WO2012029403A1 - Radiation imaging system, radiation imaging device, and computer-readable recording medium - Google Patents

Radiation imaging system, radiation imaging device, and computer-readable recording medium Download PDF

Info

Publication number
WO2012029403A1
WO2012029403A1 PCT/JP2011/065304 JP2011065304W WO2012029403A1 WO 2012029403 A1 WO2012029403 A1 WO 2012029403A1 JP 2011065304 W JP2011065304 W JP 2011065304W WO 2012029403 A1 WO2012029403 A1 WO 2012029403A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
radiation
scintillator
radiographic
radiation detector
Prior art date
Application number
PCT/JP2011/065304
Other languages
French (fr)
Japanese (ja)
Inventor
直行 西納
直人 岩切
恭義 大田
晴康 中津川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012029403A1 publication Critical patent/WO2012029403A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette

Definitions

  • the present invention relates to a radiographic image capturing system, a radiographic image capturing device, and a computer-readable recording medium, and in particular, a radiographic image capturing system, a radiographic image capturing device, and a program for capturing a radiographic image indicated by radiation that has passed through an imaging target.
  • the present invention relates to a computer-readable recording medium that stores.
  • radiation detectors such as FPD (Flat Panel Detector) that can directly convert radiation into digital data by arranging a radiation sensitive layer on a TFT (Thin Film Transistor) active matrix substrate have been put into practical use.
  • the radiographic imaging device using this radiation detector can see images immediately and can continuously capture radiographic images as compared with conventional radiographic imaging devices using X-ray film or imaging plate. There is an advantage that (moving image shooting) can also be performed.
  • radiation detectors of this type have been proposed.
  • radiation is once converted into light by a scintillator such as CsI: Tl or GOS (Gd2O2S: Tb), and the converted light is a photodiode or the like.
  • the sensor unit converts the charges into charges.
  • the electric charge accumulated in the radiation detector is read as an electric signal, and the read electric signal is amplified by an amplifier and then converted into digital data by an A / D (analog / digital) converter.
  • Japanese Patent Application Laid-Open No. 2009-28373 discloses a radiation conversion panel that detects radiation transmitted through a subject and converts it into radiation image information, and radiation detected by the radiation conversion panel.
  • a memory for storing image information; at least the radiation conversion panel; a control unit for controlling the memory; a battery for supplying power to the radiation conversion panel, the memory and the control unit; and a temperature of at least the radiation conversion panel.
  • Radiation imaging having a radiation detection cassette having a temperature sensor to detect, an imaging device that emits radiation toward the subject, and a host computer that controls the imaging device by exchanging information with the radiation detection cassette
  • a control unit of the radiation detection cassette Means for receiving information relating to shooting conditions from the host computer; capacity detecting means for detecting free space in the memory; remaining capacity detecting means for detecting the remaining battery capacity; capacity detecting means;
  • a radiographic imaging system comprising: a determination means for determining permission / prohibition of use of the radiation detection cassette based on a result of the means and the temperature sensor and information on the received imaging condition.
  • Japanese Patent Application Laid-Open No. 2010-75671 discloses a radiation conversion panel that detects radiation transmitted through a subject and converts it into radiation image information, temperature detection means that detects the temperature of the radiation conversion panel, and based on the temperature. And a correction means for correcting at least one of sensitivity, dark current, density step and afterimage in the radiation conversion panel.
  • the radiographic image capturing apparatus since radiographic images are captured in a state where a region to be imaged is arranged on the imaging surface, a load is applied to the imaging surface during the imaging. Therefore, especially when the radiation detector is directly attached to the top plate constituting the imaging surface, or when the radiation detector is supported on the top plate, the radiation detector is also subjected to a load. Will be distorted.
  • incident radiation is converted into light by a scintillator, and the scintillator is more likely to deteriorate due to distortion as the temperature increases.
  • the deterioration of the scintillator is specifically the occurrence of cracks in the scintillator.
  • the sensitivity is lowered, the photographed image is blurred, a defect image, or the like is caused depending on the generation position and size.
  • the effect on the image quality is larger as the crack is generated near the sensor unit such as a photodiode that converts light converted by the scintillator into electric charge.
  • the sensitivity of the crack portion decreases because the thickness of the scintillator becomes thin. Becomes larger, resulting in an image defect.
  • FIG. 23A In a conventional portable radiographic imaging device (hereinafter, also referred to as “electronic cassette”), as shown in FIG. 23A as an example, the scintillator is separated from the top plate in the casing of the electronic cassette. It was difficult to apply a load, and there was no need to consider scintillator distortion as a problem.
  • FIG. 23B In the future electronic cassette, as shown in FIG. 23B as an example, it is expected that a configuration in which a radiation detector is attached to the top plate is used for the purpose of thinning the electronic cassette, and in particular, CsI as a scintillator.
  • a substrate including the above is applied or a flexible substrate is employed as a substrate constituting the sensor unit, deterioration due to scintillator distortion due to a load becomes an important issue.
  • radiographic imaging apparatus using an indirect conversion type radiation detector
  • the scintillator temperature when the scintillator temperature is relatively high, it is preferable not to capture radiographic images in order to suppress degradation of the scintillator.
  • radiographic images may not be captured depending on the scintillator temperature.
  • the present invention relates to a radiographic image capturing system, a radiographic image capturing apparatus, and a computer-readable recording medium storing a program capable of relaxing the limitation of radiographic image capturing according to the temperature of the scintillator while suppressing deterioration of the scintillator. provide.
  • the radiation image includes a scintillator that converts incident radiation into light, and a radiation detector that includes a sensor unit that detects light converted by the scintillator, and is represented by the radiation.
  • Imaging information indicating at least one of a radiographic imaging device that captures a radiographic image, a detection unit that detects the temperature of the scintillator, an imaging region that permits imaging by the radiographic imaging device according to the temperature of the scintillator, and an imaging state
  • the radiographic imaging device based on the imaging information stored in the storage unit based on the temperature detected by the detection unit when the radiographic image is captured by the radiographic imaging device and the storage unit stored in advance
  • a specific unit that specifies at least one of an imaging region and an imaging state that allow imaging by A controller for controlling the operation of the image capturing apparatus, the radiation image capturing system having provided.
  • a radiographic image including a scintillator that converts incident radiation into light, and a radiation detector that includes a sensor unit that detects the light converted by the scintillator.
  • a radiographic image indicated by the radiation is captured by the imaging device.
  • imaging information indicating at least one of an imaging region and an imaging state in which imaging by the radiographic imaging device is permitted according to a temperature of the scintillator by a control device that controls the operation of the radiographic imaging device.
  • the imaging information stored in the storage unit based on the temperature of the scintillator detected by the detection unit when the radiographic image capturing apparatus captures a radiographic image by the specifying unit From this, at least one of an imaging region and an imaging state that allow imaging by the radiographic imaging device is specified.
  • the radiographic imaging system of the first aspect of the present invention at least one of the imaging region and the imaging state that allows imaging predetermined according to the scintillator temperature based on the scintillator temperature. Therefore, by taking radiographic images by applying at least one of the specified imaging region and imaging state, it is possible to limit radiographic imaging according to the scintillator temperature while suppressing degradation of the scintillator. Can be relaxed.
  • the said detection part may detect the temperature of the said scintillator based on the dark current which generate
  • control device may further include a warning unit that issues a warning when the identification result by the identification unit does not match an actual photographing situation.
  • the specifying unit specifies at least the shooting state
  • the control device does not match the shooting state specified by the specifying unit with the actual shooting state.
  • the presentation by the presenting unit includes presentation by visual display by a display device, presentation by audible display by an audio device, and presentation by permanent visual display by an image forming device.
  • the shooting state may include shooting in a supine position and shooting in a standing position.
  • photography of the radiographic image according to the temperature of a scintillator can be eased, suppressing deterioration of a scintillator.
  • the radiation image photographing apparatus is assumed regardless of the scintillator temperature. It is good also as what permits all imaging
  • the scintillator temperature is also set on the condition that the radiographic imaging device is held by a holding unit that can receive a load from the radiographing object instead of the radiographic imaging device. Regardless of the case, it is possible to allow all imaging assumed in the radiographic imaging apparatus.
  • an externally strengthened casing that can receive a load from an imaging target instead of the radiographic imaging device
  • the radiographic imaging device may be integrated, and all imaging assumed in the radiographic imaging device may be allowed regardless of the scintillator temperature.
  • the sensor unit may include an organic photoelectric conversion material that generates charges when receiving light generated by the scintillator. Therefore, the impact resistance of a radiographic imaging apparatus can be improved.
  • the radiation detector is directly applied to a surface opposite to the surface on which the radiation is incident on the top plate having a transmission surface through which the radiation transmitted through the subject is transmitted. It may be attached. Thereby, the impact resistance of a radiographic imaging apparatus can be improved.
  • the top plate may be made of a material containing a reinforcing fiber resin.
  • strength of a top plate can be made high.
  • the reinforcing fiber resin may be a carbon fiber reinforced plastic.
  • the top plate is made of carbon alone, and as a result, image unevenness due to temperature unevenness of the radiation image obtained by the radiation detector is reduced. Can be suppressed.
  • the deterioration (crack) of the scintillator is particularly problematic in an aspect in which the scintillator includes CsI and the radiation detector is in a so-called surface reading system in which radiation is incident in the order of the sensor unit and the scintillator.
  • the said scintillator is comprised including cesium iodide, and the said radiation detector injects the said radiation in order of the said sensor part and the said scintillator. It may be laminated as described. Thereby, also in the said aspect, the effect of this invention can be acquired.
  • the radiation detector may be attached to the top plate so as to be separable. Thereby, a housing
  • the radiographic imaging device has an internal space formed between the radiation detector and the top plate.
  • An adhesive member that adheres the radiation detector to the top plate, and a ventilation portion that communicates the internal space and the outside and prevents foreign matter from entering the internal space from the outside. Also good.
  • the radiation detector is bonded to the top plate so that an internal space is formed between the radiation detector and the top plate using the adhesive member, the contact of the adhesive member to the radiation detector and the top plate is achieved. Even if air remains on the surface, the remaining air can be released to the internal space.
  • the internal space communicates with the outside through the ventilation portion, the pressure in the internal space and the external atmospheric pressure can be kept constant even when the atmospheric pressure changes. Therefore, it can prevent that the adhesiveness of the radiation detector with respect to a top plate falls by atmospheric pressure change.
  • the ventilation portion prevents foreign matters from entering the internal space from the outside, it is possible to eliminate the concern that foreign matters such as metal pieces that absorb radiation enter the internal space and are displayed in the radiation image. . Accordingly, it is possible to suppress the contamination of foreign matters that leads to the deterioration of the quality of the radiation image.
  • the ventilation portion may be a communication path formed in the adhesive member and communicating in a state of bending the internal space and the outside.
  • the communication path is bent, it is possible to prevent the foreign matter from entering the internal space even when foreign matter flows into the communication path from the outside together with air. This is because the mass of the foreign matter is larger than the mass of air, so that the foreign matter cannot follow the flow of air flowing through the bent portion of the communication path. Further, since the communication path is formed in the adhesive member, the foreign matter is likely to adhere to the wall surface of the communication path. Accordingly, the foreign matter that can no longer follow the air flow at the bent portion of the communication passage is reliably captured by the wall surface of the communication passage having adhesiveness. As a result, it is possible to more reliably prevent foreign matter from entering the internal space.
  • the top plate may constitute a part of a housing that houses the radiation detector.
  • a top plate can be comprised more simply.
  • the scintillator may include cesium iodide as in the twelfth aspect.
  • a scintillator that converts incident radiation into light
  • a radiation detector that includes a sensor unit that detects light converted by the scintillator, and detection that detects the temperature of the scintillator
  • a radiographic image by the radiation detector a storage unit in which imaging information indicating at least one of an imaging region and an imaging state in which imaging by the radiation detector is allowed according to the temperature of the scintillator is stored in advance
  • the radiation detector Based on the temperature detected by the detection unit when performing, a specifying unit that specifies at least one of an imaging region and an imaging state that allows imaging by the radiation detector from the imaging information stored in the storage unit, A radiographic image capturing apparatus is provided.
  • the present invention since it operates in the same manner as the first aspect of the invention, as in the first aspect of the invention, it is possible to capture radiographic images according to the temperature of the scintillator while suppressing degradation of the scintillator. Limits can be relaxed.
  • the radiation detector includes a scintillator that converts incident radiation into light and a sensor unit that detects light converted by the scintillator, and captures a radiation image indicated by the radiation.
  • a detection unit that detects the temperature of the scintillator in a radiographic imaging device based on a dark current generated in the sensor unit, and a temperature that is detected by the detection unit when radiographic imaging is performed by the radiographic imaging device.
  • the computer can be operated in the same manner as the first aspect of the invention, the temperature of the scintillator can be adjusted while suppressing the deterioration of the scintillator as in the first aspect of the invention.
  • the restriction of radiographic image capturing can be relaxed.
  • the present invention it is possible to obtain an effect that it is possible to relax restrictions on radiographic imaging according to the temperature of the scintillator while suppressing deterioration of the scintillator.
  • RIS Radiology Information System
  • the RIS 100 is a system for performing information management such as medical appointment reservation and diagnosis record in the radiology department, and constitutes a part of a hospital information system (hereinafter referred to as “HIS” (Hospital Information System)). .
  • HIS Hospital Information System
  • the RIS 100 includes a plurality of radiography requesting terminal devices (hereinafter referred to as “terminal devices”) 140, a RIS server 150, and a radiographic imaging system (or an operating room) installed in a radiographic room (or operating room) in a hospital. (Hereinafter referred to as “imaging system”) 104, which are connected to an in-hospital network 102 composed of a wired or wireless LAN (Local Area Network) or the like.
  • imaging system 104
  • the RIS 100 constitutes a part of the HIS provided in the same hospital, and an HIS server (not shown) for managing the entire HIS is also connected to the in-hospital network 102.
  • the terminal device 140 is used by doctors and radiographers to input and browse diagnostic information and facility reservations, and radiographic image capturing requests and imaging reservations are also performed via the terminal device 140.
  • Each terminal device 140 includes a personal computer having a display device, and can communicate with the RIS server 150 via the hospital network 102.
  • the RIS server 150 receives an imaging request from each terminal device 140 and manages a radiographic imaging schedule in the imaging system 104, and includes a database 150A.
  • Database 150A includes patient (subject) attribute information (name, sex, date of birth, age, blood type, weight, patient ID (Identification), etc.), medical history, medical history, radiation images taken in the past, etc.
  • Information regarding the patient information regarding the electronic cassette 40 used in the imaging system 104, such as an identification number (ID information), model, size, sensitivity, start date of use, number of times of use, etc., and the electronic cassette 40 It includes the environment information which shows the environment which takes a radiographic image using, ie, the environment (for example, a radiography room, an operating room, etc.) which uses electronic cassette 40.
  • the imaging system 104 captures a radiographic image by an operation of a doctor or a radiographer according to an instruction from the RIS server 150.
  • the imaging system 104 includes a radiation generator 120 that irradiates a subject with radiation X (see also FIG. 6) that has been dosed according to the exposure conditions from a radiation source 121 (see also FIG. 2), and a subject.
  • An electronic cassette having a built-in radiation detector 20 (see also FIG. 6) that generates radiation by absorbing the radiation X transmitted through the imaging region of the person and generates image information indicating a radiation image based on the amount of the generated charge.
  • the console 110 acquires various types of information included in the database 150A from the RIS server 150, stores them in the HDD 116 (see FIG. 12) described later, and uses the information as necessary to use the electronic cassette 40 and the radiation generator 120. Control.
  • FIG. 2 shows an example of the arrangement state of each device in the radiation imaging room 180 of the imaging system 104 according to the present embodiment.
  • the radiation imaging room 180 includes a standing table 160 used when performing radiography in a standing position and a prone table 164 used when performing radiography in a lying position.
  • the space in front of the standing stand 160 is set as a photographing position 170 of the subject when performing radiography in the standing position, and the space above the supine stand 164 is when performing radiography in the prone position.
  • the imaging position 172 of the subject is set as a photographing position 170 of the subject when performing radiography in the standing position.
  • the standing stand 160 is provided with a holding unit 162 that holds the electronic cassette 40, and the electronic cassette 40 is held by the holding unit 162 when a radiographic image is taken in the standing position.
  • the holding table 164 is provided with a holding unit 166 that holds the electronic cassette 40, and the electronic cassette 40 is held by the holding unit 166 when a radiographic image is taken in the lying position.
  • the radiation source 121 is placed around a horizontal axis (see FIG. 5) in order to enable radiation imaging in a standing position and radiation imaging in a lying position by radiation from a single radiation source 121. 2 is provided, and a support moving mechanism 124 is provided which can be rotated in the vertical direction (arrow b direction in FIG. 2) and can be moved in the horizontal direction (arrow c direction in FIG. 2). It has been.
  • the support moving mechanism 124 includes a drive source that rotates the radiation source 121 around a horizontal axis, a drive source that moves the radiation source 121 in the vertical direction, and a drive source that moves the radiation source 121 in the horizontal direction. Each is provided (not shown).
  • the cradle 130 is formed with an accommodating portion 130A that can accommodate the electronic cassette 40.
  • the built-in battery is charged in a state of being housed in the housing portion 130A of the cradle 130.
  • the electronic cassette 40 is taken out from the cradle 130 by a radiographer or the like, and the photographing posture is established. If it is in the upright position, it is held in the holding part 162 of the standing base 160, and if it is in the upright position, it is held in the holding part 166 of the standing base 164.
  • various types of information are transmitted and received between the radiation generator 120 and the console 110 and between the electronic cassette 40 and the console 110 by wireless communication.
  • the electronic cassette 40 is not used only in a state where it is held by the holding part 162 of the standing base 160 or the holding part 166 of the prone base 164. When photographing, it can be used in a state where it is not held by the holding unit.
  • FIG. 3 is a schematic cross-sectional view schematically showing the configuration of the three pixel portions of the radiation detector 20 according to the present exemplary embodiment.
  • the signal output unit 14, the sensor unit 13, and the scintillator 8 are sequentially stacked on the insulating substrate 1.
  • the pixel unit is configured by the sensor unit 13.
  • a plurality of pixel units are arranged on the substrate 1, and the signal output unit 14 and the sensor unit 13 in each pixel unit are configured to overlap each other.
  • the scintillator 8 is formed on the sensor unit 13 via the transparent insulating film 7, and forms a phosphor that emits light by converting radiation incident from above (opposite side of the substrate 1) or from below into light. It is a thing. Providing such a scintillator 8 absorbs the radiation transmitted through the subject and emits light.
  • the wavelength range of light emitted by the scintillator 8 is preferably the visible light range (wavelength 360 nm to 830 nm), and in order to enable monochrome imaging by the radiation detector 20, the wavelength range of green is included. Is more preferable.
  • the phosphor used in the scintillator 8 preferably contains cesium iodide (CsI) when imaging using X-rays as radiation, and has an emission spectrum of 420 nm to 700 nm upon X-ray irradiation. It is particularly preferable to use CsI (Tl) (cesium iodide with thallium added). Note that the emission peak wavelength of CsI (Tl) in the visible light region is 565 nm.
  • CsI cesium iodide
  • the scintillator 8 may be formed by vapor deposition on a vapor deposition substrate, for example, when it is going to be formed with columnar crystals such as CsI (Tl).
  • a vapor deposition substrate for example, when it is going to be formed with columnar crystals such as CsI (Tl).
  • CsI CsI
  • an Al plate is often used as the vapor deposition substrate in terms of X-ray transmittance and cost, but is not limited thereto.
  • GOS is used as the scintillator 8
  • the scintillator 8 may be formed by applying GOS to the surface of the TFT substrate 30 described later without using a vapor deposition substrate.
  • the sensor unit 13 includes an upper electrode 6, a lower electrode 2, and a photoelectric conversion film 4 disposed between the upper and lower electrodes.
  • the photoelectric conversion film 4 absorbs light emitted from the scintillator 8 and generates charges. It is composed of an organic photoelectric conversion material.
  • the upper electrode 6 Since it is necessary for the upper electrode 6 to cause the light generated by the scintillator 8 to be incident on the photoelectric conversion film 4, it is preferable that the upper electrode 6 be made of a conductive material that is transparent at least with respect to the emission wavelength of the scintillator 8. It is preferable to use a transparent conductive oxide (TCO) having a high transmittance for visible light and a small resistance value. Although a metal thin film such as Au can be used as the upper electrode 6, TCO is preferable because it tends to increase the resistance value when it is desired to obtain a transmittance of 90% or more.
  • TCO transparent conductive oxide
  • the upper electrode 6 may have a single configuration common to all the pixel portions, or may be divided for each pixel portion.
  • the photoelectric conversion film 4 contains an organic photoelectric conversion material, absorbs light emitted from the scintillator 8, and generates electric charges according to the absorbed light. In this way, the photoelectric conversion film 4 containing an organic photoelectric conversion material has a sharp absorption spectrum in the visible range, and electromagnetic waves other than light emitted by the scintillator 8 are hardly absorbed by the photoelectric conversion film 4. The noise generated by the radiation such as being absorbed by the photoelectric conversion film 4 can be effectively suppressed.
  • the organic photoelectric conversion material constituting the photoelectric conversion film 4 is preferably such that its absorption peak wavelength is closer to the emission peak wavelength of the scintillator 8 in order to absorb light emitted by the scintillator 8 most efficiently.
  • the absorption peak wavelength of the organic photoelectric conversion material matches the emission peak wavelength of the scintillator 8, but if the difference between the two is small, the light emitted from the scintillator 8 can be sufficiently absorbed.
  • the difference between the absorption peak wavelength of the organic photoelectric conversion material and the emission peak wavelength with respect to the radiation of the scintillator 8 is preferably within 10 nm, and more preferably within 5 nm.
  • Examples of the organic photoelectric conversion material that can satisfy such conditions include quinacridone organic compounds and phthalocyanine organic compounds.
  • quinacridone organic compounds since the absorption peak wavelength of quinacridone in the visible region is 560 nm, if quinacridone is used as the organic photoelectric conversion material and CsI (Tl) is used as the material of the scintillator 8, the difference in the peak wavelength can be within 5 nm. Thus, the amount of charge generated in the photoelectric conversion film 4 can be substantially maximized.
