送信キューに格納して良い。ここで、第1送信キューTX Q Ethernetスイッチ1 1061−1は、巡回歩行シーケンス944−1に基づきOTNoE206−1により選択される。
イグレスOTNoE206−2のEthernetデフレーマ1064は、RX Q Ethernetスイッチ1 1062−1乃至RX Q Ethernetスイッチ4 1062−4を含む複数の受信キューのうちの第1受信キューに格納された第1EthernetパケットPKT828−1を読み出して良い。ここで、第1受信キューは、RX Q Ethernetスイッチ1 1062−1である。OTNoE206−2は、第1Ethernetスイッチングヘッダ222−1の第1ELTインデックスに基づき、ELT1065の第1ELTエントリを読み出すために、複数のELTエントリを有するELTテーブル1065のテーブルルックアップを実行して良い。OTNoE206−2は、再順序付けバッファ1 870−2乃至再順序付けバッファ3 870−4を含む複数の再順序付けバッファ870のうちの再順序付けバッファ870の第1位置に、第1EthernetパケットPKT828−1を格納して良い。ここで、第1ELTエントリに含まれる情報は、第1ELTエントリに関連付けられるEthernetパケットPKT828を格納するために、再順序付けバッファ1 870−2が使用されるべきであることを示し、再順序付けバッファ1 870−2の第1位置は、PKT828−1の第1Ethernetスイッチングヘッダ222−1の第1シーケンス番号に基づく。OTNoE206−2の出力制御1066は、OTNネットワークシステム1000への送信のためにPKT828−1のEthernetスイッチングヘッダ222−1の中の情報に基づき、EthernetパケットPKT828−1から、第1インシーケンスODU834−1及び第2インシーケンスODU834−2を復元して良い。
OTNスイッチングシステム1000は、ODUクロック同期及びクロック回復を可能にする環境を提供して良い。この環境を提供するために、OTNスイッチングシステム1000は、イングレスPIUモジュール204−1及びイグレスPIUモジュール204−2の両方に単一クロック源を提供して良い。したがって、イングレスOTNフレーマ+スイッチ608−1及びイグレスOTNフレーマ+スイッチ608−2は、タイムスタンプ及びイングレスOTNフレーマ+スイッチ608−1からイグレスOTNフレーマ+スイッチ608−2へ転送されるバイト数を用いてODUクロックを回復するために、シグマ−デルタクロック回復方法を使用できる。イングレスPIUモジュール204−1及びイグレスPIUモジュール204−1は、ODUクロック回復を可能にするために、それらのODUクロックインタフェースを、OTNスイッチングシステム1000により提供される又はOTNオーバヘッド情報から引き出される単一クロック源に同期させる。
OTNスイッチングシステム1000は、Ethernet構造220がEthernetフレームの順序の狂った配信を生成し得るときでも、イングレスOTNフレーマ+スイッチ608−1とイグレスOTNフレーマ+スイッチ608−2との間の各々のODU経路について、ODUのインシーケンス配信も提供する。
OTNスイッチングシステム1000は、Ethernet構造220により引き起こされる遅延及びジッタにも拘わらず、イグレスOTNフレーマ+スイッチ608−2への連続ODU配信を更に提供し、イグレスOTNフレーマ+スイッチ608−2が処理できない追加ジッタをバッファリングする。2カ所でODUのジッタ除去(de−jittering)が起こり、イグレスOTNフレーマ+スイッチ608−2において及び再順序付けバッファ870において、ODU経路毎に、限られた能力が提供される。再順序付けは、Ethernetパケット828のレベルで実行される。Ethernetパケット828が順序通りに再構成されると、Ethernetパケット828オーバヘッドが除去され、ODUはイグレスOTNフレーマ+スイッチ608−2に配信される。再順序付けバッファ870がEthernet構造ジッタのために不足するのを防ぐために、イグレスOTNフレーマ+スイッチ608−2へのODUの配信の前に幾つかのEthernetパケット828のバッファリングを可能にするよう、各々の再順序付けバッファ870に対してウォーターマークが設定される。Ethernet構造ジッタ及びEthernetパケット衝突は、再順序付けバッファ870に、ウォーターマークを超越して構築させても良い。OTNoE206の内部メモリ要件を低減するために、再順序付けバッファ870は、PIUモジュール204の全てのODU経路について共有される。ここで、再順序付けバッファ870は、より効率的な再順序付けを可能にするためにキューされ、リンクされるバッファ記述子を有して良い。OTNスイッチングシステム1000では、ODU経路毎に、イグレスOTNフレーマ+スイッチ608−2と再順序付けバッファ870との間で背圧(back−pressure)が生じて良い。イグレスOTNoE206−2は、ODU834をイグレスOTNフレーマ+スイッチ608−2へ配信する。イグレスOTNフレーマ+スイッチ608−2は、各々の特定ODU経路について、イグレスOTNoE206−2からODU834の放出レートを制御するために、フロー制御を利用して良い。
イングレスOTNフレ―マ+スイッチ608−1は、ODU損失又はODU破損が存在する場合にも、イグレスOTNフレーマ+スイッチ608−2における2つの隣接するタイムスタンプの間の各々の元のODUのバイト数を、各々の後続するEthernetパケットヘッダの中で提供する。Ethernetパケット828が損失すると、同じODU経路上のEthernetパケット828の次のEthernetパケットヘッダの中のバイト数は、ODUストリーム上で失われているバイト数を配信するために使用される。損失したEthernetパケット828の内容は失われるが、クロック情報は回復できる。
図11を参照すると、本願明細書で記載されるような、光信号をEthernetパケット828としてスイッチングする方法1100の一実施形態の選択された要素のフローチャートが示される。種々の実施形態では、方法1100は、例えばOTNスイッチングシステムの例800、900に対応する、光ネットワークにおける分離OTNスイッチングシステム200、1000を用いて実行されて良い。留意すべきことに、方法1100で記載される特定の動作は、異なる実施形態では任意であって良く或いは再配置されて良い。
方法1100は、ステップ1102で、第1PIUモジュール204−1から第3PIUモジュール204−3へのEthernet構造220を介する第1光データユニット(ODU)スイッチ接続836−1、及び第2PIUモジュール204−2から第3PIUモジュール204−3へのEthernet構造220を介する第2光データユニット(ODU)スイッチ接続836−2、を確立することにより、開始して良い。ステップ1104で、第1PIUモジュール204−1について、M個のEthernetスイッチ212の第1順次的順序が選択される。ステップ1106で、第2PIUモジュール204−2について、M個のEthernetスイッチ212の第2順次的順序が選択される。ここで、第2順次的順序は第1順次的順序と異なる。ステップ1108で、第1PIUモジュール204−1において第1ODU834−1が受信され、第1ODU834−1に対応する第1Ethernetパケット828−1が生成される。ここで、第1ODU834−1は第1ODUスイッチ接続836−1を介する送信のためである。ステップ1110で、第1Ethernetパケット828−1は、第1PIUモジュール204−1の第1ポート208から送信される。ここで、第1ポート208は、第1順次的順序に基づき選択される。ステップ1112で、第2PIUモジュール204−2において第2ODU834−2が受信され、第2ODU834−2に対応する第2Ethernetパケット828−2が生成される。ここで、第2ODU834−2は第2ODUスイッチ接続836−2を介する送信のためである。ステップ1114で、第2Ethernetパケット828−2は、第2PIUモジュール204−2の第2ポート208から送信される。ここで、第2ポート208は、第2順次的順序に基づき選択される。
<分離OTNスイッチングシステムにおけるEthernet構造保護>
図12を参照すると、Ethernetスイッチ構造1200における仮想スロットの選択された要素の一実施形態のブロック図が示される。図12は、説明を目的とする概略図であり、実寸通り又は透視図ではない。図示のように、各Ethernetスイッチ212−5乃至212−8は、32個の個々のEthernetスイッチポート1216 SP1〜SP32を有する。図12に示すように、32個の個々のEthernetスイッチポート1216 SP1〜SP32の各々は、全部で128個のEthernetスイッチサブポート1220 S1〜S128の、4個のEthernetスイッチサブポート1220に分割されて良い。Ethernetスイッチポート1216の各々は、QSFP(quad small form−factor pluggable)通信機を有して良い。例えば、各々のEthernetスイッチポート1216のQSFP通信機は、QSFP28通信機であって良い。例えば、各々のEthernetスイッチポート1216のQSFP28通信機は、個々のEthernetスイッチへの100GE(100ギガビットイーサネット(登録商標))接続をサポートし及び可能にして良い。
1又は複数の実施形態では、Ethernet構造220−2の個々のEthernetスイッチ212のEthernetスイッチサブポート1220は、複数の仮想スロット1222を形成して良い。複数の仮想スロット1222は、複数の連続するEthernetスイッチサブポート1220の論理アグリゲーションを有して良い。例えば、図示のように、個々のEthernetスイッチ212のEthernetスイッチサブポート1220 S1〜S4は、仮想スロットVS1 1222−1〜V4 1222−4を形成して良い。他の仮想スロット1222は、他の仮想スロット1222を形成するために、個々のEthernetスイッチ212の他のEthernetスイッチサブポート1220を有して良い。例えば、個々のEthernetスイッチ212のEthernetスイッチサブポート1220 S5〜S8は、仮想スロットVS5 1222−5〜VS8 1222−8を形成して良い。Ethernetスイッチサブポート1220 S125は、仮想スロットVS125 122−125を形成して良い。Ethernet構造220−2は、Ethernetスイッチ212のP個のEthernetスイッチサブポート1220を有して良い。ここで、Pは1より大きい。Ethernet構造220−2は、Ethernetスイッチ212の個々のEthernetスイッチサブポート1220に対応するP個の仮想スロット1222を有して良い。1乃至Pの範囲の値を有する変数kは、P個のEthernetスイッチサブポート1220のうちの1つに対応するk番目のEthernetスイッチサブポート1220 Skを示す。変数kは、P個の仮想スロットのうちの1つに対応する仮想スロット番号kを有するk番目の仮想スロット1222 VSkも示す。
仮想スロット1222は、Ethernet構造220−2の中の仮想スロット1222にユニークな仮想スロットアドレスに関連付けられて良い。ここで、仮想スロットアドレスは、仮想スロット1222の開始Ethernetスイッチサブポート1220のEthernetスイッチサブポート番号kに設定されて良い。例えば、仮想スロットVS125 122−125は、Ethernetスイッチサブポート番号125を有するEthernetスイッチサブポート1220 S125で開始し、その仮想スロットアドレスは125に設定される。1又は複数の他の実施形態では、仮想スロットアドレスは、仮想スロットの開始仮想スロット1222の仮想スロット番号kに設定されて良い。例えば、仮想スロットVS1 1222−1〜VS4 1222−4の仮想スロットアドレスは、Ethernet構造220−2の中でユニークである1に設定されて良い。別の例では、仮想スロットVS5 1222−5〜VS8 1222−8は、Ethernet構造220−2の中でもユニークである5に設定された仮想スロットアドレスに関連付けられて良い。更に別の例では、仮想スロットVS125 1222−125は、Ethernet構造220−2の中でもユニークである、異なる仮想スロットアドレス5に関連付けられて良い。
図13を参照すると、OTNスイッチングシステム1300の一実施形態におけるODU経路保護の一例のブロック図が示される。図13では、OTNスイッチングシステム1300は、概略的表現で示され、縮尺通り又は透視図ではない。留意すべきことに、異なる実施形態では、OTNスイッチングシステム1300は、追加の又はより少ない要素により動作されて良い。
OTNスイッチングシステム1300では、1又は複数のODU経路1305が、ODUの送信のために確立されて良い。1又は複数の現用ODU経路1306も、ODUの送信のために確立されて良い。1又は複数のODU経路1307は、保護ODU経路1307を用いる現用ODU経路1306のための経路毎保護メカニズムであるサブネットワーク接続保護(sub−network connection protection:SNCP)のために確立されて良い。現用ODU経路1306は、ヘッドエンドOTNスイッチ1301からOTNネットワーク1304−2へ及びOTNネットワーク1304−2からテールエンドOTNスイッチ1302へ延びる現用ODU経路1300−1を有して良い。現用ODU経路1306−1は、Ethernet構造220−3からイグレスPIUモジュール204−5へ、イグレスPIUモジュール204−5からイングレスPIUモジュール204−7へOTNネットワーク1304−2を介して、イングレスPIUモジュール204−7からEthernet構造220−4へ、及びEthernet構造220−4からイグレスPIUモジュール204−9へ、さらに確立されて良い。保護ODU経路1307−1を含む複数の保護ODU経路1307が、SNCPのために確立されて良い。保護ODU経路1307−1は、Ethernet構造220−3からイグレスPIUモジュール204−6へ、イグレスPIUモジュール204−6からイングレスPIUモジュール204−8へOTNネットワーク1304−2を介して、イングレスPIUモジュール204−8からEthernet構造220−4へ、及びEthernet構造220−4からイグレスPIUモジュール204−9へ、確立されて良い。保護ODU経路1307−1は、OTNスイッチ1302が、他の状態の中でも特に、現用ODU経路1306−1に関連する故障状態、保護切替を実行するためのOTNコマンド、現用ODU経路1306−1を介するODU送信の中止、現用ODU経路1306−1を介するODU送信の機能障害、のうちの少なくとも1つを検出する場合に、現用ODU経路1306−1を保護する。
OTNスイッチングシステム1300では、ヘッドエンドOTNスイッチ1301は、ODU経路1305、現用ODU経路1306−1、及び保護ODU経路1307−1に接続されて良い。テールエンドOTNスイッチ1302も、ODU経路1305、現用ODU経路1306−1、及び保護ODU経路1307−1に接続されて良い。イングレスPIUモジュール204−4は、ODU経路1305に接続されて良い。Ethernet構造220−3、イグレスPIUモジュール204−5及び204−6は、現用ODU経路1306−1、保護ODU経路1307−1、及びEthernet構造220−3に接続されて良い。イングレスPIUモジュール204−7及び204−8は、現用ODU経路1306−1、保護ODU経路1307―1、及びEthernet構造220−4に接続されて良い。イグレスPIUモジュール204−9は、現用ODU経路1306−1、保護ODU経路1307−1、Ethernet構造220−4、及びODU経路1305に接続されて良い。以下に更に詳述されるように、保護切替が実行されるまで、イグレスPIUモジュール204−5及びイングレスPIUモジュール204−7は、現用状態で動作し、イグレスPIUモジュール204−6及びイングレスPIUモジュール204−8は、保護状態で動作して良い。
ヘッドエンドOTNスイッチ1301の一方向SNCPスイッチング動作の間、イングレスPIUモジュール204−4は、OTNネットワーク1304−1からODU経路1305を介してインシーケンスODU834を受信して良い。イングレスPIUモジュール204−4は、マルチキャスト媒体アクセス制御(MAC)アドレスを利用して、インシーケンスODU834に対応するEthernetパケット828を、イグレスPIUモジュール204−5及びイグレスPIUモジュール204−6の両方へEthernet構造220−3を介して送信して良い。イングレスPIUモジュール204−4からEthernet構造220−3へのEthernetパケット828の送信は、ODU経路1305により示される。イグレスPIUモジュール204−5におけるEthernetパケット828の受信は、現用ODU経路1306−1により示される。イグレスPIUモジュール204−6におけるEthernetパケット828の受信は、保護ODU経路1307−1により示される。
