JP2018004570A - Radiation detection device and radiation detection system - Google Patents

Radiation detection device and radiation detection system Download PDF

Info

Publication number
JP2018004570A
JP2018004570A JP2016135412A JP2016135412A JP2018004570A JP 2018004570 A JP2018004570 A JP 2018004570A JP 2016135412 A JP2016135412 A JP 2016135412A JP 2016135412 A JP2016135412 A JP 2016135412A JP 2018004570 A JP2018004570 A JP 2018004570A
Authority
JP
Japan
Prior art keywords
conductive member
scintillator
radiation
radiation detection
connection terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016135412A
Other languages
Japanese (ja)
Other versions
JP6377101B2 (en
Inventor
知昭 市村
Tomoaki Ichimura
知昭 市村
洋二郎 平塚
Yojiro Hiratsuka
洋二郎 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016135412A priority Critical patent/JP6377101B2/en
Priority to US15/634,922 priority patent/US10481280B2/en
Priority to CN201710507369.5A priority patent/CN107589439B/en
Priority to GB1710802.8A priority patent/GB2553891B/en
Priority to DE102017115118.4A priority patent/DE102017115118B4/en
Publication of JP2018004570A publication Critical patent/JP2018004570A/en
Application granted granted Critical
Publication of JP6377101B2 publication Critical patent/JP6377101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve an electromagnetic shield property in a radiation detection device having an arrangement from a side to be irradiated with radiation in order of a conductive member to which fixed potential is supplied, a pixel array, and a scintillator.SOLUTION: A radiation detection device includes: a scintillator 400; a pixel array 302 in which a plurality of pixels P for converting visible light converted by the scintillator 400 into an electric signal is arranged on a first surface 306 of a substrate 301 in a two-dimensional array; a first conductive member 200 to which constant potential is supplied. The radiation detection device includes a second conductive member 206 which has an arrangement from a side to be irradiated with radiation in order of a first conductive member 200, the pixel array 302, and the scintillator 400, has the scintillator 400 arranged on a first surface 306 side, is arranged on a side to be irradiated with radiation of the first conductive member 200, and to which constant potential is supplied. The second conductive member 206 is greater than orthogonal projection with respect to the second conductive member 206 of the first conductive member 200.SELECTED DRAWING: Figure 4

Description

本発明は、医療用画像診断装置、非破壊検査装置、放射線を用いた分析装置などに応用される放射線検出装置及び放射線検出システムに関する。   The present invention relates to a radiation detection apparatus and a radiation detection system applied to a medical diagnostic imaging apparatus, a nondestructive inspection apparatus, an analysis apparatus using radiation, and the like.

近年、薄膜半導体製造技術は、TFT(薄膜トランジスタ)等のスイッチ素子と光電変換素子等の変換素子とを組み合わせた検出装置や放射線検出装置にも利用されている。特許文献1に示すように、放射線源から発せられる放射線が照射される側に画素アレイを、放射線が照射される側とは反対側にシンチレータを配することにより放射線検出装置を構成する提案がなされている。そして、特許文献1では、放射線検出装置の放射線が照射される側から、定電位が供給される導電性部材、画素アレイ、シンチレータの順に配置され、画素アレイの放射線入射側から混入する電磁ノイズの影響を好適に低減する放射線検出装置が提案されている。   2. Description of the Related Art In recent years, thin film semiconductor manufacturing technology has been used for detection devices and radiation detection devices in which switch elements such as TFTs (thin film transistors) and conversion elements such as photoelectric conversion elements are combined. As shown in Patent Document 1, a proposal has been made to configure a radiation detection device by arranging a pixel array on the side irradiated with radiation emitted from a radiation source and a scintillator on the side opposite to the side irradiated with radiation. ing. And in patent document 1, it arrange | positions in order of the conductive member to which constant potential is supplied from the radiation irradiation side of a radiation detection apparatus, a pixel array, and a scintillator, and the electromagnetic noise mixed from the radiation incident side of a pixel array A radiation detection apparatus that suitably reduces the influence has been proposed.

特開2012−112726号公報JP 2012-112726 A

しかしながら、特許文献1では、導電性部材は画素アレイが設けられる基板とほぼ同じ大きさでしかなく、筐体の放射線が照射される側の面は基板よりも大きいため、その差分から混入する電磁ノイズの影響を低減することは困難であった。   However, in Patent Document 1, the conductive member is only approximately the same size as the substrate on which the pixel array is provided, and the surface of the housing that is irradiated with radiation is larger than the substrate. It has been difficult to reduce the influence of noise.

そこで、本発明では、放射線検出装置の放射線が照射される側から、固定電位が供給される導電性部材、画素アレイ、シンチレータの順に配置される放射線検出装置において、電磁シールド性を向上することを目的とする。   Therefore, in the present invention, in the radiation detection device arranged in the order of the conductive member to which a fixed potential is supplied, the pixel array, and the scintillator from the radiation irradiation side of the radiation detection device, the electromagnetic shielding property is improved. Objective.

本発明の放射線検出装置は、照射された放射線を可視光に変換するシンチレータと、該シンチレータにより変換された可視光を電気信号に変換する画素が基板の第1表面に2次元アレイ状に複数配置された画素アレイと、前記基板の前記第1表面と対向する第2表面に固定されて定電位が供給される第1導電性部材と、を含み、放射線が照射される側から、前記第1導電性部材、前記画素アレイ、前記シンチレータの順に配置され、且つ、前記シンチレータが前記第1表面側に配置されている放射線検出装置であって、前記第1導電性部材の放射線が照射される側に配置されて定電位が供給される第2導電性部材を含み、前記第2導電性部材は前記第1導電性部材の前記第2導電性部材に対する正射影よりも大きい。   In the radiation detection apparatus of the present invention, a plurality of scintillators that convert irradiated radiation into visible light and pixels that convert visible light converted by the scintillator into electrical signals are arranged in a two-dimensional array on the first surface of the substrate. A first conductive member fixed to a second surface opposite to the first surface of the substrate and supplied with a constant potential, and from the side irradiated with radiation, the first array A radiation detection device in which a conductive member, the pixel array, and the scintillator are arranged in this order, and the scintillator is arranged on the first surface side, and the side on which the radiation of the first conductive member is irradiated And a second conductive member to which a constant potential is supplied. The second conductive member is larger than an orthogonal projection of the first conductive member with respect to the second conductive member.

本発明により、放射線検出装置の放射線が照射される側から、固定電位が供給される導電性部材、画素アレイ、シンチレータの順に配置される放射線検出装置において、電磁シールド性を向上することが可能となる。   According to the present invention, it is possible to improve electromagnetic shielding performance in a radiation detection device arranged in the order of a conductive member to which a fixed potential is supplied, a pixel array, and a scintillator from the radiation irradiation side of the radiation detection device. Become.

