JP6328179B2 - Radiation detection apparatus, radiation detection system, and method of manufacturing radiation detection apparatus - Google Patents

Radiation detection apparatus, radiation detection system, and method of manufacturing radiation detection apparatus Download PDF

Info

Publication number
JP6328179B2
JP6328179B2 JP2016135411A JP2016135411A JP6328179B2 JP 6328179 B2 JP6328179 B2 JP 6328179B2 JP 2016135411 A JP2016135411 A JP 2016135411A JP 2016135411 A JP2016135411 A JP 2016135411A JP 6328179 B2 JP6328179 B2 JP 6328179B2
Authority
JP
Japan
Prior art keywords
radiation detection
connection terminal
scintillator
substrate
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016135411A
Other languages
Japanese (ja)
Other versions
JP2018004569A (en
Inventor
知昭 市村
知昭 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016135411A priority Critical patent/JP6328179B2/en
Priority to US15/634,922 priority patent/US10481280B2/en
Priority to CN201710507369.5A priority patent/CN107589439B/en
Priority to GB1710802.8A priority patent/GB2553891B/en
Priority to DE102017115118.4A priority patent/DE102017115118B4/en
Publication of JP2018004569A publication Critical patent/JP2018004569A/en
Application granted granted Critical
Publication of JP6328179B2 publication Critical patent/JP6328179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、医療用画像診断装置、非破壊検査装置、放射線を用いた分析装置などに応用される放射線検出装置、放射線検出システム、及び、放射線検出装置の製造方法に関する。   The present invention relates to a radiation detection apparatus, a radiation detection system, and a method for manufacturing the radiation detection apparatus applied to a medical diagnostic imaging apparatus, a nondestructive inspection apparatus, an analysis apparatus using radiation, and the like.

近年、薄膜半導体製造技術は、TFT(薄膜トランジスタ)等のスイッチ素子と光電変換素子等の変換素子とを組み合わせた検出装置や放射線検出装置にも利用されている。特許文献1に示すように、放射線源から発せられる放射線が照射される側に画素アレイを、放射線が照射される側とは反対側にシンチレータを配することにより放射線検出装置を構成する提案がなされている。そして、特許文献1では、放射線検出装置の放射線が照射される側から、固定電位が供給される導電性部材、画素アレイ、シンチレータの順に配置され、画素アレイの放射線入射側から混入する電磁ノイズの影響を好適に低減する放射線検出装置が提案されている。   2. Description of the Related Art In recent years, thin film semiconductor manufacturing technology has been used for detection devices and radiation detection devices in which switch elements such as TFTs (thin film transistors) and conversion elements such as photoelectric conversion elements are combined. As shown in Patent Document 1, a proposal has been made to configure a radiation detection device by arranging a pixel array on the side irradiated with radiation emitted from a radiation source and a scintillator on the side opposite to the side irradiated with radiation. ing. And in patent document 1, it arrange | positions in order of the conductive member to which fixed potential is supplied from the radiation irradiation side of a radiation detection apparatus, a pixel array, and a scintillator, and the electromagnetic noise mixed from the radiation incident side of a pixel array A radiation detection apparatus that suitably reduces the influence has been proposed.

特開2012−112726号公報JP 2012-112726 A

しかしながら、特許文献1では、画素アレイが設けられる基板のどの領域に導電性部材を配置するかについて、十分な検討がなされていない。基板の第1表面に画素アレイが設けられ、第1表面と対向する基板の第2表面に導電性部材が固定される場合、導電性部材が固定される領域によっては、不具合が生じ得る。例えば、基板の第1表面の画素アレイの周囲には、画素アレイと外部回路(フレキシブル配線基板やプリント回路基板等)との電気的な接続を行う接続端子部が備えられている。外部回路を接続端子部に接続後、放射線検出装置の特性検査を行う際に、導電性部材が設けられていないと、基板の第2表面側からの電磁波ノイズの影響を受けてしまうため、正常な特性検査が行えない。そのため、特性検査を行う際には、基板の第2表面側に導電性部材が固定されていることが望ましい。ただし、特性検査によって外部回路に不良が確認された場合、外部回路を交換するために再度電気的な実装を行う必要がある。基板の第2表面の接続端子部と対向する領域に導電性部材が固定されていた場合、加圧及び加熱処理等で外部回路を接続端子部へ固定する際に基板が破損してしまう恐れがある。   However, Patent Document 1 does not sufficiently study in which region of the substrate on which the pixel array is provided the conductive member is disposed. When the pixel array is provided on the first surface of the substrate and the conductive member is fixed to the second surface of the substrate facing the first surface, a problem may occur depending on the region to which the conductive member is fixed. For example, a connection terminal portion that performs electrical connection between the pixel array and an external circuit (such as a flexible wiring board or a printed circuit board) is provided around the pixel array on the first surface of the substrate. When an external circuit is connected to the connection terminal portion and the characteristic inspection of the radiation detection apparatus is performed, if a conductive member is not provided, it is affected by electromagnetic wave noise from the second surface side of the substrate. Characteristic inspection cannot be performed. For this reason, when performing the characteristic inspection, it is desirable that the conductive member be fixed to the second surface side of the substrate. However, when a defect is confirmed in the external circuit by the characteristic inspection, it is necessary to perform electrical mounting again in order to replace the external circuit. If the conductive member is fixed in a region facing the connection terminal portion on the second surface of the substrate, the substrate may be damaged when the external circuit is fixed to the connection terminal portion by pressure, heat treatment, or the like. is there.

そこで、本発明では、放射線検出装置の放射線が照射される側から、固定電位が供給される導電性部材、画素アレイ、シンチレータの順に配置される放射線検出装置において、電磁シールド性を確保しつつ生産性とメンテナンス性を確保することを目的とする。   Therefore, in the present invention, a radiation detection device arranged in the order of a conductive member to which a fixed potential is supplied, a pixel array, and a scintillator from the radiation irradiation side of the radiation detection device is produced while ensuring electromagnetic shielding properties. The purpose is to ensure safety and maintainability.

本発明の放射線検出装置は、照射された放射線を可視光に変換するシンチレータと、該シンチレータにより変換された可視光を電気信号に変換する画素が基板の第1表面に2次元アレイ状に複数配置された画素アレイと、前記基板の前記第1表面の前記画素アレイの周辺に設けられ前記画素アレイと外部回路との電気的な接続を行うための複数の接続端子部と、定電位が供給される導電性部材と、を含み、放射線が照射される側から、前記導電性部材、前記画素アレイ、前記シンチレータの順に配置され、且つ、前記シンチレータが前記第1表面側に配置されている放射線検出装置であって、前記導電性部材は、前記基板の前記第1表面と対向する第2表面の前記複数の接続端子部と対向する領域を除く領域に配置されている、ことを特徴とする。   In the radiation detection apparatus of the present invention, a plurality of scintillators that convert irradiated radiation into visible light and pixels that convert visible light converted by the scintillator into electrical signals are arranged in a two-dimensional array on the first surface of the substrate. And a plurality of connection terminal portions provided around the pixel array on the first surface of the substrate for electrical connection between the pixel array and an external circuit, and a constant potential is supplied. The radiation detection includes: a conductive member that is arranged in the order of the conductive member, the pixel array, and the scintillator from the radiation-irradiated side; and the scintillator is disposed on the first surface side. The apparatus is characterized in that the conductive member is disposed in a region excluding a region facing the plurality of connection terminal portions on a second surface facing the first surface of the substrate. That.

本発明により、放射線検出装置の放射線が照射される側から、固定電位が供給される導電性部材、画素アレイ、シンチレータの順に配置される放射線検出装置において、電磁シールド性を確保しつつ生産性とメンテナンス性を確保することが可能となる。   According to the present invention, in a radiation detection device arranged in the order of a conductive member, a pixel array, and a scintillator to which a fixed potential is supplied from the radiation irradiation side of the radiation detection device, productivity is ensured while ensuring electromagnetic shielding properties. Maintainability can be ensured.