  • the electromagnetic wave absorption / photoelectric conversion site in the radiation detector 20 is configured by an organic layer including a pair of electrodes 2 and 6 and an organic photoelectric conversion film 4 sandwiched between the electrodes 2 and 6. be able to. More specifically, this organic layer is a part that absorbs electromagnetic waves, a photoelectric conversion part, an electron transport part, a hole transport part, an electron blocking part, a hole blocking part, a crystallization preventing part, an electrode, and an interlayer contact improvement. It can be formed by stacking or mixing parts.
  • the organic layer preferably contains an organic p-type compound or an organic n-type compound.
  • An organic p-type semiconductor is a donor organic semiconductor (compound) typified by a hole-transporting organic compound and refers to an organic compound having a property of easily donating electrons. More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Accordingly, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound.
  • An organic n-type semiconductor is an acceptor organic semiconductor (compound) typified by an electron-transporting organic compound and refers to an organic compound having a property of easily accepting electrons. More specifically, the organic compound having the higher electron affinity when two organic compounds are used in contact with each other. Accordingly, as the acceptor organic compound, any organic compound can be used as long as it is an electron-accepting organic compound.
  • the materials applicable as the organic p-type semiconductor and the organic n-type semiconductor and the configuration of the photoelectric conversion film 4 are described in detail in Japanese Patent Application Laid-Open No. 2009-32854, and thus the description thereof is omitted.
  • the photoelectric conversion film 4 may be formed by further containing fullerenes or carbon nanotubes.
  • the thickness of the photoelectric conversion film 4 is preferably as large as possible in terms of absorbing light from the scintillator 8. However, when the thickness is more than a certain level, the photoelectric conversion film 4 is generated in the photoelectric conversion film 4 by a bias voltage applied from both ends of the photoelectric conversion film 4. Since electric field strength is reduced and charges cannot be collected, the thickness is preferably 30 nm to 300 nm, more preferably 50 nm to 250 nm, and particularly preferably 80 nm to 200 nm.
  • the photoelectric conversion film 4 has a single-sheet configuration common to all the pixel portions, but may be divided for each pixel portion.
  • the lower electrode 2 is a thin film divided for each pixel portion.
  • the lower electrode 2 can be made of a transparent or opaque conductive material, and aluminum, silver, or the like can be suitably used.
  • the thickness of the lower electrode 2 can be, for example, 30 nm or more and 300 nm or less.
  • the sensor unit 13 by applying a predetermined bias voltage between the upper electrode 6 and the lower electrode 2, one of electric charges (holes, electrons) generated in the photoelectric conversion film 4 is moved to the upper electrode 6.
  • the other can be moved to the lower electrode 2.
  • a wiring is connected to the upper electrode 6, and a bias voltage is applied to the upper electrode 6 through this wiring.
  • the polarity of the bias voltage is determined so that electrons generated in the photoelectric conversion film 4 move to the upper electrode 6 and holes move to the lower electrode 2, but this polarity is reversed. May be.
  • the sensor unit 13 constituting each pixel unit only needs to include at least the lower electrode 2, the photoelectric conversion film 4, and the upper electrode 6. In order to suppress an increase in dark current, the electron blocking film 3 and hole blocking are performed. It is preferable to provide at least one of the films 5, and it is more preferable to provide both.
  • the electron blocking film 3 can be provided between the lower electrode 2 and the photoelectric conversion film 4.
  • a bias voltage is applied between the lower electrode 2 and the upper electrode 6, electrons are transferred from the lower electrode 2 to the photoelectric conversion film 4. It is possible to suppress the dark current from increasing due to the injection of.
  • An electron donating organic material can be used for the electron blocking film 3.
  • the material actually used for the electron blocking film 3 may be selected according to the material of the adjacent electrode, the material of the adjacent photoelectric conversion film 4 and the like, and 1.3 eV or more from the work function (Wf) of the material of the adjacent electrode. Those having a large electron affinity (Ea) and an Ip equivalent to or smaller than the ionization potential (Ip) of the material of the adjacent photoelectric conversion film 4 are preferable.
  • the material applicable as the electron donating organic material is described in detail in Japanese Patent Application Laid-Open No. 2009-32854, and thus the description thereof is omitted.
  • the thickness of the electron blocking film 3 is preferably 10 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, and particularly preferably, in order to surely exhibit the dark current suppressing effect and prevent a decrease in photoelectric conversion efficiency of the sensor unit 13. It is 50 nm or more and 100 nm or less.
  • the hole blocking film 5 can be provided between the photoelectric conversion film 4 and the upper electrode 6.
  • a bias voltage is applied between the lower electrode 2 and the upper electrode 6, the hole blocking film 5 is transferred from the upper electrode 6 to the photoelectric conversion film 4. It is possible to suppress the increase in dark current due to the injection of holes.
  • An electron-accepting organic material can be used for the hole blocking film 5.
  • the thickness of the hole blocking film 5 is preferably 10 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, and particularly preferably, in order to surely exhibit the dark current suppressing effect and prevent a decrease in photoelectric conversion efficiency of the sensor unit 13. Is from 50 nm to 100 nm.
  • the material actually used for the hole blocking film 5 may be selected according to the material of the adjacent electrode, the material of the adjacent photoelectric conversion film 4 and the like, and 1.3 eV from the work function (Wf) of the material of the adjacent electrode. As described above, it is preferable that the ionization potential (Ip) is large and that the Ea is equal to or larger than the electron affinity (Ea) of the material of the adjacent photoelectric conversion film 4. Since the material applicable as the electron-accepting organic material is described in detail in Japanese Patent Application Laid-Open No. 2009-32854, description thereof is omitted.
  • the electron blocking film 3 and the hole blocking are set.
  • the position of the film 5 may be reversed.
  • a signal output unit 14 is formed on the surface of the substrate 1 below the lower electrode 2 of each pixel unit.
  • FIG. 4 schematically shows the configuration of the signal output unit 14.
  • the signal output unit 14 corresponds to the lower electrode 2, the capacitor 9 that accumulates the charges moved to the lower electrode 2, and the electric charges accumulated in the capacitor 9
  • a field effect thin film transistor (Thin Film Transistor, hereinafter simply referred to as a thin film transistor) 10 is formed which is converted into a signal and output.
  • the region in which the capacitor 9 and the thin film transistor 10 are formed has a portion that overlaps the lower electrode 2 in a plan view. With such a configuration, the signal output unit 14 and the sensor unit 13 in each pixel unit are connected to each other. There will be overlap in the thickness direction. In order to minimize the plane area of the radiation detector 20 (pixel portion), it is desirable that the region where the capacitor 9 and the thin film transistor 10 are formed is completely covered by the lower electrode 2.
  • the capacitor 9 is electrically connected to the corresponding lower electrode 2 via a wiring made of a conductive material penetrating an insulating film 11 provided between the substrate 1 and the lower electrode 2. Thereby, the electric charge collected by the lower electrode 2 can be moved to the capacitor 9.
  • a gate electrode 15, a gate insulating film 16, and an active layer (channel layer) 17 are stacked, and a source electrode 18 and a drain electrode 19 are formed on the active layer 17 at a predetermined interval.
  • the active layer 17 can be formed of, for example, amorphous silicon, amorphous oxide, organic semiconductor material, carbon nanotube, or the like. In addition, the material which comprises the active layer 17 is not limited to these.
  • the amorphous oxide that can form the active layer 17 is preferably an oxide containing at least one of In, Ga, and Zn (for example, In—O-based), and at least 2 of In, Ga, and Zn.
  • In—Zn—O, In—Ga—O, and Ga—Zn—O are more preferable, and oxides including In, Ga, and Zn are particularly preferable.
  • In—Ga—Zn—O-based amorphous oxide an amorphous oxide whose composition in a crystalline state is represented by InGaO 3 (ZnO) m (m is a natural number less than 6) is preferable, and in particular, InGaZnO. 4 is more preferable.
  • the amorphous oxide which can comprise the active layer 17 is not limited to these.
  • Examples of the organic semiconductor material that can form the active layer 17 include, but are not limited to, phthalocyanine compounds, pentacene, vanadyl phthalocyanine, and the like. Note that the configuration of the phthalocyanine compound is described in detail in JP-A-2009-212389, and thus the description thereof is omitted.
  • the active layer 17 of the thin film transistor 10 is formed of an amorphous oxide, an organic semiconductor material, or a carbon nanotube, it will not absorb radiation such as X-rays, or even if it absorbs it, it will remain in a very small amount. Generation of noise in the portion 14 can be effectively suppressed.
  • the switching speed of the thin film transistor 10 can be increased, and the thin film transistor 10 having a low degree of light absorption in the visible light region can be formed.
  • the performance of the thin film transistor 10 is remarkably deteriorated only by mixing a very small amount of metallic impurities into the active layer 17, so that extremely high purity carbon nanotubes can be obtained by centrifugation or the like. It is necessary to form by separating and extracting.
  • the substrate 1 is not limited to a substrate having high heat resistance such as a semiconductor substrate, a quartz substrate, and a glass substrate, and a flexible substrate such as plastic, aramid, or bionanofiber can also be used.
  • flexible materials such as polyesters such as polyethylene terephthalate, polybutylene phthalate, polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, poly (chlorotrifluoroethylene), etc.
  • a conductive substrate can be used. If such a plastic flexible substrate is used, it is possible to reduce the weight, which is advantageous for carrying around, for example.
  • the substrate 1 is provided with an insulating layer for ensuring insulation, a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving flatness or adhesion to electrodes, and the like. May be.
  • aramid can be applied at a high temperature process of 200 ° C. or higher, the transparent electrode material can be cured at high temperature to reduce the resistance, and can also be used for automatic mounting of driver ICs including a solder reflow process.
  • Aramid has a thermal expansion coefficient close to that of ITO (Indium Tin Oxide) or glass substrate, so there is little warping after manufacturing and it is difficult to crack.
  • aramid can form a substrate thinner than a glass substrate or the like. The substrate may be formed by laminating an ultrathin glass substrate and aramid.
  • the bionanofiber is a composite of a cellulose microfibril bundle (bacterial cellulose) produced by bacteria (Acetobacter Xylinum) and a transparent resin.
  • the cellulose microfibril bundle has a width of 50 nm and a size of 1/10 of the visible light wavelength, and has high strength, high elasticity, and low thermal expansion.
  • a transparent resin such as acrylic resin or epoxy resin in bacterial cellulose
  • a bio-nanofiber having a light transmittance of about 90% at a wavelength of 500 nm can be obtained while containing 60 to 70% of the fiber.
  • Bionanofiber has a low coefficient of thermal expansion (3-7ppm) comparable to silicon crystals, and is as strong as steel (460MPa), highly elastic (30GPa), and flexible.
  • the substrate 1 can be formed thinly.
  • the TFT substrate 30 is formed on the substrate 1 by sequentially forming the signal output unit 14, the sensor unit 13, and the transparent insulating film 7, and the light-absorbing adhesive resin is formed on the TFT substrate 30.
  • the radiation detector 20 is formed by pasting the scintillator 8 using, for example.
  • the TFT substrate 30 includes a pixel unit 32 including the sensor unit 13, the capacitor 9, and the thin film transistor 10 described above in a certain direction (the row direction in FIG. 5) and the certain direction.
  • a plurality of two-dimensional shapes are provided in the intersecting direction (column direction in FIG. 5).
  • the radiation detector 20 extends in the predetermined direction (row direction), and extends in the intersecting direction (column direction) with a plurality of gate wirings 34 for turning on and off each thin film transistor 10.
  • a plurality of data wirings 36 for reading out charges through the thin film transistor 10 in the on state are provided.
  • the radiation detector 20 has a flat plate shape and a quadrilateral shape having four sides on the outer edge in a plan view, more specifically, a rectangular shape.
  • FIG. 6 is a perspective view showing the configuration of the electronic cassette 40 according to the present exemplary embodiment.
  • the electronic cassette 40 includes a flat housing 41 made of a material that transmits radiation, and has a waterproof and airtight structure.
  • a space (external space) A for accommodating various components is formed inside the housing 41, and the subject is transmitted through the space from the irradiation surface side of the housing 41 irradiated with the radiation X.
  • the radiation detector 20 for detecting the radiation X and the lead plate 43 for absorbing the back scattered radiation of the radiation X are arranged in this order.
  • the area corresponding to the arrangement position of the radiation detector 20 on one flat surface of the housing 41 is a quadrilateral imaging area 41A capable of detecting radiation.
  • the surface having the imaging region 41A of the housing 41 is a top plate 41B in the electronic cassette 40.
  • the radiation detector 20 includes a TFT substrate. 30 is disposed on the top plate 41B side, and is attached to the inner surface of the casing 41 of the top plate 41B (the surface opposite to the surface on which radiation of the top plate 41B is incident).
  • the imaging system 104 has an imaging permission situation specifying function for specifying an imaging part and an imaging state that allow imaging by the electronic cassette 40 according to the temperature of the scintillator 8.
  • a temperature sensor 46 for detecting the temperature of the scintillator 8 is provided at the center of the lower surface side of the scintillator 8 of the radiation detector 20. Is provided.
  • the temperature sensor 46 corresponds to a detection unit.
  • a cassette control unit 58 and a power supply unit which will be described later, are located on one end inside the housing 41 at a position that does not overlap the radiation detector 20 (outside the range of the imaging region 41A).
  • a case 42 for accommodating 70 (see FIG. 12 for both) is arranged.
  • the housing 41 is made of, for example, carbon fiber (carbon fiber), aluminum, magnesium, bionanofiber (cellulose microfibril), or a composite material in order to reduce the weight of the entire electronic cassette 40.
  • the composite material for example, a material including a reinforcing fiber resin is used, and the reinforcing fiber resin includes carbon, cellulose, and the like.
  • CFRP carbon fiber reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • a structure in which a foamed material is sandwiched with CFRP, or a material in which the surface of the foamed material is coated with CFRP is used.
  • CFRP carbon fiber reinforced plastic
  • a structure in which a foam material is sandwiched with CFRP is used.
  • a support body 44 is disposed on the inner surface of the back surface portion 41 ⁇ / b> C facing the top plate 41 ⁇ / b> B inside the housing 41, and radiation detection is performed between the support body 44 and the top plate 41 ⁇ / b> B.
  • the vessel 20 and the lead plate 43 are arranged in this order in the irradiation direction of the radiation X.
  • the support body 44 is made of, for example, a foam material from the viewpoint of weight reduction and absorption of dimensional deviation, and supports the lead plate 43.
  • an adhesive member 80 is provided on the inner surface of the top plate 41B so that the TFT substrate 30 of the radiation detector 20 can be peeled off.
  • the adhesive member 80 for example, a double-sided tape is used. In this case, the double-sided tape is formed so that the adhesive force of one adhesive surface is stronger than the adhesive force of the other adhesive surface.
  • the surface with weak adhesive strength (weak adhesive surface) is set to 1.0 N / cm or less with 180 ° peel adhesive strength. Then, the surface having a strong adhesive force (strong adhesion surface) is in contact with the top plate 41B, and the weak adhesion surface is in contact with the TFT substrate 30. Thereby, compared with the case where the radiation detector 20 is fixed to the top plate 41B with fixing members, such as a screw, the thickness of the electronic cassette 40 can be made thin. Even if the top plate 41B is deformed by an impact or load, the radiation detector 20 follows the deformation of the top plate 41B having high rigidity, so that only a large curvature (slow bend) is generated, and a local low curvature is generated.
  • the double-sided tape also has an adhesive force on a surface other than the surface in contact with the TFT substrate 30 and the top plate 41B.
  • the adhesive member 80 is disposed along the side wall of the housing 41 in a band-like state.
  • an internal space B is formed between the TFT substrate 30 and the top plate 41B in a state where the TFT substrate 30 is bonded to the top plate 41B (see also FIG. 8).
  • the adhesive member 80 is formed with a communication passage 82 that communicates the internal space B and the external space A at portions corresponding to the corners of the top plate 41B.
  • the communication path 82 is bent and specifically has four corners 84. That is, the communication path 82 has a labyrinth structure formed so as to be bent.
  • the bending angle of the bent part (corner part 84) of the communication path 82 can be set arbitrarily, and may be bent like a bow.
  • the passage width d of the communication passage 82 is set as narrow as possible within a range where air can flow. However, the passage width d of the communication passage 82 may be set arbitrarily.
  • the radiation detector 20 is attached to the inside of the top plate 41B of the housing 41, so that the housing 41 is on the top plate 41B side and the back surface portion 41C side.
  • the housing 41 is placed on the top plate 41B side. And the back surface portion 41C side are separated into two.
  • the radiation detector 20 may not be bonded to the top plate 41B in a clean room or the like. This is because when a foreign object such as a metal piece that absorbs radiation is mixed between the radiation detector 20 and the top plate 41B, the foreign object can be removed by peeling the radiation detector 20 from the top plate 41B.
  • ears 86 may be provided on the TFT substrate 30 of the radiation detector 20.
  • the ear 86 may be fixed to the TFT substrate 30 or may be detachable from the TFT substrate 30. In the latter case, it is possible to eliminate the concern that the ear 86 becomes an obstacle when capturing a radiographic image.
  • a gate line driver 52 is arranged on one side of two adjacent sides, and a signal processing unit 54 is arranged on the other side.
  • Each gate wiring 34 of the TFT substrate 30 is connected to a gate line driver 52, and each data wiring 36 of the TFT substrate 30 is connected to a signal processing unit 54.
  • the housing 41 includes an image memory 56, a cassette control unit 58, and a wireless communication unit 60.
  • Each thin film transistor 10 of the TFT substrate 30 is sequentially turned on in a row unit by a signal supplied from the gate line driver 52 via the gate wiring 34, and the electric charge read by the thin film transistor 10 in the on state is converted into an electric signal.
  • the data wiring 36 is transmitted and input to the signal processing unit 54. As a result, the charges are sequentially read out in units of rows, and a two-dimensional radiation image can be acquired.
  • the signal processing unit 54 includes an amplification circuit and a sample hold circuit for amplifying an input electric signal for each data wiring 36, and the electric signal transmitted through the individual data wiring 36. Is amplified by the amplifier circuit and then held in the sample hold circuit. Further, a multiplexer and an A / D (analog / digital) converter are connected in order to the output side of the sample and hold circuit, and the electric signals held in the individual sample and hold circuits are sequentially (serially) input to the multiplexer. The digital image data is converted by an A / D converter.
  • An image memory 56 is connected to the signal processing unit 54, and image data output from the A / D converter of the signal processing unit 54 is sequentially stored in the image memory 56.
  • the image memory 56 has a storage capacity capable of storing a predetermined number of image data, and image data obtained by imaging is sequentially stored in the image memory 56 each time a radiographic image is captured.
  • the image memory 56 is connected to the cassette control unit 58.
  • the cassette control unit 58 includes a microcomputer, and includes a CPU (Central Processing Unit) 58A, a memory 58B including a ROM (Read Only Memory) and a RAM (Random Access Memory), a nonvolatile storage unit 58C including a flash memory and the like. And controls the entire operation of the electronic cassette 40.
  • CPU Central Processing Unit
  • memory 58B including a ROM (Read Only Memory) and a RAM (Random Access Memory)
  • a nonvolatile storage unit 58C including a flash memory and the like. And controls the entire operation of the electronic cassette 40.
  • the temperature sensor 46 is connected to the cassette control unit 58, and the cassette control unit 58 is arranged at a location where the temperature sensor 46 is disposed (in the present embodiment, the center on the lower surface side of the scintillator 8 in the radiation detector 20). Temperature).
  • a wireless communication unit 60 is connected to the cassette control unit 58.
  • the wireless communication unit 60 corresponds to a wireless LAN (Local Area Network) standard represented by IEEE (Institute of Electrical and Electronics Electronics) (802.11a / b / g), and communicates with external devices by wireless communication. Control transmission of various information.
  • the cassette control unit 58 can wirelessly communicate with an external device such as the console 110 that performs control related to radiographic image capturing via the wireless communication unit 60, and can transmit and receive various types of information to and from the console 110 and the like. It is possible.
  • the electronic cassette 40 is provided with a power supply unit 70, which functions as the above-described various circuits and elements (gate line driver 52, signal processing unit 54, image memory 56, wireless communication unit 60, and cassette control unit 58).
  • the microcomputer or the like is operated by the power supplied from the power supply unit 70.
  • the power supply unit 70 incorporates a battery (a rechargeable secondary battery) so as not to impair the portability of the electronic cassette 40, and supplies power from the charged battery to various circuits and elements. In FIG. 12, wiring for connecting the power supply unit 70 to various circuits and elements is omitted.
  • the console 110 is configured as a server computer, and includes a display 111 that displays an operation menu, a captured radiographic image, and the like, and a plurality of keys, and inputs various information and operation instructions.
  • the console 110 includes a CPU 113 that controls the operation of the entire apparatus, a ROM 114 that stores various programs including a control program in advance, a RAM 115 that temporarily stores various data, and various data.
  • An HDD (Hard Disk Drive) 116 that stores and holds, a display driver 117 that controls display of various types of information on the display 111, and an operation input detection unit 118 that detects an operation state of the operation panel 112 are provided.
  • the console 110 transmits and receives various types of information such as an exposure condition, which will be described later, to and from the radiation generation apparatus 120 through wireless communication, and transmits and receives various types of information such as image data to and from the electronic cassette 40.
  • a wireless communication unit 119 is provided.
  • the CPU 113 corresponds to a specifying unit, a warning unit, and a presentation unit
  • the HDD 116 corresponds to a storage unit.
  • the CPU 113, ROM 114, RAM 115, HDD 116, display driver 117, operation input detection unit 118, and wireless communication unit 119 are connected to each other via a system bus BUS. Therefore, the CPU 113 can access the ROM 114, RAM 115, and HDD 116, controls the display of various information on the display 111 via the display driver 117, and the radiation generator 120 via the wireless communication unit 119 and Control of transmission and reception of various types of information with the electronic cassette 40 can be performed. Further, the CPU 113 can grasp the operation state of the user with respect to the operation panel 112 via the operation input detection unit 118.
  • the radiation generator 120 includes a radio communication unit 123 that transmits and receives various types of information such as an exposure condition between the radiation source 121 and the console 110, and a line that controls the radiation source 121 based on the received exposure condition.
  • a source control unit 122 is provided.
  • the radiation source control unit 122 is also configured to include a microcomputer, and stores the received exposure conditions and the like.
  • the exposure conditions received from the console 110 include information such as tube voltage, tube current, and exposure period.
  • the radiation source control unit 122 causes the radiation source 121 to emit radiation X based on the received exposure conditions.
  • the imaging system 104 has an imaging permission situation specifying function for specifying an imaging part and an imaging state that allow imaging by the electronic cassette 40 according to the temperature of the scintillator 8. Yes.