放射線検出装置の概略構成を説明するための平面模式図及び断面模式図Plane schematic diagram and cross-sectional schematic diagram for explaining the schematic configuration of the radiation detection apparatus 放射線検出装置のセンサパネルの構成を説明するための平面模式図Plane schematic diagram for explaining the configuration of the sensor panel of the radiation detection apparatus 放射線検出装置全体の平面模式図Plane schematic diagram of the entire radiation detector 放射線検出装置全体の断面模式図Cross-sectional schematic diagram of the entire radiation detector 放射線検出装置の他の例を説明するための断面模式図Cross-sectional schematic diagram for explaining another example of the radiation detection apparatus 放射線検出装置の他の例を説明するための断面模式図Cross-sectional schematic diagram for explaining another example of the radiation detection apparatus 放射線検出装置のシンチレータを説明するための断面模式図Cross-sectional schematic diagram for explaining a scintillator of a radiation detection apparatus 放射線検出装置のシンチレータを説明するための平面模式図Plane schematic diagram for explaining the scintillator of the radiation detection apparatus 放射線検出システムの概略構成の一例を示す模式図Schematic diagram showing an example of a schematic configuration of a radiation detection system

以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。なお、本明細書では、放射性崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギーを有するビーム、例えばX線や粒子線、宇宙線なども、放射線に含まれるものとする。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. In this specification, in addition to α-rays, β-rays, γ-rays, etc., which are beams produced by particles (including photons) emitted by radioactive decay, beams having the same or higher energy, such as X-rays, Particle rays and cosmic rays are also included in the radiation.

まず、図1(a)、図1(b)、及び、図2を用いて、本発明の放射線検出装置の概略構成を説明する。図1(a)は、放射線検出装置の筐体部分を除く平面模式図、図1(b)は放射線検出装置の筐体部分を除く断面模式図であり、図1(a)のA−A’の断面模式図である。図2は、放射線検出装置のセンサパネルの構成を説明するための平面模式図である。   First, the schematic configuration of the radiation detection apparatus of the present invention will be described with reference to FIGS. 1 (a), 1 (b), and 2. FIG. 1A is a schematic plan view excluding the housing portion of the radiation detection apparatus, FIG. 1B is a schematic cross-sectional view of the radiation detection apparatus excluding the housing portion, and AA in FIG. It is a cross-sectional schematic diagram of '. FIG. 2 is a schematic plan view for explaining the configuration of the sensor panel of the radiation detection apparatus.

図1(a)、図1(b)、及び、図2に示すように、本発明の放射線検出装置は、シンチレータ400と画素アレイ302と複数の接続端子部303と第1導電性部材200とを含む。シンチレータ400は、照射された放射線を可視光に変換するものである。シンチレータ400は、放射線を可視光に変換するシンチレータ層401と、シンチレータ層401を保護する保護部材402と、を含み得る。画素アレイ302は、シンチレータ400により変換された可視光を電気信号に変換する画素Pが基板301の第1表面306に2次元アレイ状に複数配置されたものである。基板301は、第1表面306と対向する第2表面307を含む。画素302は夫々、可視光を電気信号に変換する光電変換素子304と、光電変換素子304で得られた電気信号の蓄積及び出力を制御するための薄膜トランジスタ(TFT)等のスイッチ素子と、を含み得る。複数の接続端子部303は夫々、基板301の第1表面306の画素アレイ302の周辺に設けられており、配線部308を介して画素アレイ300と外部回路(詳細は後で説明)との電気的な接続を行うためのものである。第1導電性部材200は、画素アレイ302に対して放射線が照射される側(第2表面307側)から混入する電磁ノイズを低減するために、定電位が供給されるものである。そして、放射線が照射される側から、第1導電性部材200、画素アレイ302、シンチレータ400の順に配置され、且つ、シンチレータ400が基板301の第1表面側(第1表面306側)に配置されている。ここで、第1導電性部材200は、基板301の第2表面307の複数の接続端子部303と対向する領域309を除く領域に配置されている。第1導電性部材200は、領域309を除く領域の基板301の第2表面307に、粘着剤を介して固定され得る。ここでは、第1導電性部材200は、その端部が第2表面307の画素アレイ302が配置された領域の端と複数の接続端子部303と対向する領域309との間に位置するように、領域309を除く領域に配置されている。なお、画素アレイ302及び配線部308はパッシベーション膜310で覆われており、この場合、シンチレータ400は基板301の第1表面306側であるパッシベーション膜310の表面に設けられることとなる。また、保護部材402は、シンチレータ層401及びその周辺のパッシベーション膜310の表面を覆うことで、シンチレータ層401及び基板301の第1表面306の少なくとも一部を覆ってシンチレータ層401を保護している。保護部材402は、定電位が供給される導電層を含み得る。その場合、画素アレイ302は両表面側から第1導電性部材200と保護部材402の導電層とにより電磁ノイズに対してシールドされることとなる。   As shown in FIG. 1A, FIG. 1B, and FIG. 2, the radiation detection apparatus of the present invention includes a scintillator 400, a pixel array 302, a plurality of connection terminal portions 303, and a first conductive member 200. including. The scintillator 400 converts irradiated radiation into visible light. The scintillator 400 can include a scintillator layer 401 that converts radiation into visible light, and a protective member 402 that protects the scintillator layer 401. In the pixel array 302, a plurality of pixels P that convert visible light converted by the scintillator 400 into electrical signals are arranged on the first surface 306 of the substrate 301 in a two-dimensional array. The substrate 301 includes a second surface 307 that faces the first surface 306. Each of the pixels 302 includes a photoelectric conversion element 304 that converts visible light into an electric signal, and a switch element such as a thin film transistor (TFT) for controlling accumulation and output of the electric signal obtained by the photoelectric conversion element 304. obtain. Each of the plurality of connection terminal portions 303 is provided in the periphery of the pixel array 302 on the first surface 306 of the substrate 301, and electrical connection between the pixel array 300 and an external circuit (details will be described later) via the wiring portion 308. It is for making a general connection. The first conductive member 200 is supplied with a constant potential in order to reduce electromagnetic noise mixed from the radiation irradiation side (second surface 307 side) to the pixel array 302. The first conductive member 200, the pixel array 302, and the scintillator 400 are arranged in this order from the radiation irradiation side, and the scintillator 400 is arranged on the first surface side (first surface 306 side) of the substrate 301. ing. Here, the first conductive member 200 is disposed in a region excluding the region 309 facing the plurality of connection terminal portions 303 on the second surface 307 of the substrate 301. The first conductive member 200 can be fixed to the second surface 307 of the substrate 301 in a region excluding the region 309 via an adhesive. Here, the first conductive member 200 has an end portion located between the end of the region where the pixel array 302 of the second surface 307 is disposed and the region 309 facing the plurality of connection terminal portions 303. , Are arranged in the area excluding the area 309. Note that the pixel array 302 and the wiring portion 308 are covered with a passivation film 310, and in this case, the scintillator 400 is provided on the surface of the passivation film 310 on the first surface 306 side of the substrate 301. Further, the protection member 402 covers the surface of the scintillator layer 401 and the passivation film 310 around it, thereby covering the scintillator layer 401 and the first surface 306 of the substrate 301 to protect the scintillator layer 401. . The protective member 402 can include a conductive layer to which a constant potential is supplied. In that case, the pixel array 302 is shielded against electromagnetic noise by the first conductive member 200 and the conductive layer of the protection member 402 from both surface sides.

