JP2018012871A - Joint filler, method for producing joint filler, and joined body - Google Patents

Joint filler, method for producing joint filler, and joined body Download PDF

Info

Publication number
JP2018012871A
JP2018012871A JP2016144231A JP2016144231A JP2018012871A JP 2018012871 A JP2018012871 A JP 2018012871A JP 2016144231 A JP2016144231 A JP 2016144231A JP 2016144231 A JP2016144231 A JP 2016144231A JP 2018012871 A JP2018012871 A JP 2018012871A
Authority
JP
Japan
Prior art keywords
bonding material
joined
bonding
bonded
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016144231A
Other languages
Japanese (ja)
Inventor
隆之 藤本
Takayuki Fujimoto
隆之 藤本
五十嵐 弘
Hiroshi Igarashi
弘 五十嵐
裕二 櫻本
Yuji Sakuramoto
裕二 櫻本
健太朗 三好
Kentaro Miyoshi
健太朗 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2016144231A priority Critical patent/JP2018012871A/en
Publication of JP2018012871A publication Critical patent/JP2018012871A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a joint filler having high joining power even when two or more joint members are joined in an inert atmosphere, the joint filler containing copper nanoparticles as the raw materials.SOLUTION: The present invention provides a tabular or sheet-like joint filler containing a sintered body of fine particles having an average particle size of 300 nm or less and predominantly composed of copper, the joint filler having a resistivity of 1×10Ω m or less.SELECTED DRAWING: None

Description

本発明は、接合材、接合材の製造方法、及び接合体に関する。   The present invention relates to a bonding material, a method for manufacturing a bonding material, and a bonded body.

従来、電子部品の接合材として、半田の材料が広く用いられていた。しかしながら、半田の材料は、耐熱性に乏しいという問題があった。そのため、例えば、150℃以上の高温が見込まれるSiC素子を用いたパワーデバイス(以下、「SiCパワーデバイス」という)では、接合材として半田の材料の使用が困難であった。   Conventionally, solder materials have been widely used as bonding materials for electronic components. However, the solder material has a problem of poor heat resistance. Therefore, for example, in a power device using an SiC element expected to have a high temperature of 150 ° C. or higher (hereinafter referred to as “SiC power device”), it is difficult to use a solder material as a bonding material.

そのため、SiCパワーデバイス向けの接合材として、耐熱性を有する銀もしくは銀合金を主成分として含む接合材が用いられるようになった(特許文献1)。しかしながら、銀もしくは銀合金を主成分として含む接合材では、イオンマイグレーションの発生など、物性的な問題があった。   Therefore, as a bonding material for SiC power devices, a bonding material containing heat-resistant silver or a silver alloy as a main component has been used (Patent Document 1). However, the bonding material containing silver or a silver alloy as a main component has physical properties such as the occurrence of ion migration.

そこで、銀もしくは銀合金を主成分として含む接合材の代替として、銅を主成分として含む接合材が検討されるようになった。特許文献2には、ペースト状の銅ナノ粒子を原料とする接合材が開示されている。   Therefore, as an alternative to a bonding material containing silver or a silver alloy as a main component, a bonding material containing copper as a main component has been studied. Patent Document 2 discloses a bonding material using paste-like copper nanoparticles as a raw material.

しかしながら、通常、ペースト状の接合材には、粘度を調整するために有機溶媒が用いられており、被接合材の接合時の焼成温度が有機成分の分解温度に依存してしまうという問題があった。また、銅ナノ粒子の表面などに有機成分が残存することで、ボイドやクラックの原因となるため、接合力の低下の要因となるという問題があった。このため、ペースト状の接合材を利用するためには、予備乾燥など、有機成分を除去する工程が必要となるという課題があった。   However, an organic solvent is usually used for the paste-like bonding material in order to adjust the viscosity, and there is a problem that the firing temperature at the time of bonding the bonded materials depends on the decomposition temperature of the organic component. It was. Moreover, since an organic component remains on the surface of the copper nanoparticles or the like, it causes voids and cracks, resulting in a decrease in bonding force. For this reason, in order to utilize a paste-like joining material, there existed a subject that the process of removing organic components, such as preliminary drying, was needed.

また、ペースト状の接合材には、被接合材の接合面に均一に塗布することが困難であり、扱いにくいという問題もあった。さらに、ペースト状の接合材には、長期間保存する場合、銅ナノ粒子の分散性の維持が困難であり、冷凍して保存したり、あるいは銅ナノ粒子の分散剤を過大に混合したりする必要があるという問題もあった。これらは、いずれも接合後の品質の悪化を引き起こす要因となるという課題があった。   In addition, the paste-like bonding material has a problem that it is difficult to uniformly apply to the bonding surface of the material to be bonded and it is difficult to handle. Furthermore, when the paste-like bonding material is stored for a long period of time, it is difficult to maintain the dispersibility of the copper nanoparticles, and the paste is stored frozen or excessively mixed with a copper nanoparticle dispersant. There was also a problem that it was necessary. These have the subject that all become a factor which causes deterioration of the quality after joining.

そこで、近年、銅ナノ粒子を原料とするシート状の接合材(以下、「接合用シート」という)が用いられるようになった(特許文献2〜5)。ここで、銅ナノ粒子を原料とする接合用シートは、銅箔や銅ナノ粒子単体(集合体)と異なり、強い接合力を有している。また、シート状であることから、接合の際に扱いやすいという利点を有している。   Therefore, in recent years, a sheet-like bonding material using copper nanoparticles as a raw material (hereinafter referred to as “bonding sheet”) has been used (Patent Documents 2 to 5). Here, the joining sheet | seat which uses a copper nanoparticle as a raw material has a strong joining force unlike copper foil and a copper nanoparticle single-piece | unit (aggregate | assembly). Moreover, since it is a sheet form, it has the advantage that it is easy to handle at the time of joining.

特開2011−071301号公報JP 2011-073011 A 特開2014−167145号公報JP 2014-167145 A 特開2013−039580号公報Japanese Unexamined Patent Publication No. 2013-039580 特開2013−236090号公報JP2013-236090A 特開2015−104748号公報JP-A-2015-104748

ところで、特許文献2〜5に開示された接合用シートを用いて2以上の被接合部材を接合して高い接合力を得ようとする場合、これらを還元性雰囲気中で接合する必要があった。すなわち、特許文献2〜5に開示された接合用シートを用いて2以上の被接合部材を接合する場合、不活性雰囲気中では接合用シートの接合力が大幅に低下してしまうという課題があった。   By the way, when joining the 2 or more to-be-joined member using the joining sheet | seat disclosed by patent documents 2-5 and trying to obtain high joining force, it was necessary to join these in a reducing atmosphere. . That is, when two or more members to be joined are joined using the joining sheets disclosed in Patent Documents 2 to 5, there is a problem that the joining force of the joining sheet is greatly reduced in an inert atmosphere. It was.