  • the shooting information illustrated in FIG. 13 is stored in advance in the HDD 116 as an example.
  • the imaging information according to the present embodiment is configured by previously storing an imaging region and an imaging state that allow imaging by the electronic cassette 40 within a predetermined temperature range of the scintillator 8. ing.
  • the imaging system 104 according to the present embodiment two types of “arm part” and “leg part” are applied as the imaging parts that allow the imaging, and the imaging is permitted.
  • the shooting state to be performed two types of “standing position shooting” in which shooting is performed using the standing table 160 and “upright position shooting” in which shooting is performed using the standing table 164 are applied, but the present invention is not limited thereto. It goes without saying that it is not.
  • the subject when performing the standing position photographing, the subject is hardly pressurized against the top plate 41B of the electronic cassette 40, and thus the standing position photographing is allowed in the entire temperature range.
  • the pressure on the top plate 41B is relatively large, and the scintillator 8 Shooting is allowed only when the temperature is relatively low (in this embodiment, when the temperature is not less than 0 degrees and less than 25 degrees).
  • FIG. 14 is a flowchart showing a flow of processing of the radiographic image capturing processing program executed by the CPU 113 of the console 110 at this time, and the program is stored in a predetermined area of the ROM 114 in advance.
  • step 300 of FIG. 14 the display driver 117 is controlled so that a predetermined initial information input screen is displayed on the display 111, and the next step 302 waits for input of predetermined information.
  • FIG. 15 shows an example of an initial information input screen displayed on the display 111 by the process of step 300 described above.
  • the name of the subject who is going to capture a radiographic image, the region to be imaged, and the posture at the time of capturing in this embodiment, the supine position, the standing position
  • a message prompting the user to input radiation X exposure conditions at the time of imaging in this embodiment, tube voltage, tube current, and exposure period when radiation X is exposed
  • the information input area is displayed.
  • the photographer can input the name of the subject to be imaged, the imaging region, the posture at the time of imaging, and the exposure conditions corresponding to each of the input areas. Is input via the operation panel 112.
  • the photographer holds the electronic cassette 40 in the holding section 162 of the corresponding standing table 160 or the holding section 166 of the lying table 164 and also the radiation source. After positioning 121 at the corresponding position, the subject is positioned at a predetermined imaging position. On the other hand, when a radiographic image is taken in a state where the imaging part does not hold the electronic cassette 40 such as an arm part or a leg part in the holding part, the photographer is ready to take a picture of the imaging part. The electronic cassette 40 and the radiation source 121 are positioned. Thereafter, the photographer designates an end button displayed near the lower end of the initial information input screen via the operation panel 112. When an end button is designated by the photographer, step 302 is affirmative and the process proceeds to step 304.
  • step 304 instruction information for instructing transmission of information indicating the temperature measured by the temperature sensor 46 (hereinafter referred to as “temperature information”) is transmitted to the electronic cassette 40 via the wireless communication unit 119, and then In step 306, reception of the temperature information is awaited.
  • the electronic cassette 40 transmits the temperature information to the console 110 via the wireless communication unit 60.
  • step 306 is affirmative and the process proceeds to step 308.
  • step 308 the above-described shooting information (see also FIG. 13) is read from the HDD 116, and in the next step 310, the temperature indicated by the temperature information received from the electronic cassette 40 in the read shooting information is included.
  • an imaging region and an imaging state in which radiographic imaging is allowed are specified.
  • step 312 it is determined whether or not the imaging region and the imaging state specified by the processing in step 310 match information input on the initial information input screen (hereinafter referred to as “initial information”). If the determination is affirmative, the process proceeds to step 322, which will be described later, whereas if the determination is negative, the process proceeds to step 314.
  • step 314 the display driver 117 is controlled to display a predetermined warning screen on the display 111, and in the next step 316, input of predetermined information is waited.
  • FIG. 16 shows an example of a warning screen displayed on the display 111 by the processing in step 314 described above.
  • the warning screen in the warning screen according to the present embodiment, information indicating that the deterioration of the scintillator 8 is likely to proceed in the designated shooting, an alternative shooting situation (in the example shown in FIG. 16, “standing position shooting”). .) And information for prompting a selection input as to whether or not to change to the alternative shooting situation are displayed.
  • the alternative imaging situation any one imaging situation of the imaging region and the imaging state specified by the processing in step 310 is applied.
  • step 316 is affirmative and the process proceeds to step 318.
  • step 318 it is determined whether or not the photographer has instructed to change the shooting state by determining whether or not the “change” button is designated on the warning screen. If the determination is negative, step 318 is performed. On the other hand, if the determination is affirmative, the process proceeds to step 320 so that the exposure condition included in the initial information becomes the exposure condition corresponding to the alternative photographing situation displayed on the warning screen. After changing to step 322, the process proceeds to step 322.
  • step 322 the exposure condition is set by transmitting the exposure condition included in the initial information to the radiation generator 120 via the wireless communication unit 119.
  • the radiation source control unit 122 of the radiation generator 120 prepares for exposure under the received exposure conditions.
  • step 324 instruction information for instructing the start of exposure is transmitted to the radiation generator 120 and the electronic cassette 40 via the wireless communication unit 119.
  • the radiation source 121 generates and emits radiation X at a tube voltage, a tube current, and an exposure period according to the exposure conditions received by the radiation generator 120 from the console 110.
  • the radiation X exposed from the radiation source 121 reaches the electronic cassette 40 after passing through the subject.
  • the cassette control unit 58 of the electronic cassette 40 receives the instruction information instructing the start of exposure, the cassette control unit 58 starts accumulating charges in the capacitors 9 of the respective pixel units 32 of the built-in radiation detector 20.
  • the gate line driver 52 is controlled to output an ON signal to each gate wiring 34 one line at a time from the gate line driver 52, and each gate line 34 connected to each gate wiring 34.
  • the thin film transistors 10 are sequentially turned on line by line.
  • the thin film transistors 10 connected to the gate lines 34 are turned on one line at a time, the charges accumulated in the capacitors 9 one line at a time flow out to the data lines 36 as electric signals.
  • the electric signal flowing out to each data wiring 36 is converted into digital image data by the signal processing unit 54 and stored in the image memory 56.
  • the cassette control unit 58 transmits the image data stored in the image memory 56 to the console 110 by wireless communication after the end of shooting.
  • the process waits until the image data is received from the electronic cassette 40, and in the next step 328, image processing for performing various corrections such as shading correction on the received image data is executed. To do.
  • the image data subjected to the image processing (hereinafter referred to as “corrected image data”) is stored in the HDD 116, and in the next step 332, the radiation image indicated by the corrected image data is stored.
  • the display driver 117 is controlled so as to be displayed on the display 111 for confirmation, etc., and in the next step 334, the corrected image data is transmitted to the RIS server 150 via the intra-hospital network 102, and then the radiographic imaging is performed. Terminate the processing program.
  • the corrected image data transmitted to the RIS server 150 is stored in the database 150A, so that the doctor can perform interpretation, diagnosis, and the like of the radiographic image taken.
  • FIG. 17 is a flowchart showing the flow of the temperature information transmission processing program executed by the CPU 58A of the electronic cassette 40 at this time, and the program is stored in advance in a predetermined area of the memory 58B.
  • step 400 of FIG. 17 temperature information indicating the temperature of the scintillator 8 at this time is derived based on a signal input from the temperature sensor 46, and in the next step 402, the derived temperature information is converted to wireless communication. It transmits to the console 110 via the part 60, and complete
  • the radiation detector 20 is incorporated so that the radiation X is irradiated from the TFT substrate 30 side.
  • the radiation detector 20 is irradiated with radiation from the side where the scintillator 8 is formed, and reads the radiation image by the TFT substrate 30 provided on the back side of the incident surface of the radiation.
  • the radiation detector 20 is irradiated with radiation from the side where the scintillator 8 is formed, and reads the radiation image by the TFT substrate 30 provided on the back side of the incident surface of the radiation.
  • back surface reading method light is emitted more intensely on the upper surface side (opposite side of the TFT substrate 30) of the scintillator 8, and radiation is irradiated from the TFT substrate 30 side.
  • the radiation transmitted through the TFT substrate 30 enters the scintillator 8 and the TFT substrate 30 side of the scintillator 8 emits light more strongly.
  • the photoelectric conversion film 4 is made of an organic photoelectric conversion material, and the photoelectric conversion film 4 hardly absorbs radiation. For this reason, the radiation detector 20 according to the present embodiment suppresses a decrease in sensitivity to radiation because the amount of radiation absorbed by the photoelectric conversion film 4 is small even when radiation is transmitted through the TFT substrate 30 by the surface reading method. Can do. In the surface reading method, radiation passes through the TFT substrate 30 and reaches the scintillator 8. As described above, when the photoelectric conversion film 4 of the TFT substrate 30 is made of an organic photoelectric conversion material, the photoelectric conversion film 4 hardly absorbs radiation and can suppress radiation attenuation to a small extent. ing.
  • both the amorphous oxide constituting the active layer 17 of the thin film transistor 10 and the organic photoelectric conversion material constituting the photoelectric conversion film 4 can be formed at a low temperature.
  • substrate 1 can be formed with a plastic resin, aramid, and bio-nanofiber with little radiation absorption. Since the substrate 1 formed in this way has a small amount of radiation absorption, even when the radiation passes through the TFT substrate 30 by the surface reading method, it is possible to suppress a decrease in sensitivity to radiation.
  • the radiation detector 20 is attached to the top plate 41B in the housing 41 so that the TFT substrate 30 is on the top plate 41B side.
  • the substrate 1 is formed of a highly rigid plastic resin, aramid, or bionanofiber
  • the radiation detector 20 itself has high rigidity, so that the top plate 41B of the housing 41 can be formed thin.
  • the radiation detector 20 itself has flexibility, so that even when an impact is applied to the imaging region 41A, the radiation detector 20 is damaged. It ’s hard.
  • At least one of an imaging region and an imaging state that allow predetermined imaging according to the temperature of the scintillator 8 is specified. Therefore, by taking radiographic images by applying at least one of the specified imaging region and imaging state, it is possible to reduce radiographic imaging restrictions according to the scintillator temperature while suppressing degradation of the scintillator. Can do.
  • CsI has a large coefficient of thermal expansion of about 50 PPM, and when the temperature of CsI rises, the gap (about 1 to several ⁇ m) between CsI columnar crystals becomes narrower. There is a high possibility that the columnar crystals come into contact with each other due to the deformation of the radiation detector 20 due to the load.
  • the convenience for the user can be further improved.
  • the alternative shooting state is presented, which is convenient for the user.
  • the sex can be further improved.
  • the shooting state includes shooting in the supine position and shooting in the standing position, in the mode in which these shootings are performed, the temperature of the scintillator is controlled while suppressing deterioration of the scintillator.
  • the restriction of radiographic image capturing can be relaxed.
  • the sensor part 13 is comprised including the organic photoelectric conversion material which generate
  • the impact resistance of the electronic cassette 40 is improved. Can be made.
  • the radiation detector 20 is directly attached to the surface opposite to the surface on which the radiation is incident on the top plate 41B having a transmission surface through which the radiation transmitted through the subject is transmitted.
  • the impact resistance of the electronic cassette 40 can be improved.
  • the radiation detector 20 is attached to the top plate 41B so as to be separable, the casing can be exchanged efficiently.
  • top plate 41B constitutes a part of the housing 41 that houses the radiation detector 20, it is simpler than when the top plate is configured separately from the housing.
  • a top plate can be constructed.
  • the internal space B is formed between the TFT substrate 30 and the top plate 41B, when the radiation detector 20 is bonded to the top plate 41B, the TFT substrate 30 and the top plate 41B are bonded. Even if air remains on the bonding surface of the member 80, the remaining air can escape to the internal space B.
  • the communication member 82 that communicates the internal space B and the external space A is formed in the adhesive member 80, the pressure in the internal space B and the air pressure in the external space A can be reduced even when the atmospheric pressure in the external space A changes. Can be kept constant. Thereby, it can prevent that the adhesiveness of the TFT substrate 30 with respect to the top plate 41B falls by atmospheric pressure change.
  • the communication passage 82 has a corner portion 84. Therefore, even when foreign matter having a mass larger than that of air flows into the communication path 82 from the external space A, the foreign matter cannot follow the flow of air flowing through the corner portion 84. Mixing into B can be prevented. As a result, it is possible to suppress contamination of foreign matter that leads to deterioration of the quality of the radiation image.
  • the communication path 82 is formed in the adhesive member 80 and the adhesive member 80 has adhesive force on the entire surface, the foreign matter that could not follow the air adheres to the wall surface of the communication path 82 at the corner 84. It becomes easy. Therefore, the foreign matter can be reliably captured in the communication path 82. Therefore, it is possible to more reliably prevent foreign matter from entering the internal space B.
  • the passage width d of the communication passage 82 is set as narrow as possible within the range in which air can circulate, so that it is possible to cope with the mixing of foreign matters such as relatively small metal powder. it can. If the passage width d of the communication passage 82 is set according to the assumed size of the foreign matter, it is possible to efficiently prevent the foreign matter from being mixed.
  • the scintillator 8 is generally more fragile than the TFT substrate 30. Therefore, when the scintillator 8 is bonded to the top plate 41B with the adhesive member 80, the scintillator 8 may be damaged when the radiation detector 20 is peeled off. However, in the present embodiment, since the TFT substrate 30 is bonded to the top plate 41B with the adhesive member 80, the concern that the scintillator 8 is damaged when the radiation detector 20 is peeled can be eliminated.
  • shooting may be performed with the subject (patient) on the top board 41B.
  • the top plate 41B is easily damaged.
  • the top plate 41B is scratched, it may be displayed on the radiographic image as fixed pattern noise, so it is desirable to replace the housing 41.
  • the radiation detector 20 is pasted to the top plate 41B so as not to be peeled off, it is necessary to replace the expensive radiation detector 20 together when the casing 41 is replaced, which increases costs.
  • the housing 41 can be efficiently replaced.
  • FIG. 18 is a flowchart showing the flow of processing of the radiographic imaging program according to the second embodiment, which is executed by the CPU 113 of the console 110 at this time, and the program is stored in a predetermined area of the ROM 114. Stored in advance. Also, steps in FIG. 18 that execute the same processing as in FIG. 14 are assigned the same step numbers as in FIG. 14, and descriptions thereof are omitted.
  • step 304 ′ of FIG. 18 instruction information for instructing transmission of information indicating the dark current generated in the sensor unit 13 of the radiation detector 20 (hereinafter referred to as “dark current information”) is transmitted to the electronic cassette 40 as a wireless communication unit.
  • the next step 306 ′ waits for reception of the dark current information.
  • the electronic cassette 40 transmits the dark current information to the console 110 via the wireless communication unit 60.
  • step 306 ′ is affirmative and the process proceeds to step 307.
  • step 307 temperature information indicating the temperature of the scintillator 8 is derived based on the dark current information received from the electronic cassette 40.
  • information indicating the relationship between the dark current of the electronic cassette 40 and the temperature of the scintillator 8 is obtained from an experiment using an actual machine of the same type as the electronic cassette 40 or a computer / computer based on the design specifications of the electronic cassette 40.
  • the temperature information is derived by deriving a temperature corresponding to the dark current indicated by the dark current information received from the information in advance by simulation or the like.
  • the dark current is approximately doubled at 8 ° C. without being limited to this form. Therefore, when the electronic cassette 40 is shipped from the factory, the dark current value at the predetermined temperature and the predetermined temperature May be stored in advance, and the temperature may be calculated backward from the difference between the dark current value indicated by the dark current information received from the electronic cassette 40 and the dark current value stored in advance.
  • step 310 ′ radiographic images are allowed to be captured in the temperature range to which the temperature indicated by the temperature information derived by the processing of step 307 belongs in the imaging information read out by the processing of step 308. And the shooting state.
  • FIG. 19 is a flowchart showing the flow of the dark current information transmission processing program executed by the CPU 58A of the electronic cassette 40 at this time, and the program is stored in advance in a predetermined area of the memory 58B.
  • dark current information indicating the dark current of the sensor unit 13 in the radiation detector 20 at this time is derived as follows.
  • the image data obtained by the imaging is information indicating the dark current in the sensor unit 13 of the radiation detector 20.
  • an average value of data corresponding to a predetermined region is derived as dark current information.
  • step 452 the dark current information derived by the processing in step 450 is transmitted to the console 110 via the wireless communication unit 60, and then the dark current information transmission processing program is terminated.
  • the temperature of the scintillator 8 is detected based on the dark current generated in the sensor unit 13. Compared with the case where the temperature of 8 is detected by the temperature sensor, the cost can be further reduced.
  • the above-described embodiment does not limit the invention according to the claims, and all combinations of features described in the embodiment are not necessarily essential to the solution means of the invention.
  • the embodiments described above include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. Even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, as long as an effect is obtained, a configuration from which these some constituent requirements are deleted can be extracted as an invention.
  • the console 110 presents a warning or an alternative shooting situation when the shooting situation that allows shooting does not match the actual shooting situation.
  • the present invention is not limited to this. However, these may be executed in the electronic cassette 40. In this case, the load on the console 110 can be reduced as compared with the above embodiment.
  • the sensor unit 13 is configured to include an organic photoelectric conversion material that generates charges by receiving light generated by the scintillator 8 has been described. It is not limited, It is good also as a form which applies what was comprised without including an organic photoelectric conversion material as the sensor part 13.
  • FIG. 1 is a form which applies what was comprised without including an organic photoelectric conversion material as the sensor part 13.
  • an organic solvent or the like may be poured into the adhesive member 80 to weaken the adhesiveness of the adhesive member 80 and then the radiation detector 20 may be peeled off.
  • the adhesive member 80 since the adhesive member 80 has corners, the organic solvent can easily penetrate into the adhesive member 80.
  • the case 42 that accommodates the cassette control unit 58 and the power supply unit 70 and the radiation detector 20 are arranged in the housing 41 of the electronic cassette 40 so as not to overlap. It is not limited to this.
  • the radiation detector 20 and the cassette control unit 58 or the power supply unit 70 may be arranged so as to overlap each other.
  • an organic CMOS sensor in which the photoelectric conversion film 4 is made of a material containing an organic photoelectric conversion material may be used.
  • the TFT substrate 30 of the radiation detector 20 the thin film transistor 10.
  • An organic TFT array sheet in which organic transistors including the organic material are arranged in an array on a flexible sheet may be used.
  • the above organic CMOS sensor is disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-212377.
  • CMOS complementary metal-oxide-semiconductor
  • ISS Radiation Side Sampling
  • a technique using a SiC (silicon carbide) substrate as a semiconductor substrate having high resistance to radiation can be applied.
  • Advantages that can be used as an ISS method by using a SiC substrate and because SiC has a lower internal resistance and a smaller amount of heat generation than Si, it suppresses the amount of heat generation when shooting movies, and raises the temperature of CsI There is an advantage that it is possible to suppress a decrease in sensitivity due to.
  • a substrate having a high resistance to radiation such as a SiC substrate is generally a wide cap (about 3 eV), and as an example, as shown in FIG. 24, the absorption edge is about 440 nm corresponding to the blue region. Therefore, in this case, a scintillator such as CsI: Tl or GOS that emits light in the green region cannot be used.
  • the scintillator that emits light in these green regions has been actively researched due to the sensitivity characteristics of amorphous silicon, and therefore there is a high demand for using the scintillator.
  • region can be used by comprising the photoelectric converting film 4 with the material containing the organic photoelectric conversion material which absorbs light emission in a green area
  • the photoelectric conversion film 4 When the photoelectric conversion film 4 is formed of a material containing an organic photoelectric conversion material and the thin film transistor 10 is formed using a SiC substrate, the photoelectric conversion film 4 and the thin film transistor 10 have different sensitivity wavelength regions, and thus the light emitted by the scintillator is emitted. There is no noise of the thin film transistor 10.
  • the photoelectric conversion film 4 in addition to receiving light emission mainly in the blue region, such as CsI: Na, light emission in the green region is also received. As a result, the sensitivity can be improved. In addition, since the organic photoelectric conversion material hardly absorbs radiation, it can be suitably used for the ISS system.
  • SiC is highly resistant to radiation because it is difficult for nuclear nuclei to be blown off even when exposed to radiation.
  • Develop semiconductor devices that can be used for a long time [online], [Search May 8, 2011], Internet ⁇ URL: http://www.jaea.go.jp/jari/jpn/publish/01/ff/ ff36 / sic.html> ”.
  • C diamond
  • BN diamond
  • GaN gallium-nitride
  • AlN gallium-nitride
  • ZnO zinc-nitride
  • These light element semiconductor materials have high radiation resistance because they are mainly wide-gap semiconductors, so they require high energy for ionization (electron-hole pair formation), small reaction cross-sections, This is due to the fact that bonding is strong and atomic displacement is less likely to occur.
  • GaN has good thermal conductivity as a use other than blue LEDs and has high insulation resistance
  • ICs are being studied in the field of power systems.
  • ZnO an LED that emits light mainly in the blue to ultraviolet region has been studied.
  • the band gap Eg is changed from about 1.1 eV to about 2.8 eV of Si, so that the light absorption wavelength ⁇ shifts to the short wavelength side.
  • the wavelength ⁇ 1.24 / Eg ⁇ 1000
  • the sensitivity changes to wavelengths up to about 440 nm. Therefore, when SiC is used, as shown in FIG. 25 as an example, the scintillator emits light in the blue region more than CsI: Tl (peak wavelength: about 565 nm) that emits light in the green region, as well as CsI: Na (peak wavelength: about 420 nm). This is more suitable as the emission wavelength.
  • CsI Na (peak wavelength: about 420 nm)
  • BaFX Eu (X is a halogen such as Br and I, peak wavelength: about 380 nm)
  • CaWO 4 peak wavelength: about 425 nm
  • ZnS Ag (peak wavelength: about 450 nm)
  • LaOBr Tb, Y 2 O 2 S: Tb, and the like
  • BaFX Eu used in CsI: Na and CR cassettes
  • CaWO 4 used in screens and films are preferably used.
  • a CMOS sensor having high resistance to radiation may be configured by using a configuration of Si substrate / thick film SiO 2 / organic photoelectric conversion material by SOI (Silicon On Insulator).
  • SOI Silicon On Insulator
  • examples of the high radiation durability element include a complete separation type thick film SOI and a partial separation type thick film SOI.