放射線検出装置の概略構成を説明するための平面模式図及び断面模式図Plane schematic diagram and cross-sectional schematic diagram for explaining the schematic configuration of the radiation detection apparatus 放射線検出装置のセンサパネルの構成を説明するための平面模式図Plane schematic diagram for explaining the configuration of the sensor panel of the radiation detection apparatus 放射線検出装置全体の平面模式図Plane schematic diagram of the entire radiation detector 放射線検出装置全体の断面模式図Cross-sectional schematic diagram of the entire radiation detector 放射線検出装置の製造方法における各工程を説明するための断面模式図Cross-sectional schematic diagram for explaining each step in the manufacturing method of the radiation detection apparatus 放射線検出装置の他の例を説明するための断面模式図Cross-sectional schematic diagram for explaining another example of the radiation detection apparatus 放射線検出装置の他の例を説明するための断面模式図Cross-sectional schematic diagram for explaining another example of the radiation detection apparatus 放射線検出装置のシンチレータを説明するための断面模式図Cross-sectional schematic diagram for explaining a scintillator of a radiation detection apparatus 放射線検出装置のシンチレータを説明するための平面模式図Plane schematic diagram for explaining the scintillator of the radiation detection apparatus 放射線検出システムの概略構成の一例を示す模式図Schematic diagram showing an example of a schematic configuration of a radiation detection system

以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。なお、本明細書では、放射性崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギーを有するビーム、例えばX線や粒子線、宇宙線なども、放射線に含まれるものとする。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. In this specification, in addition to α-rays, β-rays, γ-rays, etc., which are beams produced by particles (including photons) emitted by radioactive decay, beams having the same or higher energy, such as X-rays, Particle rays and cosmic rays are also included in the radiation.

まず、図1(a)、図1(b)、及び、図2を用いて、本発明の放射線検出装置の概略構成を説明する。図1(a)は、放射線検出装置の筐体部分を除く平面模式図、図1(b)は放射線検出装置の筐体部分を除く断面模式図であり、図1(a)のA−A’の断面模式図である。図2は、放射線検出装置のセンサパネルの構成を説明するための平面模式図である。   First, the schematic configuration of the radiation detection apparatus of the present invention will be described with reference to FIGS. 1 (a), 1 (b), and 2. FIG. 1A is a schematic plan view excluding the housing portion of the radiation detection apparatus, FIG. 1B is a schematic cross-sectional view of the radiation detection apparatus excluding the housing portion, and AA in FIG. It is a cross-sectional schematic diagram of '. FIG. 2 is a schematic plan view for explaining the configuration of the sensor panel of the radiation detection apparatus.

図1(a)、図1(b)、及び、図2に示すように、本発明の放射線検出装置は、シンチレータ400と画素アレイ302と複数の接続端子部303と導電性部材200とを含む。シンチレータ400は、照射された放射線を可視光に変換するものである。シンチレータ400は、放射線を可視光に変換するシンチレータ層401と、シンチレータ層401を保護する保護部材402と、を含み得る。画素アレイ302は、シンチレータ400により変換された可視光を電気信号に変換する画素Pが基板301の第1表面306に2次元アレイ状に複数配置されたものである。基板301は、第1表面306と対向する第2表面307を含む。画素302は夫々、可視光を電気信号に変換する光電変換素子304と、光電変換素子304で得られた電気信号の蓄積及び出力を制御するための薄膜トランジスタ(TFT)等のスイッチ素子と、を含み得る。複数の接続端子部303は夫々、基板301の第1表面306の画素アレイ302の周辺に設けられており、配線部308を介して画素アレイ300と外部回路(詳細は後で説明)との電気的な接続を行うためのものである。導電性部材200は、画素アレイ302に対して放射線が照射される側(第2表面307側)から混入する電磁ノイズを低減するために、定電位が供給されるものである。そして、放射線が照射される側から、導電性部材200、画素アレイ302、シンチレータ400の順に配置され、且つ、シンチレータ400が基板301の第1表面側(第1表面306側)に配置されている。ここで、導電性部材200は、基板301の第2表面307の複数の接続端子部303と対向する領域309を除く領域に配置されている。導電性部材200は、領域309を除く領域の基板301の第2表面307に、粘着剤を介して固定され得る。ここでは、導電性部材200は、その端部が第2表面307の画素アレイ302が配置された領域の端と複数の接続端子部303と対向する領域309との間に位置するように、領域309を除く領域に配置されている。なお、画素アレイ302及び配線部308はパッシベーション膜310で覆われており、この場合、シンチレータ400は基板301の第1表面306側であるパッシベーション膜310の表面に設けられることとなる。また、保護部材402は、シンチレータ層401及びその周辺のパッシベーション膜310の表面を覆うことで、シンチレータ層401及び基板301の第1表面306の少なくとも一部を覆ってシンチレータ層401を保護している。保護部材402は、定電位が供給される導電層を含み得る。その場合、画素アレイ302は両表面側から導電性部材200と保護部材402の導電層とにより電磁ノイズに対してシールドされることとなる。   As shown in FIG. 1A, FIG. 1B, and FIG. 2, the radiation detection apparatus of the present invention includes a scintillator 400, a pixel array 302, a plurality of connection terminal portions 303, and a conductive member 200. . The scintillator 400 converts irradiated radiation into visible light. The scintillator 400 can include a scintillator layer 401 that converts radiation into visible light, and a protective member 402 that protects the scintillator layer 401. In the pixel array 302, a plurality of pixels P that convert visible light converted by the scintillator 400 into electrical signals are arranged on the first surface 306 of the substrate 301 in a two-dimensional array. The substrate 301 includes a second surface 307 that faces the first surface 306. Each of the pixels 302 includes a photoelectric conversion element 304 that converts visible light into an electric signal, and a switch element such as a thin film transistor (TFT) for controlling accumulation and output of the electric signal obtained by the photoelectric conversion element 304. obtain. Each of the plurality of connection terminal portions 303 is provided in the periphery of the pixel array 302 on the first surface 306 of the substrate 301, and electrical connection between the pixel array 300 and an external circuit (details will be described later) via the wiring portion 308. It is for making a general connection. The conductive member 200 is supplied with a constant potential in order to reduce electromagnetic noise mixed from the side irradiated with radiation (second surface 307 side) to the pixel array 302. Then, the conductive member 200, the pixel array 302, and the scintillator 400 are arranged in this order from the radiation irradiation side, and the scintillator 400 is arranged on the first surface side (first surface 306 side) of the substrate 301. . Here, the conductive member 200 is disposed in a region excluding the region 309 facing the plurality of connection terminal portions 303 on the second surface 307 of the substrate 301. The conductive member 200 can be fixed to the second surface 307 of the substrate 301 in a region excluding the region 309 via an adhesive. Here, the conductive member 200 is a region whose end is located between the end of the region where the pixel array 302 of the second surface 307 is disposed and the region 309 facing the plurality of connection terminal portions 303. It is arranged in a region excluding 309. Note that the pixel array 302 and the wiring portion 308 are covered with a passivation film 310, and in this case, the scintillator 400 is provided on the surface of the passivation film 310 on the first surface 306 side of the substrate 301. The protection member 402 covers the scintillator layer 401 and the surface of the passivation film 310 in the vicinity thereof, thereby covering the scintillator layer 401 and the first surface 306 of the substrate 301 to protect the scintillator layer 401. . The protective member 402 can include a conductive layer to which a constant potential is supplied. In that case, the pixel array 302 is shielded from electromagnetic noise by the conductive member 200 and the conductive layer of the protective member 402 from both surface sides.