本発明は、上記事情に鑑みてなされたものであって、2以上の被接合部材を不活性雰囲気中で接合した場合であっても高い接合力を有する、銅ナノ粒子を原料とする接合材を提供することを課題とする。   The present invention has been made in view of the above circumstances, and has a high bonding strength even when two or more members to be bonded are bonded in an inert atmosphere. It is an issue to provide.

また、上記接合材の製造方法を提供すること、並びに、上記接合材を用いて2以上の被接合部材を接合した接合体を提供することを課題とする。   It is another object of the present invention to provide a method for manufacturing the bonding material and to provide a bonded body in which two or more members to be bonded are bonded using the bonding material.

かかる課題を解決するため、本発明は以下の構成を有する。
(1) 平均粒子径が300nm以下の銅を主成分とする微粒子の焼結体を含む、板状又はシート状の接合材であって、
比抵抗値が1×10−5Ω・m以下である、接合材。
(2) 厚さが、200μm以下である、前項1に記載の接合材。
In order to solve this problem, the present invention has the following configuration.
(1) A plate-like or sheet-like bonding material comprising a sintered body of fine particles mainly composed of copper having an average particle diameter of 300 nm or less,
A bonding material having a specific resistance value of 1 × 10 −5 Ω · m or less.
(2) The bonding material according to item 1, wherein the thickness is 200 μm or less.

(3) 平均粒子径が300nm以下の銅を主成分とする微粒子を準備する第1工程と、前記微粒子を還元性雰囲気中で加圧しながら焼結して、板状又はシート状に形成する第2工程と、を含む、接合材の製造方法。
(4) 前記還元性雰囲気が、水素ガスを含む、前項3に記載の接合材の製造方法。
(5) 前記第2工程において、20MPa以上に加圧する、前項3または4に記載の接合材の製造方法。
(3) A first step of preparing fine particles mainly composed of copper having an average particle size of 300 nm or less, and a step of sintering the fine particles while being pressed in a reducing atmosphere to form a plate or sheet. The manufacturing method of a joining material including 2 processes.
(4) The manufacturing method of the bonding material according to item 3 above, wherein the reducing atmosphere includes hydrogen gas.
(5) The method for manufacturing a bonding material according to item 3 or 4, wherein in the second step, the pressure is increased to 20 MPa or more.

(6) 前項1に記載の接合材と、第1被接合部材と、第2被接合部材と、を備え、前記第1被接合部材と、前記第2被接合部材との間に前記接合材が設けられた、接合体。 (6) The bonding material according to item 1 above, a first bonded member, and a second bonded member, wherein the bonding material is interposed between the first bonded member and the second bonded member. A joined body provided with

(7) 平均粒子径が300nm以下の銅を主成分とする微粒子を還元性雰囲気中で加圧しながら焼結して、板状又はシート状の接合材を形成する工程と、
第1被接合部材と第2被接合部材との間に前記接合材が設けられた状態で加圧して、前記第1被接合部材と前記第2被接合部材とを接合して接合体を形成する工程と、を含み、
前記接合体を形成する際の圧力を、前記接合材を形成する際の圧力の1/2以下とする、接合体の製造方法。
(7) A step of sintering a fine particle mainly composed of copper having an average particle diameter of 300 nm or less in a reducing atmosphere while pressing it to form a plate-like or sheet-like bonding material;
Pressurization is performed with the bonding material provided between the first bonded member and the second bonded member, and the first bonded member and the second bonded member are bonded to form a bonded body. Including the steps of:
A method for manufacturing a joined body, wherein a pressure at the time of forming the joined body is set to ½ or less of a pressure at the time of forming the joined material.

本発明の接合材は、平均粒子径が300nm以下の銅を主成分とする微粒子同士が焼結して結合した、板状又はシート状の接合材であって、比抵抗値が1×10−5Ω・m以下であるため、不活性雰囲気中での接合に用いた場合であっても高い接合力を有する。 The bonding material of the present invention is a plate-shaped or sheet-shaped bonding material in which fine particles mainly composed of copper having an average particle diameter of 300 nm or less are sintered and bonded, and has a specific resistance value of 1 × 10 −. Since it is 5 Ω · m or less, it has a high bonding strength even when it is used for bonding in an inert atmosphere.

本発明の接合材の製造方法は、均粒子径が300nm以下の銅を主成分とする微粒子を還元性雰囲気中で加圧しながら焼結して、板状又はシート状に形成するため、上述した接合材を簡便に製造することができる。   The method for producing a bonding material according to the present invention is described above because the fine particles mainly composed of copper having a uniform particle size of 300 nm or less are sintered in a reducing atmosphere while being pressed to form a plate or sheet. A joining material can be easily manufactured.

本発明の接合体は、第1及び第2被接合部材の間に、上述した接合材が設けられているため、第1及び第2被接合部材が高い接合力で接合された接合体を提供することができる。   The joined body of the present invention provides the joined body in which the first and second joined members are joined with high joining force because the joining material described above is provided between the first and second joined members. can do.

本発明の検証試験に用いた接合材を製造するための冶具の構成の一例を示す斜視図である。It is a perspective view which shows an example of a structure of the jig for manufacturing the joining material used for the verification test of this invention. 本発明の検証試験に用いた接合材の構成の一例を示す写真である。It is a photograph which shows an example of a structure of the joining material used for the verification test of this invention. 本発明の検証試験に用いた接合材の断面のSEM観察の結果を示す図である。It is a figure which shows the result of the SEM observation of the cross section of the joining material used for the verification test of this invention. 本発明の検証試験に用いた接合体の構成を説明するための斜視図である。It is a perspective view for demonstrating the structure of the conjugate | zygote used for the verification test of this invention. 本発明の検証試験に用いた接合材の比抵抗値と、この接合材を用いて接合した接合体のせん断強度との関係を示す図である。It is a figure which shows the relationship between the specific resistance value of the joining material used for the verification test of this invention, and the shear strength of the joined body joined using this joining material. 本発明の接合体の接合時の各圧力において、接合する際に用いた接合材の加圧成型時の圧力と、この接合材を用いて接合した接合体のせん断強度との関係を示す図である。It is a figure which shows the relationship between the pressure at the time of the pressure molding of the joining material used at the time of joining, and the shear strength of the joined body joined using this joining material in each pressure at the time of joining of the joined body of the present invention. is there.