  • SOIs for example, “Patent Office,“ Patent Application Technology Trend Survey Report on SOI (Silicon On Insulator) Technology ”, [online], [Search May 8, 2011], Internet ⁇ URL: http://www.jpo.go.jp/shiryou/pdf/gidou-houkoku/soi.pdf> ”.
  • the thin film transistor 10 or the like of the radiation detector 20 does not have light transmission (for example, a structure in which the active layer 17 is formed of a material having no light transmission such as amorphous silicon), the thin film transistor 10 or the like. Is disposed on a light-transmitting substrate 1 (for example, a flexible substrate made of synthetic resin), and a portion of the substrate 1 where the thin film transistor 10 or the like is not formed is configured to transmit light. It is possible to obtain a radiation detector 20 having optical transparency. Arranging the thin film transistor 10 or the like having a non-light-transmitting structure on the light-transmitting substrate 1 is performed by separating the micro device block manufactured on the first substrate from the first substrate.
  • FSA Fluid Self-Assembly
  • the above FSA is, for example, “Toyama University,“ Study on Self-Aligned Placement Technology of Small Semiconductor Blocks ”, [online], [Search May 8, 2011], Internet ⁇ URL: http: //www3.u- toyama.ac.jp/maezawa/Research/FSA.html> ”.
  • the configuration of the RIS 100 described in the above embodiment is an example, and an unnecessary part can be deleted, a new part can be added, or the connection state can be changed without departing from the gist of the present invention. Needless to say.
  • the configuration of the shooting information described in the above embodiment is also an example, and unnecessary information is deleted or new information is added without departing from the gist of the present invention. It goes without saying that you can do it.
  • processing flow of various programs described in the above embodiment is also an example, and unnecessary steps can be deleted without departing from the gist of the present invention. Needless to say, new steps can be added or the processing order can be changed.

Abstract

Provided is a radiation imaging system, which is provided with: a radiation imaging device that is provided with a scintillator and a radiation detector; a detecting unit, which detects the temperature of the scintillator; and a control unit, which controls operations of the radiation imaging device. The control unit is provided with: a storage unit, which stores image pickup information that indicates an image pickup area and/or an image pickup state, wherein an image is permitted to be picked up corresponding to the temperature of the scintillator; and a specifying unit, which specifies the image pickup area and/or the image pickup state, corresponding to the detected temperature of the scintillator.

Description

放射線画像撮影システム、放射線画像撮影装置、およびコンピュータ可読記録媒体Radiographic imaging system, radiographic imaging apparatus, and computer-readable recording medium
 本発明は、放射線画像撮影システム、放射線画像撮影装置、およびコンピュータ可読記録媒体に係り、特に、撮影対象を透過した放射線により示される放射線画像を撮影する放射線画像撮影システム、放射線画像撮影装置、およびプログラムを格納したコンピュータ可読記録媒体に関する。 The present invention relates to a radiographic image capturing system, a radiographic image capturing device, and a computer-readable recording medium, and in particular, a radiographic image capturing system, a radiographic image capturing device, and a program for capturing a radiographic image indicated by radiation that has passed through an imaging target. The present invention relates to a computer-readable recording medium that stores.
 近年、TFT(Thin Film Transistor)アクティブマトリクス基板上に放射線感応層を配置し、放射線を直接デジタルデータに変換できるFPD(Flat Panel Detector)等の放射線検出器が実用化されている。この放射線検出器を用いた放射線画像撮影装置は、従来のX線フイルムやイメージングプレートを用いた放射線画像撮影装置に比べて、即時に画像を確認でき、連続的に放射線画像の撮影を行う透視撮影(動画撮影)も行うことができるといったメリットがある。 In recent years, radiation detectors such as FPD (Flat Panel Detector) that can directly convert radiation into digital data by arranging a radiation sensitive layer on a TFT (Thin Film Transistor) active matrix substrate have been put into practical use. The radiographic imaging device using this radiation detector can see images immediately and can continuously capture radiographic images as compared with conventional radiographic imaging devices using X-ray film or imaging plate. There is an advantage that (moving image shooting) can also be performed.
 この種の放射線検出器は、種々のタイプのものが提案されており、例えば、放射線を一度CsI:Tl、GOS(Gd2O2S:Tb)などのシンチレータで光に変換し、変換した光をフォトダイオードなどのセンサ部で電荷に変換して蓄積する間接変換方式がある。放射線画像撮影装置では、放射線検出器に蓄積された電荷を電気信号として読み出し、読み出した電気信号をアンプで増幅した後にA/D(アナログ/デジタル)変換部でデジタルデータに変換している。 Various types of radiation detectors of this type have been proposed. For example, radiation is once converted into light by a scintillator such as CsI: Tl or GOS (Gd2O2S: Tb), and the converted light is a photodiode or the like. There is an indirect conversion method in which the sensor unit converts the charges into charges. In the radiographic imaging apparatus, the electric charge accumulated in the radiation detector is read as an electric signal, and the read electric signal is amplified by an amplifier and then converted into digital data by an A / D (analog / digital) converter.
 この種の放射線画像撮影装置に関する技術として、特開2009-28373号公報には、被写体を透過した放射線を検出し、放射線画像情報に変換する放射線変換パネルと、前記放射線変換パネルによって検出された放射線画像情報を記憶するメモリと、少なくとも前記放射線変換パネルと前記メモリを制御する制御部と、これら放射線変換パネル、前記メモリ、前記制御部に電源を供給するバッテリと、少なくとも前記放射線変換パネルの温度を検出する温度センサとを有する放射線検出カセッテと、前記被写体に向けて放射線を放射する撮影装置と、前記放射線検出カセッテと情報のやり取りを行って前記撮影装置を制御するホストコンピュータとを有する放射線画像撮影システムであって、前記放射線検出カセッテの前記制御部は、前記ホストコンピュータからの撮影条件に関する情報を受け取る手段と、前記メモリの空き容量を検出する容量検出手段と、前記バッテリの残量を検知する残量検知手段と、前記容量検出手段、前記残量検知手段および前記温度センサの結果と、受け取った前記撮影条件に関する情報とに基づいて前記放射線検出カセッテの使用許可/禁止を判別する判別手段と、を有する放射線画像撮影システムが開示されている。 As a technique relating to this type of radiographic imaging apparatus, Japanese Patent Application Laid-Open No. 2009-28373 discloses a radiation conversion panel that detects radiation transmitted through a subject and converts it into radiation image information, and radiation detected by the radiation conversion panel. A memory for storing image information; at least the radiation conversion panel; a control unit for controlling the memory; a battery for supplying power to the radiation conversion panel, the memory and the control unit; and a temperature of at least the radiation conversion panel. Radiation imaging having a radiation detection cassette having a temperature sensor to detect, an imaging device that emits radiation toward the subject, and a host computer that controls the imaging device by exchanging information with the radiation detection cassette A control unit of the radiation detection cassette; Means for receiving information relating to shooting conditions from the host computer; capacity detecting means for detecting free space in the memory; remaining capacity detecting means for detecting the remaining battery capacity; capacity detecting means; There is disclosed a radiographic imaging system comprising: a determination means for determining permission / prohibition of use of the radiation detection cassette based on a result of the means and the temperature sensor and information on the received imaging condition.
 また、特開2010-75671号公報には、被写体を透過した放射線を検出して放射線画像情報に変換する放射線変換パネルと、前記放射線変換パネルの温度を検出する温度検出手段と、前記温度に基づいて前記放射線変換パネルでの感度、暗電流、濃度段差および残像のうち少なくとも1つを補正する補正手段と、を有する放射線検出装置が開示されている。 Japanese Patent Application Laid-Open No. 2010-75671 discloses a radiation conversion panel that detects radiation transmitted through a subject and converts it into radiation image information, temperature detection means that detects the temperature of the radiation conversion panel, and based on the temperature. And a correction means for correcting at least one of sensitivity, dark current, density step and afterimage in the radiation conversion panel.
 ところで、放射線画像撮影装置では、撮影面に撮影対象とする部位が配置された状態で放射線画像の撮影が行われるため、当該撮影の際に撮影面に対して荷重がかかる。従って、特に撮影面を構成する天板に放射線検出器を直接取り付けた場合や、当該天板に放射線検出器を支持させた場合等には、放射線検出器にも荷重がかかる結果、放射線検出器が歪むことになる。 By the way, in the radiographic image capturing apparatus, since radiographic images are captured in a state where a region to be imaged is arranged on the imaging surface, a load is applied to the imaging surface during the imaging. Therefore, especially when the radiation detector is directly attached to the top plate constituting the imaging surface, or when the radiation detector is supported on the top plate, the radiation detector is also subjected to a load. Will be distorted.
 一方、間接変換方式の放射線検出器では、入射される放射線をシンチレータで光に変換しており、当該シンチレータは温度が高くなるほど、歪みによる劣化が進行しやすくなる。 On the other hand, in an indirect conversion type radiation detector, incident radiation is converted into light by a scintillator, and the scintillator is more likely to deteriorate due to distortion as the temperature increases.
 なお、シンチレータの劣化は、具体的にはシンチレータにクラックが発生することである。当該クラックが発生することにより、一例として図22A~22Cに示すように、その発生位置や大きさに応じて、感度の低下、撮影された画像のボケや欠陥画像等を招くことになる。この際、シンチレータで変換した光を電荷に変換するフォトダイオード等のセンサ部に近い位置で発生したクラックほど画質への影響は大きい。図22Aに示されるように放射線の照射表面に厚み方向にクラックが発生する場合、クラックの部分はシンチレータの厚みが薄くなるので感度が低下し、また、クラックが長くなると、周辺画素との感度差が大きくなり、画像欠陥となる。また、図22Bに示されるように放射線の照射表面に横方向にクラックが発生する場合、クラック部分が空気層であれば、空気で放射線の散乱が大きくなり、画像ボケにつながり、また、クラックの幅が広いと放射線の散乱も大きくなり、周辺画素との感度差が大きくなり、画像欠陥となる。また、図22Cに示されるようにセンサ部近傍にクラックが発生する場合、センサ部に近い位置のシンチレータからの発光光が主に受光されるので、この部分でクラックが発生すると、欠陥画像になりやすい。 Note that the deterioration of the scintillator is specifically the occurrence of cracks in the scintillator. When the crack is generated, as shown in FIGS. 22A to 22C as an example, the sensitivity is lowered, the photographed image is blurred, a defect image, or the like is caused depending on the generation position and size. At this time, the effect on the image quality is larger as the crack is generated near the sensor unit such as a photodiode that converts light converted by the scintillator into electric charge. As shown in FIG. 22A, when a crack occurs in the thickness direction on the surface irradiated with radiation, the sensitivity of the crack portion decreases because the thickness of the scintillator becomes thin. Becomes larger, resulting in an image defect. Also, as shown in FIG. 22B, when a crack occurs in the lateral direction on the radiation irradiation surface, if the crack portion is an air layer, the scattering of the radiation is increased by the air, leading to image blurring, and If the width is wide, radiation scattering also increases, and the difference in sensitivity with surrounding pixels increases, resulting in an image defect. Also, as shown in FIG. 22C, when a crack occurs in the vicinity of the sensor portion, the emitted light from the scintillator near the sensor portion is mainly received, so if a crack occurs in this portion, a defect image is obtained. Cheap.
 従来型の可搬型の放射線画像撮影装置(以下、「電子カセッテ」ともいう。)では、一例として図23Aに示すように、シンチレータが電子カセッテの筐体における天板から離間していたため、シンチレータに荷重がかかり難く、シンチレータの歪みを問題視する必要はなかった。これに対し、今後の電子カセッテでは、一例として図23Bに示すように、電子カセッテの薄型化を目的として、放射線検出器を天板に取り付ける形態が採用されることが予想され、特にシンチレータとしてCsIを含むものを適用したり、センサ部を構成する基板としてフレキシブル基板が採用されたりした場合等には、荷重によるシンチレータの歪みに起因する劣化が重要な課題となってくる。 In a conventional portable radiographic imaging device (hereinafter, also referred to as “electronic cassette”), as shown in FIG. 23A as an example, the scintillator is separated from the top plate in the casing of the electronic cassette. It was difficult to apply a load, and there was no need to consider scintillator distortion as a problem. On the other hand, in the future electronic cassette, as shown in FIG. 23B as an example, it is expected that a configuration in which a radiation detector is attached to the top plate is used for the purpose of thinning the electronic cassette, and in particular, CsI as a scintillator. When a substrate including the above is applied or a flexible substrate is employed as a substrate constituting the sensor unit, deterioration due to scintillator distortion due to a load becomes an important issue.
 したがって、間接変換方式の放射線検出器を用いた放射線画像撮影装置では、シンチレータの温度が比較的高い場合には、放射線画像の撮影を行わないことがシンチレータの劣化を抑制するうえで好ましいが、これではシンチレータの温度によっては放射線画像の撮影を行うことができない場合がある。 Therefore, in a radiographic imaging apparatus using an indirect conversion type radiation detector, when the scintillator temperature is relatively high, it is preferable not to capture radiographic images in order to suppress degradation of the scintillator. However, radiographic images may not be captured depending on the scintillator temperature.
 これに対し、上記特開2009-28373号公報に開示されている技術でも、放射線変換パネルの温度に応じて放射線検出カセッテの使用を禁止することはできるものの、この場合には放射線画像の撮影を行うことができない。 On the other hand, although the technique disclosed in Japanese Patent Application Laid-Open No. 2009-28373 can also prohibit the use of the radiation detection cassette according to the temperature of the radiation conversion panel, in this case, the radiographic image is captured. I can't do it.
 なお、上記特開2010-75671号公報に開示されている技術では、放射線画像の撮影を行うことはできるものの、シンチレータの劣化を抑制することはできない。 Note that, although the technique disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2010-75671 can capture a radiographic image, it cannot suppress degradation of the scintillator.
 本発明は、シンチレータの劣化を抑制しつつ、シンチレータの温度に応じた放射線画像の撮影の制限を緩和することのできる放射線画像撮影システム、放射線画像撮影装置、およびプログラムを格納したコンピュータ可読記録媒体を提供する。 The present invention relates to a radiographic image capturing system, a radiographic image capturing apparatus, and a computer-readable recording medium storing a program capable of relaxing the limitation of radiographic image capturing according to the temperature of the scintillator while suppressing deterioration of the scintillator. provide.
 本発明の第1の態様によれば、入射された放射線を光に変換するシンチレータ、および当該シンチレータで変換された光を検出するセンサ部を有する放射線検出器を備え、前記放射線により示される放射線画像を撮影する放射線画像撮影装置と、前記シンチレータの温度を検出する検出部と、前記シンチレータの温度に応じて前記放射線画像撮影装置による撮影を許容する撮影部位および撮影状態の少なくとも一方を示す撮影情報が予め記憶された記憶部、および前記放射線画像撮影装置により放射線画像の撮影を行う際に前記検出部により検出された温度に基づいて、前記記憶部に記憶された前記撮影情報から前記放射線画像撮影装置による撮影を許容する撮影部位および撮影状態の少なくとも一方を特定する特定部を備え、前記放射線画像撮影装置の動作を制御する制御装置と、を有する放射線画像撮影システムが提供される。 According to the first aspect of the present invention, the radiation image includes a scintillator that converts incident radiation into light, and a radiation detector that includes a sensor unit that detects light converted by the scintillator, and is represented by the radiation. Imaging information indicating at least one of a radiographic imaging device that captures a radiographic image, a detection unit that detects the temperature of the scintillator, an imaging region that permits imaging by the radiographic imaging device according to the temperature of the scintillator, and an imaging state The radiographic imaging device based on the imaging information stored in the storage unit based on the temperature detected by the detection unit when the radiographic image is captured by the radiographic imaging device and the storage unit stored in advance A specific unit that specifies at least one of an imaging region and an imaging state that allow imaging by A controller for controlling the operation of the image capturing apparatus, the radiation image capturing system having provided.
 本発明の第1の態様の放射線画像撮影システムによれば、入射された放射線を光に変換するシンチレータ、および当該シンチレータで変換された光を検出するセンサ部を有する放射線検出器を備えた放射線画像撮影装置により、前記放射線により示される放射線画像が撮影される。 According to the radiographic imaging system of the first aspect of the present invention, a radiographic image including a scintillator that converts incident radiation into light, and a radiation detector that includes a sensor unit that detects the light converted by the scintillator. A radiographic image indicated by the radiation is captured by the imaging device.
 ここで、本発明では、前記放射線画像撮影装置の動作を制御する制御装置により、前記シンチレータの温度に応じて前記放射線画像撮影装置による撮影を許容する撮影部位および撮影状態の少なくとも一方を示す撮影情報が記憶部によって予め記憶され、特定部により、前記放射線画像撮影装置によって放射線画像の撮影を行う際に検出部により検出された前記シンチレータの温度に基づいて、前記記憶部に記憶された前記撮影情報から前記放射線画像撮影装置による撮影を許容する撮影部位および撮影状態の少なくとも一方が特定される。 Here, in the present invention, imaging information indicating at least one of an imaging region and an imaging state in which imaging by the radiographic imaging device is permitted according to a temperature of the scintillator by a control device that controls the operation of the radiographic imaging device. Is stored in advance in the storage unit, and the imaging information stored in the storage unit based on the temperature of the scintillator detected by the detection unit when the radiographic image capturing apparatus captures a radiographic image by the specifying unit From this, at least one of an imaging region and an imaging state that allow imaging by the radiographic imaging device is specified.
 このように、本発明の第1の態様の放射線画像撮影システムによれば、シンチレータの温度に基づいて、当該シンチレータの温度に応じて予め定められた撮影を許容する撮影部位および撮影状態の少なくとも一方を特定しているので、特定した撮影部位および撮影状態の少なくとも一方を適用して放射線画像の撮影を行うことにより、シンチレータの劣化を抑制しつつ、シンチレータの温度に応じた放射線画像の撮影の制限を緩和することができる。 As described above, according to the radiographic imaging system of the first aspect of the present invention, at least one of the imaging region and the imaging state that allows imaging predetermined according to the scintillator temperature based on the scintillator temperature. Therefore, by taking radiographic images by applying at least one of the specified imaging region and imaging state, it is possible to limit radiographic imaging according to the scintillator temperature while suppressing degradation of the scintillator. Can be relaxed.
 なお、本発明の第2の態様によれば、前記検出部が、前記センサ部に発生する暗電流に基づいて前記シンチレータの温度を検出してもよい。これにより、前記検出部として温度センサを用いる場合に比較して、より低コスト化することができる。 In addition, according to the 2nd aspect of this invention, the said detection part may detect the temperature of the said scintillator based on the dark current which generate | occur | produces in the said sensor part. Thereby, compared with the case where a temperature sensor is used as the said detection part, cost can be reduced more.
 また、本発明の第3の態様によれば、前記制御装置が、前記特定部による特定結果が実際の撮影状況と一致しない場合に警告を行う警告部をさらに備えてもよい。これにより、ユーザにとっての利便性を、より向上させることができる。 Further, according to the third aspect of the present invention, the control device may further include a warning unit that issues a warning when the identification result by the identification unit does not match an actual photographing situation. Thereby, the convenience for a user can be improved more.
 また、本発明の第4の態様によれば、前記特定部が、少なくとも前記撮影状態を特定し、前記制御装置が、前記特定部により特定された撮影状態が実際の撮影状態と一致しない場合で、かつ代替の撮影状態がある場合に、当該代替の撮影状態を提示する提示部をさらに備えてもよい。これにより、ユーザにとっての利便性を、より向上させることができる。なお、上記提示部による提示には、表示装置による可視表示による提示、音声装置による可聴表示による提示、および画像形成装置による永久可視表示による提示が含まれる。 According to the fourth aspect of the present invention, in the case where the specifying unit specifies at least the shooting state, and the control device does not match the shooting state specified by the specifying unit with the actual shooting state. And when there exists an alternative imaging | photography state, you may further provide the presentation part which shows the said alternative imaging | photography state. Thereby, the convenience for a user can be improved more. The presentation by the presenting unit includes presentation by visual display by a display device, presentation by audible display by an audio device, and presentation by permanent visual display by an image forming device.
 また、本発明の第5の態様によれば、前記撮影状態が、臥位での撮影および立位での撮影を含んでもよい。これにより、これらの撮影を行う形態において、シンチレータの劣化を抑制しつつ、シンチレータの温度に応じた放射線画像の撮影の制限を緩和することができる。 Also, according to the fifth aspect of the present invention, the shooting state may include shooting in a supine position and shooting in a standing position. Thereby, in the form which performs these imaging | photography, the restriction | limiting of imaging | photography of the radiographic image according to the temperature of a scintillator can be eased, suppressing deterioration of a scintillator.
 なお、本発明では、立位での撮影においては、撮影台で撮影しても手で持って撮影しても荷重がかかり難いので、シンチレータの温度とは無関係に放射線画像撮影装置において想定される全ての撮影を許容するものとしてもよい。また、臥位での撮影の場合にも、放射線画像撮影装置を、当該放射線画像撮影装置の代わりに撮影対象による荷重を受けることのできる保持部に保持されていることを条件に、シンチレータの温度とは無関係に放射線画像撮影装置において想定される全ての撮影を許容するものとしてもよい。さらに、臥位での撮影において、放射線画像撮影装置を上記保持部に保持させない場合であっても、放射線画像撮影装置の代わりに撮影対象による荷重を受けることのできる外部強化筐体(所謂ジャケット)と放射線画像撮影装置とが一体構成されていることを条件として、シンチレータの温度とは無関係に放射線画像撮影装置において想定される全ての撮影を許容するものとしてもよい。 In the present invention, in a standing position, it is difficult to apply a load regardless of whether the image is taken on a photographing stand or held with a hand. Therefore, the radiation image photographing apparatus is assumed regardless of the scintillator temperature. It is good also as what permits all imaging | photography. In addition, in the case of photographing in a supine position, the scintillator temperature is also set on the condition that the radiographic imaging device is held by a holding unit that can receive a load from the radiographing object instead of the radiographic imaging device. Regardless of the case, it is possible to allow all imaging assumed in the radiographic imaging apparatus. Furthermore, even in a case where the radiographic imaging device is not held by the holding unit in imaging in a recumbent position, an externally strengthened casing (so-called jacket) that can receive a load from an imaging target instead of the radiographic imaging device And the radiographic imaging device may be integrated, and all imaging assumed in the radiographic imaging device may be allowed regardless of the scintillator temperature.
 また、本発明の第6の態様によれば、前記センサ部が、前記シンチレータで発生した光を受光することにより電荷が発生する有機光電変換材料を含んで構成されていてもよい。これにより、放射線画像撮影装置の耐衝撃性を向上させることができる。 Further, according to the sixth aspect of the present invention, the sensor unit may include an organic photoelectric conversion material that generates charges when receiving light generated by the scintillator. Thereby, the impact resistance of a radiographic imaging apparatus can be improved.