複数の接続端子部303は、図1(a)に示すように、画素アレイ302を駆動するための駆動回路(不図示)と電気的に接続される、センサパネル300を構成する基板301の第1辺及び対向する第3辺に沿って配置された複数の第1接続端子部を含む。複数の接続端子部には、複数の第1フレキシブル配線基板103bが電気的に接続されている。また、複数の接続端子部303は、画素アレイ302からの電気信号を読み出すための読出回路(不図示)と電気的に接続される、基板301の第1辺と隣り合う第2辺及び対向する第4辺に沿って配置された複数の第2接続端子部を含む。複数の第2接続端子部には、複数の第2フレキシブル配線基板103bが電気的に接続されている。一組の接続端子部303とフレキシブル配線基板との電気的な接続は、異方性導電フィルム等の導電性接着剤108によってなされる。   The plurality of connection terminal portions 303 are electrically connected to a drive circuit (not shown) for driving the pixel array 302 as shown in FIG. It includes a plurality of first connection terminal portions arranged along one side and the opposite third side. A plurality of first flexible wiring boards 103b are electrically connected to the plurality of connection terminal portions. Further, the plurality of connection terminal portions 303 are electrically connected to a readout circuit (not shown) for reading out an electrical signal from the pixel array 302, and are opposed to a second side adjacent to the first side of the substrate 301. A plurality of second connection terminal portions arranged along the fourth side are included. A plurality of second flexible wiring boards 103b are electrically connected to the plurality of second connection terminal portions. The electrical connection between the set of connection terminal portions 303 and the flexible wiring board is made by a conductive adhesive 108 such as an anisotropic conductive film.

接続部201は、導電性部材200に定電位を供給するための定電位部材(詳細は後で説明)と導電性部材200とを電気的に接続するためのものである。接続部201は、図1(a)に示すように、基板301の第2辺や第4辺において第2表面307の複数の接続端子部303と対向する領域309の間を通過するように設けられている。また、接続部201は、複数の第2フレキシブル配線基板103aの間を通過するように設けられている。第2フレキシブル配線基板103aを通過する信号は、画素アレイ302によって生成された電気信号であり、第1フレキシブル配線基板103bを通過する画素アレイを駆動するための信号に比べて非常に微弱である。第2フレキシブル配線基板103a側に定電位が供給される接続部201が位置するため、微弱な電気信号が通過する第2フレキシブル配線基板103aの電磁ノイズ耐性が向上し得る。また、接続部201は、図1(a)及び図1(b)に示すように、導電性部材200と同じ材料を用いて導電性部材200の一部が引き伸ばされたような構成をとり得る。導電性部材200及び接続部201の材料としては、アルミニウムとPET(ポリエチレンテレフタレート)が積層された総厚さが0.05〜0.1mmのシート状の部材が用いられ得る。なお、導電性部材200として適用可能なシート抵抗は10000Ω/□以下である。また、接続部201は、複数設けられることが好ましく、図1(a)に示す例では、第2辺に5ヶ所、第4辺に5ヶ所の計10か所に設けられている。   The connecting portion 201 is for electrically connecting a constant potential member (details will be described later) for supplying a constant potential to the conductive member 200 and the conductive member 200. As shown in FIG. 1A, the connecting portion 201 is provided so as to pass between regions 309 facing the plurality of connecting terminal portions 303 on the second surface 307 on the second side and the fourth side of the substrate 301. It has been. Moreover, the connection part 201 is provided so that it may pass between the some 2nd flexible wiring boards 103a. The signal passing through the second flexible wiring board 103a is an electric signal generated by the pixel array 302 and is very weak compared to the signal for driving the pixel array passing through the first flexible wiring board 103b. Since the connection portion 201 to which a constant potential is supplied is located on the second flexible wiring board 103a side, the electromagnetic noise resistance of the second flexible wiring board 103a through which a weak electric signal passes can be improved. Further, as shown in FIGS. 1A and 1B, the connecting portion 201 can take a configuration in which a part of the conductive member 200 is stretched using the same material as the conductive member 200. . As a material for the conductive member 200 and the connection portion 201, a sheet-like member having a total thickness of 0.05 to 0.1 mm in which aluminum and PET (polyethylene terephthalate) are stacked may be used. The sheet resistance applicable as the conductive member 200 is 10000Ω / □ or less. A plurality of connection portions 201 are preferably provided. In the example illustrated in FIG. 1A, the connection portions 201 are provided at a total of 10 locations, 5 locations on the second side and 5 locations on the fourth side.

次に、図3、図4(a)、及び、図4(b)を用いて、本発明の放射線検出装置全体の概略構成を説明する。図3(a)は、放射線検出装置全体の平面模式図、図4(a)は放射線検出装置全体の断面模式図であり、図3のA−A’の断面模式図であり、図4(b)は図3のB−B’の断面模式図である。   Next, the schematic configuration of the entire radiation detection apparatus of the present invention will be described with reference to FIGS. 3, 4 (a), and 4 (b). 3A is a schematic plan view of the entire radiation detection apparatus, FIG. 4A is a schematic cross-sectional view of the entire radiation detection apparatus, and is a schematic cross-sectional view taken along line AA ′ of FIG. b) is a schematic cross-sectional view taken along the line BB ′ of FIG. 3.

図3、図4(a)、及び、図4(b)に示されるように、放射線検出装置100は、センサパネル300、シンチレータ400、導電性部材200、第1及び第2フレキシブル配線基板103a及び103b、及び、接続部201を収容する筐体を含む。筐体は、図4に示すように、外装箱上部102a及び外装箱下部102bを含む外装箱102と、カバー101と、を含む。放射線検出装置100の放射線が照射される側となるカバー101としては、厚さが1〜1.5mmのCFRP(炭素繊維強化プラスチック)が好適に用いられ得る。外装箱上部102a及び外装箱下部102bには、軽量性と堅牢性を兼ね備えた厚さが1.5〜2.5mmのSUS(ステンレス鋼)が用いられ得る。ここで、SUSとは鉄(Fe)を主成分(50%以上)とし、クロム(Cr)を10.5%以上含む、合金鋼である。そのため、外装箱上部102a及び外装箱下部102bは、接地等の定電位供給により電磁シールドとして機能する。カバー101は外装箱上部102と接着固定され得る。   As shown in FIGS. 3, 4 (a), and 4 (b), the radiation detection apparatus 100 includes a sensor panel 300, a scintillator 400, a conductive member 200, first and second flexible wiring boards 103 a and 103b and a housing for accommodating the connecting portion 201 is included. As shown in FIG. 4, the housing includes an outer box 102 including an outer box upper part 102 a and an outer box lower part 102 b, and a cover 101. As the cover 101 on the radiation irradiation side of the radiation detection apparatus 100, CFRP (carbon fiber reinforced plastic) having a thickness of 1 to 1.5 mm can be suitably used. For the outer box upper part 102a and the outer box lower part 102b, SUS (stainless steel) having a thickness of 1.5 to 2.5 mm having both lightness and robustness can be used. Here, SUS is an alloy steel containing iron (Fe) as a main component (50% or more) and 10.5% or more of chromium (Cr). Therefore, the outer box upper part 102a and the outer box lower part 102b function as electromagnetic shields by supplying a constant potential such as ground. The cover 101 can be adhered and fixed to the outer box upper part 102.