イグレスPIUモジュール204−5におけるそれらの到着、及びODU経路1307−1は、イグレスPIUモジュール204−6における同じEthernetパケット828の到着を表す。
マルチキャストMACアドレスは、イグレスPIUモジュール204の各々の対、例えばイグレスPIUモジュール204−5及び204−6、について割り当てられ管理されて良い。ここで、マルチキャストMACアドレスの第1部分は、前述のように(図12を参照)、イグレスPIUモジュールに接続されるEthernet構造220−3のEthernetスイッチ212の対応するEthernetスイッチポート1216に関連付けられる仮想スロットアドレスを割り当てられて良い。マルチキャストMACアドレスの第2部分は、前述のように(図12を参照)、イグレスPIUモジュール204−6に接続されるEthernet構造220−3のEthernetスイッチ212の対応するEthernetスイッチポート1216に関連付けられる仮想スロットアドレスを割り当てられて良い。一実施形態では、イグレスPIUモジュール204の仮想スロット番号が大きいほど、マルチキャストMACアドレスのより低い11ビットに割り当てられ、仮想スロット番号が小さいほど、マルチキャストMACアドレスのより高い11ビットに割り当てられる。22ビット空間は4百万個のマルチキャストMACアドレス空間を表すが、1+1ブリッジのためにイグレスPIUモジュールとして機能する実際のイグレスPIUモジュール対204の数は実際には非常に小さく、コヒーレントPIUモジュール対の小さな集合のみを巻き込むので、使用される実際のマルチキャストMACアドレス空間はもっと小さくて良い。実際のマルチキャストMACアドレス空間は小さいので、Ethernet構造MACアドレステーブルのサイズは、小さくて良く、Ethernet構造MACアドレステーブルのEthernet構造MACアドレステーブルエントリへの高速アクセスを可能にできる。Ethernet構造MACアドレステーブルのOTNスイッチネットワーク要素制御部214(図2を参照)による管理は、より簡易なデータ構造、例えばEthernet構造MACアドレステーブルエントリのリンクされたリスト、を利用することにより、より効率的であり得る。Ethernet構造MACアドレステーブルのより小さなサイズ及びより簡易なデータ構造の利用は、保護グループが設定される又は取り壊されるとき、Ethernet構造MACアドレステーブルエントリのより効率的な追加又は削除も可能にし得る。マルチキャストMACアドレスは、ブリッジ、例えばEthernet構造220−3が、1より多いPIUモジュール204への送信のためにマルチキャストMACアドレスの生成を示すとき、プロビジョニングされて良い。マルチキャストMACアドレスが生成されると、同じイグレスPIUモジュール204ペアを使用する全てのブリッジは、同じマルチキャストMACアドレスを共有して良い。
別の実施形態では、マルチキャストMACアドレスは、ブリッジを利用し得る各現用ODU経路1306及び各保護経路1307について割り当てられ管理されて良い。8百万個のマルチキャストMACアドレス空間は、OTNスイッチングシステム1300の中で各現用ODU経路及び保護経路1307にユニークなマルチキャストMACアドレスを割り当てるのに、及び任意の良く知られたマルチキャストMACアドレスを避けるのを助けることのできるマルチキャストMACアドレスを割り当てるのに、十分大きい。本実施形態では、マルチキャストMACアドレス空間が大きいので、Ethernet構造MACアドレステーブルのサイズは大きくて良く、OTNスイッチネットワーク要素制御部214は、Ethernet構造MACアドレステーブルのより効率的なアクセスを可能にするために、より複雑なデータ構造を利用できる。
Ethernetパケット828が到着すると、イグレスPIUモジュール204−5は、Ethernetパケット828をシーケンスODU834の中の対応物に変換し、現用ODU経路1306−1により示されるように、それらをイングレスPIUモジュール204−7へOTNネットワーク1304−2を介して送信する。同じEthernetパケット828が到着すると、イグレスPIUモジュール204−6は、Ethernetパケット828をシーケンスODU834の中の同じ対応物に変換し、保護ODU経路1307−1により示されるように、それらをイングレスPIUモジュール204−8へOTNネットワーク1304−2を介して送信する。
テールエンドOTNスイッチ1302は、イングレスPIUモジュール204−7に関連付けられるイングレスプロセッサ1310−1、イングレスPIUモジュール204−8に関連付けられるイングレスプロセッサ1310−2、及びイグレスPIUモジュール204−9に関連付けられるイグレスプロセッサ1310−3、を有して良い。イングレスPIUモジュール204−7は、イングレスプロセッサ1310−1を有して良い。イングレスPIUモジュール204−8は、イングレスプロセッサ1310−2を有して良い。そして、イグレスPIUモジュール204−9は、イグレスプロセッサ1310−3を有して良い。1又は複数の実施形態では、イングレスプロセッサ1310−1は、イングレスPIUモジュール204−7として同じPIUブレード筐体202(図2を参照)に含まれて良い。イングレスプロセッサ1310−2は、イングレスPIUモジュール204−8として同じPIUブレード筐体202に含まれて良い。そして、イグレスプロセッサ1310−3は、イグレスPIUモジュール204−9として同じPIUブレード筐体202に含まれて良い。
テールエンドOTNスイッチ1302の単方向SNCPスイッチング動作の間、イングレスプロセッサ1310−1は、現用ODU経路1306−1を監視して良く、他の状態の中でも特に、現用ODU経路1306−1に関連する故障状態、保護切替を実行するためのOTNコマンド、現用ODU経路1306−1を介するODU送信の中止、現用ODU経路1306−1を介するODU送信の機能障害、のうちの少なくとも1つを検出する。イングレスプロセッサ1310−1は、現用ODU経路1306−1の状態を決定するために、検出した条件を分析して良い。イングレスプロセッサ1310−2は、保護ODU経路1307−1を監視して良く、保護ODU経路1307−1に関連付けられる故障状態、保護切替を実行するためのOTNコマンド、保護ODU経路1307−1に渡るODU送信の機能障害、保護ODU経路1307−1に関連付けられるキープアライブ遅延タイマの終了、のうちの少なくとも1つを検出する。イングレスプロセッサ1310−2は、保護ODU経路1307−1の状態を決定するために、検出した条件を分析して良い。イングレスプロセッサ1310−1及び1310−2は、現用ODU経路1306−1及び保護ODU経路1307−1の個々の状態を互いに及びイグレスプロセッサ1310−3に通信して良い。イングレスプロセッサ1310−1及び1310−2並びにイグレスプロセッサ1310−3は、それらの間で種々のコマンドも通信して良い。1又は複数の他の実施形態では、イングレスPIUモジュール204−7及びイグレスPIUモジュール204−8は、個々の現用ODU経路1306−1及び保護ODU経路1307−1を監視して良く、現用ODU経路1306−1及び保護ODU経路1307−1の個々の状態を互いに及びイグレスPIUモジュール204−9に通信して良い。イングレスPIUモジュール204−7、イングレスPIUモジュール204−8、及びイグレスPIUモジュール204−9は、それらの間で種々のコマンドも通信して良い。
現用状態で動作中のイングレスPIUモジュール204−7におけるシーケンスODU834の到着により、イングレスPIUモジュール204−7は、ODU834を、現用ODU経路1306−1の状態を含む対応するEthernetパケット828に変換する。イングレスPIUモジュール204−7は、現用ODU経路1306−1により示すように、Ethernetパケット828をイグレスPIUモジュール204−9へEthernet構造220−4を介して送信する。イグレスPIUモジュール204−9におけるEthernetパケット828の到着により、Ethernetパケット828は、更なる処理のために、イグレスPIUモジュール204−9の再順序付けバッファ870(図10を参照)のうちの1つに格納されて良い。イグレスPIUモジュール204−9は、以下に更に詳述するように、現用ODU経路1306−1の状態を監視するために、Ethernetパケット828の中の状態を利用して良い。
保護ODU経路1307に関連付けられるキープアライブシーケンス番号を有するキープアライブEthernetパケットは、保護ODU経路1307の状態、並びに保護ODU経路1307上の任意のコマンド及び管理動作を報告するために、周期的に、例えばNミリ秒毎に、送信されて良い。保護ODU経路1307の状態が変化すると、キープアライブEthernetパケットは直ちに送信されて良い。他の例では、幾つかのキープアライブメッセージは、キープアライブEthernetパケットの送信数を低減するために、単一のキープアライブEthernetパケットにバンドルされて良い。イングレスPIUモジュール204は、保護ODU経路1307に関連付けられる同じキープアライブシーケンス番号を有するキープアライブEthernetパケットをT回の連続回数だけ送信して良い。これは、Ethernetパケット損失を防ぐことができ、ここで、Tは1以上である。キープアライブEthernetパケットの送信は、Ethernet構造220−4通信トラフィックを低減し得る。保護ODU経路1307に関連付けられるキープアライブシーケンス番号は、キープアライブEthernetパケットが送信される次の時間期間にインクリメントされて良い。ここで、保護ODU経路1307に関連付けられるキープアライブシーケンス番号の開始値は、乱数であって良い。キープアライブシーケンス番号の使用は、OTNスイッチングシステム1300の中のストール(stall)メッセージを最小化するのを助けることができる。イグレスPIUモジュール204−9は、以下に更に詳述するように、保護ODU経路1307−1の状態を監視するために、キープアライブEthernetパケットの中の保護ODU経路1307−1の状態を利用して良い。
イングレスPIUモジュール204−7及び204−8は、それぞれ、個々のイングレスPIUモジュール204−7及び204−8により管理されて良い個々の現用ODU経路1306−1及び保護ODU経路1307−1に関連付けられる関連ホールドオフ遅延を有する。各ホールドオフ遅延は、個々の現用ODU経路1306−1及び保護ODU経路1307−1の状態の部分として利用されて良い。1又は複数の他の実施形態では、各ホールドオフ遅延は、個々の現用イングレスプロセッサ1310−1及び保護プロセッサ1310−2により管理されて良い。1又は複数の実施形態では、ホールドオフ遅延は、タイマ、遅延装置、又は別のメカニズムを用いて実装されて良い。
各保護ODU経路1307は、イグレスPIUモジュール204により管理され得る関連キープアライブ遅延を有して良い。ここで、各キープアライブ遅延は、イグレスPIUモジュール204が、個々の保護ODU経路1307に関連付けられるキープアライブEthernetパケットを受信する度にリセットされて良い。例えば、イグレスPIUモジュール204−9は、保護ODU経路1307−1上で条件が検出されなかったことを示す保護ODU経路1307−1に関連付けられるキープアライブEthernetパケットを受信すると、保護ODU経路1307−1に関連付けられるキープアライブ遅延をリセットされて良い。1又は複数の実施形態では、キープアライブ遅延は、タイマ、遅延装置、又は別のメカニズムを用いて実装されて良い。
イングレスPIUモジュール204−8における同じインシーケンスODU834が到着すると、イングレスPIUモジュール204−8は、保護ODU経路1307−1の状態を、保護ODU経路1307−1に関連付けられるキープアライブシーケンス番号を有するキープアライブEthernetパケットの中で、イグレスPIUモジュール204−9へEthernet構造220−4を介して、保護ODU経路1307−1を用いて送信するために、保護ODU経路1307−1を利用して良い。保護状態で動作しているイングレスPIUモジュール204−8は、同じインシーケンスODU834に対応するEthernetパケット828を送信する代わりに、キープアライブEthernetパケットを送信して良い。
1又は複数の実施形態では、保護状態で動作しているイングレスPIUモジュール204−8は、ODU834を、保護ODU経路1307−1の状態を含む対応するEthernetパケット828に変換して良く、Ethernetパケット828をイグレスPIUモジュール204−9へ保護ODU経路1307−1を介して送信して良い。同じEthernetパケット828をイグレスPIUモジュール204−9へ送信することは、保護切替性能を向上できるが、Ethernet構造帯域幅及び周波数目標に適合するよう現用ODU経路トラフィック及び保護ODU経路トラフィックの両方の送信のために追加Ethernet構造ハードウェアが必要であり得る。他の実施形態では、イグレスPIUモジュール204−9は、同じEthernetパケット828を、より高速な保護切替性能を更に実現できる保護ODU経路1307−1を介して受信して良いが、イグレスPIUモジュール204−9は、イングレスPIUモジュール204−7からの同じEthernetパケット828を格納するために追加再順序付けバッファ870(図10を参照)を必要とし得る。特定の適用では、より高速な保護切替性能と追加Ethernet構造ハードウェア、例えば追加再順序付けバッファ870との間のトレードオフは、OTNスイッチ1302の所望の動作を決定するために評価されて良い。
テールエンドOTNスイッチ1302の単方向SNCPスイッチング動作の間、イベント又は条件は、イグレスPIUモジュール204−7及びイグレスPIUモジュール204−8のうちの1又は複数において検出されて良い。イベント又は条件は、他のイベント又は条件の中でも特に、現用ODU経路1306に関連付けられる故障状態、保護ODU経路1307に関連付けられる故障状態、保護切替を実行するためのOTNコマンド、現用ODU経路1306を回するODU送信の中止、現用ODU経路1306を介するODU送信の機能障害、個々の現用ODU経路1306又は保護ODU経路1307に関連付けられるホールドオフ遅延の終了、のうちの少なくとも1つであって良い。各イベント又は条件は、他のイベント又は条件の優先度に対するイベント又は条件の優先度を示す関連優先度を有して良い。例えば、特定の現用ODU経路1306に関連付けられる特定の故障状態は、別の特定の保護ODU経路1307に関連付けられる別の特定の故障状態より高い優先度を有して良い。別の例では、保護切替を実行するための特定のOTNコマンドは、特定の保護ODU経路1307に関連付けられる特定の故障状態より高い優先度を有して良い。イングレスプロセッサ1310−1は、検出された特定のイベント又は条件に基づき、現用ODU経路1306の状態を決定して良い。現用状態で動作しているイングレスPIUモジュール204−7でイベント又は状態が検出されると、イングレスPIUモジュール204−7は、Ethernetパケット828がイグレスPIUモジュール204−9へ送信される前に、イベント又は状態を示すために、Ethernetパケット828の現用ODU経路1306の状態を設定する。イングレスプロセッサ1310−2は、検出された特定のイベント又は条件に基づき、保護ODU経路1307の状態を決定して良い。保護状態で動作しているイングレスPIUモジュール204−8でイベント又は状態が検出されると、イングレスPIUモジュール204−8は、イベント又は状態がイングレスPIUモジュール204−8において検出されたことを示すために設定された保護ODU経路1307の状態を有するキープアライブEthernetパケットを送信する。
現用ODU経路1306−1の状態を有する1又は複数のEthernetパケット828、及び保護ODU経路1307−1の状態を有するキープアライブEthernetパケットの到着により、イグレスPIUモジュール204−9は、現用ODU経路1306−1上で保護ODU経路1307−1を用いて保護切替が実行されるべきであると決定して良い。保護切替が実行されて良いという決定は、イグレスPIUモジュール204−9が、イベント又は状態がイングレスPIUモジュール204−7で検出されること、又はイベント又は状態がイングレスPIUモジュール204−8で検出されること、を決定することを含んで良い。保護切替が実行されて良いという決定は、イグレスPIUモジュール204−9が、特定現用ODU経路1306−1の優先度が特定保護ODU経路1307−1の優先度より高いこと、を決定することを更に有して良い。