複数の接続端子部303は、図1(a)に示すように、画素アレイ302を駆動するための駆動回路(不図示)と電気的に接続される、センサパネル300を構成する基板301の第1辺及び対向する第3辺に沿って配置された複数の第1接続端子部を含む。複数の接続端子部には、複数の第1フレキシブル配線基板103bが電気的に接続されている。また、複数の接続端子部303は、画素アレイ302からの電気信号を読み出すための読出回路(不図示)と電気的に接続される、基板301の第1辺と隣り合う第2辺及び対向する第4辺に沿って配置された複数の第2接続端子部を含む。複数の第2接続端子部には、複数の第2フレキシブル配線基板103bが電気的に接続されている。一組の接続端子部303とフレキシブル配線基板との電気的な接続は、異方性導電フィルム等の導電性接着剤108によってなされる。   The plurality of connection terminal portions 303 are electrically connected to a drive circuit (not shown) for driving the pixel array 302 as shown in FIG. It includes a plurality of first connection terminal portions arranged along one side and the opposite third side. A plurality of first flexible wiring boards 103b are electrically connected to the plurality of connection terminal portions. Further, the plurality of connection terminal portions 303 are electrically connected to a readout circuit (not shown) for reading out an electrical signal from the pixel array 302, and are opposed to a second side adjacent to the first side of the substrate 301. A plurality of second connection terminal portions arranged along the fourth side are included. A plurality of second flexible wiring boards 103b are electrically connected to the plurality of second connection terminal portions. The electrical connection between the set of connection terminal portions 303 and the flexible wiring board is made by a conductive adhesive 108 such as an anisotropic conductive film.

接続部201は、第1導電性部材200に定電位を供給するための定電位部材(詳細は後で説明)と第1導電性部材200とを電気的に接続するためのものである。接続部201は、図1(a)に示すように、基板301の第2辺や第4辺において第2表面307の複数の接続端子部303と対向する領域309の間を通過するように設けられている。また、接続部201は、複数の第2フレキシブル配線基板103aの間を通過するように設けられている。第2フレキシブル配線基板103aを通過する信号は、画素アレイ302によって生成された電気信号であり、第1フレキシブル配線基板103bを通過する画素アレイを駆動するための信号に比べて非常に微弱である。第2フレキシブル配線基板103a側に定電位が供給される接続部201が位置するため、微弱な電気信号が通過する第2フレキシブル配線基板103aの電磁ノイズ耐性が向上し得る。また、接続部201は、図1(a)及び図1(b)に示すように、第1導電性部材200と同じ材料を用いて第1導電性部材200の一部が引き伸ばされたような構成をとり得る。第1導電性部材200及び接続部201の材料としては、アルミニウムとPET(ポリエチレンテレフタレート)が積層された総厚さが0.05〜0.1mmのシート状の部材が用いられ得る。なお、第1導電性部材200として適用可能なシート抵抗は10000Ω/□以下である。また、接続部201は、複数設けられることが好ましく、図1(a)に示す例では、第2辺に5ヶ所、第4辺に5ヶ所の計10か所に設けられている。   The connecting portion 201 is for electrically connecting a constant potential member (details will be described later) for supplying a constant potential to the first conductive member 200 and the first conductive member 200. As shown in FIG. 1A, the connecting portion 201 is provided so as to pass between regions 309 facing the plurality of connecting terminal portions 303 on the second surface 307 on the second side and the fourth side of the substrate 301. It has been. Moreover, the connection part 201 is provided so that it may pass between the some 2nd flexible wiring boards 103a. The signal passing through the second flexible wiring board 103a is an electric signal generated by the pixel array 302 and is very weak compared to the signal for driving the pixel array passing through the first flexible wiring board 103b. Since the connection portion 201 to which a constant potential is supplied is located on the second flexible wiring board 103a side, the electromagnetic noise resistance of the second flexible wiring board 103a through which a weak electric signal passes can be improved. Further, as shown in FIGS. 1A and 1B, the connecting portion 201 is such that a part of the first conductive member 200 is stretched using the same material as the first conductive member 200. It can take a configuration. As a material for the first conductive member 200 and the connection portion 201, a sheet-like member having a total thickness of 0.05 to 0.1 mm in which aluminum and PET (polyethylene terephthalate) are stacked may be used. The sheet resistance applicable as the first conductive member 200 is 10000Ω / □ or less. A plurality of connection portions 201 are preferably provided. In the example illustrated in FIG. 1A, the connection portions 201 are provided at a total of 10 locations, 5 locations on the second side and 5 locations on the fourth side.

次に、図3、図4(a)、及び、図4(b)を用いて、本発明の放射線検出装置全体の概略構成を説明する。図3(a)は、放射線検出装置全体の平面模式図、図4(a)は放射線検出装置全体の断面模式図であり、図3のA−A’の断面模式図であり、図4(b)は図3のB−B’の断面模式図である。   Next, the schematic configuration of the entire radiation detection apparatus of the present invention will be described with reference to FIGS. 3, 4 (a), and 4 (b). 3A is a schematic plan view of the entire radiation detection apparatus, FIG. 4A is a schematic cross-sectional view of the entire radiation detection apparatus, and is a schematic cross-sectional view taken along line AA ′ of FIG. b) is a schematic cross-sectional view taken along the line BB ′ of FIG. 3.