放射線検出装置100は、筐体内に、シンチレータ400の側から導電性部材200、画素アレイ302を備えた基板301、及び、シンチレータ400を支持する支持部材106を更に含む。支持部材106は、放射線が照射される側(シンチレータ400側)から順に配置された、放射線吸収板106aと基台106bとを含む。基台106bは、厚さが2〜3.5mmのAlで構成されており、放射線吸収板106aは、厚さが0.25〜1mmのSUSで構成されており、基台106bよりも高い放射線吸収性能を有する。支持部材106は、スペーサ104により外装箱下部102bにねじ止めなどで固定されて保持されている。シンチレータ400の保護部材402と支持部材106とは、緩衝機能を有する粘着シート403によって固定されている。粘着シート403は、緩衝機能と接着性との両立のため、総厚さが0.5〜0.75mmであることが好ましい。また、粘着シート403は、シンチレータ400の支持部材106側の表面とほぼ同じかそれより広い面積を有することが好ましい。   The radiation detection apparatus 100 further includes a conductive member 200, a substrate 301 including a pixel array 302 from the side of the scintillator 400, and a support member 106 that supports the scintillator 400 in the housing. The support member 106 includes a radiation absorbing plate 106a and a base 106b, which are arranged in order from the side irradiated with radiation (the scintillator 400 side). The base 106b is made of Al having a thickness of 2 to 3.5 mm, the radiation absorbing plate 106a is made of SUS having a thickness of 0.25 to 1 mm, and is higher in radiation than the base 106b. Has absorption performance. The support member 106 is fixed and held by the spacer 104 to the lower portion 102b of the outer box by screwing or the like. The protective member 402 and the support member 106 of the scintillator 400 are fixed by an adhesive sheet 403 having a buffer function. The pressure-sensitive adhesive sheet 403 preferably has a total thickness of 0.5 to 0.75 mm in order to achieve both a buffer function and adhesiveness. Moreover, it is preferable that the adhesive sheet 403 has an area substantially the same as or wider than the surface of the scintillator 400 on the support member 106 side.

図4(a)に示すように、第2フレキシブル配線基板103aには、画素アレイからの電気信号を読み出すための読出回路を有する第2集積回路(IC)112aが備えられた、所謂COF(Chip On Film)が用いられ得る。第2集積回路112aは、第2プリント回路基板105aに備えられた電源回路や処理回路を有するICや、第3プリント回路基板105cに設けられた制御回路を有するICと、第3フレキシブル配線基板103cを介して電気的に接続される。第2集積回路112a、第2プリント回路基板105a、第3プリント回路基板105c、及び、第3フレキシブル配線基板103cは、支持部材106と外装箱下部102bとの間に配置され得る。それにより、これらの部材は放射線吸収板106aに対して放射線の照射される側とは反対側に配置され得る。ここで、第2集積回路112aとAlの基台106bとの間に、Alからなる第1伝熱部材109及び放熱ゴムからなる放熱部材111が配置されている。これにより、第2集積回路112aで発生された熱が基台106bに伝熱及び熱拡散され、熱集中を緩和する。また、第2集積回路112aと外装箱下部102bとの間に、Alからなる第2伝熱部材110及び放熱ゴムからなる放熱部材111が配置されている。これにより、第2集積回路112aで発生された熱が外装箱下部102bに伝熱され、外装箱下部102bを介して外部に放熱される。また、第2プリント回路基板105aはスペーサ104を介して基台106bに固定されており、第3プリント回路基板105cはスペーサ104を介して基台106b及び外装箱下部102bに固定されている。スペーサ104は、空気より熱伝導率の高い材料を用いることにより、位置規制に加えて伝熱の機能も有し得る。   As shown in FIG. 4A, the second flexible wiring board 103a is provided with a second integrated circuit (IC) 112a having a readout circuit for reading out an electrical signal from the pixel array, so-called COF (Chip). On Film) may be used. The second integrated circuit 112a includes an IC having a power supply circuit and a processing circuit provided in the second printed circuit board 105a, an IC having a control circuit provided in the third printed circuit board 105c, and a third flexible wiring board 103c. It is electrically connected via. The second integrated circuit 112a, the second printed circuit board 105a, the third printed circuit board 105c, and the third flexible wiring board 103c may be disposed between the support member 106 and the outer box lower part 102b. Thereby, these members can be arranged on the side opposite to the side irradiated with radiation with respect to the radiation absorbing plate 106a. Here, a first heat transfer member 109 made of Al and a heat dissipating member 111 made of heat dissipating rubber are disposed between the second integrated circuit 112a and the Al base 106b. As a result, the heat generated in the second integrated circuit 112a is transferred and diffused to the base 106b, thereby relaxing the heat concentration. Further, a second heat transfer member 110 made of Al and a heat dissipation member 111 made of heat radiating rubber are arranged between the second integrated circuit 112a and the outer box lower portion 102b. Thereby, the heat generated in the second integrated circuit 112a is transferred to the outer box lower part 102b and radiated to the outside through the outer box lower part 102b. The second printed circuit board 105 a is fixed to the base 106 b through the spacer 104, and the third printed circuit board 105 c is fixed to the base 106 b and the outer box lower part 102 b through the spacer 104. The spacer 104 can have a heat transfer function in addition to the position restriction by using a material having a higher thermal conductivity than air.

また、図4(b)に示すように、第1フレキシブル配線基板103bには、画素アレイを駆動するための駆動回路を有する第1集積回路112bが備えられた、所謂COF(Chip On Film)が用いられ得る。第1集積回路112bは、第1プリント回路基板105bに備えられた電源回路を有するICと電気的に接続される。第1集積回路112b及び第1プリント回路基板105bは、支持部材106と外装箱下部102bとの間に配置され得る。それにより、これらの部材は放射線吸収板106aに対して放射線の照射される側とは反対側に配置され得る。   As shown in FIG. 4B, the first flexible wiring substrate 103b has a so-called COF (Chip On Film) provided with a first integrated circuit 112b having a driving circuit for driving the pixel array. Can be used. The first integrated circuit 112b is electrically connected to an IC having a power supply circuit provided on the first printed circuit board 105b. The first integrated circuit 112b and the first printed circuit board 105b may be disposed between the support member 106 and the outer box lower part 102b. Thereby, these members can be arranged on the side opposite to the side irradiated with radiation with respect to the radiation absorbing plate 106a.

一方、基板301及び導電性部材200と外装箱上部102aとの間には、スペーサ113及び緩衝部材114が配置され、基板301及び導電性部材200が外装箱上部102aに対して位置規制されている。スペーサ113は、厚さが1〜2.5mmのSUSで構成されており、基台106bよりも高い放射線吸収性能を有する。放射線吸収板106aとスペーサ113により、放射線検出装置全体の放射線吸収性を確保している。   On the other hand, a spacer 113 and a buffer member 114 are arranged between the substrate 301 and the conductive member 200 and the outer box upper portion 102a, and the position of the substrate 301 and the conductive member 200 is regulated with respect to the outer box upper portion 102a. . The spacer 113 is made of SUS having a thickness of 1 to 2.5 mm, and has higher radiation absorption performance than the base 106b. The radiation absorbing plate 106a and the spacer 113 ensure the radiation absorbability of the entire radiation detection apparatus.

ここで、接続部201は、基台106bに電気的に接続されるように支持部材106に固定されている。支持部材106の基台106bは、スペーサ104に用いられるねじなどの金属によって電源回路の定電位部や筐体と電気に接続されて固定電位が供給されており、定電位部材として機能している。このように接続部201が基台106bと電気的に接続されることにより、導電性部材200には定電位が供給され得る。なお、供給される定電位は、接地によるグランド電位であっても、いずれかの電源回路が生成する定電位であってもよい。   Here, the connecting portion 201 is fixed to the support member 106 so as to be electrically connected to the base 106b. The base 106b of the support member 106 is electrically connected to a constant potential portion of the power supply circuit and the casing by a metal such as a screw used for the spacer 104 and is supplied with a fixed potential, and functions as a constant potential member. . As described above, the connection portion 201 is electrically connected to the base 106b, whereby a constant potential can be supplied to the conductive member 200. Note that the supplied constant potential may be a ground potential due to grounding or a constant potential generated by any one of the power supply circuits.