決定に応答して、以下に更に詳述するように、イグレスPIUモジュール204−9は、Ethernetパケット828をイングレスPIUモジュール204−8から保護ODU経路1307−1を介して、及びキープアライブEthernetパケットをイングレスPIUモジュール204−7から現用ODU経路1306−1を介して、受信し始めるために、保護切替を実行する。1又は複数の他の実施形態では、イグレスプロセッサ1310−3は、Ethernetパケット828をイングレスPIUモジュール204−8から保護ODU経路1307−1を介して、及び対応するEthernetパケット828をイングレスPIUモジュール204−7から現用ODU経路1306−1を介して、受信し始めるために、イグレスPIUモジュール204−9について保護切替を実行する。
保護切替の部分として、イグレスPIUモジュール204−9は、現用ODU経路1306−1に関連付けられる割り当てられた停止ODU送信シーケンス番号を有する1又は複数の停止ODU送信メッセージを、イングレスPIUモジュール204−7へ送信して良い。イグレスPIUモジュール204−9は、保護ODU経路1307−1に関連付けられる割り当てられた開始ODU送信シーケンス番号を有する1又は複数の開始ODU送信メッセージも、イングレスPIUモジュール204−8へ送信して良い。イグレスPIUモジュール204−9は、現用ODU経路1306−1を介して、イグレスPIUモジュール204−9に関連付けられる個々の再順序付けバッファ870から受信したEthernetパケット828を更に流出させて良い。イグレスPIUモジュール204−9は、保護ODU経路1307−1を介して、イグレスPIUモジュール204−9に関連付けられる個々の再順序付けバッファ870をEthernetパケット828により満たしても良い。イグレスPIUモジュール204−9は、保護ODU経路1307−1とのクロック同期を再確立しても良い。イグレスPIUモジュール204−9は、順序付けバッファ870をフラッシングし及び現用ODU経路1306−1から受信した任意のEthernetパケット828を廃棄することにより、個々の再順序付けバッファ870を流出させて良い。
停止及び開始ODU送信メッセージの各々は、Ethernetパケット損失を最小化するために、T連続回数だけ送信されて良い。ここで、Tの値は1以上である。一実施形態では、Tは3に設定される。1又は複数の他の実施形態では、Tの値は、テールエンドOTNスイッチ1302の構成、システムブートアップ、等の間に設定されて良い。イングレスPIUモジュール204−7は、1又は複数の停止ODU送信メッセージを受信することに応答して、保護状態での動作を開始し、現用ODU経路1306−1を介してキープアライブEthernetパケットを送信する。イングレスPIUモジュール204−8は、1又は複数の開始ODU送信メッセージを受信することに応答して、現用状態での動作を開始し、保護ODU経路1306−3を介してEthernetパケット828を送信する。
このようにOTNスイッチングシステムを作動することは、現用ODU経路1306のサブネットワーク保護(sub−network connection protection:SNCP)を提供する。テールエンドOTNスイッチ1302は、現用ODU経路1306を保護するために冗長保護ODU経路1307を確立することにより、現用ODU経路1306を保護して良い。テールエンドOTNスイッチ1302は、現用ODU経路1306に関連付けられるイベント又は状態を検出して良く、イベント又は状態の検出に基づき、保護切替が現用ODU経路1306上で実行されて良いことを決定して良い。決定に応答して、テールエンドOTNスイッチ1302は、保護ODU経路1307を用いて保護切替を実行する。これは、1+1OTN保護を提供する。
図14を参照すると、OTNスイッチングシステム1400の一実施形態におけるODU経路保護の連結の一例のブロック図が示される。図14では、OTNスイッチングシステム1400は、概略的表現で示され、縮尺通り又は透視図ではない。留意すべきことに、異なる実施形態では、OTNスイッチングシステム1400は、追加の又はより少ない要素により動作されて良い。
OTNスイッチングシステム1400では、ヘッドエンドOTNスイッチ1201及びテールエンドOTNスイッチ1302は、図13を参照して前述した通りである。図14に示されるOTNスイッチングシステム1400は、連結点OTNスイッチ1401は、ヘッドエンドOTNスイッチ1301とテールエンドOTNスイッチ1302との間に追加されている。連結点OTNスイッチ1401は、テールエンドOTNスイッチ1302の動作と同様に動作するが、OTNネットワーク1304−4のSNCPドメインの中の故障も防ぐことができると同時に、利用者に負担をかけないエンドツーエンド監視を伴うサブネットワーク接続(subnetwork connection with non−intrusive end−to−end monitoring:SNC/Ne)される。同情的(sympathetic)保護切替は、対象保護ドメインの外部、例えばOTNネットワーク1304−4ドメインから対象保護ドメイン、例えばOTNネットワーク1304−5SNCPドメインへの故障伝搬により引き起こされる保護切替である。OTNネットワーク1304−5SNCPドメインの中のホールドオフ遅延は、図13を参照して上述したホールドオフ遅延終了値より長いホールドオフ遅延終了値を有するよう構成されて良い。図示のように、連結点OTNスイッチ140のための1+1 SNCP保護は、テールエンドOTNスイッチ1302のための1+1保護と同様である。
連結点OTNスイッチ1401では、単一マルチキャストMACアドレスは、図13のOTNスイッチングシステムのための1+1保護として利用されて良い。現用ODU経路1306−2及び保護ODU経路1307−2は、単一のマルチキャストMACアドレスを利用して良い。ここで、現用状態で動作しているイングレスPIUモジュール204−10は、Ethernetパケット828をイグレスPIUモジュール204−12及び204−13の両方へ送信するために単一のマルチキャストMACアドレスを利用する。保護状態で動作しているイングレスPIUモジュール204−11は、例えばトラフィックを減少するため及びEthernet構造220−5の性能を向上するために、対応するEthernetパケット828をEthernet構造220−5へ送信することを抑制して良い。
図14では、保護切替は、一実施形態では、現用ODU経路1306−2においてイグレスPIUモジュール204−12により開始されて良い。連結点OTNスイッチ1401は、イングレスPIUモジュール204−11から保護ODU経路1307−2を介してEthernetパケット828を受信するためにイグレスPIUモジュール204−12について、及び対応するEthernetパケット828をイングレスPIUモジュール204−11から保護ODU経路1307−2を介して受信するためにイグレスPIUモジュール204−13について、保護切替を実行して良い。
図14では、保護切替は、幾つかの実施形態では、現用ODU経路1306−2においてイグレスPIUモジュール204−12により開始されて良い。イグレスPIUモジュール204−12とイングレスPIUモジュール204−10及び204−11との間の通信は、図13を参照して前述した1+1SNCP保護切替と同じであり、イグレスPIUモジュール204−12とイグレスPIUモジュール204−13との間の追加通信を伴う。1又は複数の他の実施形態では、保護切替は、イグレスプロセッサ1310−6により開始され、イグレスプロセッサ1310−6、イングレスプロセッサ1310−4、イングレスプロセッサ1310−5、イグレスプロセッサ1310−7は、状態、種々のOTNコマンド、及び他の情報及びデータを互いの間で通信して良い。イグレスプロセッサ1310−7は、イグレスプロセッサ1310−6が故障状態を有することの指示について、イグレスプロセッサ1310−6を周期的に監視して良い。イグレスプロセッサ1310−7は、イグレスプロセッサ1310−6が故障状態を有することの指示に応答して、イグレスプロセッサ1310−6から監視及び保護切替開始機能を引き継ぐ。1又は複数の他の実施形態では、イグレスPIUモジュール204−13は、同様に、イグレスPIUモジュール204−12が故障状態を有することの指示について、イグレスPIUモジュール204−12を周期的に監視して良い。イグレスPIUモジュール204−13は、イグレスPIUモジュール204−12が故障状態を有することの指示に応答して、PIUモジュール204−12から監視及び保護切替開始機能を引き継ぐ。
図15を参照すると、OTNスイッチングシステム1500の例示的な実施形態のブロック図が示される。図15では、OTNスイッチングシステム1500は、概略的表現で示され、縮尺通り又は透視図ではない。留意すべきことに、異なる実施形態では、OTNスイッチングシステム1500は、追加の又はより少ない要素により動作されて良い。OTNスイッチングシステム1500では、高次ODUにおける固有監視を伴うサブネットワーク接続保護(subnetwork connection protection with inherent monitoring:SNC/I)は、ドメイン間の保護されたハンドオフのために利用されて良いOTUリンクレイヤ保護をサポートするために使用されて良い。
連結点OTNスイッチ1501の動作中、現用状態で動作しているイングレスPIUモジュール204−14は、現用ODU経路1306−3に関連付けられるEthernetパケット828を、イグレスPIUモジュール204−16へ送信して良い。イングレスPIUモジュール204−14は、現用ODU経路1306−4に関連付けられるEthernetパケット828も、イグレスPIUモジュール204−17へ送信して良い。イングレスPIUモジュール204−14は、さらに、現用ODU経路1306−5に関連付けられるEthernetパケット828を、イグレスPIUモジュール204−18へ、Ethernet構造220−6を介して送信して良い。保護状態で動作しているイングレスPIUモジュール204−15は、ODU経路1307−3、ODU経路1307−4、及びODU経路1307−5に関連付けられる対応するEthernetパケット828を送信することを抑制して良い。
連結点OTNスイッチ1501の動作中、現用状態で動作しているイングレスPIUモジュール204−14、及び保護状態で動作しているイングレスPIUモジュール204−15のうちの少なくとも1つは、保護切替が実行され得ることを決定して良い。決定に応答して、イグレスPIUモジュール204−16、204−17、及び204−18が通知されて良い。イングレスPIUモジュール204−14及び204−15とイグレスPIUモジュール204−16、204−17、及び204−18との間の通信は、図13及び図14を参照して上述した通信と同様である。1又は複数の他の実施形態では、2以上のイングレスPIUモジュール204が、保護切替が実行され得ることを決定して良い。決定に応答して、2以上のイグレスPIUモジュール204が通知されて良い。1又は複数の他の実施形態では、イングレスプロセッサ1310−8及び1310−9は、保護切替が実行され得ることを決定して良く、イングレスプロセッサ1310−8及び1310−9並びにイグレスプロセッサ1310−10、1310−11、及び1310−12は、状態、種々のOTNコマンド、並びに他の情報及びデータを互いの間で通信して良い。連結点OTNスイッチ1501は、保護ODU経路1307−3に関連付けられるEthernetパケット828をイングレスPIUモジュール204−15からEthernet構造220−6を介して受信するために、イグレスPIUモジュール204−16について保護切替を実行して良い。さらに、イグレスPIUモジュール204−17は、保護ODU経路1307−4に関連付けられるEthernetパケット828を、イングレスPIUモジュール204−15から、Ethernet構造220−6を介して受信して良い。さらに、イグレスPIUモジュール204−18は、保護ODU経路1307−5に関連付けられるEthernetパケット828を、イングレスPIUモジュール204−15から、Ethernet構造220−6を介して受信して良い。
図16は、OTNスイッチングシステム1600の一実施形態におけるEthernet構造保護の一例のブロック図である。図16では、OTNスイッチングシステム1600は、概略的表現で示され、縮尺通り又は透視図ではない。留意すべきことに、異なる実施形態では、OTNスイッチングシステム1600は、追加の又はより少ない要素により動作されて良い。
図16では、複数のPIUモジュール204のうちのPIUモジュール204は、Ethernet構造220−7のEthernet構造プレーン1620における故障状態1622を検出して良い。検出に応答して、Ethernet構造プレーン1620における故障を避けてODUトラフィックをリダイレクトするために、OTNスイッチングシステム1600は、故障状態1622を他のPIUモジュール204へ送信して良い。故障を避けてODUトラフィックをリダイレクトすることにより、OTNスイッチングシステム1600は、Ethernet構造220−7を保護し、ODUトラフィックの連続送信を可能にする。
OTNスイッチングシステム1600では、他の故障状態1622の中でも特に、特定のPIUモジュール204は、Ethernet構造1620のうちの1つの故障に関連付けられる故障状態1622、Ethernet構造プレーン1620のうちの1つをシャットダウンする管理動作に関連付けられる故障状態1622、特定のPIUモジュール204のPIUポート208のうちの1つの故障に関連付けられる故障状態1622、特定のPIUモジュール204のPIUポート208のうちの1つと対応するEthernetスイッチ212との間の接続の故障に関連付けられる故障状態1622、のうちの少なくとも1つを検出して良い。OTNスイッチングシステム1600は、1又は複数のEthernet構造プレーン1620が故障し又はシャットダウンされる場合、対応するPIUモジュール204の1又は複数のPIUポート208が故障する場合、対応するPIUモジュール204の1又は複数のPIUポート208に対応する1又は複数の接続が故障する場合に、ODUトラフィックの連続送信を可能にするのに十分な帯域幅を提供する能力を有し得る。例えば、OTNスイッチングシステム1600は、Ethernet構造220−7のEthernet構造プレーン1620のうちの1つが故障するとき、1:3Ethernet構造保護を提供する。
OTNスイッチングシステム1600の動作中、Ethernetスイッチ212−9のEthernet構造プレーン1620−1の故障が生じ得る。故障は、Ethernetスイッチ212−9自体により直ちに検出されて良く又はされなくて良い。しかしながら、PIU204であるそれ自体の通信相手により検出されて良い。PIUモジュール204−19は、Ethernet構造プレーン1620−1の故障に関連付けられる故障状態1622−1を、その故障状態1622−2を見ることにより検出して良い。このとき、PIU204−19及びその関連するブレード制御部1614−1は、障害が局所的リンク障害か又はEthernetスイッチ212−9上のより広域の障害かを常に知っているわけではない。1614−1は、ローカルリンク障害より広域の障害が存在し得ることの指示を検出し又は受信する前に、ODUトラフィックを障害リンクへ向けて転送するのを停止することにより、該障害をEthernet転送プレーン全体ではなくローカルリンク障害として扱う。PIUモジュール204−19は、Ethernet構造プレーンの残りの部分のODUトラフィックの送信を続ける一方で、Ethernet構造プレーン1620−1を介するODUトラフィックの送信も停止して良い。PIUモジュール204−19は、さらに、故障状態1622−1を、PIUブレード筐体220−3の関連するPIUブレード制御部1614−1に通信して良い。PIUブレード制御部1614−1は、故障状態1622−1を他の関連するPIUモジュール204へ通信して良い。したがって、他の関連するPIUモジュール204、例えばPIUモジュール204−20は、障害を検出しているPIUモジュール204(本例ではPIUモジュール204−19)へのEthernet構造プレーン1620−1を介するODUトラフィックの送信を停止でき、一方で、Ethernet構造プレーンの残りの部分のPIUモジュール204−19へODUトラフィックを送信し続ける。PIUモジュール204−20は(図16の本例では、それ自身のリンク障害1622−3を検出する前に)、1620−1を含む全てのEthernet構造プレーンに渡る他のODUトラフィックのトランスポートを続けて良い。故障状態1622−1に関連付けられるシーケンス番号を有する障害メッセージは、故障状態1622−1を他のPIUモジュール204に関連付けられる他のPIUブレード制御部1614に報告するために、他のEthernet構造プレーン1620−2乃至1620−4を用いて直ちに送信される。障害メッセージは、MACブロードキャストリアルタイム制御メッセージとして送信されて良い。PIUブレード制御部1614−1は、故障状態1622−1に関連付けられる同じシーケンス番号を有する障害メッセージT連続回数を送信して良い。ここで、Tは1以上である。PIUブレード制御部1614−1は、上述のように、巡回歩行シーケンス944(図9を参照)を用いて障害メッセージを送信して良い。障害メッセージを他のPIUブレード制御部1614へ送信するPIUブレード制御部1614−1は、MACブロードキャストリアルタイム制御メッセージの数を低減し得る。1又は複数の他の実施形態では、PIUモジュール204−19は、他のPIUモジュール204に故障状態1622−1を報告するために、故障状態1622−1に関連付けられる障害メッセージを送信して良い。