 また、本発明の第7の態様によれば、前記放射線検出器が、被写体を透過した放射線が透過する透過面を有する天板の前記放射線が入射される面の反対側の面に直接的に取り付けられていてもよい。これにより、放射線画像撮影装置の耐衝撃性を向上させることができる。 Further, according to the seventh aspect of the present invention, the radiation detector is directly applied to a surface opposite to the surface on which the radiation is incident on the top plate having a transmission surface through which the radiation transmitted through the subject is transmitted. It may be attached. Thereby, the impact resistance of a radiographic imaging apparatus can be improved.
 ここで、本発明の第7の態様によれば、前記天板が、強化繊維樹脂を含む材料により構成されていてもよい。これにより、天板をカーボン単体等で構成した場合に比較して、天板の強度を高くすることができる。 Here, according to the seventh aspect of the present invention, the top plate may be made of a material containing a reinforcing fiber resin. Thereby, compared with the case where a top plate is comprised with a carbon single-piece | unit etc., the intensity | strength of a top plate can be made high.
 特に、本発明は、前記強化繊維樹脂が、炭素繊維強化プラスチックであるものとしてもよい。これにより、天板をカーボン単体等で構成した場合に比較して、天板の熱伝導性を高くすることができる結果、放射線検出器により得られた放射線画像の温度むらに起因する画像むらを抑制することができる。 Particularly, in the present invention, the reinforcing fiber resin may be a carbon fiber reinforced plastic. As a result, it is possible to increase the thermal conductivity of the top plate as compared with the case where the top plate is made of carbon alone, and as a result, image unevenness due to temperature unevenness of the radiation image obtained by the radiation detector is reduced. Can be suppressed.
 ところで、シンチレータの劣化(クラック)は、シンチレータがCsIを含み、かつ放射線検出器において放射線がセンサ部、シンチレータの順に入射される、所謂表面読取方式とされている態様において特に問題となる。 By the way, the deterioration (crack) of the scintillator is particularly problematic in an aspect in which the scintillator includes CsI and the radiation detector is in a so-called surface reading system in which radiation is incident in the order of the sensor unit and the scintillator.
 そこで、本発明の第8の態様によれば、第7の態様において、前記シンチレータが、ヨウ化セシウムを含んで構成され、前記放射線検出器が、前記放射線が前記センサ部、前記シンチレータの順に入射されるように積層されていてもよい。これにより、上記態様においても、本発明の効果を得ることができる。 So, according to the 8th aspect of this invention, in the 7th aspect, the said scintillator is comprised including cesium iodide, and the said radiation detector injects the said radiation in order of the said sensor part and the said scintillator. It may be laminated as described. Thereby, also in the said aspect, the effect of this invention can be acquired.
 また、本発明の第9の態様によれば、第7又は第8の態様において、前記放射線検出器が、前記天板に離間可能に取り付けられていてもよい。これにより、効率的に筐体の交換を行うことができる。 Further, according to the ninth aspect of the present invention, in the seventh or eighth aspect, the radiation detector may be attached to the top plate so as to be separable. Thereby, a housing | casing can be exchanged efficiently.
 また、本発明の第10の態様によれば、第7から第9のいずれかの態様において、前記放射線画像撮影装置が、前記放射線検出器と前記天板との間に内部空間が形成されるように前記放射線検出器を前記天板に対して接着する接着部材と、前記内部空間および外部を連通すると共に、外部から前記内部空間への異物の混入を阻止する通気部と、をさらに備えてもよい。 According to a tenth aspect of the present invention, in any one of the seventh to ninth aspects, the radiographic imaging device has an internal space formed between the radiation detector and the top plate. An adhesive member that adheres the radiation detector to the top plate, and a ventilation portion that communicates the internal space and the outside and prevents foreign matter from entering the internal space from the outside. Also good.
 本発明によれば、接着部材を用いて放射線検出器および天板の間に内部空間が形成されるように放射線検出器を天板に接着しているので、放射線検出器および天板に対する接着部材の接触面に空気が残存していても、その残存していた空気を内部空間に逃がすことができる。また、通気部にて内部空間と外部とが連通しているので、気圧が変化した場合でも、内部空間の圧力と外部の気圧とを一定に保つことができる。そのため、気圧変化によって天板に対する放射線検出器の接着性が低下することを防止することができる。 According to the present invention, since the radiation detector is bonded to the top plate so that an internal space is formed between the radiation detector and the top plate using the adhesive member, the contact of the adhesive member to the radiation detector and the top plate is achieved. Even if air remains on the surface, the remaining air can be released to the internal space. In addition, since the internal space communicates with the outside through the ventilation portion, the pressure in the internal space and the external atmospheric pressure can be kept constant even when the atmospheric pressure changes. Therefore, it can prevent that the adhesiveness of the radiation detector with respect to a top plate falls by atmospheric pressure change.
 また、通気部は、外部から内部空間への異物の混入を阻止するので、前記内部空間に放射線を吸収する金属片等の異物が混入して放射線画像に表示される懸念を排除することができる。従って、放射線画像の品質低下に繋がる異物混入を抑えることができる。 Further, since the ventilation portion prevents foreign matters from entering the internal space from the outside, it is possible to eliminate the concern that foreign matters such as metal pieces that absorb radiation enter the internal space and are displayed in the radiation image. . Accordingly, it is possible to suppress the contamination of foreign matters that leads to the deterioration of the quality of the radiation image.
 特に、本発明の第10の態様によれば、前記通気部が、前記接着部材に形成されて前記内部空間および外部を曲がった状態で連通する連通路であってもよい。 In particular, according to the tenth aspect of the present invention, the ventilation portion may be a communication path formed in the adhesive member and communicating in a state of bending the internal space and the outside.
 本発明によれば、連通路が曲がっているので、外部から連通路に空気と共に異物が流入した場合でも、前記異物が内部空間に混入することを防止することができる。なぜなら、異物の質量が空気の質量よりも大きいので、連通路の曲がっている部位を流通する空気の流れに前記異物が追従することはできないからである。また、連通路が接着部材に形成されているので、前記異物が連通路の壁面に付着し易くなる。従って、連通路の曲がっている部位で空気の流れに追従できなくなった異物が接着性を持った連通路の壁面で確実に捕捉される。これにより、内部空間への異物の混入をより一層確実に防止することができる。 According to the present invention, since the communication path is bent, it is possible to prevent the foreign matter from entering the internal space even when foreign matter flows into the communication path from the outside together with air. This is because the mass of the foreign matter is larger than the mass of air, so that the foreign matter cannot follow the flow of air flowing through the bent portion of the communication path. Further, since the communication path is formed in the adhesive member, the foreign matter is likely to adhere to the wall surface of the communication path. Accordingly, the foreign matter that can no longer follow the air flow at the bent portion of the communication passage is reliably captured by the wall surface of the communication passage having adhesiveness. As a result, it is possible to more reliably prevent foreign matter from entering the internal space.
 さらに、本発明の第11の態様によれば、第7から第10のいずれかの態様において、前記天板が、前記放射線検出器を収容する筐体の一部を構成してもよい。これにより、天板を筐体とは別に構成する場合に比較して、より簡易に天板を構成することができる。 Furthermore, according to the eleventh aspect of the present invention, in any one of the seventh to tenth aspects, the top plate may constitute a part of a housing that houses the radiation detector. Thereby, compared with the case where a top plate is comprised separately from a housing | casing, a top plate can be comprised more simply.
 また、本発明の第12の態様によれば、第1から第7の何れかの態様において、第12の態様のように、前記シンチレータが、ヨウ化セシウムを含んで構成されていてもよい。これにより、荷重によるヨウ化セシウムの柱状結晶間の接触の発生を未然に防止することができる結果、より効果的にシンチレータの劣化を抑制することができる。 Further, according to the twelfth aspect of the present invention, in any one of the first to seventh aspects, the scintillator may include cesium iodide as in the twelfth aspect. As a result, the occurrence of contact between the columnar crystals of cesium iodide due to the load can be prevented in advance, and the deterioration of the scintillator can be suppressed more effectively.
 本発明の第13の態様によれば、入射された放射線を光に変換するシンチレータ、および当該シンチレータで変換された光を検出するセンサ部を有する放射線検出器と、前記シンチレータの温度を検出する検出部と、前記シンチレータの温度に応じて前記放射線検出器による撮影を許容する撮影部位および撮影状態の少なくとも一方を示す撮影情報が予め記憶された記憶部と、前記放射線検出器により放射線画像の撮影を行う際に前記検出部により検出された温度に基づいて、前記記憶部に記憶された前記撮影情報から前記放射線検出器による撮影を許容する撮影部位および撮影状態の少なくとも一方を特定する特定部と、を備える放射線画像撮影装置が提供される。 According to the thirteenth aspect of the present invention, a scintillator that converts incident radiation into light, a radiation detector that includes a sensor unit that detects light converted by the scintillator, and detection that detects the temperature of the scintillator A radiographic image by the radiation detector, a storage unit in which imaging information indicating at least one of an imaging region and an imaging state in which imaging by the radiation detector is allowed according to the temperature of the scintillator is stored in advance, and the radiation detector Based on the temperature detected by the detection unit when performing, a specifying unit that specifies at least one of an imaging region and an imaging state that allows imaging by the radiation detector from the imaging information stored in the storage unit, A radiographic image capturing apparatus is provided.
 従って、本発明によれば、第1の態様の発明と同様に作用するので、第1の態様の発明と同様に、シンチレータの劣化を抑制しつつ、シンチレータの温度に応じた放射線画像の撮影の制限を緩和することができる。 Therefore, according to the present invention, since it operates in the same manner as the first aspect of the invention, as in the first aspect of the invention, it is possible to capture radiographic images according to the temperature of the scintillator while suppressing degradation of the scintillator. Limits can be relaxed.
 第14の態様によれば、入射された放射線を光に変換するシンチレータ、および当該シンチレータで変換された光を検出するセンサ部を有する放射線検出器を備え、前記放射線により示される放射線画像を撮影する放射線画像撮影装置における前記シンチレータの温度を、前記センサ部に発生する暗電流に基づいて検出する検出部と、前記放射線画像撮影装置により放射線画像の撮影を行う際に前記検出部により検出された温度に基づいて、前記放射線画像撮影装置による撮影を許容する撮影部位および撮影状態の少なくとも一方を特定する特定部と、として機能させるためのプログラムを記憶したコンピュータ可読媒体が提供される。 According to the fourteenth aspect, the radiation detector includes a scintillator that converts incident radiation into light and a sensor unit that detects light converted by the scintillator, and captures a radiation image indicated by the radiation. A detection unit that detects the temperature of the scintillator in a radiographic imaging device based on a dark current generated in the sensor unit, and a temperature that is detected by the detection unit when radiographic imaging is performed by the radiographic imaging device Based on the above, there is provided a computer readable medium storing a program for functioning as a specifying unit that specifies at least one of an imaging region and an imaging state that allow imaging by the radiographic imaging device.
 従って、本発明によれば、コンピュータを第1の態様の発明と同様に作用させることができるので、第1の態様の発明と同様に、シンチレータの劣化を抑制しつつ、シンチレータの温度に応じた放射線画像の撮影の制限を緩和することができる。 Therefore, according to the present invention, since the computer can be operated in the same manner as the first aspect of the invention, the temperature of the scintillator can be adjusted while suppressing the deterioration of the scintillator as in the first aspect of the invention. The restriction of radiographic image capturing can be relaxed.
 本発明によれば、シンチレータの劣化を抑制しつつ、シンチレータの温度に応じた放射線画像の撮影の制限を緩和することができる、という効果が得られる。 According to the present invention, it is possible to obtain an effect that it is possible to relax restrictions on radiographic imaging according to the temperature of the scintillator while suppressing deterioration of the scintillator.
実施の形態に係る放射線情報システムの構成を示すブロック図である。It is a block diagram which shows the structure of the radiation information system which concerns on embodiment. 実施の形態に係る放射線画像撮影システムの放射線撮影室における各装置の配置状態の一例を示す側面図である。It is a side view which shows an example of the arrangement | positioning state of each apparatus in the radiography room of the radiographic imaging system which concerns on embodiment. 実施の形態に係る放射線検出器の3画素部分の概略構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows schematic structure of the 3 pixel part of the radiation detector which concerns on embodiment. 実施の形態に係る放射線検出器の1画素部分の信号出力部の構成を概略的に示した断面側面図である。It is the cross-sectional side view which showed schematically the structure of the signal output part of 1 pixel part of the radiation detector which concerns on embodiment. 実施の形態に係る放射線検出器の構成を示す概略平面図である。It is a schematic plan view which shows the structure of the radiation detector which concerns on embodiment. 実施の形態に係る電子カセッテの構成を示す斜視図である。It is a perspective view which shows the structure of the electronic cassette concerning embodiment. 実施の形態に係るシンチレータの構成を示す概略平面図である。It is a schematic plan view which shows the structure of the scintillator which concerns on embodiment. 実施の形態に係る電子カセッテの構成を示す断面側面図である。It is a section side view showing the composition of the electronic cassette concerning an embodiment. 実施の形態に係る電子カセッテの筐体の内部構成を示す断面底面図である。It is a cross-sectional bottom view which shows the internal structure of the housing | casing of the electronic cassette concerning embodiment. 実施の形態に係る電子カセッテの筐体の内部構成を示す一部拡大断面底面図である。It is a partially expanded sectional bottom view which shows the internal structure of the housing | casing of the electronic cassette concerning embodiment. 実施の形態に係る電子カセッテにおいて放射線検出器を天板から剥離する状態を示す説明図である。It is explanatory drawing which shows the state which peels a radiation detector from a top plate in the electronic cassette which concerns on embodiment. 実施の形態に係る放射線画像撮影システムの電気系の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the electrical system of the radiographic imaging system which concerns on embodiment. 実施の形態に係る撮影情報の構成を示す模式図である。It is a schematic diagram which shows the structure of the imaging | photography information which concerns on embodiment. 第1の実施の形態に係る放射線画像撮影処理プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the radiographic imaging process program which concerns on 1st Embodiment. 実施の形態に係る初期情報入力画面の一例を示す概略図である。It is the schematic which shows an example of the initial stage information input screen which concerns on embodiment. 実施の形態に係る警告画面の一例を示す概略図である。It is the schematic which shows an example of the warning screen which concerns on embodiment. 第1の実施の形態に係る温度情報送信処理プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the temperature information transmission process program which concerns on 1st Embodiment. 第2の実施の形態に係る放射線画像撮影処理プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the radiographic imaging process program which concerns on 2nd Embodiment. 第2の実施の形態に係る暗電流情報送信処理プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the dark current information transmission process program which concerns on 2nd Embodiment. 放射線検出器への放射線の表面読取方式と裏面読取方式を説明するための断面側面図である。It is a cross-sectional side view for demonstrating the surface reading system and back surface reading system of the radiation to a radiation detector. 実施の形態に係る電子カセッテの筐体の内部構成の変形例を示す一部拡大断面底面図である。It is a partially expanded sectional bottom view which shows the modification of the internal structure of the housing | casing of the electronic cassette concerning embodiment. 課題の説明に供する模式図(概略側面図)である。It is a schematic diagram (schematic side view) used for description of a subject. 課題の説明に供する模式図(概略側面図)である。It is a schematic diagram (schematic side view) used for description of a subject. 課題の説明に供する模式図(概略側面図)である。It is a schematic diagram (schematic side view) used for description of a subject. 課題の説明に供する模式図(概略側面図)である。It is a schematic diagram (schematic side view) used for description of a subject. 課題の説明に供する模式図(概略側面図)である。It is a schematic diagram (schematic side view) used for description of a subject. 各種材料の感度特性の一例を示すグラフである。It is a graph which shows an example of the sensitivity characteristic of various materials. 各種材料の感度特性の一例を示すグラフである。It is a graph which shows an example of the sensitivity characteristic of various materials.
 以下、図面を参照して、本発明を実施するための形態について詳細に説明する。なお、ここでは、本発明を、病院における放射線科部門で取り扱われる情報を統括的に管理するシステムである放射線情報システムに適用した場合の形態例について説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. Here, a description will be given of an example in which the present invention is applied to a radiation information system that is a system for comprehensively managing information handled in a radiology department in a hospital.
 [第1の実施の形態]
 まず、図1を参照して、本実施の形態に係る放射線情報システム(以下、「RIS」(Radiology Information System)と称する。)100の構成について説明する。
[First Embodiment]
First, the configuration of a radiation information system (hereinafter referred to as “RIS” (Radiology Information System)) 100 according to the present embodiment will be described with reference to FIG.
 RIS100は、放射線科部門内における、診療予約、診断記録等の情報管理を行うためのシステムであり、病院情報システム(以下、「HIS」(Hospital Information System)と称する。)の一部を構成する。 The RIS 100 is a system for performing information management such as medical appointment reservation and diagnosis record in the radiology department, and constitutes a part of a hospital information system (hereinafter referred to as “HIS” (Hospital Information System)). .
 RIS100は、複数台の撮影依頼端末装置(以下、「端末装置」と称する。)140、RISサーバ150、および病院内の放射線撮影室(あるいは手術室)の個々に設置された放射線画像撮影システム(以下、「撮影システム」と称する。)104を有しており、これらが有線や無線のLAN(Local Area Network)等から成る病院内ネットワーク102に各々接続されて構成されている。なお、RIS100は、同じ病院内に設けられたHISの一部を構成しており、病院内ネットワーク102には、HIS全体を管理するHISサーバ(図示省略。)も接続されている。 The RIS 100 includes a plurality of radiography requesting terminal devices (hereinafter referred to as “terminal devices”) 140, a RIS server 150, and a radiographic imaging system (or an operating room) installed in a radiographic room (or operating room) in a hospital. (Hereinafter referred to as “imaging system”) 104, which are connected to an in-hospital network 102 composed of a wired or wireless LAN (Local Area Network) or the like. The RIS 100 constitutes a part of the HIS provided in the same hospital, and an HIS server (not shown) for managing the entire HIS is also connected to the in-hospital network 102.
 端末装置140は、医師や放射線技師が、診断情報や施設予約の入力、閲覧等を行うためのものであり、放射線画像の撮影依頼や撮影予約もこの端末装置140を介して行われる。各端末装置140は、表示装置を有するパーソナル・コンピュータを含んで構成され、RISサーバ150と病院内ネットワーク102を介して相互通信が可能とされている。 The terminal device 140 is used by doctors and radiographers to input and browse diagnostic information and facility reservations, and radiographic image capturing requests and imaging reservations are also performed via the terminal device 140. Each terminal device 140 includes a personal computer having a display device, and can communicate with the RIS server 150 via the hospital network 102.
 一方、RISサーバ150は、各端末装置140からの撮影依頼を受け付け、撮影システム104における放射線画像の撮影スケジュールを管理するものであり、データベース150Aを含んで構成されている。 On the other hand, the RIS server 150 receives an imaging request from each terminal device 140 and manages a radiographic imaging schedule in the imaging system 104, and includes a database 150A.
 データベース150Aは、患者(被検者)の属性情報(氏名、性別、生年月日、年齢、血液型、体重、患者ID(Identification)等)、病歴、受診歴、過去に撮影した放射線画像等の患者に関する情報、撮影システム104で用いられる、後述する電子カセッテ40の識別番号(ID情報)、型式、サイズ、感度、使用開始年月日、使用回数等の電子カセッテ40に関する情報、および電子カセッテ40を用いて放射線画像を撮影する環境、すなわち、電子カセッテ40を使用する環境(一例として、放射線撮影室や手術室等)を示す環境情報を含んで構成されている。 Database 150A includes patient (subject) attribute information (name, sex, date of birth, age, blood type, weight, patient ID (Identification), etc.), medical history, medical history, radiation images taken in the past, etc. Information regarding the patient, information regarding the electronic cassette 40 used in the imaging system 104, such as an identification number (ID information), model, size, sensitivity, start date of use, number of times of use, etc., and the electronic cassette 40 It includes the environment information which shows the environment which takes a radiographic image using, ie, the environment (for example, a radiography room, an operating room, etc.) which uses electronic cassette 40.
 撮影システム104は、RISサーバ150からの指示に応じて医師や放射線技師の操作により放射線画像の撮影を行う。撮影システム104は、放射線源121(図2も参照。)から曝射条件に従った線量とされた放射線X(図6も参照。)を被検者に照射する放射線発生装置120と、被検者の撮影部位を透過した放射線Xを吸収して電荷を発生し、発生した電荷量に基づいて放射線画像を示す画像情報を生成する放射線検出器20(図6も参照。)を内蔵する電子カセッテ40と、電子カセッテ40に内蔵されているバッテリを充電するクレードル130と、電子カセッテ40および放射線発生装置120を制御するコンソール110と、を備えている。 The imaging system 104 captures a radiographic image by an operation of a doctor or a radiographer according to an instruction from the RIS server 150. The imaging system 104 includes a radiation generator 120 that irradiates a subject with radiation X (see also FIG. 6) that has been dosed according to the exposure conditions from a radiation source 121 (see also FIG. 2), and a subject. An electronic cassette having a built-in radiation detector 20 (see also FIG. 6) that generates radiation by absorbing the radiation X transmitted through the imaging region of the person and generates image information indicating a radiation image based on the amount of the generated charge. 40, a cradle 130 for charging a battery built in the electronic cassette 40, and a console 110 for controlling the electronic cassette 40 and the radiation generator 120.
 コンソール110は、RISサーバ150からデータベース150Aに含まれる各種情報を取得して後述するHDD116(図12参照。)に記憶し、必要に応じて当該情報を用いて、電子カセッテ40および放射線発生装置120の制御を行う。 The console 110 acquires various types of information included in the database 150A from the RIS server 150, stores them in the HDD 116 (see FIG. 12) described later, and uses the information as necessary to use the electronic cassette 40 and the radiation generator 120. Control.
 図2には、本実施の形態に係る撮影システム104の放射線撮影室180における各装置の配置状態の一例が示されている。 FIG. 2 shows an example of the arrangement state of each device in the radiation imaging room 180 of the imaging system 104 according to the present embodiment.