以下、本発明を適用した一実施形態である接合材、及びその製造方法について、この接合材を用いた接合体と併せて、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。   Hereinafter, a bonding material as an embodiment to which the present invention is applied and a manufacturing method thereof will be described in detail with reference to the drawings together with a bonded body using the bonding material. In addition, in the drawings used in the following description, in order to make the features easy to understand, there are cases where the portions that become the features are enlarged for the sake of convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. Absent.

<接合材>
先ず、本発明を適用した一実施形態である接合材の構成の一例について説明する。
本実施形態の接合材は、銅を主成分とする微粒子(以下、単に「銅ナノ粒子」ともいう)が還元性雰囲気中で焼結されて焼結体となり、板状又はシート状の形態をなしたものである。
<Bonding material>
First, an example of a configuration of a bonding material that is an embodiment to which the present invention is applied will be described.
The bonding material of the present embodiment has a plate-like or sheet-like form in which fine particles containing copper as a main component (hereinafter also simply referred to as “copper nanoparticles”) are sintered in a reducing atmosphere to form a sintered body. It has been done.

銅を主成分とする微粒子(銅ナノ粒子)としては、成分中に銅(Cu)を含むものであれば特に限定されるものではないが、微粒子全体に対して銅元素を95質量%以上含むことが好ましく、97質量%以上含むことがより好ましい。   Although it will not specifically limit as fine particle (copper nanoparticle) which has copper as a main component, if copper (Cu) is included in a component, 95 mass% or more of copper elements are included with respect to the whole fine particle. It is preferable that it contains 97 mass% or more.

微粒子の平均粒子径としては、300nm以下であることが好ましい。   The average particle diameter of the fine particles is preferably 300 nm or less.

微粒子の粒子径としては、粒子径5nm以上、500nm以下であることが好ましい。微粒子の粒子径を揃えてもよいが、粒子径が平均粒子径を中心に分布していてもよい。   The particle diameter of the fine particles is preferably 5 nm or more and 500 nm or less. Although the particle diameters of the fine particles may be uniform, the particle diameters may be distributed around the average particle diameter.

なお、微粒子の粒子径とは、球形の場合は球の直径をいうが、楕円球形の場合は長径方向の長さをいう。また、粒子径の測定方法は、SEM(走査型電子顕微鏡)を用いて測定する。   The particle diameter of the fine particles refers to the diameter of a sphere in the case of a sphere, but refers to the length in the major axis direction in the case of an elliptic sphere. Moreover, the measuring method of a particle diameter is measured using SEM (scanning electron microscope).

本実施形態の接合材は、後述するように、上記微粒子を所要の還元性雰囲気中で加圧しながら焼結して、板状又はシート状に形成したものである。ここで、接合材の厚さ(加圧方向の厚さ)としては、特に限定されるものではなく、板状やシート状等の接合材の態様に応じて適宜選択することができる。具体的には、例えば、200μm以下とすることが好ましく、50〜100μmの範囲とすることがより好ましい。   As will be described later, the bonding material of the present embodiment is formed into a plate shape or a sheet shape by sintering the fine particles while being pressed in a required reducing atmosphere. Here, the thickness of the bonding material (thickness in the pressing direction) is not particularly limited, and can be appropriately selected according to the mode of the bonding material such as a plate shape or a sheet shape. Specifically, for example, it is preferably 200 μm or less, and more preferably in the range of 50 to 100 μm.

また、接合材を平面視した際の形状は、特に限定されるものではなく、被接合部材の接合面の形状等に応じて、適宜選択することができる。また、後述するように、上述した微粒子を所要の圧力で加圧しながら焼結して、板状又はシート状に形成する際の加圧面の形状としてもよい。具体的には、例えば、矩形や円形等が挙げられる。   In addition, the shape of the bonding material when viewed in plan is not particularly limited, and can be appropriately selected according to the shape of the bonding surface of the members to be bonded. Further, as will be described later, the fine particles described above may be sintered while being pressed at a required pressure to form a pressure surface when forming into a plate shape or a sheet shape. Specifically, a rectangle, a circle, etc. are mentioned, for example.

また、本実施形態の接合材は、後述するように、上述した微粒子を所要の圧力および温度条件で焼結して得られた焼結体を板状又はシート状に形成したものであり、比抵抗値が1×10−5Ω・m以下となるように、上述した銅ナノ粒子の焼結体を板状又はシート状とした接合材であるため、高い接合力を実現することができる。 In addition, the bonding material of the present embodiment is obtained by forming a sintered body obtained by sintering the above-described fine particles under the required pressure and temperature conditions into a plate shape or a sheet shape, as will be described later. Since it is the joining material which made the sintered body of the copper nanoparticle mentioned above plate-shaped or sheet-like so that a resistance value may be set to 1x10 <-5> ohm * m or less, high joining force is realizable.

本実施形態の接合材は、比抵抗値が1×10−5Ω・m以下であることが好ましく、これを用いて接合した接合体において、高いせん断強度(すなわち、高い接合力)を得るために2×10−6Ω・m以下であることがより好ましい。接合材の比抵抗値が1×10−5Ω・m以下であることにより、十分に微粒子同士が焼結して結合していることを示し、この接合材を用いて不活性ガス中で接合しても接合材として変質や変形が生じず、強い接合力が得られる。なお、接合材の比抵抗値は、市販の低抵抗測定器(例えば、三菱化学アナリテック社製、「ロレスターGXMCP−T700」、「QP2プローブ」等)を用いて測定することができる。 The bonding material of the present embodiment preferably has a specific resistance value of 1 × 10 −5 Ω · m or less. In order to obtain a high shear strength (that is, a high bonding force) in a bonded body bonded using the bonding material. And more preferably 2 × 10 −6 Ω · m or less. When the specific resistance value of the bonding material is 1 × 10 −5 Ω · m or less, it is shown that the fine particles are sufficiently sintered and bonded to each other, and the bonding material is used for bonding in an inert gas. Even if it does not change and deform | transform as a joining material, strong joining force is obtained. In addition, the specific resistance value of a joining material can be measured using a commercially available low resistance measuring device (for example, “Lorestar GXMCP-T700”, “QP2 probe”, etc., manufactured by Mitsubishi Chemical Analytech Co., Ltd.).