故障状態1622−1に関連付けられる障害メッセージを受信すると、他のPIUブレード制御部1614は、故障状態1622−1を他の関連するPIUモジュール204に通信して良い。したがって、他の関連するPIUモジュール204は、故障を検出したPIUモジュール(PIUモジュール204−19)へのEthernet構造プレーン1620−1を介するODUトラフィックの送信を停止でき、その一方で、Ethernet構造プレーンの残りの部分でODUトラフィックを送信し続ける。図16に示すように、故障状態1622−1に関連付けられる障害メッセージを受信すると、PIUブレード制御部1614−2は、故障状態1622−1をPIUモジュール204−21及びPIUモジュール204−22に通信して良い。したがって、PIUモジュール204−21及びPIUモジュール204−22は、それらのODUトラフィックのPIUモジュール204−19へのEthernet構造プレーン1620−1を介する送信を停止でき、その一方でEthernet構造プレーンの残りの部分でODUトラフィックを送信し続ける。
1又は複数の他の実施形態では、OTNスイッチングシステム1600の動作中、i番目のEthernet構造プレーン1620−1にある対応するPIUモジュール204−19のi番目のPIUポート208−13の障害に関連付けられる故障状態1622−2及びi番目のEthernet構造プレーン1620−1にある対応するPIUモジュール204−20のi番目のPIUポート208−17の障害に関連付けられる第2故障状態1622−3が生じ得る。故障状態1622−2及び第2故障状態1622−3は、実質的に同時に生じる。PIUモジュール204−19は、故障状態1622−2を検出して良く、自身のi番目のPIUポート208−13を介する自身の個々のODUトラフィックの送信を停止して良い。PIUモジュール204−19は、故障状態1622−2をPIUブレード制御部1614−1にも通信して良い。PIUモジュール204−20は、第2故障状態1622−3を検出して良く、自身のi番目のPIUポート208−17を介する自身の個々のODUトラフィックの送信を停止して良い。PIUモジュール204−20は、第2故障状態1622−3をPIUブレード制御部1614−1にも通信して良い。このとき、PIUブレード制御部1614−1は、元々PIU204−19により検出されたローカルリンク障害の向こう側の障害を理解する。今や、PIUブレード制御部1614−1は、任意のODU送信のためにEthernet構造プレーン1620−1を使用しないよう、自身のPIUモジュール204に指示して良い。PIUブレード制御部1614−1は、故障状態1622−2をPIUモジュール204−20に通信して良い。したがって、PIUモジュール204−20は、対応するPIUモジュール204−19のi番目のPIUポート208−13への自身の個々のODUトラフィックの送信を停止できる。PIUブレード制御部1614−1は、故障状態1622−3もPIUモジュール204−19に通信して良い。したがって、PIUモジュール204−19は、対応するPIUモジュール204−20のi番目のPIUポート208−17への自身の個々のODUトラフィックの送信を停止できる。上述のように、故障状態1622−2及び第2故障状態1622−3に関連付けられるMACブロードキャスト障害メッセージは、故障状態1622−2及び第2故障状態1622−3を、Ethernet構造プレーン1620−2乃至1620−4のうちのいずれか1つを用いるPIUモジュール204−21及び204−22に関連付けられるPIUブレード制御部1614−2に報告するために、同様に直ちに送信されて良い。
故障状態1622−2及び第2故障状態1622−3に関連付けられる障害メッセージを受信すると、PIUブレード制御部1614−2も、ローカルリンク障害を超えることを理解し、したがって、Ethernet構造プレーン1620−1を介するODUトラフィックの送信を停止して良い。PIUブレード制御部1614−2は、故障状態1622−2及び第2故障状態1622−3を、PIUモジュール204−21及び204−22に通信して良い。したがって、PIUモジュール204−21及び204−22は、i番目のEthernet構造プレーン1620−1にある対応するPIUモジュール204−19のi番目のPIUポート208−13及び対応するPIUモジュール204−20のi番目のPIUポート208−17への、それらの個々のODUトラフィックの送信を停止できる。このように故障状態1622−2及び第2故障状態1622−3の発生を取り扱うことは、より簡易なメカニズムでEthernet構造保護を提供することを可能にできる。
1又は複数の他の実施形態では、OTNスイッチングシステム1600の動作中、i番目のEthernet構造プレーン1620−1にある対応するPIUモジュール204−19のi番目のPIUポート208−13の障害に関連付けられる故障状態1622−2及びi番目のEthernet構造プレーン1620−1にある対応するPIUモジュール204−20のi番目のPIUポート208−17の障害に関連付けられる第2故障状態1622−3が生じ得る。故障状態1622−2及び第2故障状態1622−3は、実質的に同時に生じる。PIUモジュール204−19は、故障状態1622−2を検出して良く、故障状態1622−2をPIUブレード制御部1614−1に通信して良い。PIUモジュール204−20は、第2故障状態1622−3を検出して良く、第2故障状態1622−3をPIUブレード制御部1614−1に通信して良い。PIUブレード制御部1614−1は、故障状態1622−2をPIUモジュール204−20に通信して良い。したがって、PIUモジュール204−20は、全ての自身のPIUポート208−17乃至208−20を介する自身の個々のODUトラフィックの送信を停止できる。PIUブレード制御部1614−1は、故障状態1622−3もPIUモジュール204−19に通信して良い。したがって、PIUモジュール204−19は、全ての自身のPIUポート208−13乃至208−16を介する自身の個々のODUトラフィックの送信を停止できる。PIUブレード制御部1614−1は、さらに、故障状態1622−2及び第2故障状態1622−3に関連付けられるMACブロードキャスト障害メッセージを生成して良い。
PIUブレード制御部1614−1は、PIUモジュール204−19及びPIUモジュール204−20に関連付けられる遅延を開始して良い。一実施形態では、遅延は、0乃至Nの間の乱数に設定されて良い。例えば、Nは、100マイクロ秒に設定されて良い。PIUブレード制御部1614−1が任意の他のPIUブレード制御部1614、例えばPIUブレード制御部1614−2から障害メッセージを受信することなく遅延が終了した場合、PIUブレード制御部1614−1は、PIUモジュール204−21及び204−22に関連付けられる故障状態1622−2及び第2故障状態1622−3をPIUブレード制御部1614−2に報告するために、故障状態1622−2及び第2故障状態1622−3に関連付けられる第1MACブロードキャスト障害メッセージを直ちに送信して良い。第1MACブロードキャストメッセージを送信した後に、PIUブレード制御部1614−1は、PIUモジュール204−19及びPIUモジュール204−20に関連付けられる第2遅延を開始して良い。一実施形態では、第2遅延は、(2*N+M)に等しい値に設定されて良い。例えば、Nは上述のように設定されて良く、Mは1000マイクロ秒より小さい値に設定されて良い。
PIUブレード制御部1614−1がPIUブレード制御部1614−2から障害メッセージを受信することなく第2遅延が終了した後、PIUブレード制御部1614−1は、i番目のEthernet構造プレーン1620−1にある複数のi番目のPIUポート208障害を検出する唯一のものである。この場合、PIUブレード制御部1614−1は、故障状態1622−2及び第2故障状態1622−3をPIUモジュール204−21及び204−22に関連付けられるPIUブレード制御部1614−2に報告するために、故障状態1622−2及び第2故障状態1622−3に関連付けられる第2MACブロードキャスト障害メッセージを直ちに送信して良い。PIUブレード制御部1614−1は、PIUモジュール204−19及び204−20に通信して良い。したがって、PIUモジュール204−19及び204−20は、それぞれ、全ての自身の非障害PIUポート208−14乃至208−16及び非障害PIUポート208−18乃至208−20を介してODUトラフィックの送信を開始して良い。
j番目のEthernet構造プレーン1620−2にある対応するPIUモジュール204−21のj番目のPIUポート208―22の障害に関連付けられる故障状態1622−4は、PIUモジュール204−21により検出されている。第2遅延の終了の前に、PIUブレード制御部1614−1が故障状態1622−4に関連付けられる第3MACブロードキャスト障害メッセージをPIUブレード制御部1614−2から受信している場合、PIUブレード制御部1614−1は、i番目のEthernet構造プレーン16201にある及びj番目のEthernet構造プレーン1620−2にあるどのPIUポート208が故障しているかを示すPIUポート状態マップを生成して良い。第2遅延の終了の後に、PIUブレード制御部1614−1は、PIUモジュール204−19のi番目のPIUポート208―13以外のPIUモジュール204−19のM個のPIUポート208−14乃至208−16から、PIUモジュール204−20のi番目のPIUポート208―17及びPIUモジュール204−21のj番目のPIUポート208−22以外のPIUモジュール204−20、204−21及び204−22への、個々のODUトラフィックの送信を開始して良い。PIUブレード制御部1614−1は、PIUモジュール204−20のi番目のPIUポート208―17以外のPIUモジュール204−20のM個のPIUポート208−18乃至208−20から、PIUモジュール204−19のi番目のPIUポート208―13及びPIUモジュール204−21のj番目のPIUポート208−22以外のPIUモジュール204−19、204−21及び204−22への、個々のODUトラフィックの送信も開始して良い。PIUブレード制御部1614−1は、PIUモジュール204−19の関連する非障害PIUポート208―13乃至208−16及びPIUモジュール204−20の非障害PIUポート208―17乃至208−20のうちのどれがそれらの個々のODUトラフィックの送信のために使用できるか、及びPIUモジュール204−21の障害PIUポート208−21乃至208−24及びPIUモジュール204−22の障害PIUポート208―25乃至208−28のうちのどれが個々のODUトラフィックを送信されるべきでないかを決定するために、PIUポート状態を使用して良い。PIUブレード制御部1614−1は、故障状態1622−2、第2故障状態1622−3、及び第3故障状態1622−4をPIUモジュール204−21及び204−22に関連付けられるPIUブレード制御部1614−2に報告するために、故障状態1622−2、第2故障状態1622−3、及び第3故障状態1622−4に関連付けられる第4MACブロードキャスト障害メッセージも直ちに送信して良い。PIUブレード制御部1614−1は、故障状態1622−2、第2故障状態1622−3、及び第3故障状態1622−4に関連付けられる自身のPIUポート状態マップを、OTNスイッチ制御部214へ更に送信して良い。
遅延の終了前に、PIUブレード制御部1614−1が他のPIUブレード制御部1614、例えばPIUブレード制御部1614−2から障害メッセージを受信している場合、それはEthernet構造プレーン1620−1が故障していることを示し得る。遅延の終了後、PIUブレード制御部1614−1は、PIUモジュール204−19及びPIUモジュール204−20に関連付けられる第2遅延及び第3遅延を開始して良い。一実施形態では、第3遅延は、N/2乃至Mの間の乱数に設定されて良い。第2遅延、数N、及び数Mは、上述の通りである。
第2遅延の終了後、PIUブレード制御部1614−1は、M個のEthernet構造プレーン1620にあるどのPIUポート208が故障しているかを示すPIUポート状態マップに関連付けられる第5MACブロードキャスト障害メッセージを送信して良い。現在PIUポート状態マップは、i番目のEthernet構造プレーン1620−1にある対応するPIUモジュール204−19のi番目のPIUポート208−13、及びi番目のEthernet構造プレーン1620−1にある対応するPIUモジュール204−20のi番目のPIUポート208−17が故障していることを示す。PIUブレード制御部1614−1は、PIUブレード制御部1614−2から受信した任意の障害メッセージからのPIUポート状態マップを更新し続けて良い。第3遅延の終了の後に、PIUブレード制御部1614−1は、PIUモジュール204−19のi番目のPIUポート208―13以外のPIUモジュール204−19のM個のPIUポート208−14乃至208−16から、PIUモジュール204−20のi番目のPIUポート208―17以外のPIUモジュール204−20、204−21及び204−22への、個々のODUトラフィックの送信を開始して良い。PIUブレード制御部1614−1は、PIUモジュール204−20のi番目のPIUポート208―17以外のPIUモジュール204−20のM個のPIUポート208−18乃至208−20から、PIUモジュール204−19のi番目のPIUポート208―13以外のPIUモジュール204−19、204−21及び204−22への、個々のODUトラフィックの送信も開始して良い。PIUブレード制御部1614−1は、自身のPIUポート状態マップをOTNスイッチ制御部214へ更に送信して良い。
1又は複数の他の実施形態では、OTNスイッチングシステム1600の動作中、PIUブレード制御部1614−2に関連付けられるPIUモジュール204−21及び204−22は、個々のPIUモジュール204−21及び204−22に対応するそれら自身のPIUポート208―21乃至208−28に関連付けられる任意の故障状態1622を検出していなくて良い。PIUブレード制御部1614−2が、i番目のEthernet構造プレーン1620−1にある対応するPIUモジュール204−19のPIUポート208−13に関連付けられる故障状態1622−2に関連付けられる第6MACブロードキャスト障害メッセージを受信すると、PIUブレード制御部1614−2は、i番目のEthernet構造プレーン1620−1にあるPIUモジュール204−21のPIUポート208−21及びPIUモジュール204−22のPIUポート208−25の全ての自身のPIUポートを介する自身の個々のODUトラフィックの送信を停止して良い。PIUブレード制御部1614−2は、関連する第4遅延も開始して良い。一実施形態では、第4遅延は、(3×N+M)に設定されて良い。ここで、N及びMは上述の通りである。遅延、第2遅延、第3遅延、及び第4遅延は、それぞれ、タイマ、遅延装置、又は別のメカニズムを用いて実装されて良い。第3遅延の終了は、第2遅延の終了の後であり、第2遅延の終了は遅延の終了の後である。PIUブレード制御部1614−2は、i番目のEthernet構造プレーン1620−1にある対応するPIUモジュール204−19のPIUポート208−13が故障していることを示す第2PIUポート状態マップも生成して良い。PIUブレード制御部1614−2は、自身の受信した任意の更なるMACブロードキャスト障害メッセージ又はPIUモジュール204−21及び204−22により検出された故障状態に基づき、第2PIUポート状態マップを更に更新して良い。