 図2に示すように、放射線撮影室180には、立位での放射線撮影を行う際に用いられる立位台160と、臥位での放射線撮影を行う際に用いられる臥位台164とが設置されており、立位台160の前方空間は立位での放射線撮影を行う際の被検者の撮影位置170とされ、臥位台164の上方空間は臥位での放射線撮影を行う際の被検者の撮影位置172とされている。 As shown in FIG. 2, the radiation imaging room 180 includes a standing table 160 used when performing radiography in a standing position and a prone table 164 used when performing radiography in a lying position. The space in front of the standing stand 160 is set as a photographing position 170 of the subject when performing radiography in the standing position, and the space above the supine stand 164 is when performing radiography in the prone position. The imaging position 172 of the subject.
 立位台160には電子カセッテ40を保持する保持部162が設けられており、立位での放射線画像の撮影を行う際には、電子カセッテ40が保持部162に保持される。同様に、臥位台164には電子カセッテ40を保持する保持部166が設けられており、臥位での放射線画像の撮影を行う際には、電子カセッテ40が保持部166に保持される。 The standing stand 160 is provided with a holding unit 162 that holds the electronic cassette 40, and the electronic cassette 40 is held by the holding unit 162 when a radiographic image is taken in the standing position. Similarly, the holding table 164 is provided with a holding unit 166 that holds the electronic cassette 40, and the electronic cassette 40 is held by the holding unit 166 when a radiographic image is taken in the lying position.
 また、放射線撮影室180には、単一の放射線源121からの放射線によって立位での放射線撮影も臥位での放射線撮影も可能とするために、放射線源121を、水平な軸回り(図2の矢印a方向)に回動可能で、鉛直方向(図2の矢印b方向)に移動可能で、さらに水平方向(図2の矢印c方向)に移動可能に支持する支持移動機構124が設けられている。ここで、支持移動機構124は、放射線源121を水平な軸回りに回動させる駆動源と、放射線源121を鉛直方向に移動させる駆動源と、放射線源121を水平方向に移動させる駆動源を各々備えている(何れも図示省略。)。 Further, in the radiation imaging room 180, the radiation source 121 is placed around a horizontal axis (see FIG. 5) in order to enable radiation imaging in a standing position and radiation imaging in a lying position by radiation from a single radiation source 121. 2 is provided, and a support moving mechanism 124 is provided which can be rotated in the vertical direction (arrow b direction in FIG. 2) and can be moved in the horizontal direction (arrow c direction in FIG. 2). It has been. Here, the support moving mechanism 124 includes a drive source that rotates the radiation source 121 around a horizontal axis, a drive source that moves the radiation source 121 in the vertical direction, and a drive source that moves the radiation source 121 in the horizontal direction. Each is provided (not shown).
 一方、クレードル130には、電子カセッテ40を収納可能な収容部130Aが形成されている。 On the other hand, the cradle 130 is formed with an accommodating portion 130A that can accommodate the electronic cassette 40.
 電子カセッテ40は、未使用時にはクレードル130の収容部130Aに収納された状態で内蔵されているバッテリに充電が行われ、放射線画像の撮影時には放射線技師等によってクレードル130から取り出され、撮影姿勢が立位であれば立位台160の保持部162に保持され、撮影姿勢が臥位であれば臥位台164の保持部166に保持される。 When the electronic cassette 40 is not in use, the built-in battery is charged in a state of being housed in the housing portion 130A of the cradle 130. When a radiographic image is taken, the electronic cassette 40 is taken out from the cradle 130 by a radiographer or the like, and the photographing posture is established. If it is in the upright position, it is held in the holding part 162 of the standing base 160, and if it is in the upright position, it is held in the holding part 166 of the standing base 164.
 ここで、本実施の形態に係る撮影システム104では、放射線発生装置120とコンソール110との間、および電子カセッテ40とコンソール110との間で、無線通信によって各種情報の送受信を行う。 Here, in the imaging system 104 according to the present embodiment, various types of information are transmitted and received between the radiation generator 120 and the console 110 and between the electronic cassette 40 and the console 110 by wireless communication.
 なお、電子カセッテ40は、立位台160の保持部162や臥位台164の保持部166で保持された状態のみで使用されるものではなく、その可搬性から、腕部,脚部等を撮影する際には、保持部に保持されていない状態で使用することもできる。 The electronic cassette 40 is not used only in a state where it is held by the holding part 162 of the standing base 160 or the holding part 166 of the prone base 164. When photographing, it can be used in a state where it is not held by the holding unit.
 次に、本実施の形態に係る放射線検出器20の構成について説明する。図3は、本実施の形態に係る放射線検出器20の3画素部分の構成を概略的に示す断面模式図である。 Next, the configuration of the radiation detector 20 according to the present embodiment will be described. FIG. 3 is a schematic cross-sectional view schematically showing the configuration of the three pixel portions of the radiation detector 20 according to the present exemplary embodiment.
 図3に示すように、本実施の形態に係る放射線検出器20は、絶縁性の基板1上に、信号出力部14、センサ部13、およびシンチレータ8が順次積層しており、信号出力部14、センサ部13により画素部が構成されている。画素部は、基板1上に複数配列されており、各画素部における信号出力部14とセンサ部13とが重なりを有するように構成されている。 As shown in FIG. 3, in the radiation detector 20 according to the present exemplary embodiment, the signal output unit 14, the sensor unit 13, and the scintillator 8 are sequentially stacked on the insulating substrate 1. The pixel unit is configured by the sensor unit 13. A plurality of pixel units are arranged on the substrate 1, and the signal output unit 14 and the sensor unit 13 in each pixel unit are configured to overlap each other.
 シンチレータ8は、センサ部13上に透明絶縁膜7を介して形成されており、上方(基板1の反対側)または下方から入射してくる放射線を光に変換して発光する蛍光体を成膜したものである。このようなシンチレータ8を設けることで、被写体を透過した放射線を吸収して発光することになる。 The scintillator 8 is formed on the sensor unit 13 via the transparent insulating film 7, and forms a phosphor that emits light by converting radiation incident from above (opposite side of the substrate 1) or from below into light. It is a thing. Providing such a scintillator 8 absorbs the radiation transmitted through the subject and emits light.
 シンチレータ8が発する光の波長域は、可視光域(波長360nm~830nm)であることが好ましく、この放射線検出器20によってモノクロ撮像を可能とするためには、緑色の波長域を含んでいることがより好ましい。 The wavelength range of light emitted by the scintillator 8 is preferably the visible light range (wavelength 360 nm to 830 nm), and in order to enable monochrome imaging by the radiation detector 20, the wavelength range of green is included. Is more preferable.
 シンチレータ8に用いる蛍光体としては、具体的には、放射線としてX線を用いて撮像する場合、ヨウ化セシウム(CsI)を含むものが好ましく、X線照射時の発光スペクトルが420nm~700nmにあるCsI(Tl)(タリウムが添加されたヨウ化セシウム)を用いることが特に好ましい。なお、CsI(Tl)の可視光域における発光ピーク波長は565nmである。 Specifically, the phosphor used in the scintillator 8 preferably contains cesium iodide (CsI) when imaging using X-rays as radiation, and has an emission spectrum of 420 nm to 700 nm upon X-ray irradiation. It is particularly preferable to use CsI (Tl) (cesium iodide with thallium added). Note that the emission peak wavelength of CsI (Tl) in the visible light region is 565 nm.
 シンチレータ8は、例えば、CsI(Tl)等の柱状結晶で形成しようとする場合、蒸着基板への蒸着によって形成されてもよい。このように蒸着によってシンチレータ8を形成する場合、蒸着基板は、X線の透過率、コストの面からAlの板がよく使用されるがこれに限定されるものではない。なお、シンチレータ8としてGOSを用いる場合、蒸着基板を用いずに、後述するTFT基板30の表面にGOSを塗布することにより、シンチレータ8を形成してもよい。 The scintillator 8 may be formed by vapor deposition on a vapor deposition substrate, for example, when it is going to be formed with columnar crystals such as CsI (Tl). When the scintillator 8 is formed by vapor deposition as described above, an Al plate is often used as the vapor deposition substrate in terms of X-ray transmittance and cost, but is not limited thereto. When GOS is used as the scintillator 8, the scintillator 8 may be formed by applying GOS to the surface of the TFT substrate 30 described later without using a vapor deposition substrate.
 センサ部13は、上部電極6、下部電極2、および当該上下の電極間に配置された光電変換膜4を有し、光電変換膜4は、シンチレータ8が発する光を吸収して電荷が発生する有機光電変換材料により構成されている。 The sensor unit 13 includes an upper electrode 6, a lower electrode 2, and a photoelectric conversion film 4 disposed between the upper and lower electrodes. The photoelectric conversion film 4 absorbs light emitted from the scintillator 8 and generates charges. It is composed of an organic photoelectric conversion material.
 上部電極6は、シンチレータ8により生じた光を光電変換膜4に入射させる必要があるため、少なくともシンチレータ8の発光波長に対して透明な導電性材料で構成することが好ましく、具体的には、可視光に対する透過率が高く、抵抗値が小さい透明導電性酸化物(TCO;Transparent Conducting Oxide)を用いることが好ましい。なお、上部電極6としてAuなどの金属薄膜を用いることもできるが、透過率を90%以上得ようとすると抵抗値が増大し易いため、TCOの方が好ましい。例えば、ITO、IZO、AZO、FTO、SnO、TiO、ZnO等を好ましく用いることができ、プロセス簡易性、低抵抗性、透明性の観点からはITOが最も好ましい。なお、上部電極6は、全画素部で共通の一枚構成としてもよく、画素部毎に分割してもよい。 Since it is necessary for the upper electrode 6 to cause the light generated by the scintillator 8 to be incident on the photoelectric conversion film 4, it is preferable that the upper electrode 6 be made of a conductive material that is transparent at least with respect to the emission wavelength of the scintillator 8. It is preferable to use a transparent conductive oxide (TCO) having a high transmittance for visible light and a small resistance value. Although a metal thin film such as Au can be used as the upper electrode 6, TCO is preferable because it tends to increase the resistance value when it is desired to obtain a transmittance of 90% or more. For example, ITO, IZO, AZO, FTO, SnO 2 , TiO 2 , ZnO 2 and the like can be preferably used, and ITO is most preferable from the viewpoint of process simplicity, low resistance, and transparency. Note that the upper electrode 6 may have a single configuration common to all the pixel portions, or may be divided for each pixel portion.
 光電変換膜4は、有機光電変換材料を含み、シンチレータ8から発せられた光を吸収し、吸収した光に応じた電荷を発生する。このように有機光電変換材料を含む光電変換膜4であれば、可視域にシャープな吸収スペクトルを持ち、シンチレータ8による発光以外の電磁波が光電変換膜4に吸収されることがほとんどなく、X線等の放射線が光電変換膜4で吸収されることによって発生するノイズを効果的に抑制することができる。 The photoelectric conversion film 4 contains an organic photoelectric conversion material, absorbs light emitted from the scintillator 8, and generates electric charges according to the absorbed light. In this way, the photoelectric conversion film 4 containing an organic photoelectric conversion material has a sharp absorption spectrum in the visible range, and electromagnetic waves other than light emitted by the scintillator 8 are hardly absorbed by the photoelectric conversion film 4. The noise generated by the radiation such as being absorbed by the photoelectric conversion film 4 can be effectively suppressed.
 光電変換膜4を構成する有機光電変換材料は、シンチレータ8で発光した光を最も効率よく吸収するために、その吸収ピーク波長が、シンチレータ8の発光ピーク波長と近いほど好ましい。有機光電変換材料の吸収ピーク波長とシンチレータ8の発光ピーク波長とが一致することが理想的であるが、双方の差が小さければシンチレータ8から発された光を十分に吸収することが可能である。具体的には、有機光電変換材料の吸収ピーク波長と、シンチレータ8の放射線に対する発光ピーク波長との差が、10nm以内であることが好ましく、5nm以内であることがより好ましい。 The organic photoelectric conversion material constituting the photoelectric conversion film 4 is preferably such that its absorption peak wavelength is closer to the emission peak wavelength of the scintillator 8 in order to absorb light emitted by the scintillator 8 most efficiently. Ideally, the absorption peak wavelength of the organic photoelectric conversion material matches the emission peak wavelength of the scintillator 8, but if the difference between the two is small, the light emitted from the scintillator 8 can be sufficiently absorbed. . Specifically, the difference between the absorption peak wavelength of the organic photoelectric conversion material and the emission peak wavelength with respect to the radiation of the scintillator 8 is preferably within 10 nm, and more preferably within 5 nm.
 このような条件を満たすことが可能な有機光電変換材料としては、例えばキナクリドン系有機化合物およびフタロシアニン系有機化合物が挙げられる。例えばキナクリドンの可視域における吸収ピーク波長は560nmであるため、有機光電変換材料としてキナクリドンを用い、シンチレータ8の材料としてCsI(Tl)を用いれば、上記ピーク波長の差を5nm以内にすることが可能となり、光電変換膜4で発生する電荷量をほぼ最大にすることができる。 Examples of the organic photoelectric conversion material that can satisfy such conditions include quinacridone organic compounds and phthalocyanine organic compounds. For example, since the absorption peak wavelength of quinacridone in the visible region is 560 nm, if quinacridone is used as the organic photoelectric conversion material and CsI (Tl) is used as the material of the scintillator 8, the difference in the peak wavelength can be within 5 nm. Thus, the amount of charge generated in the photoelectric conversion film 4 can be substantially maximized.
 次に、本実施の形態に係る放射線検出器20に適用可能な光電変換膜4について具体的に説明する。 Next, the photoelectric conversion film 4 applicable to the radiation detector 20 according to the present embodiment will be specifically described.
 本実施の形態に係る放射線検出器20における電磁波吸収/光電変換部位は、1対の電極2,6と、当該電極2,6間に挟まれた有機光電変換膜4を含む有機層により構成することができる。この有機層は、より具体的には、電磁波を吸収する部位、光電変換部位、電子輸送部位、正孔輸送部位、電子ブロッキング部位、正孔ブロッキング部位、結晶化防止部位、電極、および層間接触改良部位等の積み重ね、もしくは混合により形成することができる。 The electromagnetic wave absorption / photoelectric conversion site in the radiation detector 20 according to the present embodiment is configured by an organic layer including a pair of electrodes 2 and 6 and an organic photoelectric conversion film 4 sandwiched between the electrodes 2 and 6. be able to. More specifically, this organic layer is a part that absorbs electromagnetic waves, a photoelectric conversion part, an electron transport part, a hole transport part, an electron blocking part, a hole blocking part, a crystallization preventing part, an electrode, and an interlayer contact improvement. It can be formed by stacking or mixing parts.
 上記有機層は、有機p型化合物または有機n型化合物を含有することが好ましい。 The organic layer preferably contains an organic p-type compound or an organic n-type compound.
 有機p型半導体(化合物)は、主に正孔輸送性有機化合物に代表されるドナー性有機半導体(化合物)であり、電子を供与しやすい性質がある有機化合物をいう。さらに詳しくは2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物をいう。したがって、ドナー性有機化合物としては、電子供与性のある有機化合物であれば、いずれの有機化合物も使用可能である。 An organic p-type semiconductor (compound) is a donor organic semiconductor (compound) typified by a hole-transporting organic compound and refers to an organic compound having a property of easily donating electrons. More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Accordingly, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound.
 有機n型半導体(化合物)は、主に電子輸送性有機化合物に代表されるアクセプター性有機半導体(化合物)であり、電子を受容しやすい性質がある有機化合物をいう。さらに詳しくは、2つの有機化合物を接触させて用いたときに電子親和力の大きい方の有機化合物をいう。したがって、アクセプター性有機化合物は、電子受容性のある有機化合物であれば、いずれの有機化合物も使用可能である。 An organic n-type semiconductor (compound) is an acceptor organic semiconductor (compound) typified by an electron-transporting organic compound and refers to an organic compound having a property of easily accepting electrons. More specifically, the organic compound having the higher electron affinity when two organic compounds are used in contact with each other. Accordingly, as the acceptor organic compound, any organic compound can be used as long as it is an electron-accepting organic compound.
 この有機p型半導体および有機n型半導体として適用可能な材料、および光電変換膜4の構成については、特開2009-32854号公報において詳細に説明されているため、説明を省略する。なお、光電変換膜4は、さらにフラーレン若しくはカーボンナノチューブを含有させて形成してもよい。 The materials applicable as the organic p-type semiconductor and the organic n-type semiconductor and the configuration of the photoelectric conversion film 4 are described in detail in Japanese Patent Application Laid-Open No. 2009-32854, and thus the description thereof is omitted. The photoelectric conversion film 4 may be formed by further containing fullerenes or carbon nanotubes.
 光電変換膜4の厚みは、シンチレータ8からの光を吸収する点では膜厚は大きいほど好ましいが、ある程度以上厚くなると光電変換膜4の両端から印加されるバイアス電圧により光電変換膜4に発生する電界の強度が低下して電荷が収集できなくなるため、30nm以上300nm以下が好ましく、より好ましくは、50nm以上250nm以下、特に好ましくは80nm以上200nm以下である。 The thickness of the photoelectric conversion film 4 is preferably as large as possible in terms of absorbing light from the scintillator 8. However, when the thickness is more than a certain level, the photoelectric conversion film 4 is generated in the photoelectric conversion film 4 by a bias voltage applied from both ends of the photoelectric conversion film 4. Since electric field strength is reduced and charges cannot be collected, the thickness is preferably 30 nm to 300 nm, more preferably 50 nm to 250 nm, and particularly preferably 80 nm to 200 nm.
 なお、図3に示す放射線検出器20では、光電変換膜4は、全画素部で共通の一枚構成であるが、画素部毎に分割してもよい。 In the radiation detector 20 shown in FIG. 3, the photoelectric conversion film 4 has a single-sheet configuration common to all the pixel portions, but may be divided for each pixel portion.
 下部電極2は、画素部毎に分割された薄膜とする。下部電極2は、透明または不透明の導電性材料で構成することができ、アルミニウム、銀等を好適に用いることができる。 The lower electrode 2 is a thin film divided for each pixel portion. The lower electrode 2 can be made of a transparent or opaque conductive material, and aluminum, silver, or the like can be suitably used.
 下部電極2の厚みは、例えば、30nm以上300nm以下とすることができる。 The thickness of the lower electrode 2 can be, for example, 30 nm or more and 300 nm or less.
 センサ部13では、上部電極6と下部電極2の間に所定のバイアス電圧を印加することで、光電変換膜4で発生した電荷(正孔、電子)のうちの一方を上部電極6に移動させ、他方を下部電極2に移動させることができる。本実施の形態の放射線検出器20では、上部電極6に配線が接続され、この配線を介してバイアス電圧が上部電極6に印加されるものとする。また、バイアス電圧は、光電変換膜4で発生した電子が上部電極6に移動し、正孔が下部電極2に移動するように極性が決められているものとするが、この極性は逆であってもよい。 In the sensor unit 13, by applying a predetermined bias voltage between the upper electrode 6 and the lower electrode 2, one of electric charges (holes, electrons) generated in the photoelectric conversion film 4 is moved to the upper electrode 6. The other can be moved to the lower electrode 2. In the radiation detector 20 of the present embodiment, a wiring is connected to the upper electrode 6, and a bias voltage is applied to the upper electrode 6 through this wiring. In addition, the polarity of the bias voltage is determined so that electrons generated in the photoelectric conversion film 4 move to the upper electrode 6 and holes move to the lower electrode 2, but this polarity is reversed. May be.
 各画素部を構成するセンサ部13は、少なくとも下部電極2、光電変換膜4、および上部電極6を含んでいればよいが、暗電流の増加を抑制するため、電子ブロッキング膜3および正孔ブロッキング膜5の少なくともいずれかを設けることが好ましく、両方を設けることがより好ましい。 The sensor unit 13 constituting each pixel unit only needs to include at least the lower electrode 2, the photoelectric conversion film 4, and the upper electrode 6. In order to suppress an increase in dark current, the electron blocking film 3 and hole blocking are performed. It is preferable to provide at least one of the films 5, and it is more preferable to provide both.
 電子ブロッキング膜3は、下部電極2と光電変換膜4との間に設けることができ、下部電極2と上部電極6間にバイアス電圧を印加したときに、下部電極2から光電変換膜4に電子が注入されて暗電流が増加してしまうのを抑制することができる。 The electron blocking film 3 can be provided between the lower electrode 2 and the photoelectric conversion film 4. When a bias voltage is applied between the lower electrode 2 and the upper electrode 6, electrons are transferred from the lower electrode 2 to the photoelectric conversion film 4. It is possible to suppress the dark current from increasing due to the injection of.
 電子ブロッキング膜3には、電子供与性有機材料を用いることができる。 An electron donating organic material can be used for the electron blocking film 3.
 実際に電子ブロッキング膜3に用いる材料は、隣接する電極の材料および隣接する光電変換膜4の材料等に応じて選択すればよく、隣接する電極の材料の仕事関数(Wf)より1.3eV以上電子親和力(Ea)が大きく、かつ、隣接する光電変換膜4の材料のイオン化ポテンシャル(Ip)と同等のIpもしくはそれより小さいIpを持つものが好ましい。この電子供与性有機材料として適用可能な材料については、特開2009-32854号公報において詳細に説明されているため、説明を省略する。 The material actually used for the electron blocking film 3 may be selected according to the material of the adjacent electrode, the material of the adjacent photoelectric conversion film 4 and the like, and 1.3 eV or more from the work function (Wf) of the material of the adjacent electrode. Those having a large electron affinity (Ea) and an Ip equivalent to or smaller than the ionization potential (Ip) of the material of the adjacent photoelectric conversion film 4 are preferable. The material applicable as the electron donating organic material is described in detail in Japanese Patent Application Laid-Open No. 2009-32854, and thus the description thereof is omitted.
 電子ブロッキング膜3の厚みは、暗電流抑制効果を確実に発揮させるとともに、センサ部13の光電変換効率の低下を防ぐため、10nm以上200nm以下が好ましく、さらに好ましくは30nm以上150nm以下、特に好ましくは50nm以上100nm以下である。 The thickness of the electron blocking film 3 is preferably 10 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, and particularly preferably, in order to surely exhibit the dark current suppressing effect and prevent a decrease in photoelectric conversion efficiency of the sensor unit 13. It is 50 nm or more and 100 nm or less.
 正孔ブロッキング膜5は、光電変換膜4と上部電極6との間に設けることができ、下部電極2と上部電極6間にバイアス電圧を印加したときに、上部電極6から光電変換膜4に正孔が注入されて暗電流が増加してしまうのを抑制することができる。 The hole blocking film 5 can be provided between the photoelectric conversion film 4 and the upper electrode 6. When a bias voltage is applied between the lower electrode 2 and the upper electrode 6, the hole blocking film 5 is transferred from the upper electrode 6 to the photoelectric conversion film 4. It is possible to suppress the increase in dark current due to the injection of holes.