次に、図5(a)〜図5(f)を用いて、放射線検出装置の製造方法における各工程を説明する。まず、図5(a)に示すように、センサパネル300の第1表面306側のパッシベーション膜310の表面に、画素アレイ302を覆うようにシンチレータ400を準備する。ここで、シンチレータ400は、画素アレイ302を覆うようにシンチレータ層401を形成し、その後シンチレータ層401と画素アレイ302の周辺のパッシベーション膜310の表面の一部を覆うように保護部材402が形成されることで、準備され得る。シンチレータ層401は、ヨウ化セシウムを真空蒸着法により堆積することにより準備された柱状結晶構造を有するアルカリハライド系のシンチレータ層が用いられ得る。保護部材402は、ホットメルト樹脂からなる接着層によってAl等の導電層をシンチレータ層401及びセンサパネル300に接着固定することにより、準備され得る。   Next, each process in the manufacturing method of a radiation detection apparatus is demonstrated using Fig.5 (a)-FIG.5 (f). First, as shown in FIG. 5A, a scintillator 400 is prepared on the surface of the passivation film 310 on the first surface 306 side of the sensor panel 300 so as to cover the pixel array 302. Here, in the scintillator 400, a scintillator layer 401 is formed so as to cover the pixel array 302, and then a protective member 402 is formed so as to cover a part of the surface of the passivation film 310 around the scintillator layer 401 and the pixel array 302. Can be prepared. The scintillator layer 401 may be an alkali halide scintillator layer having a columnar crystal structure prepared by depositing cesium iodide by a vacuum vapor deposition method. The protective member 402 can be prepared by adhering and fixing a conductive layer such as Al to the scintillator layer 401 and the sensor panel 300 with an adhesive layer made of hot melt resin.

次に、図5(b)に示すように、基板301の第2表面307側を下に向けて、シンチレータ400が備えられたセンサパネル300を圧着装置ステージ502の上に置く。そして、複数の接続端子部303と対向する領域309に受け部材501を設ける。そしてこの状態で、異方性導電フィルムを介して、ここでは第2フレキシブル配線基板103aで示すフレキシブル配線基板を圧着ヘッド500によって加熱加圧処理する。それにより、複数の接続端子部303に、導電性接着剤108介してフレキシブル配線基板が電気的に接続される。   Next, as shown in FIG. 5B, the sensor panel 300 provided with the scintillator 400 is placed on the crimping apparatus stage 502 with the second surface 307 side of the substrate 301 facing down. A receiving member 501 is provided in a region 309 facing the plurality of connection terminal portions 303. In this state, the flexible wiring board shown here as the second flexible wiring board 103a is heated and pressurized by the pressure-bonding head 500 through the anisotropic conductive film. Thereby, the flexible wiring board is electrically connected to the plurality of connection terminal portions 303 via the conductive adhesive 108.

次に、図5(c)に示すように、ここでは第2プリント回路基板で示すプリント回路基板を受け部材501で下側から支持し、異方性導電フィルムを介してフレキシブル配線基板を圧着ヘッド500によって加熱加圧処理する。それにより、フレキシブル配線基板に、導電性接着剤108介してプリント回路基板が電気的に接続される。複数の接続端子部303にフレキシブル配線基板を介してプリント回路基板を電気的に接続する工程を接続工程と称する。   Next, as shown in FIG. 5C, here, the printed circuit board shown as the second printed circuit board is supported from the lower side by the receiving member 501, and the flexible wiring board is attached to the crimping head via the anisotropic conductive film. Heat and pressure treatment is performed by 500. Thereby, the printed circuit board is electrically connected to the flexible wiring board via the conductive adhesive 108. The process of electrically connecting the printed circuit board to the plurality of connection terminal portions 303 via the flexible wiring board is referred to as a connection process.

次に、図5(d)に示すように、画素アレイ302、複数のフレキシブル配線基板、及び、プリント回路基板の電気特性検査を行うための検査工程を行う。検査工程において、導電性部材200は、接続部201及び固定ねじ503を介して複数のプリント回路基板の少なくとも1つに電気的に接続される。これにより、検査工程においては、導電性部材200に接続部201を介してプリント回路基板から定電位が供給され得る。そのため、検査工程においても、基板301の第2表面307側からの電磁波ノイズの影響を低減することが可能となる。それにより、検査工程をより適切に行うことが可能となり、生産性を確保することが可能となる。なお、保護部材402の導電層に同様に定電位を供給しておくことにより、さらに第1表面306側からの電磁波ノイズの影響を低減することが可能となる。   Next, as shown in FIG. 5D, an inspection process for inspecting electrical characteristics of the pixel array 302, the plurality of flexible wiring boards, and the printed circuit board is performed. In the inspection process, the conductive member 200 is electrically connected to at least one of the plurality of printed circuit boards via the connection portion 201 and the fixing screw 503. Thereby, in the inspection process, a constant potential can be supplied from the printed circuit board to the conductive member 200 via the connection portion 201. Therefore, also in the inspection process, it is possible to reduce the influence of electromagnetic wave noise from the second surface 307 side of the substrate 301. Thereby, it becomes possible to perform an inspection process more appropriately, and it becomes possible to ensure productivity. Similarly, by supplying a constant potential to the conductive layer of the protective member 402, the influence of electromagnetic noise from the first surface 306 side can be further reduced.

検査工程において複数のフレキシブル配線基板のいずれかに不良が発見された場合、図5(e)に示すように、不良が発見されたフレキシブル配線基板を複数の接続端子部303から取り外す。その際に、図5(e)に示すように、接続部201はプリント回路基板と電気的に非接続とされて行われる。   When a defect is found in any of the plurality of flexible wiring boards in the inspection process, the flexible wiring board in which the defect is found is removed from the plurality of connection terminal portions 303 as shown in FIG. At this time, as shown in FIG. 5E, the connection portion 201 is performed while being electrically disconnected from the printed circuit board.

そして、図5(f)に示すように、接続部201を電気的に非接続としたまま、正常な再度フレキシブル回路基板を数の接続端子部303に電気的に接続する。その後、図5(c)や図5(d)で説明した接続工程及び検査工程を再度行う。このように、不良が発見された電気部品の交換を容易にすることにより、メンテナンス性を確保することが可能となる。   Then, as shown in FIG. 5 (f), the flexible circuit board is normally connected again to the number of connection terminal portions 303 while the connection portion 201 is electrically disconnected. Thereafter, the connection process and the inspection process described with reference to FIGS. 5C and 5D are performed again. As described above, it is possible to ensure maintainability by facilitating replacement of an electrical component in which a defect is found.

なお、図1(a)に示す例では、接続部201は、基板301の第2辺や第4辺において領域309の間を通過して複数の第2フレキシブル配線基板103aの間を通過するように設けられているが、本発明はそれに限定されるものではない。例えば、図6(a)に示すように、接続部201は、基板301の第1辺や第3辺において領域309の間を通過して複数の第1フレキシブル配線基板103bの間を通過するように設けられていてもよい。また、図1(a)に示すように、導電性部材200は、その端部が第2表面307の画素アレイ302が配置された領域の端と複数の接続端子部303と対向する領域309との間に位置するように配置されているが、本発明はそれに限定されるものではない。例えば、図6(b)及び図6(c)に示すように、導電性部材200は、その端部の一部が、第2表面307の複数の領域309の間に位置するように配置されていてもよい。このように配置することにより、図1(a)に示す例に比べて導電性部材200をより広い領域に配置できる。   In the example shown in FIG. 1A, the connecting portion 201 passes between the regions 309 on the second side and the fourth side of the substrate 301 so as to pass between the plurality of second flexible wiring boards 103a. However, the present invention is not limited to this. For example, as shown in FIG. 6A, the connecting portion 201 passes between the regions 309 on the first side and the third side of the substrate 301 and passes between the plurality of first flexible wiring boards 103b. May be provided. Further, as shown in FIG. 1A, the conductive member 200 has an end portion of the second surface 307 where the pixel array 302 is disposed and a region 309 facing the plurality of connection terminal portions 303. However, the present invention is not limited to this. For example, as shown in FIGS. 6B and 6C, the conductive member 200 is disposed such that a part of the end portion is located between the plurality of regions 309 of the second surface 307. It may be. By arrange | positioning in this way, the electroconductive member 200 can be arrange | positioned in a wider area | region compared with the example shown to Fig.1 (a).