<接合材の製造方法>
次に、上述した接合材の製造方法の一例について説明する。
本実施形態の接合材の製造方法は、上述した微粒子(銅ナノ粒子)を準備する工程(第1工程)と、微粒子を還元性雰囲気中で加圧しながら焼結して、板状又はシート状に形成する工程(第2工程)と、を備えて概略構成されている。
<Manufacturing method of bonding material>
Next, an example of the manufacturing method of the bonding material described above will be described.
The manufacturing method of the bonding material of the present embodiment includes a step of preparing the above-described fine particles (copper nanoparticles) (first step), and sintering the fine particles while pressing them in a reducing atmosphere to form a plate or a sheet. And a step (second step) of forming a general structure.

(第1工程)
先ず、所要の平均粒子径を有する、銅を主成分とする微粒子(銅ナノ粒子)を原料として準備する。ここで、原料となる銅ナノ粒子としては、保護剤、分散剤などを必要としないものを用いる事が望ましい。このような銅ナノ粒子としては、例えば、特許文献(特許第4304221号公報)に記載された製造方法によって得られるものが挙げられる。
(First step)
First, fine particles (copper nanoparticles) having a required average particle diameter and containing copper as a main component are prepared as raw materials. Here, as the copper nanoparticles used as a raw material, it is desirable to use those which do not require a protective agent, a dispersing agent or the like. As such a copper nanoparticle, what is obtained by the manufacturing method described in the patent document (patent 4304221 gazette) is mentioned, for example.

なお、原料となる銅ナノ粒子には、有機溶媒を用いないことが望ましい。ただし、粒子の均一化や形状調整のため、揮発性の高いアルコール(例えば、エタノール、2−プロパノール等)などを、銅ナノ粒子を分散させる程度の量を用いてもよい。また、使用したアルコールなどは、第2工程までに揮発させておくことが好ましい。
このようにして、所要の平均粒子径を有する、銅ナノ粒子を準備する。
In addition, it is desirable not to use an organic solvent for the copper nanoparticles used as a raw material. However, in order to make the particles uniform and to adjust the shape, a highly volatile alcohol (for example, ethanol, 2-propanol, etc.) may be used in such an amount that the copper nanoparticles are dispersed. Moreover, it is preferable to volatilize the used alcohol etc. by the 2nd process.
In this way, copper nanoparticles having a required average particle diameter are prepared.

(第2工程)
次に、上記第1工程で準備した銅ナノ粒子を還元性雰囲気中で加圧しながら焼結して、板状又はシート状の接合材を加圧成型(加圧焼成)する。ここで、加圧成型に用いる装置としては、特に限定されるものではないが、例えば、金属製の冶具、圧縮成型機等を用いることができる。
(Second step)
Next, the copper nanoparticles prepared in the first step are sintered while being pressed in a reducing atmosphere, and a plate-shaped or sheet-shaped bonding material is pressure-molded (pressure-fired). Here, the apparatus used for pressure molding is not particularly limited, and for example, a metal jig, a compression molding machine, or the like can be used.

加圧成型の際の圧力は、特に限定されるものではないが、20MPa以上とすることが好ましく、圧力が高いほどより好ましい。これにより、比抵抗値が1×10−5Ω・m以下である接合材を成型することができる。 The pressure at the time of pressure molding is not particularly limited, but is preferably 20 MPa or more, and more preferably as the pressure is higher. As a result, a bonding material having a specific resistance value of 1 × 10 −5 Ω · m or less can be molded.

加圧成型の際の温度は、150℃以上、500℃以下であることが好ましく、250℃以上、450℃以下であることがより好ましい。特に、350℃で加圧成型することで、最も効率よく成型することができる。   The temperature during the pressure molding is preferably 150 ° C. or higher and 500 ° C. or lower, and more preferably 250 ° C. or higher and 450 ° C. or lower. In particular, it can be most efficiently molded by pressure molding at 350 ° C.

加圧成型の際の加圧時間は、2分以上、60分以下であることが好ましく、10分以上、30分以下であることがより好ましい。   The pressurization time at the time of pressure molding is preferably 2 minutes or more and 60 minutes or less, and more preferably 10 minutes or more and 30 minutes or less.

加圧成型の際の雰囲気は、還元性雰囲気中で行う。ここで、還元性雰囲気としては、特に限定されるものではないが、例えば、不活性ガスである窒素ガス中に還元性物質として水素ガス等を含むものが挙げられる。   The atmosphere during pressure molding is performed in a reducing atmosphere. Here, the reducing atmosphere is not particularly limited, and examples thereof include those containing hydrogen gas or the like as a reducing substance in nitrogen gas which is an inert gas.

より具体的には、還元性物質として水素ガスを用いた場合、還元性雰囲気中の水素ガスの濃度としては、0体積%超、5体積%以下であることがより好ましく、2体積%以上、4体積%以下であることがより好ましい。   More specifically, when hydrogen gas is used as the reducing substance, the concentration of hydrogen gas in the reducing atmosphere is preferably more than 0% by volume and 5% by volume or less, more preferably 2% by volume or more, More preferably, it is 4 volume% or less.

以上より、被接合部材を不活性雰囲気中で接合した場合であっても、十分な接合力を有する本実施形態の接合材を成型することができる。   As mentioned above, even if it is a case where a to-be-joined member is joined in inert atmosphere, the joining material of this embodiment which has sufficient joining force can be shape | molded.

<接合体>
次に、上述した接合材を用いて接合した接合体の構成の一例について説明する。
本実施形態の接合体は、上述した接合材と、第1被接合部材と、第2被接合部材と、を備えており、第1及び第2被接合部材の間に設けられた接合材によって第1被接合部材と第2被接合部材とが接合されたものである。
<Joint>
Next, an example of the structure of the joined body joined using the joining material described above will be described.
The joined body of the present embodiment includes the above-described joining material, the first joined member, and the second joined member, and the joining material provided between the first and second joined members. A 1st to-be-joined member and a 2nd to-be-joined member are joined.