図3、図4(a)、及び、図4(b)に示されるように、放射線検出装置100は、センサパネル300、シンチレータ400、第1導電性部材200、第1及び第2フレキシブル配線基板103a及び103b、及び、接続部201を収容する筐体を含む。筐体は、図4に示すように、外装箱上部102a及び外装箱下部102bを含む外装箱102と、カバー101と、を含む。放射線検出装置100の放射線が照射される側となるカバー101としては、厚さが1〜1.5mmのCFRP(炭素繊維強化プラスチック)が好適に用いられ得る。外装箱上部102a及び外装箱下部102bには、軽量性と堅牢性を兼ね備えた厚さが1.5〜2.5mmのSUS(ステンレス鋼)が用いられ得る。ここで、SUSとは鉄(Fe)を主成分(50%以上)とし、クロム(Cr)を10.5%以上含む、合金鋼である。そのため、外装箱上部102a及び外装箱下部102bは、接地等の定電位供給により電磁シールドとして機能する。カバー101は外装箱上部102と接着固定され得る。   As shown in FIGS. 3, 4 (a), and 4 (b), the radiation detection apparatus 100 includes a sensor panel 300, a scintillator 400, a first conductive member 200, first and second flexible wiring boards. 103a and 103b, and a housing for housing the connecting portion 201 is included. As shown in FIG. 4, the housing includes an outer box 102 including an outer box upper part 102 a and an outer box lower part 102 b, and a cover 101. As the cover 101 on the radiation irradiation side of the radiation detection apparatus 100, CFRP (carbon fiber reinforced plastic) having a thickness of 1 to 1.5 mm can be suitably used. For the outer box upper part 102a and the outer box lower part 102b, SUS (stainless steel) having a thickness of 1.5 to 2.5 mm having both lightness and robustness can be used. Here, SUS is an alloy steel containing iron (Fe) as a main component (50% or more) and 10.5% or more of chromium (Cr). Therefore, the outer box upper part 102a and the outer box lower part 102b function as electromagnetic shields by supplying a constant potential such as ground. The cover 101 can be adhered and fixed to the outer box upper part 102.

放射線検出装置100は、筐体内に、シンチレータ400の側から第1導電性部材200、画素アレイ302を備えた基板301、及び、シンチレータ400を支持する支持部材106を更に含む。支持部材106は、放射線が照射される側(シンチレータ400側)から順に配置された、放射線吸収板106aと基台106bとを含む。基台106bは、厚さが2〜3.5mmのAlで構成されており、放射線吸収板106aは、厚さが0.25〜1mmのSUSで構成されており、基台106bよりも高い放射線吸収性能を有する。支持部材106は、スペーサ104により外装箱下部102bにねじ止めなどで固定されて保持されている。シンチレータ400の保護部材402と支持部材106とは、緩衝機能を有する粘着シート403によって固定されている。粘着シート403は、緩衝機能と接着性との両立のため、総厚さが0.5〜0.75mmであることが好ましい。また、粘着シート403は、シンチレータ400の支持部材106側の表面とほぼ同じかそれより広い面積を有することが好ましい。   The radiation detection apparatus 100 further includes a first conductive member 200, a substrate 301 including a pixel array 302 from the side of the scintillator 400, and a support member 106 that supports the scintillator 400 in the housing. The support member 106 includes a radiation absorbing plate 106a and a base 106b, which are arranged in order from the side irradiated with radiation (the scintillator 400 side). The base 106b is made of Al having a thickness of 2 to 3.5 mm, the radiation absorbing plate 106a is made of SUS having a thickness of 0.25 to 1 mm, and is higher in radiation than the base 106b. Has absorption performance. The support member 106 is fixed and held by the spacer 104 to the lower portion 102b of the outer box by screwing or the like. The protective member 402 and the support member 106 of the scintillator 400 are fixed by an adhesive sheet 403 having a buffer function. The pressure-sensitive adhesive sheet 403 preferably has a total thickness of 0.5 to 0.75 mm in order to achieve both a buffer function and adhesiveness. Moreover, it is preferable that the adhesive sheet 403 has an area substantially the same as or wider than the surface of the scintillator 400 on the support member 106 side.

図4(a)に示すように、第2フレキシブル配線基板103aには、画素アレイからの電気信号を読み出すための読出回路を有する第2集積回路(IC)112aが備えられた、所謂COF(Chip On Film)が用いられ得る。第2集積回路112aは、第2プリント回路基板105aに備えられた電源回路や処理回路を有するICや、第3プリント回路基板105cに設けられた制御回路を有するICと、第3フレキシブル配線基板103cを介して電気的に接続される。第2集積回路112a、第2プリント回路基板105a、第3プリント回路基板105c、及び、第3フレキシブル配線基板103cは、支持部材106と外装箱下部102bとの間に配置され得る。それにより、これらの部材は放射線吸収板106aに対して放射線の照射される側とは反対側に配置され得る。ここで、第2集積回路112aとAlの基台106bとの間に、Alからなる第1伝熱部材109及び放熱ゴムからなる放熱部材111が配置されている。これにより、第2集積回路112aで発生された熱が基台106bに伝熱及び熱拡散され、熱集中を緩和する。また、第2集積回路112aと外装箱下部102bとの間に、Alからなる第2伝熱部材110及び放熱ゴムからなる放熱部材111が配置されている。これにより、第2集積回路112aで発生された熱が外装箱下部102bに伝熱され、外装箱下部102bを介して外部に放熱される。また、第2プリント回路基板105aはスペーサ104を介して基台106bに固定されており、第3プリント回路基板105cはスペーサ104を介して基台106b及び外装箱下部102bに固定されている。スペーサ104は、空気より熱伝導率の高い材料を用いることにより、位置規制に加えて伝熱の機能も有し得る。   As shown in FIG. 4A, the second flexible wiring board 103a is provided with a second integrated circuit (IC) 112a having a readout circuit for reading out an electrical signal from the pixel array, so-called COF (Chip). On Film) may be used. The second integrated circuit 112a includes an IC having a power supply circuit and a processing circuit provided in the second printed circuit board 105a, an IC having a control circuit provided in the third printed circuit board 105c, and a third flexible wiring board 103c. It is electrically connected via. The second integrated circuit 112a, the second printed circuit board 105a, the third printed circuit board 105c, and the third flexible wiring board 103c may be disposed between the support member 106 and the outer box lower part 102b. Thereby, these members can be arranged on the side opposite to the side irradiated with radiation with respect to the radiation absorbing plate 106a. Here, a first heat transfer member 109 made of Al and a heat dissipating member 111 made of heat dissipating rubber are disposed between the second integrated circuit 112a and the Al base 106b. As a result, the heat generated in the second integrated circuit 112a is transferred and diffused to the base 106b, thereby relaxing the heat concentration. Further, a second heat transfer member 110 made of Al and a heat dissipation member 111 made of heat radiating rubber are arranged between the second integrated circuit 112a and the outer box lower portion 102b. Thereby, the heat generated in the second integrated circuit 112a is transferred to the outer box lower part 102b and radiated to the outside through the outer box lower part 102b. The second printed circuit board 105 a is fixed to the base 106 b through the spacer 104, and the third printed circuit board 105 c is fixed to the base 106 b and the outer box lower part 102 b through the spacer 104. The spacer 104 can have a heat transfer function in addition to the position restriction by using a material having a higher thermal conductivity than air.