 正孔ブロッキング膜5には、電子受容性有機材料を用いることができる。 An electron-accepting organic material can be used for the hole blocking film 5.
 正孔ブロッキング膜5の厚みは、暗電流抑制効果を確実に発揮させるとともに、センサ部13の光電変換効率の低下を防ぐため、10nm以上200nm以下が好ましく、さらに好ましくは30nm以上150nm以下、特に好ましくは50nm以上100nm以下である。 The thickness of the hole blocking film 5 is preferably 10 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, and particularly preferably, in order to surely exhibit the dark current suppressing effect and prevent a decrease in photoelectric conversion efficiency of the sensor unit 13. Is from 50 nm to 100 nm.
 実際に正孔ブロッキング膜5に用いる材料は、隣接する電極の材料および隣接する光電変換膜4の材料等に応じて選択すればよく、隣接する電極の材料の仕事関数(Wf)より1.3eV以上イオン化ポテンシャル(Ip)が大きく、かつ、隣接する光電変換膜4の材料の電子親和力(Ea)と同等のEaもしくはそれより大きいEaを持つものが好ましい。この電子受容性有機材料として適用可能な材料については、特開2009-32854号公報において詳細に説明されているため、説明を省略する。 The material actually used for the hole blocking film 5 may be selected according to the material of the adjacent electrode, the material of the adjacent photoelectric conversion film 4 and the like, and 1.3 eV from the work function (Wf) of the material of the adjacent electrode. As described above, it is preferable that the ionization potential (Ip) is large and that the Ea is equal to or larger than the electron affinity (Ea) of the material of the adjacent photoelectric conversion film 4. Since the material applicable as the electron-accepting organic material is described in detail in Japanese Patent Application Laid-Open No. 2009-32854, description thereof is omitted.
 なお、光電変換膜4で発生した電荷のうち、正孔が上部電極6に移動し、電子が下部電極2に移動するようにバイアス電圧を設定する場合には、電子ブロッキング膜3と正孔ブロッキング膜5の位置を逆にすればよい。また、電子ブロッキング膜3と正孔ブロッキング膜5は両方設けなくてもよく、いずれかを設けておけば、ある程度の暗電流抑制効果を得ることができる。 In addition, when a bias voltage is set so that holes move to the upper electrode 6 and electrons move to the lower electrode 2 among the charges generated in the photoelectric conversion film 4, the electron blocking film 3 and the hole blocking are set. The position of the film 5 may be reversed. Moreover, it is not necessary to provide both the electron blocking film 3 and the hole blocking film 5. If either one is provided, a certain degree of dark current suppressing effect can be obtained.
 各画素部の下部電極2下方の基板1の表面には信号出力部14が形成されている。図4には、信号出力部14の構成が概略的に示されている。 A signal output unit 14 is formed on the surface of the substrate 1 below the lower electrode 2 of each pixel unit. FIG. 4 schematically shows the configuration of the signal output unit 14.
 図4に示すように、本実施の形態に係る信号出力部14は、下部電極2に対応して、下部電極2に移動した電荷を蓄積するコンデンサ9と、コンデンサ9に蓄積された電荷を電気信号に変換して出力する電界効果型薄膜トランジスタ(Thin Film Transistor、以下、単に薄膜トランジスタという場合がある。)10が形成されている。コンデンサ9および薄膜トランジスタ10の形成された領域は、平面視において下部電極2と重なる部分を有しており、このような構成とすることで、各画素部における信号出力部14とセンサ部13とが厚さ方向で重なりを有することとなる。なお、放射線検出器20(画素部)の平面積を最小にするために、コンデンサ9および薄膜トランジスタ10の形成された領域が下部電極2によって完全に覆われていることが望ましい。 As shown in FIG. 4, the signal output unit 14 according to the present embodiment corresponds to the lower electrode 2, the capacitor 9 that accumulates the charges moved to the lower electrode 2, and the electric charges accumulated in the capacitor 9 A field effect thin film transistor (Thin Film Transistor, hereinafter simply referred to as a thin film transistor) 10 is formed which is converted into a signal and output. The region in which the capacitor 9 and the thin film transistor 10 are formed has a portion that overlaps the lower electrode 2 in a plan view. With such a configuration, the signal output unit 14 and the sensor unit 13 in each pixel unit are connected to each other. There will be overlap in the thickness direction. In order to minimize the plane area of the radiation detector 20 (pixel portion), it is desirable that the region where the capacitor 9 and the thin film transistor 10 are formed is completely covered by the lower electrode 2.
 コンデンサ9は、基板1と下部電極2との間に設けられた絶縁膜11を貫通して形成された導電性材料の配線を介して対応する下部電極2と電気的に接続されている。これにより、下部電極2で捕集された電荷をコンデンサ9に移動させることができる。 The capacitor 9 is electrically connected to the corresponding lower electrode 2 via a wiring made of a conductive material penetrating an insulating film 11 provided between the substrate 1 and the lower electrode 2. Thereby, the electric charge collected by the lower electrode 2 can be moved to the capacitor 9.
 薄膜トランジスタ10は、ゲート電極15、ゲート絶縁膜16、および活性層(チャネル層)17が積層され、さらに、活性層17上にソース電極18とドレイン電極19が所定の間隔を開けて形成されている。活性層17は、例えば、アモルファスシリコンや非晶質酸化物、有機半導体材料、カーボンナノチューブなどにより形成することができる。なお、活性層17を構成する材料は、これらに限定されるものではない。 In the thin film transistor 10, a gate electrode 15, a gate insulating film 16, and an active layer (channel layer) 17 are stacked, and a source electrode 18 and a drain electrode 19 are formed on the active layer 17 at a predetermined interval. . The active layer 17 can be formed of, for example, amorphous silicon, amorphous oxide, organic semiconductor material, carbon nanotube, or the like. In addition, the material which comprises the active layer 17 is not limited to these.
 活性層17を構成可能な非晶質酸化物としては、In、GaおよびZnのうちの少なくとも1つを含む酸化物(例えばIn-O系)が好ましく、In、GaおよびZnのうちの少なくとも2つを含む酸化物(例えばIn-Zn-O系、In-Ga-O系、Ga-Zn-O系)がより好ましく、In、GaおよびZnを含む酸化物が特に好ましい。In-Ga-Zn-O系非晶質酸化物としては、結晶状態における組成がInGaO(ZnO)(mは6未満の自然数)で表される非晶質酸化物が好ましく、特に、InGaZnOがより好ましい。なお、活性層17を構成可能な非晶質酸化物は、これらに限定されるものではない。 The amorphous oxide that can form the active layer 17 is preferably an oxide containing at least one of In, Ga, and Zn (for example, In—O-based), and at least 2 of In, Ga, and Zn. (Eg, In—Zn—O, In—Ga—O, and Ga—Zn—O) are more preferable, and oxides including In, Ga, and Zn are particularly preferable. As the In—Ga—Zn—O-based amorphous oxide, an amorphous oxide whose composition in a crystalline state is represented by InGaO 3 (ZnO) m (m is a natural number less than 6) is preferable, and in particular, InGaZnO. 4 is more preferable. In addition, the amorphous oxide which can comprise the active layer 17 is not limited to these.
 活性層17を構成可能な有機半導体材料としては、フタロシアニン化合物や、ペンタセン、バナジルフタロシアニン等を挙げることができるがこれらに限定されるものではない。なお、フタロシアニン化合物の構成については、特開2009-212389号公報において詳細に説明されているため説明を省略する。 Examples of the organic semiconductor material that can form the active layer 17 include, but are not limited to, phthalocyanine compounds, pentacene, vanadyl phthalocyanine, and the like. Note that the configuration of the phthalocyanine compound is described in detail in JP-A-2009-212389, and thus the description thereof is omitted.
 薄膜トランジスタ10の活性層17を非晶質酸化物や有機半導体材料、カーボンナノチューブで形成したものとすれば、X線等の放射線を吸収せず、あるいは吸収したとしても極めて微量に留まるため、信号出力部14におけるノイズの発生を効果的に抑制することができる。 If the active layer 17 of the thin film transistor 10 is formed of an amorphous oxide, an organic semiconductor material, or a carbon nanotube, it will not absorb radiation such as X-rays, or even if it absorbs it, it will remain in a very small amount. Generation of noise in the portion 14 can be effectively suppressed.
 また、活性層17をカーボンナノチューブで形成した場合、薄膜トランジスタ10のスイッチング速度を高速化することができ、また、可視光域での光の吸収度合の低い薄膜トランジスタ10を形成できる。なお、カーボンナノチューブで活性層17を形成する場合、活性層17に極微量の金属性不純物を混入するだけで、薄膜トランジスタ10の性能は著しく低下するため、遠心分離などにより極めて高純度のカーボンナノチューブを分離・抽出して形成する必要がある。 Further, when the active layer 17 is formed of carbon nanotubes, the switching speed of the thin film transistor 10 can be increased, and the thin film transistor 10 having a low degree of light absorption in the visible light region can be formed. In addition, when the active layer 17 is formed of carbon nanotubes, the performance of the thin film transistor 10 is remarkably deteriorated only by mixing a very small amount of metallic impurities into the active layer 17, so that extremely high purity carbon nanotubes can be obtained by centrifugation or the like. It is necessary to form by separating and extracting.
 ここで、薄膜トランジスタ10の活性層17を構成する非晶質酸化物、有機半導体材料、カーボンナノチューブや、光電変換膜4を構成する有機光電変換材料は、いずれも低温での成膜が可能である。従って、基板1としては、半導体基板、石英基板、およびガラス基板等の耐熱性の高い基板に限定されず、プラスチック等の可撓性基板や、アラミド、バイオナノファイバを用いることもできる。具体的には、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の可撓性基板を用いることができる。このようなプラスチック製の可撓性基板を用いれば、軽量化を図ることもでき、例えば持ち運び等に有利となる。 Here, any of the amorphous oxides, organic semiconductor materials, carbon nanotubes constituting the active layer 17 of the thin film transistor 10 and organic photoelectric conversion materials constituting the photoelectric conversion film 4 can be formed at a low temperature. . Therefore, the substrate 1 is not limited to a substrate having high heat resistance such as a semiconductor substrate, a quartz substrate, and a glass substrate, and a flexible substrate such as plastic, aramid, or bionanofiber can also be used. Specifically, flexible materials such as polyesters such as polyethylene terephthalate, polybutylene phthalate, polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, poly (chlorotrifluoroethylene), etc. A conductive substrate can be used. If such a plastic flexible substrate is used, it is possible to reduce the weight, which is advantageous for carrying around, for example.
 また、基板1には、絶縁性を確保するための絶縁層、水分や酸素の透過を防止するためのガスバリア層、平坦性あるいは電極等との密着性を向上するためのアンダーコート層等を設けてもよい。 In addition, the substrate 1 is provided with an insulating layer for ensuring insulation, a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving flatness or adhesion to electrodes, and the like. May be.
 一方、アラミドは、200度以上の高温プロセスを適用できるために透明電極材料を高温硬化させて低抵抗化でき、また、ハンダのリフロー工程を含むドライバICの自動実装にも対応できる。また、アラミドは、ITO(Indium Tin Oxide)やガラス基板と熱膨張係数が近いため、製造後の反りが少なく、割れにくい。また、アラミドは、ガラス基板等と比べて薄く基板を形成できる。なお、超薄型ガラス基板とアラミドを積層して基板を形成してもよい。 On the other hand, since aramid can be applied at a high temperature process of 200 ° C. or higher, the transparent electrode material can be cured at high temperature to reduce the resistance, and can also be used for automatic mounting of driver ICs including a solder reflow process. Aramid has a thermal expansion coefficient close to that of ITO (Indium Tin Oxide) or glass substrate, so there is little warping after manufacturing and it is difficult to crack. In addition, aramid can form a substrate thinner than a glass substrate or the like. The substrate may be formed by laminating an ultrathin glass substrate and aramid.
 また、バイオナノファイバは、バクテリア(酢酸菌、Acetobacter Xylinum)が産出するセルロースミクロフィブリル束(バクテリアセルロース)と透明樹脂との複合したものである。セルロースミクロフィブリル束は、幅50nmと可視光波長に対して1/10のサイズで、かつ高強度、高弾性、低熱膨張である。バクテリアセルロースにアクリル樹脂、エポキシ樹脂等の透明樹脂を含浸・硬化させることで、繊維を60~70%も含有しながら、波長500nmで約90%の光透過率を示すバイオナノファイバが得られる。バイオナノファイバは、シリコン結晶に匹敵する低い熱膨張係数(3~7ppm)を有し、鋼鉄並の強度(460MPa)、高弾性(30GPa)で、かつフレキシブルであることから、ガラス基板等と比べて薄く基板1を形成できる。 In addition, the bionanofiber is a composite of a cellulose microfibril bundle (bacterial cellulose) produced by bacteria (Acetobacter Xylinum) and a transparent resin. The cellulose microfibril bundle has a width of 50 nm and a size of 1/10 of the visible light wavelength, and has high strength, high elasticity, and low thermal expansion. By impregnating and curing a transparent resin such as acrylic resin or epoxy resin in bacterial cellulose, a bio-nanofiber having a light transmittance of about 90% at a wavelength of 500 nm can be obtained while containing 60 to 70% of the fiber. Bionanofiber has a low coefficient of thermal expansion (3-7ppm) comparable to silicon crystals, and is as strong as steel (460MPa), highly elastic (30GPa), and flexible. The substrate 1 can be formed thinly.
 本実施の形態では、基板1上に、信号出力部14、センサ部13、透明絶縁膜7を順に形成することによりTFT基板30を形成し、当該TFT基板30上に光吸収性の低い接着樹脂等を用いてシンチレータ8を貼り付けることにより放射線検出器20を形成している。 In the present embodiment, the TFT substrate 30 is formed on the substrate 1 by sequentially forming the signal output unit 14, the sensor unit 13, and the transparent insulating film 7, and the light-absorbing adhesive resin is formed on the TFT substrate 30. The radiation detector 20 is formed by pasting the scintillator 8 using, for example.
 図5に示すように、TFT基板30には、上述したセンサ部13、コンデンサ9、および薄膜トランジスタ10を含んで構成される画素部32が一定方向(図5の行方向)、および当該一定方向に対する交差方向(図5の列方向)に2次元状に複数設けられている。 As shown in FIG. 5, the TFT substrate 30 includes a pixel unit 32 including the sensor unit 13, the capacitor 9, and the thin film transistor 10 described above in a certain direction (the row direction in FIG. 5) and the certain direction. A plurality of two-dimensional shapes are provided in the intersecting direction (column direction in FIG. 5).
 また、放射線検出器20には、上記一定方向(行方向)に延設され、各薄膜トランジスタ10をオン・オフさせるための複数本のゲート配線34と、上記交差方向(列方向)に延設され、オン状態の薄膜トランジスタ10を介して電荷を読み出すための複数本のデータ配線36と、が設けられている。 Further, the radiation detector 20 extends in the predetermined direction (row direction), and extends in the intersecting direction (column direction) with a plurality of gate wirings 34 for turning on and off each thin film transistor 10. A plurality of data wirings 36 for reading out charges through the thin film transistor 10 in the on state are provided.
 放射線検出器20は、平板状で、かつ平面視において外縁に4辺を有する四辺形状、より具体的には、矩形状に形成されている。 The radiation detector 20 has a flat plate shape and a quadrilateral shape having four sides on the outer edge in a plan view, more specifically, a rectangular shape.
 次に、本実施の形態に係る電子カセッテ40の構成について説明する。図6には、本実施の形態に係る電子カセッテ40の構成を示す斜視図が示されている。 Next, the configuration of the electronic cassette 40 according to the present embodiment will be described. FIG. 6 is a perspective view showing the configuration of the electronic cassette 40 according to the present exemplary embodiment.
 図6に示すように、本実施の形態に係る電子カセッテ40は、放射線を透過させる材料からなる平板状の筐体41を備えており、防水性、密閉性を有する構造とされている。筐体41の内部には、種々の部品を収容する空間(外部空間)Aが形成されており、当該空間内には、放射線Xが照射される筐体41の照射面側から、被写体を透過した放射線Xを検出する放射線検出器20、および放射線Xのバック散乱線を吸収する鉛板43が順に配設されている。 As shown in FIG. 6, the electronic cassette 40 according to the present embodiment includes a flat housing 41 made of a material that transmits radiation, and has a waterproof and airtight structure. A space (external space) A for accommodating various components is formed inside the housing 41, and the subject is transmitted through the space from the irradiation surface side of the housing 41 irradiated with the radiation X. The radiation detector 20 for detecting the radiation X and the lead plate 43 for absorbing the back scattered radiation of the radiation X are arranged in this order.
 ここで、本実施の形態に係る電子カセッテ40では、筐体41の平板状の一方の面の放射線検出器20の配設位置に対応する領域が放射線を検出可能な四辺形状の撮影領域41Aとされている。この筐体41の撮影領域41Aを有する面が電子カセッテ40における天板41Bとされており、本実施の形態に係る電子カセッテ40では、図8に示すように、放射線検出器20が、TFT基板30が天板41B側となるように配置され、当該天板41Bの筐体41における内側の面(天板41Bの放射線が入射される面の反対側の面)に貼り付けられている。 Here, in the electronic cassette 40 according to the present exemplary embodiment, the area corresponding to the arrangement position of the radiation detector 20 on one flat surface of the housing 41 is a quadrilateral imaging area 41A capable of detecting radiation. Has been. The surface having the imaging region 41A of the housing 41 is a top plate 41B in the electronic cassette 40. In the electronic cassette 40 according to the present embodiment, as shown in FIG. 8, the radiation detector 20 includes a TFT substrate. 30 is disposed on the top plate 41B side, and is attached to the inner surface of the casing 41 of the top plate 41B (the surface opposite to the surface on which radiation of the top plate 41B is incident).
 ところで、本実施の形態に係る撮影システム104は、シンチレータ8の温度に応じて電子カセッテ40による撮影を許容する撮影部位および撮影状態を特定する撮影許容状況特定機能を有している。 By the way, the imaging system 104 according to the present embodiment has an imaging permission situation specifying function for specifying an imaging part and an imaging state that allow imaging by the electronic cassette 40 according to the temperature of the scintillator 8.
 このため、本実施の形態に係る電子カセッテ40では、図7に示すように、放射線検出器20のシンチレータ8の下面側の中央部に、当該シンチレータ8の温度を検出するための温度センサ46が設けられている。なお、温度センサ46は検出部に対応する。 For this reason, in the electronic cassette 40 according to the present embodiment, as shown in FIG. 7, a temperature sensor 46 for detecting the temperature of the scintillator 8 is provided at the center of the lower surface side of the scintillator 8 of the radiation detector 20. Is provided. The temperature sensor 46 corresponds to a detection unit.
 一方、図6および図8に示すように、筐体41の内部の一端側には、放射線検出器20と重ならない位置(撮影領域41Aの範囲外)に、後述するカセッテ制御部58や電源部70(共に図12参照。)を収容するケース42が配置されている。 On the other hand, as shown in FIGS. 6 and 8, a cassette control unit 58 and a power supply unit, which will be described later, are located on one end inside the housing 41 at a position that does not overlap the radiation detector 20 (outside the range of the imaging region 41A). A case 42 for accommodating 70 (see FIG. 12 for both) is arranged.
 筐体41は、電子カセッテ40全体の軽量化を図るために、例えば、カーボンファイバ(炭素繊維)、アルミニウム、マグネシウム、バイオナノファイバ(セルロースミクロフィブリル)、または複合材料等で構成されている。 The housing 41 is made of, for example, carbon fiber (carbon fiber), aluminum, magnesium, bionanofiber (cellulose microfibril), or a composite material in order to reduce the weight of the entire electronic cassette 40.
 複合材料としては、例えば、強化繊維樹脂を含む材料が用いられ、強化繊維樹脂には、カーボンやセルロース等が含まれる。具体的には、複合材料としては、炭素繊維強化プラスチック(CFRP)や、発泡材をCFRPでサンドイッチした構造のもの、または発泡材の表面にCFRPをコーティングしたもの等が用いられる。なお、本実施の形態では、発泡材をCFRPでサンドイッチした構造のものが用いられている。これにより、筐体41をカーボン単体で構成した場合と比較して、筐体41の強度(剛性)を高めることができる。 As the composite material, for example, a material including a reinforcing fiber resin is used, and the reinforcing fiber resin includes carbon, cellulose, and the like. Specifically, as the composite material, carbon fiber reinforced plastic (CFRP), a structure in which a foamed material is sandwiched with CFRP, or a material in which the surface of the foamed material is coated with CFRP is used. In the present embodiment, a structure in which a foam material is sandwiched with CFRP is used. Thereby, compared with the case where the housing | casing 41 is comprised with a carbon single-piece | unit, the intensity | strength (rigidity) of the housing | casing 41 can be improved.
 一方、図8に示すように、筐体41の内部には、天板41Bと対向する背面部41Cの内面に支持体44が配置され、支持体44および天板41Bの間には、放射線検出器20および鉛板43が放射線Xの照射方向にこの順で並んで配置されている。 On the other hand, as shown in FIG. 8, a support body 44 is disposed on the inner surface of the back surface portion 41 </ b> C facing the top plate 41 </ b> B inside the housing 41, and radiation detection is performed between the support body 44 and the top plate 41 </ b> B. The vessel 20 and the lead plate 43 are arranged in this order in the irradiation direction of the radiation X.
 支持体44は、軽量化の観点、寸法偏差を吸収する観点から、例えば、発泡材で構成されており、鉛板43を支持する。 The support body 44 is made of, for example, a foam material from the viewpoint of weight reduction and absorption of dimensional deviation, and supports the lead plate 43.
 図8~図10に示すように、天板41Bの内面には、放射線検出器20のTFT基板30を剥離可能に接着する接着部材80が設けられている。接着部材80としては、例えば、両面テープが用いられる。この場合、両面テープは、一方の接着面の接着力が他方の接着面の接着力よりも強くなるように形成されている。 As shown in FIG. 8 to FIG. 10, an adhesive member 80 is provided on the inner surface of the top plate 41B so that the TFT substrate 30 of the radiation detector 20 can be peeled off. As the adhesive member 80, for example, a double-sided tape is used. In this case, the double-sided tape is formed so that the adhesive force of one adhesive surface is stronger than the adhesive force of the other adhesive surface.