接合対象となる第1及び第2被接合部材の材質としては、例えば、銅、シリコン、アルミニウム、酸化銅、酸化ケイ素、アルミナ、窒化ケイ素、窒化アルミニウム、窒化ホウ素、炭化ケイ素等、あるいはそれらの合金、混合物等が挙げられる。なお、第1及び第2被接合部材は、同じ材質であってもよいし、異なる材質であってもよい。   Examples of the material of the first and second members to be joined include copper, silicon, aluminum, copper oxide, silicon oxide, alumina, silicon nitride, aluminum nitride, boron nitride, silicon carbide, or alloys thereof. , Mixtures and the like. Note that the first and second members to be joined may be made of the same material or different materials.

本実施形態の接合体は、上述した接合材によって接合された第1被接合部材と第2被接合部材とのせん断強度が、還元性雰囲気中で接合した場合に対して、不活性雰囲気中で接合した場合であっても10%未満の減少にとどまる。換言すると、上述した接合材は、当該接合材を用いて2以上の被接合部材を接合する際、不活性雰囲気中での接合であっても高い接合強度を奏するものである。   In the joined body of this embodiment, the shear strength between the first joined member and the second joined member joined by the joining material described above is in an inert atmosphere as compared to the case where the shear strength is joined in a reducing atmosphere. Even when bonded, the reduction is less than 10%. In other words, the bonding material described above exhibits high bonding strength even when bonding in an inert atmosphere when two or more members to be bonded are bonded using the bonding material.

本実施形態の接合体のせん断強度は、市販のボンドテスター装置(例えば、デイジ社製、「400Plus」等)によって測定することができる。   The shear strength of the joined body of the present embodiment can be measured by a commercially available bond tester device (for example, “400 Plus” manufactured by Daisy Corporation).

本実施形態の接合体の製造方法は、上述したように、板状又はシート状の接合材を形成する工程と、第1被接合部材と第2被接合部材との間に上記接合材が設けられた状態で加圧して、第1被接合部材と第2被接合部材とを接合して接合体を形成する工程と、を含むものである。   As described above, in the method for manufacturing a joined body according to the present embodiment, the joining material is provided between the step of forming a plate-like or sheet-like joining material and the first and second joined members. And pressurizing in such a state that the first bonded member and the second bonded member are bonded to form a bonded body.

本実施形態の接合体の製造方法において、接合条件は、特に限定されるものではなく、被接合部材の材質や組合せ等によって適宜選択することができる。具体的には、例えば、水素ガスを3体積%添加した窒素ガス雰囲気中において、圧力:10MPa、温度:300℃、時間:10分間とすることができる。   In the manufacturing method of the joined body of the present embodiment, the joining conditions are not particularly limited, and can be appropriately selected depending on the material or combination of the members to be joined. Specifically, for example, in a nitrogen gas atmosphere to which 3% by volume of hydrogen gas is added, the pressure can be 10 MPa, the temperature can be 300 ° C., and the time can be 10 minutes.

なお、本実施形態の接合体の製造方法では、接合体を形成する際の圧力を、前記接合材を形成する際の圧力の1/2以下とすることが好ましい。   In the bonded body manufacturing method of the present embodiment, it is preferable that the pressure when forming the bonded body be ½ or less of the pressure when forming the bonding material.

以上説明したように、本実施形態の接合材によれば、平均粒子径が300nm以下の銅を主成分とする微粒子の焼結体を含む、板状又はシート状の接合材であり、比抵抗値が1×10−5Ω・m以下であるため、これを用いて複数の部材を不活性雰囲気中で接合した場合でも高い接合力を奏する。 As described above, according to the bonding material of the present embodiment, it is a plate-shaped or sheet-shaped bonding material including a sintered body of fine particles mainly composed of copper having an average particle diameter of 300 nm or less, and has a specific resistance. Since the value is 1 × 10 −5 Ω · m or less, a high bonding force is exhibited even when a plurality of members are bonded in an inert atmosphere using the value.

本実施形態の接合材の製造方法によれば、均粒子径が300nm以下の銅を主成分とする微粒子を還元性雰囲気中で加圧しながら焼結して、板状又はシート状に形成するため、上述した接合材を容易に製造することができる。   According to the method for manufacturing a bonding material of this embodiment, fine particles mainly composed of copper having a uniform particle diameter of 300 nm or less are sintered while being pressed in a reducing atmosphere to form a plate shape or a sheet shape. The bonding material described above can be easily manufactured.

本実施形態の接合体によれば、上述した接合材によって接合された第1被接合部材と第2被接合部材とのせん断強度が、還元性雰囲気中で接合した場合に対して、不活性雰囲気中で接合した場合であっても10%未満の減少にとどまる。   According to the joined body of the present embodiment, the shear strength between the first joined member and the second joined member joined by the joining material described above is inert compared to the case where the shear strength is joined in a reducing atmosphere. Even in the case of joining in, the reduction is less than 10%.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

以下、本発明の効果を検証試験によって詳細に説明する。なお、本発明は、以下の検証試験の内容に限定されるものではない。   Hereinafter, the effect of the present invention will be described in detail by a verification test. In addition, this invention is not limited to the content of the following verification tests.

<検証試験1>
図1に示す冶具を用いて、シート状の接合材(接合用シート)を製造した。
具体的には、先ず、特許文献(特許第4304221号公報)に記載された製造方法によって得られる銅ナノ粒子を原料として準備した。銅ナノ粒子の平均粒子径を算出した結果、300nm以下であった。
<Verification test 1>
A sheet-like bonding material (bonding sheet) was manufactured using the jig shown in FIG.
Specifically, first, copper nanoparticles obtained by a production method described in a patent document (Japanese Patent No. 4304221) were prepared as raw materials. As a result of calculating the average particle diameter of the copper nanoparticles, it was 300 nm or less.

次に、図1に示すように、中心に直径6mmの穴が開いた、炭化タングステン製の長さ50mmの円筒状の冶具の中心穴に、原料として準備した粉末の銅ナノ粒子を添加した。次いで、冶具の中心穴の両端から、直径6mmの炭化タングステン製の円柱を中心穴に対して垂直に差込み、加圧成型を行った。   Next, as shown in FIG. 1, powdered copper nanoparticles prepared as a raw material were added to a central hole of a cylindrical jig made of tungsten carbide having a length of 6 mm with a hole having a diameter of 6 mm in the center. Next, a tungsten carbide cylinder having a diameter of 6 mm was inserted perpendicularly to the center hole from both ends of the center hole of the jig, and pressure molding was performed.