また、図4(b)に示すように、第1フレキシブル配線基板103bには、画素アレイを駆動するための駆動回路を有する第1集積回路112bが備えられた、所謂COF(Chip On Film)が用いられ得る。第1集積回路112bは、第1プリント回路基板105bに備えられた電源回路を有するICと電気的に接続される。第1集積回路112b及び第1プリント回路基板105bは、支持部材106と外装箱下部102bとの間に配置され得る。それにより、これらの部材は放射線吸収板106aに対して放射線の照射される側とは反対側に配置され得る。   As shown in FIG. 4B, the first flexible wiring substrate 103b has a so-called COF (Chip On Film) provided with a first integrated circuit 112b having a driving circuit for driving the pixel array. Can be used. The first integrated circuit 112b is electrically connected to an IC having a power supply circuit provided on the first printed circuit board 105b. The first integrated circuit 112b and the first printed circuit board 105b may be disposed between the support member 106 and the outer box lower part 102b. Thereby, these members can be arranged on the side opposite to the side irradiated with radiation with respect to the radiation absorbing plate 106a.

一方、基板301及び第1導電性部材200と外装箱上部102aとの間には、スペーサ113及び緩衝部材114が配置され、基板301及び第1導電性部材200が外装箱上部102aに対して位置規制されている。スペーサ113は、厚さが1〜2.5mmのSUSで構成されており、基台106bよりも高い放射線吸収性能を有する。放射線吸収板106aとスペーサ113により、放射線検出装置全体の放射線吸収性を確保している。   Meanwhile, a spacer 113 and a buffer member 114 are disposed between the substrate 301 and the first conductive member 200 and the outer box upper portion 102a, and the substrate 301 and the first conductive member 200 are positioned with respect to the outer box upper portion 102a. It is regulated. The spacer 113 is made of SUS having a thickness of 1 to 2.5 mm, and has higher radiation absorption performance than the base 106b. The radiation absorbing plate 106a and the spacer 113 ensure the radiation absorbability of the entire radiation detection apparatus.

ここで、接続部201は、基台106bに電気的に接続されるように支持部材106に固定されている。支持部材106の基台106bは、スペーサ104に用いられるねじなどの金属によって電源回路の定電位部や筐体と電気に接続されて固定電位が供給されており、定電位部材として機能している。このように接続部201が基台106bと電気的に接続されることにより、第1導電性部材200には定電位が供給され得る。なお、供給される定電位は、接地によるグランド電位であっても、いずれかの電源回路が生成する定電位であってもよい。   Here, the connecting portion 201 is fixed to the support member 106 so as to be electrically connected to the base 106b. The base 106b of the support member 106 is electrically connected to a constant potential portion of the power supply circuit and the casing by a metal such as a screw used for the spacer 104 and is supplied with a fixed potential, and functions as a constant potential member. . As described above, the connection portion 201 is electrically connected to the base 106b, whereby a constant potential can be supplied to the first conductive member 200. Note that the supplied constant potential may be a ground potential due to grounding or a constant potential generated by any one of the power supply circuits.

そして、筐体内の第1導電性部材200の放射線が照射される側に、言い換えると筐体のカバー101と第1導電性部材200との間に、定電位が供給される第2導電性部材206が配置されている。ここで、第2導電性部材206は第1導電性部材200の第2導電性部材206に対する正射影よりも大きい。言い換えると、第2導電性部材206の方が第1導電性部材200よりも面積が大きく、より広い領域をカバーし得る。それにより、筐体の放射線が照射される側の面であるカバー101と第2導電性部材206との面積の差分の領域から混入し得る電磁ノイズの影響を低減することが可能となる。第2導電性部材206は、図4(b)に示すように、外装箱上部102aとスペーサ113との間に挟んで設けられており、外装箱上部102aと電気的に接触することにより定電位が筐体から供給されている。第2導電性部材206の材料としては、アルミニウムとPET(ポリエチレンテレフタレート)が積層された総厚さが0.07〜0.15mmのシート状の部材が用いられ得る。また、第2導電性部材206として適用可能なシート抵抗は10000Ω/□以下である。なお、第2導電性部材206は、カバー101の変形に起因する衝撃に対する耐性を確保するために、第1導電性部材200よりも剛性を高くすることが好ましく、そのため総厚さがより厚くすることが好ましい。また、第2導電性部材206はカバー101に直接接着固定されていてもよい。   Then, the second conductive member to which a constant potential is supplied to the side on which the radiation of the first conductive member 200 in the casing is irradiated, in other words, between the cover 101 of the casing and the first conductive member 200. 206 is arranged. Here, the second conductive member 206 is larger than the orthogonal projection of the first conductive member 200 with respect to the second conductive member 206. In other words, the second conductive member 206 has a larger area than the first conductive member 200 and can cover a wider area. Accordingly, it is possible to reduce the influence of electromagnetic noise that can be mixed from the area of the difference in area between the cover 101 and the second conductive member 206 that is the surface of the housing that is irradiated with radiation. As shown in FIG. 4B, the second conductive member 206 is sandwiched between the outer box upper part 102a and the spacer 113, and is electrically connected to the outer box upper part 102a so as to have a constant potential. Is supplied from the housing. As a material of the second conductive member 206, a sheet-like member having a total thickness of 0.07 to 0.15 mm in which aluminum and PET (polyethylene terephthalate) are laminated may be used. The sheet resistance applicable as the second conductive member 206 is 10000Ω / □ or less. The second conductive member 206 preferably has a higher rigidity than the first conductive member 200 in order to ensure resistance to impact caused by the deformation of the cover 101, and therefore the total thickness is made thicker. It is preferable. The second conductive member 206 may be directly bonded and fixed to the cover 101.