第4遅延の終了の後に、PIUブレード制御部1614−2は、PIUモジュール204−21のM個のPIUポート208−21乃至208−24から、PIUモジュール204−19のi番目のPIUポート208−13以外のPIUモジュール204−19、204−20及び204−22への、個々のODUトラフィックの送信を開始して良い。PIUブレード制御部1614−2は、PIUモジュール204−22のM個のPIUポート208−25乃至208−28から、PIUモジュール204−19のi番目のPIUポート208−13以外のPIUモジュール204−19、204−20及び204−21への、個々のODUトラフィックの送信も開始して良い。PIUブレード制御部1614−2は、M個のEthernet構造プレーン1620にあるどのPIUポート208が故障しているかを示す第2PIUポート状態マップに関連付けられる第7MACブロードキャスト障害メッセージを、故障していない対応するEthernet構造プレーン1620にあるPIUモジュール208のPIUポート208へ更に送信して良い。現在第2PIUポート状態マップは、i番目のEthernet構造プレーン1620−1にある対応するPIUモジュール204−19のi番目のPIUポート208−13が故障していることを示す。PIUブレード制御部1614−2は、自身の第2PIUポート状態マップをOTNスイッチ制御部214へ更に送信して良い。
1又は複数の他の実施形態では、OTNスイッチングシステム1600の動作中、PIUブレード制御部1614−2に関連付けられるPIUモジュール204−21は、自身のPIUポート208−21に関連付けられる故障状態1622−4を検出していて良い。この場合、PIUブレード制御部1614−2は、PIUブレード制御部1614−2に関連付けられるPIUモジュール204−21及び204−22が個々のPIUモジュール204−21及び204−22に対応するそれら自身のPIUポート208−21乃至208−28に関連付けられる故障状態1622を検出していない場合と同じEthernet構造保護を実行して良い。
OTNスイッチ制御部214は、全てのPIUポート状態マップからの全ての故障状態と、自身が受信した障害メッセージとを同期させ、不一致が存在するかどうかを決定するために、同期した障害の全てを分析して良い。決定が、不一致が存在することを示すとき、OTNスイッチ制御部214は、アラームをあげ、最悪状況PIUポート状態マップを、OTNスイッチングシステム1600の中の全てのPIUブレード制御部1614へプッシュして良い。決定が、不一致が存在しないことを示すとき、OTNスイッチ制御部214は、全ての同期した故障状態を記録し、OTNスイッチングシステム1600の全ての同期した障害に関連する管理タスクを実行して良い。
OTNスイッチングシステム1600のPIUブレード制御部1614にこの分散型方法でEthernet構造保護を実行させることにより、対応するPIUモジュール204のどれ位多くのPIUポート208が故障しているか及びどれ位多くが故障していないかの決定の効率が向上できる。この分散型方法でEthernet構造保護を実行することは、同じEthernet構造プレーン1620にあるPIUブレード制御部にPIUポート障害をリアルタイムに認識させ得る。この分散型方法でEthernet構造保護を実行することは、同じEthernet構造プレーン1620にある非障害PIUポート208を使用可能にできる。したがって、全てのEthernet構造プレーン1620は、障害Ethernet構造プレーン又はPIUポート障害を修復し又は切り替えるための適正な動作の間、負荷共有から利益を享受し続けることができる。
図17を参照すると、本願明細書で記載されるような、OTNスイッチングシステムにおけるEthernet構造保護のための方法1700の一実施形態の選択された要素のフローチャートが示される。種々の実施形態で、方法1700は、OTNスイッチングシステム200、1300、1400、1500、及び1600を用いて実行されて良い。留意すべきことに、方法1700で記載される特定の動作は、異なる実施形態では任意であって良く或いは再配置されて良い。
方法1700のOTNスイッチングシステムは、OTNスイッチを有して良い。OTNスイッチは、M個のEthernet構造プレーンを有するEthernet構造を有して良い。M個のEthernet構造プレーンの各々は、M個のEthernetスイッチのうちの対応するEthernetスイッチを有して良い。OTNスイッチは、第1PIUモジュールを含む複数のPIUモジュールも有して良い。各PIUモジュールは、M個のPIUポートを有する。ここで、複数のPIUモジュールの各々のi番目のPIUポートは、Ethernet構造のi番目のEthernet構造プレーンのi番目のEthernetスイッチに接続されて良い。方法1700は、ステップ1702で開始して良く、M番目のEthernet構造プレーンのうちi番目のEthernet構造プレーン、M個のEthernetスイッチのうちのi番目のEthernetスイッチ、及びM個のPIUポートのうちのi番目のPIUポートを示すために、1乃至Mの範囲に渡る値を有する変数iを割り当て、Mは1より大きい。ステップ1704で、第1PIUモジュールにより、i番目のEthernet構造プレーンにおける第1PIUモジュールのi番目のPIUポートに関連付けられる故障状態を検出する。ステップ1706で、複数のPIUモジュールから第1PIUモジュールのi番目のPIUポートへのODUトラフィックの送信を停止するために、故障状態を送信する。
<分離OTNスイッチングシステムにおけるODU経路保護>
図18を参照すると、本願明細書で記載されるような、OTNスイッチングシステムにおけるODU経路保護のための方法1800の一実施形態の選択された要素のフローチャートが示される。種々の実施形態で、方法1800は、OTNスイッチングシステム1300、1400、及び1500を用いて実行されて良い。留意すべきことに、方法1500で記載される特定の動作は、異なる実施形態では任意であって良く或いは再配置されて良い。
方法1800のOTNスイッチングシステムは、第2OTNスイッチからの現用ODU経路及び保護ODU経路に接続される第1OTNスイッチを有して良い。方法1800は、ステップ1802で開始して良く、第1イングレスPIUモジュールにより、第2OTNスイッチから現用ODU経路を介してODUを受信し、第1OTNスイッチに含まれるEthernet構造へEthernetパケットを送信する。ステップ1804で、第2イングレスPIUモジュールにより、保護ODU経路を介して第2OTNスイッチからODUを受信し、第2イングレスPIUモジュールはEthernet構造に接続される。ステップ1806で、第1イグレスPIUモジュールにより、Ethernet構造からEthernetパケットを受信する。ステップ1808で、保護ODU経路を用いる保護切替が現用ODU経路で実行され得ると決定することに応答して、第1OTNスイッチについて保護切替を実行し、保護ODU経路から第2イングレスPIUモジュールからEthernet構造を介してEthernetパケットを受信すことを含む。
<分離光トランスポートネットワークスイッチングシステムにおける仮想回線カード>
図19を参照すると、PIUモジュール204とEthernetスイッチ212との間の相互接続の一実施形態の選択された要素のブロック図が示される。図19は、説明を目的とする概略図であり、実寸通り又は透視図ではない。PIUモジュール204は、それぞれ、種々のOTN入力及び出力208(円筒形ポートとして示される)、OTNoE206、及びポートP1〜P4 208を有して良い。図19に示すように、PIUモジュール204のポート208は、Ethernetスイッチ212の個々のポート1920に接続される。一例では、PIUモジュール204−1のポートP1〜P4 208は、Ethernetスイッチ212のポートSP1 1920に接続される。別の例では、PIUモジュール204−3のポートP1〜P4 208は、Ethernetスイッチ212のポートSP3 1920に接続される。
図19に示すように、ポート208の各々は、QSFP(quad small form−factor pluggable)通信機を有して良い。例えば、QSFP通信機はQSFP28通信機であって良い。例えば、QSFP28通信機は、個々のEthernetスイッチへ212との100GE(100ギガビットイーサネット)接続をサポートし及び/又は可能にして良い。
相互接続1900に示すように、個々のEthernetスイッチ212のポート1920は、仮想回線カード1922を形成して良い。例えば、図示のように、個々のEthernetスイッチ212のポートSP1 1920は、仮想回線カード1922−1を形成して良い。他の仮想回線カード1922は、個々のEthernetスイッチ212の他のEthernetスイッチポート1920を有して良い。例えば、個々のEthernetスイッチ212のEthernetスイッチポートSP3 1920は、仮想回線カード1922−2を形成して良い。
1又は複数の実施形態では、仮想スイッチ構造は、複数の仮想回線カード1922を有して良い。一例では、仮想回線カード1922−1は、仮想スイッチ構造の中で仮想回線カード1922−1にユニークな仮想アドレスに関連付けられて良い。別の例では、仮想回線カード1922−2は、仮想スイッチ構造の中で仮想回線カード1922−2にもユニークな異なる仮想アドレスに関連付けられて良い。
1又は複数の実施形態では、PIUモジュール204の各々は、ユニークなMACアドレスに関連付けられて良い。ここで、MACアドレスの少なくとも一部は、PIUモジュール204に接続される仮想回線カード1922の仮想アドレスを有して良い。ここで、MACアドレスの部分は、仮想回線カード1922の仮想アドレスに揃っている。一例では、PIUモジュール204のMACアドレスの最下位11ビットは、PIUモジュール204に接続される仮想回線カード1922の仮想アドレスを有して良い。一例では、PIUモジュール204−1のMACアドレスの最下位11ビットは、参照用に、PIUモジュール204−1に接続される仮想回線カード1922−1の仮想アドレスである「00000000001」を有して良い。別の例では、PIUモジュール204−3のMACアドレスの最下位11ビットは、参照用に、PIUモジュール204−3に接続される仮想回線カード1922−2の仮想アドレスである「00000001001」であって良い。
図19はEthernetスイッチ212の特定数のポート1920を示すが、一実施形態では、Ethernet構造は、M個のEthernetスイッチ212を有して良い。M個のEthernetスイッチ212の各々はN個のEthernetスイッチポート1920を有し、N個のEthernetスイッチポート1920の各々はP個のEthernetスイッチサブポートを有し、1乃至Mの範囲の値を有する変数iは、M個のEthernetスイッチ212のうちの1つに対応するi番目のEthernetスイッチ212を示し、1乃至Nの範囲の値を有する変数jは、N個のEthernetスイッチポート1920のうちの1つに対応するj番目のEthernetスイッチポート1920を示し、1乃至Pの範囲の値を有する変数kは、P個のEthernetスイッチサブポートのうちの1つに対応するk番目のEthernetスイッチサブポートを示し、N、M、Pは1より大きい。さらに、PIUモジュール204は、M個のPIUポート208を有するPIUモジュールを有して良い。ここで、M個のPIUポート208のうちのi番目のPIUポート208は、i番目のEthernetスイッチ212に対応する。Ethernetスイッチサブポートは、図20を参照して更に詳述される。例えば、仮想回線カード1922は、M個のEthernetスイッチ212の各々のj番目のEthernetスイッチポート208の論理アグリゲーションを有して良い。
さらに、光伝送ネットワークスイッチングのためのEthernet構造は、M個のEthernetスイッチ212を有して良い。M個のEthernetスイッチ212の各々はN個のEthernetスイッチポート1920を有し、N個のEthernetスイッチポート1920の各々はP個のEthernetスイッチサブポートを有し、1乃至Mの範囲の値を有する変数iは、M個のEthernetスイッチ212のうちの1つに対応するi番目のEthernetスイッチ212を示し、1乃至Nの範囲の値を有する変数jは、N個のEthernetスイッチポート1920のうちの1つに対応するj番目のEthernetスイッチポートを示し、1乃至Pの範囲の値を有する変数kは、P個のEthernetスイッチサブポートのうちの1つに対応するk番目のEthernetスイッチサブポートを示し、N、M、Pは1より大きい。Ethernet構造は、第1PIUモジュール204を含む複数のPIUモジュール204であって、それぞれM個のPIUポート208を有する、複数のPIUモジュール204に排他的に結合されて良く、第1PIUモジュール204のi番目のPIUポート208はi番目のEthernetスイッチ212に対応する。Ethernet構造は、PIUモジュール204及びPIUモジュール204に関連付けられる仮想スイッチ構造を用いて光データユニットをスイッチングするために使用されて良い。
1又は複数の実施形態では、1又は複数のPIUモジュール204は、1又は複数の小型形状因子(small form−factor:SFP)通信機により構成されて良い。例えば、SFP通信機の各々は、Ethernetスイッチ212との1又は複数の25GE(25ギガビットイーサネット)接続をサポートし又は可能にし得るSFP28通信機であって良い。例えば、Ethernetスイッチ212のQSFP28ポートは、4個の25GE Ethernetスイッチサブポートに分割されて良い。Ethernetスイッチサブポートの利用は、図20を参照して更に記載されるように、他の仮想回線カード1922を有効にして良い。
図20を参照すると、高密度コネクタ2000を有する仮想スイッチ構造の一実施形態のブロック図である。図20は、説明を目的とする概略図であり、実寸通り又は透視図ではない。図示のように、Ethernetスイッチ212のポート1920は、4個の25GE Ethernetスイッチサブポート2020に分割されて良い。例えば、SFP28通信機2020は、Ethernetスイッチ212の100GEポート1920を、4個の25GE個別接続に分割して良い。
1又は複数の実施形態では、PIUモジュール204のポート208は、Ethernetスイッチ212の対応するEthernetスイッチサブポート2020に接続される。一例では、PIUモジュール204−1のポート208は、Ethernetスイッチ212のEthernetスイッチサブポートS1〜S4 2020に接続される。別の例では、PIUモジュール204−2のポート208は、Ethernetスイッチ212のEthernetスイッチサブポートS8 2020に接続される。前述の2つの例では、EthernetスイッチサブポートS1〜S4及びS8 2020は、例えばEthernetスイッチ212との個々の接続をサポートし及び/又は可能にし得るSFP28通信機であって良い。
1又は複数の実施形態では、個々のEthernetスイッチ212のEthernetスイッチサブポート2020は、仮想回線カード2022を形成して良い。例えば、図示のように、個々のEthernetスイッチ212のEthernetスイッチサブポートS1 2020は、仮想回線カード2022−1を形成して良い。他の仮想回線カード2022は、個々のEthernetスイッチ212の他のEthernetスイッチサブポート2020を有して良い。例えば、個々のEthernetスイッチ212のEthernetスイッチサブポートS8 2020は、仮想回線カード2022−2を形成して良い。
上述のように、1又は複数の実施形態によると、仮想スイッチ構造2024は、複数の仮想回線カード2022を有して良い。一例では、仮想回線カード2022−1は、仮想スイッチ構造の中で仮想回線カード2022−1にユニークな仮想アドレスに関連付けられて良い。別の例では、仮想回線カード2022−2は、仮想スイッチ構造の中で仮想回線カード2022−2にもユニークな異なる仮想アドレスに関連付けられて良い。
さらに、1又は複数の実施形態によると、PIUモジュール204の各々は、上述のように、ユニークなMACアドレスに関連付けられて良い。ここで、MACアドレスの少なくとも一部は、PIUモジュール204に接続される仮想回線カード2022の仮想アドレスを有して良い。ここで、MACアドレスの部分は、仮想回線カード2022の仮想アドレスに揃っている。一例では、PIUモジュール204のMACアドレスの最下位11ビットは、PIUモジュール204に接続される仮想回線カード2022の仮想アドレスを有して良い。PIUモジュール204−1に関する一例では、PIUモジュール204−1のMACアドレスの最下位11ビットは、参照用に、PIUモジュール204−1に接続される仮想回線カード2022−1の仮想アドレスである「00000000001」を有して良い。PIUモジュール204−2に関する一例では、PIUモジュール204−2のMACアドレスの最下位11ビットは、参照用に、PIUモジュール204−2に接続される仮想回線カード2022−2の仮想アドレスである「00000001000」を有して良い。