加圧成型は、窒素ガスに3体積%の水素ガスを混合した還元性雰囲気中で、圧力20MPa、温度300℃、10分間行った。これにより、図2に示すような、直径が6mm、厚さが50μm、比抵抗値が2×10−6Ω・mの接合用シートが得られた。なお、比抵抗率は、低抵抗測定器(三菱化学アナリテック社製、「ロレスターGXMCP−T700」、「QP2プローブ」等)によって測定した。 The pressure molding was performed in a reducing atmosphere in which 3% by volume of hydrogen gas was mixed with nitrogen gas at a pressure of 20 MPa and a temperature of 300 ° C. for 10 minutes. As a result, a bonding sheet having a diameter of 6 mm, a thickness of 50 μm, and a specific resistance value of 2 × 10 −6 Ω · m as shown in FIG. 2 was obtained. The specific resistivity was measured with a low resistance measuring instrument (Mitsubishi Chemical Analytech, “Lorestar GXMCP-T700”, “QP2 probe”, etc.).

図3に、得られた接合用シートの断面のSEM(走査型電子顕微鏡)画像を示す。図3に示すように、接合用シートの断面を目視で確認したところ、接合用シート中の銅ナノ粒子の粒子径が約5nmから300nmであり、平均粒子径が300nm以下であるとともに、銅ナノ粒子同士が焼結して結合した状態を保っていることが確認できた。   In FIG. 3, the SEM (scanning electron microscope) image of the cross section of the obtained sheet | seat for joining is shown. As shown in FIG. 3, when the cross section of the bonding sheet was visually confirmed, the copper nanoparticles in the bonding sheet had a particle size of about 5 nm to 300 nm, an average particle size of 300 nm or less, and copper nano particles. It was confirmed that the particles were sintered and bonded.

<検証試験2>
次に、銅板と銅円柱とを接合材(接合用シート)を用いて接合して接合体を製造し、接合体のせん断強度(すなわち、接合材の接合強度)を比較検証した。
<Verification test 2>
Next, the copper plate and the copper cylinder were joined using a joining material (joining sheet) to produce a joined body, and the shear strength of the joined body (that is, the joining strength of the joining material) was compared and verified.

(接合材)
上述した検証試験1において、水素ガスを3体積%添加した窒素雰囲気(還元性雰囲気)中、温度を300℃、時間を10分間とし、圧力を5、10、20、40、70MPaの条件で加圧成型を行って、直径が6mm、厚さが50μmの接合材1〜5を製造した。
また、上述した検証試験1において、100体積%窒素雰囲気(不活性雰囲気)中、温度を300℃、時間を10分間、圧力を20MPaの条件で加圧成型を行って、直径が6mm、厚さが50μmの接合材6を製造した。
なお、接合材1〜6の比抵抗率は、下記の表1に示す。
(Joining material)
In the verification test 1 described above, in a nitrogen atmosphere (reducing atmosphere) added with 3% by volume of hydrogen gas, the temperature was set to 300 ° C., the time was set to 10 minutes, and the pressure was applied under conditions of 5, 10, 20, 40, and 70 MPa. Pressure bonding was performed to manufacture bonding materials 1 to 5 having a diameter of 6 mm and a thickness of 50 μm.
Further, in the verification test 1 described above, in a 100% by volume nitrogen atmosphere (inert atmosphere), pressure molding was performed under the conditions of a temperature of 300 ° C., a time of 10 minutes, and a pressure of 20 MPa, a diameter of 6 mm, and a thickness. Produced a bonding material 6 having a thickness of 50 μm.
The specific resistivity of the bonding materials 1 to 6 is shown in Table 1 below.

(接合体)
図4に示すように、直径6mmの銅円柱(第1被接合部材)と、18mm四方の銅板(第2被接合部材)とを、上述のように準備した接合材1〜6を用いて接合し、接合体を形成(製造)した。なお、接合体は、下記の2つの接合条件で、それぞれ製造した。
「接合条件1」
雰囲気:水素ガスを3体積%添加した窒素ガス雰囲気(還元性雰囲気)、圧力:10MPa、温度:300℃、時間:10分間
「接合条件2」
雰囲気:100体積%窒素ガス雰囲気(不活性雰囲気)、圧力:10MPa、温度:300℃、時間:10分間
(Joint)
As shown in FIG. 4, a 6 mm diameter copper cylinder (first member to be joined) and an 18 mm square copper plate (second member to be joined) are joined using the joining materials 1 to 6 prepared as described above. Then, a joined body was formed (manufactured). In addition, the joined body was manufactured on the following two joining conditions, respectively.
“Bonding condition 1”
Atmosphere: Nitrogen gas atmosphere (reducing atmosphere) added with 3% by volume of hydrogen gas, pressure: 10 MPa, temperature: 300 ° C., time: 10 minutes “joining condition 2”
Atmosphere: 100% by volume nitrogen gas atmosphere (inert atmosphere), pressure: 10 MPa, temperature: 300 ° C., time: 10 minutes

(せん断強度)
上述した接合材1〜6を用い、上記2つの接合条件で接合した接合体のせん断強度を、ボンドテスター(デイジ社製、「4000Plus」)を用いて測定した。結果を下記の表1に示す。
(Shear strength)
Using the bonding materials 1 to 6 described above, the shear strength of the bonded body bonded under the above two bonding conditions was measured using a bond tester (manufactured by Daisy, “4000 Plus”). The results are shown in Table 1 below.

表1に示すように、還元性雰囲気中で加圧成型した、本発明の接合材1〜5を用いて接合した接合体は、接合時に不活性雰囲気であっても、接合時に還元性雰囲気としたものに対して、せん断強度の減少率はいずれも10%未満であることを確認した。   As shown in Table 1, a bonded body that was pressure-molded in a reducing atmosphere and bonded using the bonding materials 1 to 5 of the present invention is a reducing atmosphere at the time of bonding, even if it is an inert atmosphere at the time of bonding. It was confirmed that the reduction rate of the shear strength was less than 10%.

これに対して、不活性雰囲気中で加圧成型して得られた接合材6を用いて接合した接合体では、接合時に還元性雰囲気としたものに対して、不活性雰囲気としたもののせん断強度の減少率が80%を超えることを確認した。   On the other hand, in the joined body joined by using the joining material 6 obtained by pressure molding in an inert atmosphere, the shear strength of the inert atmosphere compared to the reducing atmosphere at the time of joining. It was confirmed that the rate of decrease of exceeded 80%.