更に、図7(a)に示すように、接続部201は、複数の第1フレキシブル配線基板同士の間、及び、複数の第2フレキシブル配線基板同士の間、の全てに配置できるように、図1(a)に示す例よりもより多くの数で設けられていてもよい。また、図1(a)に示す例では、接続部201は、導電性部材200と同じ材料を用いて導電性部材200の一部が引き伸ばされたような構成を用いたが、本発明はそれに限定されるものではない。図7(b)に示すように、接続部201は、導電性部材200とは別に設けられて導電性部材200と導電性接着剤205を介して電気的に接続されてもよい。   Further, as shown in FIG. 7A, the connection portion 201 is arranged so that it can be disposed between the plurality of first flexible wiring boards and between the plurality of second flexible wiring boards. It may be provided in a larger number than the example shown in 1 (a). In the example shown in FIG. 1A, the connection portion 201 uses a configuration in which a part of the conductive member 200 is stretched using the same material as that of the conductive member 200. It is not limited. As shown in FIG. 7B, the connection portion 201 may be provided separately from the conductive member 200 and electrically connected to the conductive member 200 via the conductive adhesive 205.

ここで、図8(a)〜図8(d)を用いて、センサパネル300に設けられたシンチレータ400について、より詳細に説明する。図8(a)に示すように、シンチレータ400の保護部材402は、支持層204と、防湿層405と、接着層406と、を含み得る。防湿層405は、シンチレータ層401を外部の水分等から保護する層であり、Al等の導電層が用いられ得る。この導電層に定電位を供給することにより、防湿層405は電磁シールドとして機能し得る。支持層204は防湿層405を支持する層であり、防湿層405が十分な剛性を有していれば、図8(b)に示すように必ずしも設けなくてもよい。支持層204には、PET(ポリエチレンテレフタレート)等が好適に用いられ得る。接着層406は、防湿層405をシンチレータ層401及びセンサパネル300に接着するための層であり、ホットメルト樹脂などが好適に用いられ得る。なお、図8(c)に示すように、接着層406は、シンチレータ層401にアルカリハライド系の材料を用いて防湿層に導電層を用いた場合には、電気化学的腐食を抑制するためにシンチレータ層401を被覆するように設けられるとよい。そうでない場合には、図8(d)に示すように、接着層406は、シンチレータ層401とは接着せずにセンサパネル300のみと接着するように設けられてもよい。   Here, the scintillator 400 provided in the sensor panel 300 will be described in more detail with reference to FIGS. 8A to 8D. As shown in FIG. 8A, the protective member 402 of the scintillator 400 can include a support layer 204, a moisture-proof layer 405, and an adhesive layer 406. The moisture-proof layer 405 is a layer that protects the scintillator layer 401 from external moisture and the like, and a conductive layer such as Al can be used. By supplying a constant potential to the conductive layer, the moisture-proof layer 405 can function as an electromagnetic shield. The support layer 204 is a layer that supports the moisture-proof layer 405. If the moisture-proof layer 405 has sufficient rigidity, the support layer 204 is not necessarily provided as shown in FIG. For the support layer 204, PET (polyethylene terephthalate) or the like can be suitably used. The adhesive layer 406 is a layer for adhering the moisture-proof layer 405 to the scintillator layer 401 and the sensor panel 300, and a hot melt resin or the like can be suitably used. Note that, as shown in FIG. 8C, the adhesive layer 406 is used to suppress electrochemical corrosion when an alkali halide material is used for the scintillator layer 401 and a conductive layer is used for the moisture-proof layer. The scintillator layer 401 may be provided so as to cover it. Otherwise, as shown in FIG. 8D, the adhesive layer 406 may be provided so as to adhere only to the sensor panel 300 without adhering to the scintillator layer 401.

また、図9に示すように、保護部材402の導電層は、基板301の第1辺や第3辺において領域309の間を通過して複数の第1フレキシブル配線基板103bの間を通過するように設けられている。通過した保護部材402の導電層の一部が支持部材106と電気的に接続されることにより、保護部材402の導電層に定電位が供給されて電磁シールドとして機能し得る。この電磁シールド機能を強化するために、図9(b)に示すように、より多くの領域を通過させて複数の経路から保護部材402の導電層を支持部材106に電気的に接続させてもよい。   Further, as shown in FIG. 9, the conductive layer of the protection member 402 passes between the regions 309 on the first side and the third side of the substrate 301 so as to pass between the plurality of first flexible wiring boards 103b. Is provided. A part of the conductive layer of the protective member 402 that has passed through is electrically connected to the support member 106, whereby a constant potential is supplied to the conductive layer of the protective member 402 and can function as an electromagnetic shield. In order to reinforce this electromagnetic shielding function, as shown in FIG. 9 (b), the conductive layer of the protective member 402 may be electrically connected to the support member 106 from a plurality of paths through a larger area. Good.

次に、図10を参照しながら放射線検出装置100を放射線検出システムに応用した例を説明する。放射線源であるX線チューブ6050で発生したX線6060は、患者あるいは被験者6061の胸部6062を透過し、前述の放射線検出装置100に代表される放射線検出装置6040に入射する。この入射したX線には被験者6061の体内部の情報が含まれている。X線の入射に対応してシンチレータ216は発光し、これを光電変換素子で光電変換して、電気的情報を得る。この情報はデジタルに変換され信号処理装置となるイメージプロセッサ6070により画像処理され制御室の表示手段となるディスプレイ6080で観察できる。また、この情報は電話回線6090等の伝送処理手段により遠隔地へ転送でき、別の場所のドクタールームなど表示手段となるディスプレイ6081に表示もしくは光ディスク等の記録手段に保存することができ、遠隔地の医師が診断することも可能である。また記録手段となるフィルムプロセッサ6100により記録媒体となるフィルム6110に記録することもできる。   Next, an example in which the radiation detection apparatus 100 is applied to a radiation detection system will be described with reference to FIG. X-rays 6060 generated by an X-ray tube 6050 serving as a radiation source pass through a chest 6062 of a patient or subject 6061 and enter a radiation detection apparatus 6040 typified by the radiation detection apparatus 100 described above. This incident X-ray includes information inside the body of the subject 6061. The scintillator 216 emits light in response to the incidence of X-rays, and this is photoelectrically converted by a photoelectric conversion element to obtain electrical information. This information can be digitally converted and image-processed by an image processor 6070 serving as a signal processing device, and can be observed on a display 6080 serving as display means in a control room. Further, this information can be transferred to a remote place by transmission processing means such as a telephone line 6090, and can be displayed on a display 6081 serving as a display means such as a doctor room in another place or stored in a recording means such as an optical disk. It is also possible for a doctor to make a diagnosis. Moreover, it can also record on the film 6110 used as a recording medium by the film processor 6100 used as a recording means.