なお、図1(a)に示す例では、接続部201は、基板301の第2辺や第4辺において領域309の間を通過して複数の第2フレキシブル配線基板103aの間を通過するように設けられているが、本発明はそれに限定されるものではない。例えば、図5(a)に示すように、接続部201は、基板301の第1辺や第3辺において領域309の間を通過して複数の第1フレキシブル配線基板103bの間を通過するように設けられていてもよい。また、図1(a)に示すように、第1導電性部材200は、その端部が第2表面307の画素アレイ302が配置された領域の端と複数の接続端子部303と対向する領域309との間に位置するように配置されているが、本発明はそれに限定されるものではない。例えば、図5(b)及び図5(c)に示すように、第1導電性部材200は、その端部の一部が、第2表面307の複数の領域309の間に位置するように配置されていてもよい。このように配置することにより、図1(a)に示す例に比べて第1導電性部材200をより広い領域に配置できる。   In the example shown in FIG. 1A, the connecting portion 201 passes between the regions 309 on the second side and the fourth side of the substrate 301 so as to pass between the plurality of second flexible wiring boards 103a. However, the present invention is not limited to this. For example, as shown in FIG. 5A, the connecting portion 201 passes between the regions 309 on the first side and the third side of the substrate 301 and passes between the plurality of first flexible wiring boards 103b. May be provided. Further, as shown in FIG. 1A, the first conductive member 200 has an end portion facing an end of a region where the pixel array 302 of the second surface 307 is disposed and a plurality of connection terminal portions 303. However, the present invention is not limited to this. For example, as shown in FIGS. 5B and 5C, the first conductive member 200 has a part of the end thereof positioned between the plurality of regions 309 of the second surface 307. It may be arranged. By arrange | positioning in this way, the 1st electroconductive member 200 can be arrange | positioned in a wider area | region compared with the example shown to Fig.1 (a).

更に、図6(a)に示すように、接続部201は、複数の第1フレキシブル配線基板同士の間、及び、複数の第2フレキシブル配線基板同士の間、の全てに配置できるように、図1(a)に示す例よりもより多くの数で設けられていてもよい。また、図1(a)に示す例では、接続部201は、第1導電性部材200と同じ材料を用いて第1導電性部材200の一部が引き伸ばされたような構成を用いたが、本発明はそれに限定されるものではない。図6(b)に示すように、接続部201は、第1導電性部材200とは別に設けられて第1導電性部材200と導電性接着剤205を介して電気的に接続されてもよい。   Further, as shown in FIG. 6A, the connection portion 201 is arranged so that it can be disposed between the plurality of first flexible wiring boards and between the plurality of second flexible wiring boards. It may be provided in a larger number than the example shown in 1 (a). In the example illustrated in FIG. 1A, the connection unit 201 uses a configuration in which a part of the first conductive member 200 is stretched using the same material as the first conductive member 200. The present invention is not limited to this. As shown in FIG. 6B, the connection portion 201 may be provided separately from the first conductive member 200 and electrically connected to the first conductive member 200 via the conductive adhesive 205. .

ここで、図7(a)〜図7(d)を用いて、センサパネル300に設けられたシンチレータ400について、より詳細に説明する。図7(a)に示すように、シンチレータ400の保護部材402は、支持層204と、防湿層405と、接着層406と、を含み得る。防湿層405は、シンチレータ層401を外部の水分等から保護する層であり、Al等の導電層が用いられ得る。この導電層に定電位を供給することにより、防湿層405は電磁シールドとして機能し得る。支持層204は防湿層405を支持する層であり、防湿層405が十分な剛性を有していれば、図7(b)に示すように必ずしも設けなくてもよい。支持層204には、PET(ポリエチレンテレフタレート)等が好適に用いられ得る。接着層406は、防湿層405をシンチレータ層401及びセンサパネル300に接着するための層であり、ホットメルト樹脂などが好適に用いられ得る。なお、図7(c)に示すように、接着層406は、シンチレータ層401にアルカリハライド系の材料を用いて防湿層に導電層を用いた場合には、電気化学的腐食を抑制するためにシンチレータ層401を被覆するように設けられるとよい。そうでない場合には、図7(d)に示すように、接着層406は、シンチレータ層401とは接着せずにセンサパネル300のみと接着するように設けられてもよい。   Here, the scintillator 400 provided in the sensor panel 300 will be described in more detail with reference to FIGS. 7A to 7D. As shown in FIG. 7A, the protective member 402 of the scintillator 400 can include a support layer 204, a moisture-proof layer 405, and an adhesive layer 406. The moisture-proof layer 405 is a layer that protects the scintillator layer 401 from external moisture and the like, and a conductive layer such as Al can be used. By supplying a constant potential to the conductive layer, the moisture-proof layer 405 can function as an electromagnetic shield. The support layer 204 is a layer that supports the moisture-proof layer 405. If the moisture-proof layer 405 has sufficient rigidity, the support layer 204 is not necessarily provided as shown in FIG. For the support layer 204, PET (polyethylene terephthalate) or the like can be suitably used. The adhesive layer 406 is a layer for adhering the moisture-proof layer 405 to the scintillator layer 401 and the sensor panel 300, and a hot melt resin or the like can be suitably used. As shown in FIG. 7C, the adhesive layer 406 is used to suppress electrochemical corrosion when an alkali halide material is used for the scintillator layer 401 and a conductive layer is used for the moisture-proof layer. The scintillator layer 401 may be provided so as to cover it. Otherwise, as shown in FIG. 7D, the adhesive layer 406 may be provided so as to adhere only to the sensor panel 300 without adhering to the scintillator layer 401.

また、図8(a)に示すように、保護部材402の導電層は、基板301の第1辺や第3辺において領域309の間を通過して複数の第1フレキシブル配線基板103bの間を通過するように設けられている。通過した保護部材402の導電層の一部が支持部材106と電気的に接続されることにより、保護部材402の導電層に定電位が供給されて電磁シールドとして機能し得る。この電磁シールド機能を強化するために、図8(b)に示すように、より多くの領域を通過させて複数の経路から保護部材402の導電層を支持部材106に電気的に接続させてもよい。   As shown in FIG. 8A, the conductive layer of the protective member 402 passes between the regions 309 on the first side and the third side of the substrate 301 and passes between the plurality of first flexible wiring boards 103b. It is provided to pass. A part of the conductive layer of the protective member 402 that has passed through is electrically connected to the support member 106, whereby a constant potential is supplied to the conductive layer of the protective member 402 and can function as an electromagnetic shield. In order to reinforce this electromagnetic shielding function, as shown in FIG. 8 (b), the conductive layer of the protection member 402 may be electrically connected to the support member 106 from a plurality of paths through a larger area. Good.