1又は複数の実施形態では、仮想回線カード2022は、M個のEthernetスイッチ212の各々の対応するEthernetスイッチポート1920の各々のk番目のEthernetスイッチサブポート2020で開始するM個のEthernetスイッチ212の各々の対応するEthernetスイッチポート1920の各々の複数の連続するEthernetスイッチサブポート2020の論理アグリゲーションを有して良い。例えば、仮想回線カード2022−3は、M個のEthernetスイッチ212の各々の対応するEthernetスイッチポート1920の各々のk番目の複数の連続するEthernetスイッチサブポート2020 S125乃至S128の論理アグリゲーションを有して良い。例えば、図示のように、仮想回線カード2022−3は、Ethernetスイッチ212の各々にあるEthernetスイッチポート1920 C1乃至C32のうちEthernetスイッチポート1920 C32全体を利用して良い。
さらに、1又は複数の実施形態によると、仮想回線カード2022−3は、仮想スイッチ構造2024の複数の仮想回線カード2022のうちの1つであって良い。一例では、仮想回線カード2022−3は、仮想スイッチ構造2024の中で仮想回線カード2022−3にユニークな仮想アドレスに関連付けられて良い。例えば、PIUモジュール204−3は、上述のように、ユニークなMACアドレスに関連付けられて良い。ここで、MACアドレスの少なくとも一部は、PIUモジュール204−3に接続される仮想回線カード2022−3の仮想アドレスを有して良い。ここで、MACアドレスの部分は、仮想回線カード2022−3の仮想アドレスに揃っている。PIUモジュール204−3に関する一例では、PIUモジュール204−3のMACアドレスの最下位11ビットは、参照用2022−3に、PIUモジュール204−3に接続される仮想回線カード2022−3の仮想アドレスである「00001111101」を有して良い。
PIUブレード筐体は、特に、PIUスロットID、仮想回線カード幅、及び仮想回線カードアドレスに関連付けられる情報を有し又は格納して良い。一例では、PIUブレード筐体214−1(図2を参照)は、以下の例示的な表1の中の情報を有し又は格納して良い。別の例では、PIUブレード筐体214−2(図2を参照)は、以下の例示的な表2の中の情報を有し又は格納して良い。
Figure 2018014706
Figure 2018014706
制御部は、PIUモジュール204及びブレードを仮想スロットに関連付けるデータベースを維持して良い。例えば、OTNスイッチネットワーク要素制御部300(図3を参照)は、メモリ310(図3を参照)に格納される、PIUモジュール204(図2を参照)及びブレード214(図2を参照)を仮想回線カードに関連付けるデータベースを維持して良い。例えば、OTNスイッチネットワーク要素制御部300(図3を参照)により維持されるデータベースは、以下の例示的な表3の中の情報を有し又は格納して良い。
Figure 2018014706
一例では、維持されるデータベースの情報は、システムブートアップ又は構成中に筐体ブレード及びPIUモジュール204に提供されて良い。一例では、維持されるデータベースの情報は、システム再起動又は再構成中に筐体ブレード及びPIUモジュール204に提供されて良い。
図21を参照すると、光トランスポートネットワークスイッチングのためにEthernet構造を接続する方法2100の一実施形態が示される。ステップ2102で、M個のEthernetスイッチを含むEthernet構造において、M個のEthernetスイッチの各々はN個のEthernetスイッチポートを有し、N個のEthernetスイッチポートの各々はP個のEthernetスイッチポートを有し、M個のEthernetスイッチのうちの1つに対応するi番目のEthernetスイッチを示すために1乃至Mの範囲の値を有する変数iが割り当てられて良く、Mは1より大きい。ステップ2104で、N個のEthernetスイッチポートのうちの1つに対応するj番目のEthernetスイッチポートを示すために、1乃至Nの範囲の値を有する変数jが割り当てられて良い。ステップ2106で、P個のEthernetスイッチサブポートのうちの1つに対応するk番目のEthernetスイッチサブポートを示すために、1乃至Pの範囲の値を有する変数kが割り当てられて良く、Pは1より大きい。ステップ2108で、Ethernet構造は、第1PIUモジュールを含む複数のPIUモジュールであって、それぞれM個のPIUポートを有する、複数のPIUモジュールに排他的に結合されて良く、第1PIUモジュールのi番目のPIUポートはi番目のEthernetスイッチに接続される。ステップ2110で、光データユニットは、PIUモジュール及びPIUモジュールに関連付けられる仮想スイッチ構造を用いてEthernet構造を通じてスイッチングされて良い。
本願明細書に開示のように、分離OTNスイッチングシステム200の方法及びシステムは、スイッチングコアとしてEthernetトランシービング及びEthernet構造220へのOTNのためのPIUモジュールを用いるステップを有する。PIUモジュール204の中のカスタマイズされたOTN over Ethernetモジュール212は、種々のOTN機能をEthernet構造220を用いて実現可能にする。
以上に開示した主題は、説明のためであり、限定ではないと考えられるべきである。また、添付の特許請求の範囲は、本開示の真の精神及び範囲に包含される全ての変更、拡張及び他の実施形態を包含することを意図している。したがって、法により認められる最大範囲まで、本開示の範囲は、特許請求の範囲及びその等価物の最も広い許容可能な解釈により決定されるべきであり、前述の詳細な説明により限定又は制限されるべきではない。
以上の実施形態に加えて、更に以下の付記を開示する。
(付記1) 光信号をEthernetパケットとしてスイッチングする方法であって、前記方法は、
光トランスポートネットワーク(OTN)スイッチングシステムであって、
M個のEthernetスイッチを有するEthernet構造であって、前記M個のEthernetスイッチのうちのi番目のEthernetスイッチを示すために1乃至Mの範囲の値を有する変数iを割り当て、Mは1より大きい、Ethernet構造と、
第1プラグインユニバーサル(PIU)モジュール、第2PIUモジュール、及び第3PIUモジュールを含む複数のPIUモジュールであって、それぞれM個のPIUポートを有し、前記複数のPIUモジュールのうちの各々のi番目のPIUポートは、前記Ethernet構造の前記i番目のEthernetスイッチに接続される、PIUモジュールと、
を有するOTNスイッチングシステムにおいて、
前記第1PIUモジュールから前記第3PIUモジュールへの前記Ethernet構造を介する第1光データユニット(ODU)スイッチ接続と、前記第2PIUモジュールから前記第3PIUモジュールへの前記Ethernet構造を介する第2ODUスイッチ接続と、を確立するステップと、
前記第1PIUモジュールについて、前記M個のEthernetスイッチの第1順次的順序を選択するステップと、
前記第2PIUモジュールについて、前記M個のEthernetスイッチの第2順次的順序を選択するステップであって、前記第2順次的順序は前記第1順次的順序と異なる、ステップと、
前記第1PIUモジュールにおいて第1ODUを受信し、前記第1ODUに対応する第1Ethernetパケットを生成するステップであって、前記第1ODUは前記第1ODUスイッチ接続を介する送信のためのものである、ステップと、
前記第1Ethernetパケットを前記第1PIUモジュールの第1ポートから送信するステップであって、前記第1ポートは前記第1順次的順序に基づき選択される、ステップと、
前記第2PIUモジュールにおいて第2ODUを受信し、前記第2ODUに対応する第2Ethernetパケットを生成するステップであって、前記第2ODUは前記第2ODUスイッチ接続を介する送信のためのものである、ステップと、
前記第2Ethernetパケットを前記第2PIUモジュールの第2ポートから送信するステップであって、前記第2ポートは前記第2順次的順序に基づき選択される、ステップと、
を有する方法。
(付記2) 前記第1順次的順序及び前記第2順次的順序は、それぞれ、前記第1PIUモジュール及び前記第2PIUモジュールにそれぞれ関連付けられるM個のポート識別子を指定する、付記1に記載の方法。
(付記3) 前記第1順次的順序を選択するステップ及び前記第2順次的順序を選択するステップは、前記第3PIUモジュールにおいて実行され、
前記第3PIUモジュールから前記第1PIUモジュールへ前記第1順次的順序を送信するステップと、
前記第3PIUモジュールから前記第2PIUモジュールへ前記第2順次的順序を送信するステップと、
を更に有する付記1に記載の方法。
(付記4) 前記第1PIUモジュールにおいて第3ODUを受信するステップと、
前記第1PIUモジュールについて、前記第3ODUに関連付けられる第1イングレスルックアップテーブル(ILT)エントリを読み出すために、複数のILTエントリを有するILTのテーブルルックアップを実行するステップと、
前記第1PIUモジュールについて、前記第1ILTエントリに関連付けられる第1バンドリングバッファの第1位置に、前記第3ODUを格納するステップと、
前記第1PIUモジュールにおいて第4ODUを受信するステップと、
前記第1PIUモジュールについて、前記第4ODUに関連付けられる前記ILTの第2ILTエントリを読み出すために、前記ILTのテーブルルックアップを実行するステップと、
前記第1PIUモジュールについて、前記第2ILTエントリに関連付けられる前記第1バンドリングバッファの順序内で次にある第2位置に、前記第4ODUを格納するステップと、
前記第1PIUモジュールについて、前記第1ILTエントリ及び前記第2ILTエントリに関連付けられる前記第1バンドリングバッファにある前記第3ODU及び前記第4ODUに対応する第3Ethernetパケットを生成するステップと、
を更に有する付記1に記載の方法。
(付記5) 前記第1PIUモジュールについて、前記第1順次的順序に基づき前記第3PIUモジュールへ送信するために、第1送信キューに前記第3Ethernetパケットを格納するステップ、
を更に有する付記4に記載の方法。
(付記6) 前記第3PIUモジュールについて、第1受信キューに格納された前記第3Ethernetパケットを読み出すステップと、
前記第3PIUモジュールについて、前記第3Ethernetパケットから前記第3ODU及び前記第4ODUを読み出すステップと、
前記第3PIUモジュールについて、前記第3Ethernetパケットに関連付けられる第1イグレスルックアップテーブル(ELT)エントリを読み出すために、複数のELTエントリを有するELTのテーブルルックアップを実行するステップと、
を更に有する付記4に記載の方法。
(付記7) 前記第3PIUモジュールについて、前記第3Ethernetパケットの第1Ethernetパケットシーケンス番号に基づき、前記第1ELTエントリに関連付けられる第1再順序付けバッファの第1位置に、前記第3ODU及び前記第4ODUを格納するステップ、
を更に有する付記6に記載の方法。
(付記8) 前記第1PIUモジュールから前記第3PIUモジュールへの前記Ethernet構造を介する第3ODUスイッチ接続を確立するステップと、
前記第1PIUモジュールにおいて第3ODUを受信するステップであって、前記第3ODUは前記第3ODUスイッチ接続を介する送信のためのものである、ステップと、
前記第1PIUモジュールの第3ポートから前記第3ODUに対応する第3Ethernetパケットを送信するステップであって、前記第3ポートは連続送信ポートカウントに基づき選択される、ステップと、
を更に有する付記1に記載の方法。
(付記9) 前記第3ODUスイッチ接続は、前記第1ODUスイッチ接続と異なる、付記8に記載の方法。
(付記10) 前記連続送信ポートカウントは、単一ポートへの連続送信に基づく、付記8に記載の方法。
(付記11) 光トランスポートネットワーク(OTN)スイッチングシステムであって、
M個のEthernetスイッチを有するEthernet構造であって、変数iは、前記M個のEthernetスイッチのうちのi番目のEthernetスイッチを示すために1乃至Mの範囲の値を有し、Mは1より大きい、Ethernet構造と、
第1プラグインユニバーサル(PIU)モジュール、第2PIUモジュール、及び第3PIUモジュールを含む複数のPIUモジュールであって、それぞれM個のPIUポートを有し、前記複数のPIUモジュールのうちの各々のi番目のPIUポートは、前記Ethernet構造の前記i番目のEthernetスイッチに接続される、PIUモジュールと、
を有し、
前記OTNスイッチングシステムは、
前記第1PIUモジュールから前記第3PIUモジュールへの前記Ethernet構造を介する第1光データユニット(ODU)スイッチ接続と、前記第2PIUモジュールから前記第3PIUモジュールへの前記Ethernet構造を介する第2ODUスイッチ接続と、を確立し、
前記M個のEthernetスイッチの第1順次的順序を選択し、
前記M個のEthernetスイッチの第2順次的順序を選択し、前記第2順次的順序は前記第1順次的順序と異なり、
前記第1PIUモジュールにおいて第1ODUを受信し、前記第1ODUに対応する第1Ethernetパケットを生成し、前記第1ODUは前記第1ODUスイッチ接続を介する送信のためのものであり、
前記第1Ethernetパケットを前記第1PIUモジュールの第1ポートから送信し、前記第1ポートは前記第1順次的順序に基づき選択され、
前記第2PIUモジュールにおいて第2ODUを受信し、前記第2ODUに対応する第2Ethernetパケットを生成し、前記第2ODUは前記第2ODUスイッチ接続を介する送信のためのものであり、
前記第2Ethernetパケットを前記第2PIUモジュールの第2ポートから送信し、前記第2ポートは前記第2順次的順序に基づき選択される、
OTNスイッチングシステム。
(付記12) 前記第1順次的順序及び前記第2順次的順序は、それぞれ、前記第1PIUモジュール及び前記第2PIUモジュールにそれぞれ関連付けられるM個のポート識別子を指定する、付記11に記載のOTNスイッチングシステム。
(付記13) 前記第1順次的順序の選択及び前記第2順次的順序の選択は、前記第3PIUモジュールにおいて実行され、さらに、
前記第3PIUモジュールから前記第1PIUモジュールへ前記第1順次的順序を送信し、
前記第3PIUモジュールから前記第2PIUモジュールへ前記第2順次的順序を送信する、
付記11に記載のOTNスイッチングシステム。
(付記14) さらに、
前記第1PIUモジュールにおいて第3ODUを受信し、
前記第3ODUに関連付けられる第1イングレスルックアップテーブル(ILT)エントリを読み出すために、複数のILTエントリを有するILTのテーブルルックアップを実行し、
前記第1ILTエントリに関連付けられる第1バンドリングバッファの第1位置に、前記第3ODUを格納し、
前記第1PIUモジュールにおいて第4ODUを受信し、
前記第4ODUに関連付けられる前記ILTの第2ILTエントリを読み出すために、前記ILTのテーブルルックアップを実行し、
前記第2ILTエントリに関連付けられる前記第1バンドリングバッファの順序内で次にある第2位置に、前記第4ODUを格納し、
前記第1ILTエントリ及び前記第2ILTエントリに関連付けられる前記第1バンドリングバッファにある前記第3ODU及び前記第4ODUに対応する第3Ethernetパケットを生成する、
付記11に記載のOTNスイッチングシステム。
(付記15) さらに、
前記第1順次的順序に基づき前記第3PIUモジュールへ送信するために、第1送信キューに前記第3Ethernetパケットを格納する、
付記14に記載のOTNスイッチングシステム。
(付記16) さらに、
第1受信キューに格納された前記第3Ethernetパケットを読み出し、
前記第3Ethernetパケットから前記第3ODU及び前記第4ODUを読み出し、
前記第3Ethernetパケットに関連付けられる第1イグレスルックアップテーブル(ELT)エントリを読み出すために、複数のELTエントリを有するELTのテーブルルックアップを実行する、
付記14に記載のOTNスイッチングシステム。
(付記17) さらに、
前記第3Ethernetパケットの第1Ethernetパケットシーケンス番号に基づき、前記第1ELTエントリに関連付けられる第1再順序付けバッファの第1位置に、前記第3ODU及び前記第4ODUを格納する、
付記16に記載のOTNスイッチングシステム。
(付記18) さらに、
前記第1PIUモジュールから前記第3PIUモジュールへの前記Ethernet構造を介する第3ODUスイッチ接続を確立し、
前記第1PIUモジュールにおいて第3ODUを受信し、前記第3ODUは前記第3ODUスイッチ接続を介する送信のためのものであり、
前記第1PIUモジュールの第3ポートから前記第3ODUに対応する第3Ethernetパケットを送信し、前記第3ポートは連続送信ポートカウントに基づき選択される、
付記11に記載のOTNスイッチングシステム。
(付記19) 前記第3ODUスイッチ接続は、前記第1ODUスイッチ接続と異なる、付記18に記載のOTNスイッチングシステム。