なお、上述した本発明の実施形態は、いずれも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。即ち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。   Note that the above-described embodiments of the present invention are merely examples of implementation in practicing the present invention, and the technical scope of the present invention should not be construed as being limited thereto. It is. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

P 画素
200 導電性部材
301 基板
302 画素アレイ
303 接続端子部
306 第1表面
307 第2表面
309 複数の接続端子部と対向する領域
400 シンチレータ
P pixel 200 conductive member 301 substrate 302 pixel array 303 connection terminal portion 306 first surface 307 second surface 309 region facing a plurality of connection terminal portions 400 scintillator

Claims (16)

照射された放射線を可視光に変換するシンチレータと、
該シンチレータにより変換された可視光を電気信号に変換する画素が基板の第1表面に2次元アレイ状に複数配置された画素アレイと、
前記基板の前記第1表面の前記画素アレイの周辺に設けられ前記画素アレイと外部回路との電気的な接続を行うための複数の接続端子部と、
定電位が供給される導電性部材と、
を含み、
放射線が照射される側から、前記導電性部材、前記画素アレイ、前記シンチレータの順に配置され、且つ、前記シンチレータが前記第1表面側に配置されている放射線検出装置であって、
前記導電性部材は、前記基板の前記第1表面と対向する第2表面の前記複数の接続端子部と対向する領域を除く領域に配置されている、ことを特徴とする放射線検出装置。
A scintillator that converts the irradiated radiation into visible light;
A pixel array in which a plurality of pixels that convert visible light converted by the scintillator into electrical signals are arranged in a two-dimensional array on the first surface of the substrate;
A plurality of connection terminal portions provided around the pixel array on the first surface of the substrate for electrically connecting the pixel array and an external circuit;
A conductive member supplied with a constant potential;
Including
A radiation detection device in which the conductive member, the pixel array, and the scintillator are arranged in this order from the side irradiated with radiation, and the scintillator is arranged on the first surface side,
The radiation detecting apparatus according to claim 1, wherein the conductive member is disposed in a region excluding a region facing the plurality of connection terminal portions on a second surface facing the first surface of the substrate.
前記導電性部材の端部は、前記第2表面の前記画素アレイが配置された領域の端と前記複数の接続端子部と対向する領域との間に位置する、ことを特徴とする請求項1に記載の放射線検出装置。   The end portion of the conductive member is located between an end of a region where the pixel array is disposed on the second surface and a region facing the plurality of connection terminal portions. The radiation detection apparatus according to 1. 前記導電性部材の端部の一部が、前記第2表面の前記複数の接続端子部と対向する領域の間に位置する、ことを特徴とする請求項1又は2に記載の放射線検出装置。   3. The radiation detection apparatus according to claim 1, wherein a part of an end portion of the conductive member is located between regions of the second surface facing the plurality of connection terminal portions. 前記導電性部材に定電位を供給するための定電位部材と前記導電性部材とを電気的に接続するための接続部が、前記第2表面の前記複数の接続端子部と対向する領域の間を通過するように設けられている、ことを特徴とする請求項1乃至3のいずれか1項に記載の放射線検出装置。   Between a region where the constant potential member for supplying a constant potential to the conductive member and the conductive member for electrically connecting the conductive member are opposed to the plurality of connection terminal portions on the second surface The radiation detection apparatus according to claim 1, wherein the radiation detection apparatus is provided so as to pass through the beam. 前記複数の接続端子部は、前記基板の第1辺に沿って配置された複数の第1接続端子部と、前記基板の前記第1辺と隣り合う第2辺に沿って配置された複数の第2接続端子部と、を含み、
前記複数の第1接続端子部は前記画素アレイを駆動するための駆動回路と電気的に接続されており、
前記複数の第2接続端子部は前記画素アレイからの電気信号を読み出すための読出回路と電気的に接続されており、
前記接続部は、前記基板の前記第2辺において前記第2表面の前記複数の接続端子部と対向する領域の間を通過するように設けられている、ことを特徴とする請求項4に記載の放射線検出装置。
The plurality of connection terminal portions include a plurality of first connection terminal portions arranged along the first side of the substrate and a plurality of second connection sides arranged adjacent to the first side of the substrate. A second connection terminal portion,
The plurality of first connection terminal portions are electrically connected to a drive circuit for driving the pixel array,
The plurality of second connection terminal portions are electrically connected to a readout circuit for reading an electrical signal from the pixel array,
The said connection part is provided so that it may pass between the area | regions facing the said several connection terminal part of the said 2nd surface in the said 2nd edge | side of the said board | substrate. Radiation detection equipment.
前記複数の第1接続端子部に電気的に接続された複数の第1フレキシブル配線基板と、前記複数の第2接続端子部に電気的に接続された複数の第2フレキシブル配線基板と、を更に含み、
前記接続部は、前記複数の第2フレキシブル配線基板の間を通過するように設けられている、ことを特徴とする請求項5に記載の放射線検出装置。
A plurality of first flexible wiring boards electrically connected to the plurality of first connection terminal portions; and a plurality of second flexible wiring boards electrically connected to the plurality of second connection terminal portions. Including
The radiation detection apparatus according to claim 5, wherein the connection portion is provided so as to pass between the plurality of second flexible wiring boards.
前記シンチレータの側から前記導電性部材、前記基板、及び、前記シンチレータを支持する支持部材を更に含み、
前記定電位部材は前記支持部材である、ことを特徴とする請求項4乃至6のいずれか1項に記載の放射線検出装置。
A support member that supports the conductive member, the substrate, and the scintillator from the scintillator side;
The radiation detecting apparatus according to claim 4, wherein the constant potential member is the support member.
前記支持部材は、基台と、前記シンチレータと前記基台との間に配置された放射線吸収板と、を含み、
前記定電位部材は前記基台である、ことを特徴とすることを特徴とする請求項7に記載の放射線検出装置。
The support member includes a base, and a radiation absorbing plate disposed between the scintillator and the base,
The radiation detecting apparatus according to claim 7, wherein the constant potential member is the base.
前記シンチレータは、放射線を可視光に変換するシンチレータ層と、前記シンチレータ層及び前記基板の第1表面の少なくとも一部を覆って前記シンチレータ層を保護する保護部材と、を含み、
前記保護部材は、定電位が供給される導電層を含む、ことを特徴とする請求項8に記載の放射線検出装置。
The scintillator includes a scintillator layer that converts radiation into visible light, and a protection member that covers at least a part of the scintillator layer and the first surface of the substrate to protect the scintillator layer,
The radiation detection apparatus according to claim 8, wherein the protection member includes a conductive layer to which a constant potential is supplied.
前記導電性部材、前記基板、前記シンチレータ、及び、前記支持部材を収容する筐体を更に含み、
前記基台が前記筐体とともに接地されることにより、前記導電性部材に定電位が供給される、ことを特徴とする請求項9に記載の放射線検出装置。
A housing that houses the conductive member, the substrate, the scintillator, and the support member;
The radiation detection apparatus according to claim 9, wherein a constant potential is supplied to the conductive member by grounding the base together with the housing.
請求項1乃至10のいずれか1項に記載の放射線検出装置と、
前記放射線検出装置で得られた電気信号を処理する信号処理装置と、
を有することを特徴とする放射線検出システム。
The radiation detection apparatus according to any one of claims 1 to 10,
A signal processing device for processing an electrical signal obtained by the radiation detection device;
A radiation detection system comprising:
照射された放射線を可視光に変換するシンチレータと、該シンチレータにより変換された可視光を電気信号に変換する画素が基板の第1表面に2次元アレイ状に複数配置された画素アレイと、前記基板の前記第1表面の前記画素アレイの周辺に設けられ前記画素アレイと外部回路との電気的な接続を行うための複数の接続端子部と、定電位が供給される導電性部材と、を含み、放射線が照射される側から、前記導電性部材、前記画素アレイ、前記シンチレータの順に配置され、且つ、前記シンチレータが前記第1表面側に配置される放射線検出装置の製造方法であって、
前記基板の前記第1表面と対向する第2表面の前記複数の接続端子部と対向する領域を除く領域に前記導電性部材を配置する配置工程を含む、ことを特徴とする放射線検出装置の製造方法。
A scintillator that converts irradiated radiation into visible light, a pixel array in which a plurality of pixels that convert visible light converted by the scintillator into electrical signals are arranged in a two-dimensional array on the first surface of the substrate, and the substrate A plurality of connection terminal portions provided in the periphery of the pixel array on the first surface for electrically connecting the pixel array and an external circuit, and a conductive member to which a constant potential is supplied. The method of manufacturing a radiation detection apparatus, wherein the conductive member, the pixel array, and the scintillator are arranged in this order from the side irradiated with radiation, and the scintillator is arranged on the first surface side,
The manufacturing method of the radiation detection apparatus characterized by including the arrangement | positioning process which arrange | positions the said electroconductive member in the area | region except the area | region which opposes these connection terminal parts of the 2nd surface facing the said 1st surface of the said board | substrate. Method.
前記配置工程において、前記導電性部材に定電位を供給するための定電位部材と前記導電性部材とを電気的に接続するための接続部が、前記第2表面の前記複数の接続端子部と対向する領域の間を通過するように配置される、ことを特徴とする請求項12に記載の放射線検出装置の製造方法。   In the arrangement step, a connection portion for electrically connecting a constant potential member for supplying a constant potential to the conductive member and the conductive member includes the plurality of connection terminal portions on the second surface. It is arrange | positioned so that it may pass between the area | regions which oppose, The manufacturing method of the radiation detection apparatus of Claim 12 characterized by the above-mentioned. 前記基板の前記第1表面と対向する第2表面の前記複数の接続端子部と対向する領域に受け部材を設けた状態で、異方性導電フィルムを用いた加熱加圧処理によって複数のフレキシブル配線基板を前記複数の接続端子部に接続することにより、前記複数のフレキシブル配線基板を介してプリント回路基板を電気的に接続する接続工程を更に含み、
前記基板の前記第1表面と対向する第2表面の前記複数の接続端子部と対向する領域は前記受け部材の前記基板と接する部分よりも広い、ことを特徴とする請求項12又は13に記載の放射線検出装置の製造方法。
A plurality of flexible wirings by heat and pressure treatment using an anisotropic conductive film in a state where receiving members are provided in regions facing the plurality of connection terminal portions on the second surface of the substrate facing the first surface. A connection step of electrically connecting a printed circuit board via the plurality of flexible wiring boards by connecting a board to the plurality of connection terminal portions;
The region facing the plurality of connection terminal portions on the second surface facing the first surface of the substrate is wider than a portion of the receiving member in contact with the substrate. Manufacturing method of radiation detection apparatus.
前記画素アレイ、前記複数のフレキシブル配線基板、及び、前記プリント回路基板の電気特性検査を行う検査工程を更に含み、
前記検査工程において、前記導電性部材は、前記接続部を介して前記複数のプリント回路基板の少なくとも1つに電気的に接続されて前記導電性部材に定電位が供給される、ことを特徴とする請求項14に記載の放射線検出装置の製造方法。
An inspection process for inspecting electrical characteristics of the pixel array, the plurality of flexible wiring boards, and the printed circuit board;
In the inspection step, the conductive member is electrically connected to at least one of the plurality of printed circuit boards through the connection portion, and a constant potential is supplied to the conductive member. The manufacturing method of the radiation detection apparatus of Claim 14 to do.
前記検査工程において前記複数のフレキシブル配線基板のいずれかに不良が発見された場合、前記接続部が前記複数のプリント回路基板の少なくとも1つと電気的に非接続とされて不良が発見されたフレキシブル配線基板を前記複数の接続端子部から取り外す工程を更に含む、ことを特徴とする請求項15に記載の放射線検出装置の製造方法。   When a defect is found in any of the plurality of flexible wiring boards in the inspection step, the flexible wiring in which the connection portion is electrically disconnected from at least one of the plurality of printed circuit boards and the defect is found. The method for manufacturing a radiation detection apparatus according to claim 15, further comprising a step of removing the substrate from the plurality of connection terminal portions.
JP2016135411A 2016-07-07 2016-07-07 Radiation detection apparatus, radiation detection system, and method of manufacturing radiation detection apparatus Active JP6328179B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016135411A JP6328179B2 (en) 2016-07-07 2016-07-07 Radiation detection apparatus, radiation detection system, and method of manufacturing radiation detection apparatus
US15/634,922 US10481280B2 (en) 2016-07-07 2017-06-27 Radiation detecting apparatus, radiation detecting system, and manufacturing method for radiation detecting apparatus
CN201710507369.5A CN107589439B (en) 2016-07-07 2017-06-28 Radiation detecting apparatus, system and the manufacturing method for radiation detecting apparatus
GB1710802.8A GB2553891B (en) 2016-07-07 2017-07-05 Radiation detecting apparatus, radiation detecting system, and manufacturing method for radiation detecting apparatus
DE102017115118.4A DE102017115118B4 (en) 2016-07-07 2017-07-06 Radiation detection device, radiation detection system and manufacturing method for a radiation detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135411A JP6328179B2 (en) 2016-07-07 2016-07-07 Radiation detection apparatus, radiation detection system, and method of manufacturing radiation detection apparatus