次に、図9を参照しながら放射線検出装置100を放射線検出システムに応用した例を説明する。放射線源であるX線チューブ6050で発生したX線6060は、患者あるいは被験者6061の胸部6062を透過し、前述の放射線検出装置100に代表される放射線検出装置6040に入射する。この入射したX線には被験者6061の体内部の情報が含まれている。X線の入射に対応してシンチレータ216は発光し、これを光電変換素子で光電変換して、電気的情報を得る。この情報はデジタルに変換され信号処理装置となるイメージプロセッサ6070により画像処理され制御室の表示手段となるディスプレイ6080で観察できる。また、この情報は電話回線6090等の伝送処理手段により遠隔地へ転送でき、別の場所のドクタールームなど表示手段となるディスプレイ6081に表示もしくは光ディスク等の記録手段に保存することができ、遠隔地の医師が診断することも可能である。また記録手段となるフィルムプロセッサ6100により記録媒体となるフィルム6110に記録することもできる。   Next, an example in which the radiation detection apparatus 100 is applied to a radiation detection system will be described with reference to FIG. X-rays 6060 generated by an X-ray tube 6050 serving as a radiation source pass through a chest 6062 of a patient or subject 6061 and enter a radiation detection apparatus 6040 typified by the radiation detection apparatus 100 described above. This incident X-ray includes information inside the body of the subject 6061. The scintillator 216 emits light in response to the incidence of X-rays, and this is photoelectrically converted by a photoelectric conversion element to obtain electrical information. This information can be digitally converted and image-processed by an image processor 6070 serving as a signal processing device, and can be observed on a display 6080 serving as display means in a control room. Further, this information can be transferred to a remote place by transmission processing means such as a telephone line 6090, and can be displayed on a display 6081 serving as a display means such as a doctor room in another place or stored in a recording means such as an optical disk. It is also possible for a doctor to make a diagnosis. Moreover, it can also record on the film 6110 used as a recording medium by the film processor 6100 used as a recording means.

なお、上述した本発明の実施形態は、いずれも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。即ち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。   Note that the above-described embodiments of the present invention are merely examples of implementation in practicing the present invention, and the technical scope of the present invention should not be construed as being limited thereto. It is. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

P 画素
200 第1導電性部材
206 第2導電性部材
301 基板
302 画素アレイ
306 第1表面
307 第2表面
400 シンチレータ
P pixel 200 first conductive member 206 second conductive member 301 substrate 302 pixel array 306 first surface 307 second surface 400 scintillator

Claims (12)

照射された放射線を可視光に変換するシンチレータと、
該シンチレータにより変換された可視光を電気信号に変換する画素が基板の第1表面に2次元アレイ状に複数配置された画素アレイと、
前記基板の前記第1表面と対向する第2表面に固定されて定電位が供給される第1導電性部材と、
を含み、
放射線が照射される側から、前記第1導電性部材、前記画素アレイ、前記シンチレータの順に配置され、且つ、前記シンチレータが前記第1表面側に配置されている放射線検出装置であって、
前記第1導電性部材の放射線が照射される側に配置されて定電位が供給される第2導電性部材を含み、
前記第2導電性部材は前記第1導電性部材の前記第2導電性部材に対する正射影よりも大きい、ことを特徴とする放射線検出装置。
A scintillator that converts the irradiated radiation into visible light;
A pixel array in which a plurality of pixels that convert visible light converted by the scintillator into electrical signals are arranged in a two-dimensional array on the first surface of the substrate;
A first conductive member fixed to a second surface opposite to the first surface of the substrate and supplied with a constant potential;
Including
A radiation detection device in which the first conductive member, the pixel array, and the scintillator are arranged in this order from the side irradiated with radiation, and the scintillator is arranged on the first surface side,
A second conductive member that is disposed on the radiation side of the first conductive member and is supplied with a constant potential;
The radiation detecting apparatus according to claim 1, wherein the second conductive member is larger than an orthogonal projection of the first conductive member with respect to the second conductive member.
前記第2導電性部材、前記第1導電性部材、前記基板、及び、前記シンチレータを収容する筐体を更に含み、
前記第2導電性部材は前記筐体から定電位が供給されていることを特徴とする請求項1に記載の放射線検出装置。
A housing that houses the second conductive member, the first conductive member, the substrate, and the scintillator;
The radiation detection apparatus according to claim 1, wherein a constant potential is supplied to the second conductive member from the housing.
前記第1導電性部材の端部は、前記第2表面の前記画素アレイが配置された領域の端と前記複数の接続端子部と対向する領域との間に位置する、ことを特徴とする請求項1に記載の放射線検出装置。   The end portion of the first conductive member is located between an end of a region where the pixel array is disposed on the second surface and a region facing the plurality of connection terminal portions. Item 2. The radiation detection apparatus according to Item 1. 前記第1導電性部材の端部の一部が、前記第2表面の前記複数の接続端子部と対向する領域の間に位置する、ことを特徴とする請求項1乃至3のいずれか1項に記載の放射線検出装置。   4. The device according to claim 1, wherein a part of the end portion of the first conductive member is located between regions of the second surface facing the plurality of connection terminal portions. 5. The radiation detection apparatus according to 1. 前記第1導電性部材に定電位を供給するための定電位部材と前記第1導電性部材とを電気的に接続するための接続部が、前記第2表面の前記複数の接続端子部と対向する領域の間を通過するように設けられている、ことを特徴とする請求項1乃至4のいずれか1項に記載の放射線検出装置。   A connection portion for electrically connecting a constant potential member for supplying a constant potential to the first conductive member and the first conductive member is opposed to the plurality of connection terminal portions on the second surface. The radiation detection apparatus according to claim 1, wherein the radiation detection apparatus is provided so as to pass between regions to be operated. 前記複数の接続端子部は、前記基板の第1辺に沿って配置された複数の第1接続端子部と、前記基板の前記第1辺と隣り合う第2辺に沿って配置された複数の第2接続端子部と、を含み、
前記複数の第1接続端子部は前記画素アレイを駆動するための駆動回路と電気的に接続されており、
前記複数の第2接続端子部は前記画素アレイからの電気信号を読み出すための読出回路と電気的に接続されており、
前記接続部は、前記基板の前記第2辺において前記第2表面の前記複数の接続端子部と対向する領域の間を通過するように設けられている、ことを特徴とする請求項5に記載の放射線検出装置。
The plurality of connection terminal portions include a plurality of first connection terminal portions arranged along the first side of the substrate and a plurality of second connection sides arranged adjacent to the first side of the substrate. A second connection terminal portion,
The plurality of first connection terminal portions are electrically connected to a drive circuit for driving the pixel array,
The plurality of second connection terminal portions are electrically connected to a readout circuit for reading an electrical signal from the pixel array,
The said connection part is provided so that it may pass between the area | regions facing the said several connection terminal part of the said 2nd surface in the said 2nd edge | side of the said board | substrate. Radiation detection equipment.
前記複数の第1接続端子部に電気的に接続された複数の第1フレキシブル配線基板と、前記複数の第2接続端子部に電気的に接続された複数の第2フレキシブル配線基板と、を更に含み、
前記接続部は、前記複数の第2フレキシブル配線基板の間を通過するように設けられている、ことを特徴とする請求項6に記載の放射線検出装置。
A plurality of first flexible wiring boards electrically connected to the plurality of first connection terminal portions; and a plurality of second flexible wiring boards electrically connected to the plurality of second connection terminal portions. Including
The radiation detection apparatus according to claim 6, wherein the connection portion is provided so as to pass between the plurality of second flexible wiring boards.
前記シンチレータの側から前記第1導電性部材、前記基板、及び、前記シンチレータを支持する支持部材を更に含み、
前記定電位部材は前記支持部材である、ことを特徴とする請求項5乃至7のいずれか1項に記載の放射線検出装置。
A support member for supporting the first conductive member, the substrate, and the scintillator from the scintillator side;
The radiation detection apparatus according to claim 5, wherein the constant potential member is the support member.
前記支持部材は、基台と、前記シンチレータと前記基台との間に配置された放射線吸収板と、を含み、
前記定電位部材は前記基台である、ことを特徴とすることを特徴とする請求項8に記載の放射線検出装置。
The support member includes a base, and a radiation absorbing plate disposed between the scintillator and the base,
The radiation detecting apparatus according to claim 8, wherein the constant potential member is the base.
前記シンチレータは、放射線を可視光に変換するシンチレータ層と、前記シンチレータ層及び前記基板の第1表面の少なくとも一部を覆って前記シンチレータ層を保護する保護部材と、を含み、
前記保護部材は、定電位が供給される導電層を含む、ことを特徴とする請求項9に記載の放射線検出装置。
The scintillator includes a scintillator layer that converts radiation into visible light, and a protection member that covers at least a part of the scintillator layer and the first surface of the substrate to protect the scintillator layer,
The radiation detecting apparatus according to claim 9, wherein the protective member includes a conductive layer to which a constant potential is supplied.
前記基台が前記筐体とともに接地されることにより、前記第1導電性部材に定電位が供給される、ことを特徴とする請求項10に記載の放射線検出装置。   The radiation detection apparatus according to claim 10, wherein a constant potential is supplied to the first conductive member by grounding the base together with the housing. 請求項1乃至11のいずれか1項に記載の放射線検出装置と、
前記放射線検出装置で得られた電気信号を処理する信号処理装置と、
を有することを特徴とする放射線検出システム。
The radiation detection apparatus according to any one of claims 1 to 11,
A signal processing device for processing an electrical signal obtained by the radiation detection device;
A radiation detection system comprising:
JP2016135412A 2016-07-07 2016-07-07 Radiation detection apparatus and radiation detection system Active JP6377101B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016135412A JP6377101B2 (en) 2016-07-07 2016-07-07 Radiation detection apparatus and radiation detection system
US15/634,922 US10481280B2 (en) 2016-07-07 2017-06-27 Radiation detecting apparatus, radiation detecting system, and manufacturing method for radiation detecting apparatus
CN201710507369.5A CN107589439B (en) 2016-07-07 2017-06-28 Radiation detecting apparatus, system and the manufacturing method for radiation detecting apparatus
GB1710802.8A GB2553891B (en) 2016-07-07 2017-07-05 Radiation detecting apparatus, radiation detecting system, and manufacturing method for radiation detecting apparatus
DE102017115118.4A DE102017115118B4 (en) 2016-07-07 2017-07-06 Radiation detection device, radiation detection system and manufacturing method for a radiation detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135412A JP6377101B2 (en) 2016-07-07 2016-07-07 Radiation detection apparatus and radiation detection system