(付記20) 前記連続送信ポートカウントは、単一ポートへの連続送信に基づく、付記18に記載のOTNスイッチングシステム。
200 分離スイッチングシステム
202−1〜202−2 PIUブレード筐体
204−1〜204−4 PIUモジュール
212−1〜212−4 Ethernetスイッチ
214 OTNスイッチネットワーク要素制御部
220 Ethernet構造
222 Ethernetスイッチングヘッダ
224 ODUヘッダ
230 OTNスイッチ
232 ODUストリームヘッダ

Claims (20)

  1. 光信号をEthernetパケットとしてスイッチングする方法であって、前記方法は、
    光トランスポートネットワーク(OTN)スイッチングシステムであって、
    M個のEthernetスイッチを有するEthernet構造であって、前記M個のEthernetスイッチのうちのi番目のEthernetスイッチを示すために1乃至Mの範囲の値を有する変数iを割り当て、Mは1より大きい、Ethernet構造と、
    第1プラグインユニバーサル(PIU)モジュール、第2PIUモジュール、及び第3PIUモジュールを含む複数のPIUモジュールであって、それぞれM個のPIUポートを有し、前記複数のPIUモジュールのうちの各々のi番目のPIUポートは、前記Ethernet構造の前記i番目のEthernetスイッチに接続される、PIUモジュールと、
    を有するOTNスイッチングシステムにおいて、
    前記第1PIUモジュールから前記第3PIUモジュールへの前記Ethernet構造を介する第1光データユニット(ODU)スイッチ接続と、前記第2PIUモジュールから前記第3PIUモジュールへの前記Ethernet構造を介する第2ODUスイッチ接続と、を確立するステップと、
    前記第1PIUモジュールについて、前記M個のEthernetスイッチの第1順次的順序を選択するステップと、
    前記第2PIUモジュールについて、前記M個のEthernetスイッチの第2順次的順序を選択するステップであって、前記第2順次的順序は前記第1順次的順序と異なる、ステップと、
    前記第1PIUモジュールにおいて第1ODUを受信し、前記第1ODUに対応する第1Ethernetパケットを生成するステップであって、前記第1ODUは前記第1ODUスイッチ接続を介する送信のためのものである、ステップと、
    前記第1Ethernetパケットを前記第1PIUモジュールの第1ポートから送信するステップであって、前記第1ポートは前記第1順次的順序に基づき選択される、ステップと、
    前記第2PIUモジュールにおいて第2ODUを受信し、前記第2ODUに対応する第2Ethernetパケットを生成するステップであって、前記第2ODUは前記第2ODUスイッチ接続を介する送信のためのものである、ステップと、
    前記第2Ethernetパケットを前記第2PIUモジュールの第2ポートから送信するステップであって、前記第2ポートは前記第2順次的順序に基づき選択される、ステップと、
    を有する方法。
  2. 前記第1順次的順序及び前記第2順次的順序は、それぞれ、前記第1PIUモジュール及び前記第2PIUモジュールにそれぞれ関連付けられるM個のポート識別子を指定する、請求項1に記載の方法。
  3. 前記第1順次的順序を選択するステップ及び前記第2順次的順序を選択するステップは、前記第3PIUモジュールにおいて実行され、
    前記第3PIUモジュールから前記第1PIUモジュールへ前記第1順次的順序を送信するステップと、
    前記第3PIUモジュールから前記第2PIUモジュールへ前記第2順次的順序を送信するステップと、
    を更に有する請求項1に記載の方法。
  4. 前記第1PIUモジュールにおいて第3ODUを受信するステップと、
    前記第1PIUモジュールについて、前記第3ODUに関連付けられる第1イングレスルックアップテーブル(ILT)エントリを読み出すために、複数のILTエントリを有するILTのテーブルルックアップを実行するステップと、
    前記第1PIUモジュールについて、前記第1ILTエントリに関連付けられる第1バンドリングバッファの第1位置に、前記第3ODUを格納するステップと、
    前記第1PIUモジュールにおいて第4ODUを受信するステップと、
    前記第1PIUモジュールについて、前記第4ODUに関連付けられる前記ILTの第2ILTエントリを読み出すために、前記ILTのテーブルルックアップを実行するステップと、
    前記第1PIUモジュールについて、前記第2ILTエントリに関連付けられる前記第1バンドリングバッファの順序内で次にある第2位置に、前記第4ODUを格納するステップと、
    前記第1PIUモジュールについて、前記第1ILTエントリ及び前記第2ILTエントリに関連付けられる前記第1バンドリングバッファにある前記第3ODU及び前記第4ODUに対応する第3Ethernetパケットを生成するステップと、
    を更に有する請求項1に記載の方法。
  5. 前記第1PIUモジュールについて、前記第1順次的順序に基づき前記第3PIUモジュールへ送信するために、第1送信キューに前記第3Ethernetパケットを格納するステップ、
    を更に有する請求項4に記載の方法。
  6. 前記第3PIUモジュールについて、第1受信キューに格納された前記第3Ethernetパケットを読み出すステップと、
    前記第3PIUモジュールについて、前記第3Ethernetパケットから前記第3ODU及び前記第4ODUを読み出すステップと、
    前記第3PIUモジュールについて、前記第3Ethernetパケットに関連付けられる第1イグレスルックアップテーブル(ELT)エントリを読み出すために、複数のELTエントリを有するELTのテーブルルックアップを実行するステップと、
    を更に有する請求項4に記載の方法。
  7. 前記第3PIUモジュールについて、前記第3Ethernetパケットの第1Ethernetパケットシーケンス番号に基づき、前記第1ELTエントリに関連付けられる第1再順序付けバッファの第1位置に、前記第3ODU及び前記第4ODUを格納するステップ、
    を更に有する請求項6に記載の方法。
  8. 前記第1PIUモジュールから前記第3PIUモジュールへの前記Ethernet構造を介する第3ODUスイッチ接続を確立するステップと、
    前記第1PIUモジュールにおいて第3ODUを受信するステップであって、前記第3ODUは前記第3ODUスイッチ接続を介する送信のためのものである、ステップと、
    前記第1PIUモジュールの第3ポートから前記第3ODUに対応する第3Ethernetパケットを送信するステップであって、前記第3ポートは連続送信ポートカウントに基づき選択される、ステップと、
    を更に有する請求項1に記載の方法。
  9. 前記第3ODUスイッチ接続は、前記第1ODUスイッチ接続と異なる、請求項8に記載の方法。
  10. 前記連続送信ポートカウントは、単一ポートへの連続送信に基づく、請求項8に記載の方法。
  11. 光トランスポートネットワーク(OTN)スイッチングシステムであって、
    M個のEthernetスイッチを有するEthernet構造であって、変数iは、前記M個のEthernetスイッチのうちのi番目のEthernetスイッチを示すために1乃至Mの範囲の値を有し、Mは1より大きい、Ethernet構造と、
    第1プラグインユニバーサル(PIU)モジュール、第2PIUモジュール、及び第3PIUモジュールを含む複数のPIUモジュールであって、それぞれM個のPIUポートを有し、前記複数のPIUモジュールのうちの各々のi番目のPIUポートは、前記Ethernet構造の前記i番目のEthernetスイッチに接続される、PIUモジュールと、
    を有し、
    前記OTNスイッチングシステムは、
    前記第1PIUモジュールから前記第3PIUモジュールへの前記Ethernet構造を介する第1光データユニット(ODU)スイッチ接続と、前記第2PIUモジュールから前記第3PIUモジュールへの前記Ethernet構造を介する第2ODUスイッチ接続と、を確立し、
    前記M個のEthernetスイッチの第1順次的順序を選択し、
    前記M個のEthernetスイッチの第2順次的順序を選択し、前記第2順次的順序は前記第1順次的順序と異なり、
    前記第1PIUモジュールにおいて第1ODUを受信し、前記第1ODUに対応する第1Ethernetパケットを生成し、前記第1ODUは前記第1ODUスイッチ接続を介する送信のためのものであり、
    前記第1Ethernetパケットを前記第1PIUモジュールの第1ポートから送信し、前記第1ポートは前記第1順次的順序に基づき選択され、
    前記第2PIUモジュールにおいて第2ODUを受信し、前記第2ODUに対応する第2Ethernetパケットを生成し、前記第2ODUは前記第2ODUスイッチ接続を介する送信のためのものであり、
    前記第2Ethernetパケットを前記第2PIUモジュールの第2ポートから送信し、前記第2ポートは前記第2順次的順序に基づき選択される、
    OTNスイッチングシステム。
  12. 前記第1順次的順序及び前記第2順次的順序は、それぞれ、前記第1PIUモジュール及び前記第2PIUモジュールにそれぞれ関連付けられるM個のポート識別子を指定する、請求項11に記載のOTNスイッチングシステム。
  13. 前記第1順次的順序の選択及び前記第2順次的順序の選択は、前記第3PIUモジュールにおいて実行され、さらに、
    前記第3PIUモジュールから前記第1PIUモジュールへ前記第1順次的順序を送信し、
    前記第3PIUモジュールから前記第2PIUモジュールへ前記第2順次的順序を送信する、
    請求項11に記載のOTNスイッチングシステム。
  14. さらに、
    前記第1PIUモジュールにおいて第3ODUを受信し、
    前記第3ODUに関連付けられる第1イングレスルックアップテーブル(ILT)エントリを読み出すために、複数のILTエントリを有するILTのテーブルルックアップを実行し、
    前記第1ILTエントリに関連付けられる第1バンドリングバッファの第1位置に、前記第3ODUを格納し、
    前記第1PIUモジュールにおいて第4ODUを受信し、
    前記第4ODUに関連付けられる前記ILTの第2ILTエントリを読み出すために、前記ILTのテーブルルックアップを実行し、
    前記第2ILTエントリに関連付けられる前記第1バンドリングバッファの順序内で次にある第2位置に、前記第4ODUを格納し、
    前記第1ILTエントリ及び前記第2ILTエントリに関連付けられる前記第1バンドリングバッファにある前記第3ODU及び前記第4ODUに対応する第3Ethernetパケットを生成する、
    請求項11に記載のOTNスイッチングシステム。
  15. さらに、
    前記第1順次的順序に基づき前記第3PIUモジュールへ送信するために、第1送信キューに前記第3Ethernetパケットを格納する、
    請求項14に記載のOTNスイッチングシステム。
  16. さらに、
    第1受信キューに格納された前記第3Ethernetパケットを読み出し、
    前記第3Ethernetパケットから前記第3ODU及び前記第4ODUを読み出し、
    前記第3Ethernetパケットに関連付けられる第1イグレスルックアップテーブル(ELT)エントリを読み出すために、複数のELTエントリを有するELTのテーブルルックアップを実行する、
    請求項14に記載のOTNスイッチングシステム。
  17. さらに、
    前記第3Ethernetパケットの第1Ethernetパケットシーケンス番号に基づき、前記第1ELTエントリに関連付けられる第1再順序付けバッファの第1位置に、前記第3ODU及び前記第4ODUを格納する、
    請求項16に記載のOTNスイッチングシステム。
  18. さらに、
    前記第1PIUモジュールから前記第3PIUモジュールへの前記Ethernet構造を介する第3ODUスイッチ接続を確立し、
    前記第1PIUモジュールにおいて第3ODUを受信し、前記第3ODUは前記第3ODUスイッチ接続を介する送信のためのものであり、
    前記第1PIUモジュールの第3ポートから前記第3ODUに対応する第3Ethernetパケットを送信し、前記第3ポートは連続送信ポートカウントに基づき選択される、
    請求項11に記載のOTNスイッチングシステム。
  19. 前記第3ODUスイッチ接続は、前記第1ODUスイッチ接続と異なる、請求項18に記載のOTNスイッチングシステム。
  20. 前記連続送信ポートカウントは、単一ポートへの連続送信に基づく、請求項18に記載のOTNスイッチングシステム。
JP2017084292A 2016-04-21 2017-04-21 分離光伝送ネットワークスイッチングシステム Pending JP2018014706A (ja)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201662325723P 2016-04-21 2016-04-21
US62/325723 2016-04-21
US15/419482 2017-01-30
US15/419751 2017-01-30
US15/419,649 US10178453B2 (en) 2016-04-21 2017-01-30 Ethernet fabric protection in a disaggregated OTN switching system
US15/419569 2017-01-30
US15/419649 2017-01-30
US15/419,751 US10462543B2 (en) 2016-04-21 2017-01-30 ODU path protection in a disaggregated OTN switching system
US15/419,482 US9942633B2 (en) 2016-04-21 2017-01-30 Disaggregated optical transport network switching system
US15/419,569 US10219050B2 (en) 2016-04-21 2017-01-30 Virtual line cards in a disaggregated optical transport network switching system

Publications (1)

Publication Number Publication Date
JP2018014706A true JP2018014706A (ja) 2018-01-25

Family

ID=60089162

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017084290A Pending JP2018011289A (ja) 2016-04-21 2017-04-21 分離光トランスポートネットワークスイッチングシステム
JP2017084292A Pending JP2018014706A (ja) 2016-04-21 2017-04-21 分離光伝送ネットワークスイッチングシステム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017084290A Pending JP2018011289A (ja) 2016-04-21 2017-04-21 分離光トランスポートネットワークスイッチングシステム

Country Status (2)

Country Link
US (4) US10219050B2 (ja)
JP (2) JP2018011289A (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7027788B2 (ja) 2017-10-16 2022-03-02 富士通株式会社 伝送装置、伝送方法および処理装置
US10469168B2 (en) * 2017-11-01 2019-11-05 Fujitsu Limited Disaggregated integrated synchronous optical network and optical transport network switching system
US10469921B2 (en) * 2017-11-10 2019-11-05 Juniper Networks, Inc. Data center packet optical transport failure protection
US10454610B2 (en) 2017-11-13 2019-10-22 Fujitsu Limited 1+1 Ethernet fabric protection in a disaggregated optical transport network switching system