<検証試験3>
次に、本発明の接合材(接合用シート)の比抵抗値と、図4に示すように2つの被接合部材の間に当該接合材を設けて接合した接合体のせん断強度との関係を検証した。
<Verification test 3>
Next, the relationship between the specific resistance value of the bonding material (bonding sheet) of the present invention and the shear strength of the bonded body bonded by providing the bonding material between two members to be bonded as shown in FIG. Verified.

接合材(接合用シート)を製造する際の加圧成型条件は、水素ガスを0.3〜3.0体積%添加した窒素雰囲気(還元性雰囲気)中、圧力を20MPa以上、温度を200〜350℃、時間を2〜60分間とした。
また、接合体を製造する際の接合条件は、100%窒素雰囲気中において、圧力を10MPa、温度を300℃、時間を10分間とした。
図5に、接合用シートの比抵抗値と、この接合用シートを用いて接合した接合体のせん断強度との関係を示す。
The pressure molding conditions for producing the bonding material (bonding sheet) are as follows: the pressure is 20 MPa or more and the temperature is 200 to 200 in a nitrogen atmosphere (reducing atmosphere) to which 0.3 to 3.0% by volume of hydrogen gas is added. The temperature was 350 ° C. and the time was 2 to 60 minutes.
Further, the bonding conditions for manufacturing the bonded body were a pressure of 10 MPa, a temperature of 300 ° C., and a time of 10 minutes in a 100% nitrogen atmosphere.
FIG. 5 shows the relationship between the specific resistance value of the bonding sheet and the shear strength of the bonded body bonded using the bonding sheet.

図5に示すように、比抵抗値が1×10−5Ω・m以下の接合材では、これを用いて接合した接合体において、高いせん断強度(すなわち、高い接合力)が得られることを確認できた。 As shown in FIG. 5, with a bonding material having a specific resistance value of 1 × 10 −5 Ω · m or less, a high shear strength (that is, high bonding force) can be obtained in a bonded body bonded using the bonding material. It could be confirmed.

<検証試験4>
次に、本発明の接合材の加圧成型(加圧焼成)時の圧力条件、及び、この接合材を用いて得られる接合体の接合時の圧力条件と、本発明の接合体のせん断強度との関係を検証した。具体的には、上述した検証試験2の接合材1〜5(加圧成型時の圧力が5条件:5、10、20、40、70MPa)を用い、接合体を接合する際の圧力を3水準(10,20,40MPa)として、図4に示す接合体を製造し、これらのせん断強度を測定した。結果を図6に示す。
<Verification test 4>
Next, the pressure conditions at the time of pressure molding (pressure firing) of the bonding material of the present invention, the pressure conditions at the time of bonding of the bonded body obtained using this bonding material, and the shear strength of the bonded body of the present invention And verified the relationship. Specifically, using the bonding materials 1 to 5 in the above-described verification test 2 (pressure at the time of pressure molding is 5 conditions: 5, 10, 20, 40, 70 MPa), the pressure when bonding the bonded body is 3 As a level (10, 20, 40 MPa), the joined body shown in FIG. 4 was manufactured, and the shear strength thereof was measured. The results are shown in FIG.

ところで、従来の接合用シート(例えば、銀シート)を用いて接合した場合、接合時の圧力が高いほど、得られた接合体は高いせん断強度(つまり高い接合力)を示すことが一般的であった。   By the way, when it joins using the conventional joining sheet | seat (for example, silver sheet), it is common that the obtained joined body shows high shear strength (namely, high joining force), so that the pressure at the time of joining is high. there were.

しかしながら、図6に示すように、本発明の接合材では、接合材を加圧成型する際の圧力が低い場合、この接合用シートを用いて接合体を製造する際、接合時の圧力を高くしても、十分なせん断強度(つまり十分な接合力)が得られないことが確認できた。   However, as shown in FIG. 6, in the bonding material of the present invention, when the pressure at which the bonding material is pressure-molded is low, when the bonded body is manufactured using this bonding sheet, the pressure at the time of bonding is increased. Even so, it was confirmed that sufficient shear strength (that is, sufficient bonding strength) could not be obtained.

したがって、接合体を製造する際、接合時に高い圧力で接合する場合、高い圧力条件で加圧成型した接合用シートを用いることが望ましいことが示唆された。具体的には、図6に示すように、接合材を加圧成型する際の圧力が、接合時の圧力の約2倍で頭打ちであることから、本実施形態に係る接合材は、加圧成型工程の圧力が、接合時の圧力の2倍以上とすることがより望ましいといえる。
一方で、本発明の接合材を用いて接合する場合、接合材の加圧成型工程の圧力の1/2以下の圧力で接合することが望ましいといえる。
Therefore, when manufacturing a joined body, when joining at high pressure at the time of joining, it was suggested that it is desirable to use the joining sheet press-molded on high pressure conditions. Specifically, as shown in FIG. 6, since the pressure at which the bonding material is pressure-molded is about twice the pressure at the time of bonding, the bonding material according to this embodiment is pressurized. It can be said that it is more desirable that the pressure in the molding process be at least twice the pressure at the time of joining.
On the other hand, when joining using the joining material of this invention, it can be said that it is desirable to join by the pressure of 1/2 or less of the pressure of the pressure molding process of a joining material.

本発明の接合材、接合材の製造方法、及び接合体は、電子部品を接合する用途、より具体的には、パワーデバイスと呼ばれる電子デバイス内など、半田などの接合材では使用が困難である高温環境において、基盤や素子などの部品の接合用途に利用可能性を有する。   The bonding material, the manufacturing method of the bonding material, and the bonded body of the present invention are difficult to use in bonding materials such as solder, such as in applications for bonding electronic components, more specifically in electronic devices called power devices. It can be used for joining parts such as substrates and devices in high-temperature environments.