Publications (2)

Publication Number Publication Date
JP2018004569A JP2018004569A (en) 2018-01-11
JP6328179B2 true JP6328179B2 (en) 2018-05-23

Family

ID=60947833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135411A Active JP6328179B2 (en) 2016-07-07 2016-07-07 Radiation detection apparatus, radiation detection system, and method of manufacturing radiation detection apparatus

Country Status (1)

Country Link
JP (1) JP6328179B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4099206B2 (en) * 2001-01-30 2008-06-11 浜松ホトニクス株式会社 Scintillator panel and radiation image sensor
JP2003262675A (en) * 2002-03-11 2003-09-19 Canon Inc Scintillator panel and radiation detection apparatus using the same
JP4671449B2 (en) * 2004-08-10 2011-04-20 キヤノン株式会社 Radiation detection apparatus and radiation detection system
JP5693174B2 (en) * 2010-11-22 2015-04-01 キヤノン株式会社 Radiation detection apparatus and radiation detection system

Also Published As

Publication number Publication date
JP2018004569A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US10481280B2 (en) Radiation detecting apparatus, radiation detecting system, and manufacturing method for radiation detecting apparatus
JP5693174B2 (en) Radiation detection apparatus and radiation detection system
JP5693173B2 (en) Radiation detection apparatus and radiation detection system
US10061042B2 (en) Radiation imaging apparatus and radiation imaging system
US7564112B2 (en) Semiconductor device, radiographic imaging apparatus, and method for manufacturing the same
US20130308755A1 (en) Radiation detection apparatus and radiation detection system
US9177922B2 (en) Electric device, method for manufacturing the same, and radiation inspection apparatus
US20120168632A1 (en) Electronic cassette for radiation imaging
US11277905B2 (en) Radiation imaging apparatus and radiation imaging system
US20190353805A1 (en) Digital x-ray detector having polymeric substrate
KR101740248B1 (en) Radiation detector, apparatus for radiography using the same
JP6377101B2 (en) Radiation detection apparatus and radiation detection system
JP5403848B2 (en) Radiation detection apparatus and radiation detection system
JP6328179B2 (en) Radiation detection apparatus, radiation detection system, and method of manufacturing radiation detection apparatus
JP2015118005A (en) Device and system for detecting radiation
JP2016128790A (en) Radiographic imaging apparatus and radiographic imaging system
JP6590868B2 (en) Radiation imaging apparatus and radiation imaging system
JP2018115879A (en) Radiation imaging apparatus, manufacturing method thereof and imaging system
JP6731757B2 (en) Radiation imaging apparatus and radiation imaging system
JP2016151446A (en) Radiation imaging device and radiation imaging system
JP4819344B2 (en) Semiconductor device, radiation imaging apparatus, and manufacturing method thereof
JP6521617B2 (en) Radiation detection apparatus and radiation detection system
WO2012029403A1 (en) Radiation imaging system, radiation imaging device, and computer-readable recording medium
JP2021041030A (en) Radiation detection device and radiographic device
JP2023032611A (en) Radiation imaging apparatus and radiation imaging system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180417

R151 Written notification of patent or utility model registration

Ref document number: 6328179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151