CN109802742B (zh) 2017-11-16 2020-05-19 华为技术有限公司 一种传输数据的方法、设备及系统
JP6933292B2 (ja) * 2018-03-13 2021-09-08 日本電気株式会社 光中継器、光中継器の製造方法及び光信号の中継方法
US10924324B2 (en) * 2018-04-23 2021-02-16 Ciena Corporation Scalable management plane for a modular network element
US10708141B2 (en) * 2018-08-23 2020-07-07 Fujitsu Limited Systems and methods for virtual shelf management of disaggregated network elements
US10368150B1 (en) * 2018-09-07 2019-07-30 Fujitsu Limited Carrying high capacity bit transparent leased line services over internet protocol/multiprotocol label switching networks
US10461873B1 (en) * 2018-09-17 2019-10-29 Fujitsu Limited Disaggregated hybrid optical transport network, internet protocol, and Ethernet switching system
US11231764B2 (en) * 2018-10-17 2022-01-25 Samsung Electronics Co., Ltd. System and method for supporting chassis level keep alive in NVME-of based system
WO2020112817A1 (en) * 2018-11-26 2020-06-04 Arrcus Inc. Logical router comprising disaggregated network elements
US11190628B2 (en) * 2019-04-03 2021-11-30 National Chiao Tung University High-speed data-plane packet aggregation and disaggregation method
US10764189B1 (en) * 2019-04-03 2020-09-01 Ciena Corporation OTN transport over a leaf/spine packet network
US10680737B1 (en) * 2019-04-09 2020-06-09 Ciena Corporation Bundling capacity changes in channel holder based optical links
US11275705B2 (en) * 2020-01-28 2022-03-15 Dell Products L.P. Rack switch coupling system
CN113709602B (zh) * 2020-05-20 2022-09-09 华为技术有限公司 一种芯片同步方法及相关设备
CN112511382B (zh) * 2020-11-24 2022-03-29 中盈优创资讯科技有限公司 灵活以太网FlexE通道的创建方法及装置
TWI763470B (zh) * 2021-05-04 2022-05-01 瑞昱半導體股份有限公司 網路裝置之操作方法及網路裝置之控制晶片
US11722271B2 (en) * 2021-07-29 2023-08-08 Fujitsu Limited Channelized transmission over openZR-extended optical network
US11706083B1 (en) * 2022-02-10 2023-07-18 Opnet Technologies Co., Ltd. Telco-grad server/ethernet network switch

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7580637B2 (en) 2006-10-13 2009-08-25 Menara Networks, Inc. Systems and methods for the integration of framing, OAM and P, and forward error correction in pluggable optical transceiver devices
US9312951B2 (en) 2006-10-13 2016-04-12 Menara Networks, Inc. Virtualized optical transport network systems and methods
ATE371313T1 (de) * 2003-12-05 2007-09-15 Alcatel Lucent Dynamischer zwischenschichtsschutz in einem optischen telekommunikationsnetzwerk
CN101051995B (zh) 2006-06-05 2012-07-04 华为技术有限公司 基于无连接网络的保护倒换方法
US8107821B2 (en) * 2006-10-13 2012-01-31 Menara Networks, Inc. Systems and methods for Ethernet extension and demarcation
US8155520B1 (en) 2008-04-16 2012-04-10 Cyan, Inc. Multi-fabric shelf for a transport network
US8363670B2 (en) 2010-04-20 2013-01-29 Vitesse Semiconductor Corporation Framed flows over packet-switched fabrics
US8699873B2 (en) * 2010-05-13 2014-04-15 Fujitsu Limited Identifying fault locations in a network
US8477619B2 (en) 2010-09-10 2013-07-02 Fujitsu Limited Method and system for distributed virtual traffic management
WO2012167842A1 (en) * 2011-06-09 2012-12-13 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and method for optical transport networks
JP2013138273A (ja) 2011-12-27 2013-07-11 Fujitsu Ltd 伝送装置
US8837936B2 (en) 2012-06-25 2014-09-16 Fujitsu Limited Method and system for dynamic selection of transport path with lowest latency
CN104903874A (zh) 2012-09-06 2015-09-09 百科容(科技)公司 大规模数据储存和递送系统
US9729425B2 (en) 2012-11-29 2017-08-08 Futurewei Technologies, Inc. Transformation and unified control of hybrid networks composed of OpenFlow switches and other programmable switches
RU2606060C1 (ru) 2012-12-05 2017-01-10 Хуавэй Текнолоджиз Ко., Лтд. Способ обработки данных, плата связи и устройство
EP2958279B1 (en) 2013-03-15 2017-05-10 Huawei Technologies Co., Ltd. Service transfer device and method for optical channel data unit
US9240905B2 (en) 2013-07-22 2016-01-19 Ciena Corporation Protecting hybrid equipment in a network node
EP3031187B1 (en) 2013-08-09 2019-11-06 Hewlett-Packard Enterprise Development LP Apparatus with a switch assembly and a controller, computer readable storage medium and method
CA2942107C (en) 2014-03-10 2021-01-05 Aeponyx Inc. Optical device with tunable optical wavelength selective circuit
US20160226578A1 (en) 2015-02-04 2016-08-04 Catherine H. Yuan Management of frame alignment events in optical transport networks
US9992102B2 (en) 2015-08-28 2018-06-05 Ciena Corporation Methods and systems to select active and standby ports in link aggregation groups
US9980021B2 (en) 2015-10-07 2018-05-22 Ciena Corporation Scalable switch fabric using optical interconnects
US10171358B2 (en) 2016-02-04 2019-01-01 Ciena Corporation Port congestion resiliency in a multi-card and multi-switch link aggregation group
EP3236601A1 (en) 2016-04-21 2017-10-25 Fujitsu Limited Disaggregated optical transport network switching system

Also Published As

Publication number Publication date
JP2018011289A (ja) 2018-01-18
US10219050B2 (en) 2019-02-26
US10178453B2 (en) 2019-01-08
US20170310538A1 (en) 2017-10-26
US20170310387A1 (en) 2017-10-26
US20170310413A1 (en) 2017-10-26
US20170311060A1 (en) 2017-10-26
US10462543B2 (en) 2019-10-29
US9942633B2 (en) 2018-04-10

Similar Documents

Publication Publication Date Title
JP2018014706A (ja) 分離光伝送ネットワークスイッチングシステム
EP3169008B1 (en) Methods and apparatus for a flattened data center network employing wavelength-agnostic endpoints
US9882634B1 (en) Coordinated connection validation systems and methods among mated transceivers for verifying optical and data plane connectivity
US10454610B2 (en) 1+1 Ethernet fabric protection in a disaggregated optical transport network switching system
US8559812B2 (en) Methods and systems for the hierarchical mesh restoration of connections in an automatically switched optical network
US10469168B2 (en) Disaggregated integrated synchronous optical network and optical transport network switching system
EP2789114B1 (en) Automatic configuration of packet network services over dense wavelength division multiplex communication links using optical transport network frames
US8532484B2 (en) Method for routing and wavelength assignment information encoding for wavelength switched optical networks
US8520685B2 (en) Signal relay apparatus, node apparatus, network system, virtual-link generating method, path calculating method, and computer product
US8467681B2 (en) Method for characterizing wavelength switched optical network signal characteristics and network element compatibility constraints for generalized multi-protocol label switching
US8787394B2 (en) Separate ethernet forwarding and control plane systems and methods with interior gateway route reflector for a link state routing system
EP3236602B1 (en) Disaggregated optical transport network switching system
JP5506931B2 (ja) 光トランスポートネットワークでの自動発見のための方法および装置
US8503880B2 (en) Optical transport network decoupling using optical data unit and optical channel link aggregation groups (LAGS)
GB2346280A (en) Optical switching interface using transponders
US8848712B2 (en) Distributed RSVP-TE in a multi-chassis node architecture
Muñoz et al. Adaptive software defined networking control of space division multiplexing super-channels exploiting the spatial-mode dimension
Melle et al. Marlet drivers and implementation options for 100-GBE transport over the WAN
JP3816909B2 (ja) 光ネットワークのノード監視制御装置
Gao et al. Demonstration of SDN/OpenFlow-based path control for large-scale multi-domain/multi-technology optical transport networks
US20130121696A1 (en) Apparatus and method for photonic networks
Paggi Network Core
Paggi 13 Network Core