Publications (2)

Publication Number Publication Date
JP2018004570A true JP2018004570A (en) 2018-01-11
JP6377101B2 JP6377101B2 (en) 2018-08-22

Family

ID=60949179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135412A Active JP6377101B2 (en) 2016-07-07 2016-07-07 Radiation detection apparatus and radiation detection system

Country Status (1)

Country Link
JP (1) JP6377101B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019152595A (en) * 2018-03-06 2019-09-12 富士フイルム株式会社 Radiation image detector
US10887579B2 (en) 2018-08-30 2021-01-05 Veo Robotics, Inc. Depth-sensing computer vision system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3131108U (en) * 2007-02-08 2007-04-19 株式会社島津製作所 Light or radiation detector
WO2009054042A1 (en) * 2007-10-23 2009-04-30 Shimadzu Corporation Light or radiation detector, and method for manufacturing the same
JP2012112726A (en) * 2010-11-22 2012-06-14 Canon Inc Radiation detection device and radiation detection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3131108U (en) * 2007-02-08 2007-04-19 株式会社島津製作所 Light or radiation detector
WO2009054042A1 (en) * 2007-10-23 2009-04-30 Shimadzu Corporation Light or radiation detector, and method for manufacturing the same
JP2012112726A (en) * 2010-11-22 2012-06-14 Canon Inc Radiation detection device and radiation detection system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019152595A (en) * 2018-03-06 2019-09-12 富士フイルム株式会社 Radiation image detector
US10887579B2 (en) 2018-08-30 2021-01-05 Veo Robotics, Inc. Depth-sensing computer vision system
US10887578B2 (en) 2018-08-30 2021-01-05 Veo Robotics, Inc. Depth-sensing computer vision system

Also Published As

Publication number Publication date
JP6377101B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP5693174B2 (en) Radiation detection apparatus and radiation detection system
US10061042B2 (en) Radiation imaging apparatus and radiation imaging system
US10481280B2 (en) Radiation detecting apparatus, radiation detecting system, and manufacturing method for radiation detecting apparatus
JP5693173B2 (en) Radiation detection apparatus and radiation detection system
US11277905B2 (en) Radiation imaging apparatus and radiation imaging system
US9177922B2 (en) Electric device, method for manufacturing the same, and radiation inspection apparatus
JP4393528B2 (en) X-ray imaging device
JP2010101805A (en) Radiographic imaging device
JP6377101B2 (en) Radiation detection apparatus and radiation detection system
KR20160067768A (en) Radiation imaging system
KR101740248B1 (en) Radiation detector, apparatus for radiography using the same
JP5403848B2 (en) Radiation detection apparatus and radiation detection system
JP2012013682A (en) Radiographic image photographing device
JP2011194212A (en) Radiation detecting device
JP6328179B2 (en) Radiation detection apparatus, radiation detection system, and method of manufacturing radiation detection apparatus
JP6590868B2 (en) Radiation imaging apparatus and radiation imaging system
JP6731757B2 (en) Radiation imaging apparatus and radiation imaging system
US20190343468A1 (en) Radiation imaging apparatus and imaging system
JP2016128790A (en) Radiographic imaging apparatus and radiographic imaging system
JP2016151446A (en) Radiation imaging device and radiation imaging system
JP7370950B2 (en) Radiographic imaging device
JP6521617B2 (en) Radiation detection apparatus and radiation detection system
WO2012029403A1 (en) Radiation imaging system, radiation imaging device, and computer-readable recording medium
JP2021041030A (en) Radiation detection device and radiographic device
JP2017200138A (en) Radiation imaging device and radiation imaging system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180724

R151 Written notification of patent or utility model registration

Ref document number: 6377101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151