Claims (7)

平均粒子径が300nm以下の銅を主成分とする微粒子の焼結体を含む、板状又はシート状の接合材であって、
比抵抗値が1×10−5Ω・m以下である、接合材。
A plate-like or sheet-like bonding material comprising a sintered body of fine particles mainly composed of copper having an average particle diameter of 300 nm or less,
A bonding material having a specific resistance value of 1 × 10 −5 Ω · m or less.
厚さが、200μm以下である、請求項1に記載の接合材。   The bonding material according to claim 1, wherein the thickness is 200 μm or less. 平均粒子径が300nm以下の銅を主成分とする微粒子を準備する第1工程と、
前記微粒子を還元性雰囲気中で加圧しながら焼結して、板状又はシート状に形成する第2工程と、を含む、接合材の製造方法。
A first step of preparing fine particles mainly composed of copper having an average particle size of 300 nm or less;
And a second step of sintering the fine particles while being pressed in a reducing atmosphere to form a plate or sheet.
前記還元性雰囲気が、水素ガスを含む、請求項3に記載の接合材の製造方法。   The method for manufacturing a bonding material according to claim 3, wherein the reducing atmosphere includes hydrogen gas. 前記第2工程において、20MPa以上に加圧する、請求項3又は4に記載の接合材の製造方法。   The manufacturing method of the joining material according to claim 3 or 4 which pressurizes to 20MPa or more in said 2nd process. 請求項1に記載の接合材と、第1被接合部材と、第2被接合部材と、を備え、
前記第1被接合部材と、前記第2被接合部材との間に前記接合材が設けられた、接合体。
The bonding material according to claim 1, a first bonded member, and a second bonded member,
A joined body in which the joining material is provided between the first joined member and the second joined member.
平均粒子径が300nm以下の銅を主成分とする微粒子を還元性雰囲気中で加圧しながら焼結して、板状又はシート状の接合材を形成する工程と、
第1被接合部材と第2被接合部材との間に前記接合材が設けられた状態で加圧して、前記第1被接合部材と前記第2被接合部材とを接合して接合体を形成する工程と、を含み、
前記接合体を形成する際の圧力を、前記接合材を形成する際の圧力の1/2以下とする、接合体の製造方法。
Sintering a fine particle mainly composed of copper having an average particle diameter of 300 nm or less in a reducing atmosphere while pressurizing it to form a plate-like or sheet-like bonding material;
Pressurization is performed with the bonding material provided between the first bonded member and the second bonded member, and the first bonded member and the second bonded member are bonded to form a bonded body. Including the steps of:
A method for manufacturing a joined body, wherein a pressure at the time of forming the joined body is set to ½ or less of a pressure at the time of forming the joined material.
JP2016144231A 2016-07-22 2016-07-22 Joint filler, method for producing joint filler, and joined body Pending JP2018012871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016144231A JP2018012871A (en) 2016-07-22 2016-07-22 Joint filler, method for producing joint filler, and joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016144231A JP2018012871A (en) 2016-07-22 2016-07-22 Joint filler, method for producing joint filler, and joined body

Publications (1)

Publication Number Publication Date
JP2018012871A true JP2018012871A (en) 2018-01-25

Family

ID=61019130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016144231A Pending JP2018012871A (en) 2016-07-22 2016-07-22 Joint filler, method for producing joint filler, and joined body

Country Status (1)

Country Link
JP (1) JP2018012871A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203172A (en) * 2018-05-23 2019-11-28 大陽日酸株式会社 Joint material and method for producing joint material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059535A (en) * 2008-09-04 2010-03-18 Samsung Electro-Mechanics Co Ltd Reducing agent for low temperature reducing and sintering of copper nanoparticle, and method for low temperature sintering using the same
JP2012135816A (en) * 2010-12-08 2012-07-19 Toyota Central R&D Labs Inc Copper brazing filler metal
WO2014069318A1 (en) * 2012-11-01 2014-05-08 日本碍子株式会社 Copper alloy and process for manufacturing same
JP2015079650A (en) * 2013-10-17 2015-04-23 Dowaエレクトロニクス株式会社 Joining silver sheet, method for manufacturing the same, and method for joining electronic component
WO2016027593A1 (en) * 2014-08-22 2016-02-25 株式会社 豊田自動織機 Bonding structure, bonding material and bonding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059535A (en) * 2008-09-04 2010-03-18 Samsung Electro-Mechanics Co Ltd Reducing agent for low temperature reducing and sintering of copper nanoparticle, and method for low temperature sintering using the same
JP2012135816A (en) * 2010-12-08 2012-07-19 Toyota Central R&D Labs Inc Copper brazing filler metal
WO2014069318A1 (en) * 2012-11-01 2014-05-08 日本碍子株式会社 Copper alloy and process for manufacturing same
JP2015079650A (en) * 2013-10-17 2015-04-23 Dowaエレクトロニクス株式会社 Joining silver sheet, method for manufacturing the same, and method for joining electronic component
WO2016027593A1 (en) * 2014-08-22 2016-02-25 株式会社 豊田自動織機 Bonding structure, bonding material and bonding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203172A (en) * 2018-05-23 2019-11-28 大陽日酸株式会社 Joint material and method for producing joint material

Similar Documents

Publication Publication Date Title
JP5116082B2 (en) High thermal conductivity composite material
JP6337909B2 (en) Manufacturing method of electronic component module
JP6245933B2 (en) Silver sheet for bonding, method for manufacturing the same, and method for bonding electronic parts
JP6153077B2 (en) Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
WO2011114747A1 (en) Electrically conductive paste, and electrically conductive connection member produced using the paste
TW201826467A (en) Heat sink and method for manufacturing same
JP2009013475A (en) Composite material with high thermal conductivity
KR20170012437A (en) Bonding material and bonding method in which same is used
TW201733792A (en) Metal joining structure using metal nanoparticles and metal joining method and metal joining material
JP2021107569A (en) Copper sintered substrate nano-silver impregnated joint sheet, method therefor and joining method
EP3016135A1 (en) Connection structure and semiconductor device
US11430711B2 (en) Carbon nanotube enhanced silver paste thermal interface material
JPWO2012046641A1 (en) Precious metal paste for semiconductor element bonding
JP6884729B2 (en) Joining material and manufacturing method of joining material
JP2018012871A (en) Joint filler, method for producing joint filler, and joined body
CN114929413A (en) Joining material, method for producing joining material, and joined body
JP5923698B2 (en) Manufacturing method of semiconductor device using noble metal paste
JP6763708B2 (en) Joining material, manufacturing method of joining material, and joining body
CN114521271A (en) Copper oxide paste and method for producing electronic component
JP2022029194A (en) Joint method, copper sintered body and copper paste
JP6606514B2 (en) Conductive bonding material and conductive bonding structure using metal particles and conductive material particles
JP2006120973A (en) Circuit board and manufacturing method thereof
JP6821479B2 (en) Materials for plastic working, plastic working bodies and thermal conductors
Seal et al. Nanosilver preform assisted die attach for high temperature applications
JP2022026653A (en) Graphite laminate, graphite plate, and manufacturing method of graphite laminate

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201013

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106