 具体的には、接着力の弱い面(弱接着面)は、180°ピール接着力で1.0N/cm以下に設定されている。そして、接着力の強い面(強接着面)が天板41Bに接し、弱接着面がTFT基板30に接する。これにより、ねじ等の固定部材等によって放射線検出器20を天板41Bに固定する場合と比べて電子カセッテ40の厚みを薄くすることができる。また、衝撃や荷重で天板41Bが変形しても、放射線検出器20は剛性の高い天板41Bの変形に追従するため、大きな曲率(緩やかな曲がり)しか発生せず、局所的な低曲率で放射線検出器20が破損する可能性が低くなる。さらに、放射線検出器20が天板41Bの剛性の向上に寄与する。また、前記両面テープは、TFT基板30および天板41Bと接する面以外の面にも接着力を有する。 Specifically, the surface with weak adhesive strength (weak adhesive surface) is set to 1.0 N / cm or less with 180 ° peel adhesive strength. Then, the surface having a strong adhesive force (strong adhesion surface) is in contact with the top plate 41B, and the weak adhesion surface is in contact with the TFT substrate 30. Thereby, compared with the case where the radiation detector 20 is fixed to the top plate 41B with fixing members, such as a screw, the thickness of the electronic cassette 40 can be made thin. Even if the top plate 41B is deformed by an impact or load, the radiation detector 20 follows the deformation of the top plate 41B having high rigidity, so that only a large curvature (slow bend) is generated, and a local low curvature is generated. Therefore, the possibility that the radiation detector 20 is damaged is reduced. Furthermore, the radiation detector 20 contributes to the improvement of the rigidity of the top plate 41B. The double-sided tape also has an adhesive force on a surface other than the surface in contact with the TFT substrate 30 and the top plate 41B.
 また、図9に示すように、接着部材80は、帯状に形成された状態で筐体41の側壁に沿って配置されている。これにより、TFT基板30を天板41Bに接着した状態で、TFT基板30および天板41Bの間に内部空間Bが形成される(図8も参照。)。 Further, as shown in FIG. 9, the adhesive member 80 is disposed along the side wall of the housing 41 in a band-like state. Thus, an internal space B is formed between the TFT substrate 30 and the top plate 41B in a state where the TFT substrate 30 is bonded to the top plate 41B (see also FIG. 8).
 図10に示すように、接着部材80には、天板41Bの角部に対応する部位に内部空間Bと外部空間Aを連通する連通路82が形成されている。連通路82は、曲がっており、詳細には、4つの角部84を有している。つまり、連通路82は、折り曲げられるようにして形成されたラビリンス構造を有している。なお、連通路82の折り曲げられた部位(角部84)の折り曲げ角度は、任意に設定することができ、弓なりに曲がっていてもよい。また、連通路82の通路幅dは、空気が流通できる程度の範囲内において、できる限り狭く設定されている。ただし、連通路82の通路幅dは、任意に設定してよい。 As shown in FIG. 10, the adhesive member 80 is formed with a communication passage 82 that communicates the internal space B and the external space A at portions corresponding to the corners of the top plate 41B. The communication path 82 is bent and specifically has four corners 84. That is, the communication path 82 has a labyrinth structure formed so as to be bent. In addition, the bending angle of the bent part (corner part 84) of the communication path 82 can be set arbitrarily, and may be bent like a bow. Further, the passage width d of the communication passage 82 is set as narrow as possible within a range where air can flow. However, the passage width d of the communication passage 82 may be set arbitrarily.
 このように、本実施の形態に係る電子カセッテ40では、放射線検出器20を筐体41の天板41Bの内部に貼り付けているため、筐体41が、天板41B側と背面部41C側とで2つに分離可能とされており、放射線検出器20を天板41Bに貼り付けたり、放射線検出器20を天板41Bから剥離したりする際には、筐体41を天板41B側と背面部41C側とで2つに分離した状態とされる。 As described above, in the electronic cassette 40 according to the present exemplary embodiment, the radiation detector 20 is attached to the inside of the top plate 41B of the housing 41, so that the housing 41 is on the top plate 41B side and the back surface portion 41C side. When the radiation detector 20 is attached to the top plate 41B or the radiation detector 20 is peeled off from the top plate 41B, the housing 41 is placed on the top plate 41B side. And the back surface portion 41C side are separated into two.
 なお、本実施の形態では、放射線検出器20の天板41Bへの接着をクリーンルーム等で行わなくてもよい。なぜなら、放射線検出器20および天板41Bの間に放射線を吸収する金属片等の異物が混入した場合に、放射線検出器20を天板41Bから剥離して当該異物を除去できるからである。 In the present embodiment, the radiation detector 20 may not be bonded to the top plate 41B in a clean room or the like. This is because when a foreign object such as a metal piece that absorbs radiation is mixed between the radiation detector 20 and the top plate 41B, the foreign object can be removed by peeling the radiation detector 20 from the top plate 41B.
 ところで、放射線検出器20を直接把持するようにして天板41Bから放射線検出器20を剥離する場合、筐体41の側壁が邪魔になる。そのため、図11に示すように、放射線検出器20のTFT基板30に耳86を設けてもよい。これにより、作業者は、耳86を把持した状態で放射線検出器20を天板41Bから容易に剥離することができる。なお、耳86は、TFT基板30に固定されていてもよいし、TFT基板30に着脱可能であってもよい。後者の場合、放射線画像の撮影時に耳86が邪魔になる懸念を排除することができる。 By the way, when the radiation detector 20 is peeled from the top plate 41B so as to directly grip the radiation detector 20, the side wall of the housing 41 becomes an obstacle. Therefore, as shown in FIG. 11, ears 86 may be provided on the TFT substrate 30 of the radiation detector 20. Thus, the operator can easily peel the radiation detector 20 from the top board 41B while holding the ear 86. The ear 86 may be fixed to the TFT substrate 30 or may be detachable from the TFT substrate 30. In the latter case, it is possible to eliminate the concern that the ear 86 becomes an obstacle when capturing a radiographic image.
 次に、図12を参照して、本実施の形態に係る撮影システム104の電気系の要部構成について説明する。 Next, with reference to FIG. 12, the main configuration of the electrical system of the imaging system 104 according to the present embodiment will be described.
 図12に示すように、電子カセッテ40に内蔵された放射線検出器20は、隣り合う2辺の一辺側にゲート線ドライバ52が配置され、他辺側に信号処理部54が配置されている。TFT基板30の個々のゲート配線34はゲート線ドライバ52に接続され、TFT基板30の個々のデータ配線36は信号処理部54に接続されている。 As shown in FIG. 12, in the radiation detector 20 built in the electronic cassette 40, a gate line driver 52 is arranged on one side of two adjacent sides, and a signal processing unit 54 is arranged on the other side. Each gate wiring 34 of the TFT substrate 30 is connected to a gate line driver 52, and each data wiring 36 of the TFT substrate 30 is connected to a signal processing unit 54.
 また、筐体41の内部には、画像メモリ56と、カセッテ制御部58と、無線通信部60と、を備えている。 Further, the housing 41 includes an image memory 56, a cassette control unit 58, and a wireless communication unit 60.
 TFT基板30の各薄膜トランジスタ10は、ゲート線ドライバ52からゲート配線34を介して供給される信号により行単位で順にオンされ、オン状態とされた薄膜トランジスタ10によって読み出された電荷は、電気信号としてデータ配線36を伝送されて信号処理部54に入力される。これにより、電荷は行単位で順に読み出され、二次元状の放射線画像が取得可能となる。 Each thin film transistor 10 of the TFT substrate 30 is sequentially turned on in a row unit by a signal supplied from the gate line driver 52 via the gate wiring 34, and the electric charge read by the thin film transistor 10 in the on state is converted into an electric signal. The data wiring 36 is transmitted and input to the signal processing unit 54. As a result, the charges are sequentially read out in units of rows, and a two-dimensional radiation image can be acquired.
 図示は省略するが、信号処理部54は、個々のデータ配線36毎に、入力される電気信号を増幅する増幅回路およびサンプルホールド回路を備えており、個々のデータ配線36を伝送された電気信号は増幅回路で増幅された後にサンプルホールド回路に保持される。また、サンプルホールド回路の出力側にはマルチプレクサ、A/D(アナログ/デジタル)変換器が順に接続されており、個々のサンプルホールド回路に保持された電気信号はマルチプレクサに順に(シリアルに)入力され、A/D変換器によってデジタルの画像データへ変換される。 Although not shown, the signal processing unit 54 includes an amplification circuit and a sample hold circuit for amplifying an input electric signal for each data wiring 36, and the electric signal transmitted through the individual data wiring 36. Is amplified by the amplifier circuit and then held in the sample hold circuit. Further, a multiplexer and an A / D (analog / digital) converter are connected in order to the output side of the sample and hold circuit, and the electric signals held in the individual sample and hold circuits are sequentially (serially) input to the multiplexer. The digital image data is converted by an A / D converter.
 信号処理部54には画像メモリ56が接続されており、信号処理部54のA/D変換器から出力された画像データは画像メモリ56に順に記憶される。画像メモリ56は所定枚分の画像データを記憶可能な記憶容量を有しており、放射線画像の撮影が行われる毎に、撮影によって得られた画像データが画像メモリ56に順次記憶される。 An image memory 56 is connected to the signal processing unit 54, and image data output from the A / D converter of the signal processing unit 54 is sequentially stored in the image memory 56. The image memory 56 has a storage capacity capable of storing a predetermined number of image data, and image data obtained by imaging is sequentially stored in the image memory 56 each time a radiographic image is captured.
 画像メモリ56はカセッテ制御部58と接続されている。カセッテ制御部58はマイクロコンピュータを含んで構成され、CPU(中央処理装置)58A、ROM(Read Only Memory)およびRAM(Random Access Memory)を含むメモリ58B、フラッシュメモリ等からなる不揮発性の記憶部58Cを備えており、電子カセッテ40全体の動作を制御する。 The image memory 56 is connected to the cassette control unit 58. The cassette control unit 58 includes a microcomputer, and includes a CPU (Central Processing Unit) 58A, a memory 58B including a ROM (Read Only Memory) and a RAM (Random Access Memory), a nonvolatile storage unit 58C including a flash memory and the like. And controls the entire operation of the electronic cassette 40.
 また、カセッテ制御部58には、温度センサ46が接続されており、カセッテ制御部58は、温度センサ46の配設部位(本実施の形態では、放射線検出器20におけるシンチレータ8の下面側の中央部)における温度を把握することができる。 In addition, the temperature sensor 46 is connected to the cassette control unit 58, and the cassette control unit 58 is arranged at a location where the temperature sensor 46 is disposed (in the present embodiment, the center on the lower surface side of the scintillator 8 in the radiation detector 20). Temperature).
 さらに、カセッテ制御部58には無線通信部60が接続されている。無線通信部60は、IEEE(Institute of Electrical and Electronics Engineers)802.11a/b/g等に代表される無線LAN(Local Area Network)規格に対応しており、無線通信による外部機器との間での各種情報の伝送を制御する。カセッテ制御部58は、無線通信部60を介して、放射線画像の撮影に関する制御を行うコンソール110などの外部装置と無線通信が可能とされており、コンソール110等との間で各種情報の送受信が可能とされている。 Furthermore, a wireless communication unit 60 is connected to the cassette control unit 58. The wireless communication unit 60 corresponds to a wireless LAN (Local Area Network) standard represented by IEEE (Institute of Electrical and Electronics Electronics) (802.11a / b / g), and communicates with external devices by wireless communication. Control transmission of various information. The cassette control unit 58 can wirelessly communicate with an external device such as the console 110 that performs control related to radiographic image capturing via the wireless communication unit 60, and can transmit and receive various types of information to and from the console 110 and the like. It is possible.
 また、電子カセッテ40には電源部70が設けられており、上述した各種回路や各素子(ゲート線ドライバ52、信号処理部54、画像メモリ56、無線通信部60、カセッテ制御部58として機能するマイクロコンピュータ等)は、電源部70から供給された電力によって作動する。電源部70は、電子カセッテ40の可搬性を損なわないように、バッテリ(充電可能な二次電池)を内蔵しており、充電されたバッテリから各種回路・素子へ電力を供給する。なお、図12では、電源部70と各種回路や各素子を接続する配線を省略している。 The electronic cassette 40 is provided with a power supply unit 70, which functions as the above-described various circuits and elements (gate line driver 52, signal processing unit 54, image memory 56, wireless communication unit 60, and cassette control unit 58). The microcomputer or the like) is operated by the power supplied from the power supply unit 70. The power supply unit 70 incorporates a battery (a rechargeable secondary battery) so as not to impair the portability of the electronic cassette 40, and supplies power from the charged battery to various circuits and elements. In FIG. 12, wiring for connecting the power supply unit 70 to various circuits and elements is omitted.
 一方、コンソール110は、サーバ・コンピュータとして構成されており、操作メニューや撮影された放射線画像等を表示するディスプレイ111と、複数のキーを含んで構成され、各種の情報や操作指示が入力される操作パネル112と、を備えている。 On the other hand, the console 110 is configured as a server computer, and includes a display 111 that displays an operation menu, a captured radiographic image, and the like, and a plurality of keys, and inputs various information and operation instructions. An operation panel 112.
 また、本実施の形態に係るコンソール110は、装置全体の動作を司るCPU113と、制御プログラムを含む各種プログラム等が予め記憶されたROM114と、各種データを一時的に記憶するRAM115と、各種データを記憶して保持するHDD(ハードディスク・ドライブ)116と、ディスプレイ111への各種情報の表示を制御するディスプレイドライバ117と、操作パネル112に対する操作状態を検出する操作入力検出部118と、を備えている。また、コンソール110は、無線通信により、放射線発生装置120との間で後述する曝射条件等の各種情報の送受信を行うと共に、電子カセッテ40との間で画像データ等の各種情報の送受信を行う無線通信部119を備えている。なお、CPU113は特定部、警告部、提示部に対応し、HDD116は記憶部に対応する。 The console 110 according to the present embodiment includes a CPU 113 that controls the operation of the entire apparatus, a ROM 114 that stores various programs including a control program in advance, a RAM 115 that temporarily stores various data, and various data. An HDD (Hard Disk Drive) 116 that stores and holds, a display driver 117 that controls display of various types of information on the display 111, and an operation input detection unit 118 that detects an operation state of the operation panel 112 are provided. . In addition, the console 110 transmits and receives various types of information such as an exposure condition, which will be described later, to and from the radiation generation apparatus 120 through wireless communication, and transmits and receives various types of information such as image data to and from the electronic cassette 40. A wireless communication unit 119 is provided. The CPU 113 corresponds to a specifying unit, a warning unit, and a presentation unit, and the HDD 116 corresponds to a storage unit.
 CPU113、ROM114、RAM115、HDD116、ディスプレイドライバ117、操作入力検出部118、および無線通信部119は、システムバスBUSを介して相互に接続されている。従って、CPU113は、ROM114、RAM115、HDD116へのアクセスを行うことができると共に、ディスプレイドライバ117を介したディスプレイ111への各種情報の表示の制御、および無線通信部119を介した放射線発生装置120および電子カセッテ40との各種情報の送受信の制御を各々行うことができる。また、CPU113は、操作入力検出部118を介して操作パネル112に対するユーザの操作状態を把握することができる。 The CPU 113, ROM 114, RAM 115, HDD 116, display driver 117, operation input detection unit 118, and wireless communication unit 119 are connected to each other via a system bus BUS. Therefore, the CPU 113 can access the ROM 114, RAM 115, and HDD 116, controls the display of various information on the display 111 via the display driver 117, and the radiation generator 120 via the wireless communication unit 119 and Control of transmission and reception of various types of information with the electronic cassette 40 can be performed. Further, the CPU 113 can grasp the operation state of the user with respect to the operation panel 112 via the operation input detection unit 118.
 一方、放射線発生装置120は、放射線源121と、コンソール110との間で曝射条件等の各種情報を送受信する無線通信部123と、受信した曝射条件に基づいて放射線源121を制御する線源制御部122と、を備えている。 On the other hand, the radiation generator 120 includes a radio communication unit 123 that transmits and receives various types of information such as an exposure condition between the radiation source 121 and the console 110, and a line that controls the radiation source 121 based on the received exposure condition. A source control unit 122.
 線源制御部122もマイクロコンピュータを含んで構成されており、受信した曝射条件等を記憶する。このコンソール110から受信する曝射条件には管電圧、管電流、曝射期間等の情報が含まれている。線源制御部122は、受信した曝射条件に基づいて放射線源121から放射線Xを照射させる。 The radiation source control unit 122 is also configured to include a microcomputer, and stores the received exposure conditions and the like. The exposure conditions received from the console 110 include information such as tube voltage, tube current, and exposure period. The radiation source control unit 122 causes the radiation source 121 to emit radiation X based on the received exposure conditions.
 ところで、前述したように、本実施の形態に係る撮影システム104は、シンチレータ8の温度に応じて電子カセッテ40による撮影を許容する撮影部位および撮影状態を特定する撮影許容状況特定機能を有している。このため、本実施の形態に係るコンソール110では、HDD116に、一例として図13に示す撮影情報が予め記憶されている。 By the way, as described above, the imaging system 104 according to the present embodiment has an imaging permission situation specifying function for specifying an imaging part and an imaging state that allow imaging by the electronic cassette 40 according to the temperature of the scintillator 8. Yes. For this reason, in the console 110 according to the present embodiment, the shooting information illustrated in FIG. 13 is stored in advance in the HDD 116 as an example.
 図13に示すように、本実施の形態に係る撮影情報は、シンチレータ8の予め定められた温度の範囲内に、電子カセッテ40による撮影を許容する撮影部位および撮影状態が予め記憶されて構成されている。なお、図13に示すように、本実施の形態に係る撮影システム104では、上記撮影を許容する撮影部位として「腕部」および「脚部」の2種類が適用されており、上記撮影を許容する撮影状態として立位台160を用いて撮影を行う「立位撮影」、および臥位台164を用いて撮影を行う「臥位撮影」の2種類が適用されているが、これに限るものでないことは言うまでもない。 As shown in FIG. 13, the imaging information according to the present embodiment is configured by previously storing an imaging region and an imaging state that allow imaging by the electronic cassette 40 within a predetermined temperature range of the scintillator 8. ing. As shown in FIG. 13, in the imaging system 104 according to the present embodiment, two types of “arm part” and “leg part” are applied as the imaging parts that allow the imaging, and the imaging is permitted. As the shooting state to be performed, two types of “standing position shooting” in which shooting is performed using the standing table 160 and “upright position shooting” in which shooting is performed using the standing table 164 are applied, but the present invention is not limited thereto. It goes without saying that it is not.
 図13に示す例では、例えば、シンチレータ8の温度が0度以上25度未満の場合に撮影が許容される撮影部位および撮影状態は、「立位撮影」、「腕部」、「脚部」、および「臥位撮影」であり、これらの全てについて撮影が許容されていることを示している。また、例えば、シンチレータ8の温度が35度以上の場合に撮影が許容される撮影部位および撮影状態は、「立位撮影」のみであることを示している。 In the example shown in FIG. 13, for example, when the temperature of the scintillator 8 is 0 degree or more and less than 25 degrees, photographing parts and photographing states that are allowed to be photographed are “standing position photographing”, “arm part”, “leg part”. , And “posture shooting”, which indicates that shooting is allowed for all of these. In addition, for example, when the temperature of the scintillator 8 is equal to or higher than 35 degrees, the imaging part and the imaging state in which imaging is permitted are only “standing position imaging”.
 すなわち、立位撮影を行う際には、電子カセッテ40の天板41Bに対する被検者による加圧は殆ど生じないため、立位撮影は全ての温度範囲において許容されている。これに対し、臥位撮影を行う際には、電子カセッテ40の天板41Bに対して被検者が覆い被さる状態となるため、当該天板41Bに対する加圧が相対的に大きく、シンチレータ8の温度が比較的低い場合(本実施の形態では、0度以上25度未満の場合)のみ撮影が許容されている。 That is, when performing the standing position photographing, the subject is hardly pressurized against the top plate 41B of the electronic cassette 40, and thus the standing position photographing is allowed in the entire temperature range. On the other hand, since the subject is covered with the top plate 41B of the electronic cassette 40 when performing the recumbent photographing, the pressure on the top plate 41B is relatively large, and the scintillator 8 Shooting is allowed only when the temperature is relatively low (in this embodiment, when the temperature is not less than 0 degrees and less than 25 degrees).
 次に、本実施の形態に係る撮影システム104の作用を説明する。 Next, the operation of the imaging system 104 according to the present embodiment will be described.
 まず、図14を参照して、放射線画像の撮影を行う際のコンソール110の作用を説明する。なお、図14は、この際にコンソール110のCPU113によって実行される放射線画像撮影処理プログラムの処理の流れを示すフローチャートであり、当該プログラムはROM114の所定領域に予め記憶されている。 First, the operation of the console 110 when taking a radiographic image will be described with reference to FIG. FIG. 14 is a flowchart showing a flow of processing of the radiographic image capturing processing program executed by the CPU 113 of the console 110 at this time, and the program is stored in a predetermined area of the ROM 114 in advance.
 図14のステップ300では、予め定められた初期情報入力画面をディスプレイ111により表示させるようにディスプレイドライバ117を制御し、次のステップ302にて所定情報の入力待ちを行う。 In step 300 of FIG. 14, the display driver 117 is controlled so that a predetermined initial information input screen is displayed on the display 111, and the next step 302 waits for input of predetermined information.
 図15には、上記ステップ300の処理によってディスプレイ111により表示される初期情報入力画面の一例が示されている。図15に示すように、本実施の形態に係る初期情報入力画面では、これから放射線画像の撮影を行う被検者の氏名、撮影部位、撮影時の姿勢(本実施の形態では、臥位、立位の何れか)、および撮影時の放射線Xの曝射条件(本実施の形態では、放射線Xを曝射する際の管電圧、管電流、および曝射期間)の入力を促すメッセージと、これらの情報の入力領域が表示される。 FIG. 15 shows an example of an initial information input screen displayed on the display 111 by the process of step 300 described above. As shown in FIG. 15, in the initial information input screen according to the present embodiment, the name of the subject who is going to capture a radiographic image, the region to be imaged, and the posture at the time of capturing (in this embodiment, the supine position, the standing position) , And a message prompting the user to input radiation X exposure conditions at the time of imaging (in this embodiment, tube voltage, tube current, and exposure period when radiation X is exposed), and these The information input area is displayed.
 図15に示す初期情報入力画面がディスプレイ111に表示されると、撮影者は、撮影対象とする被検者の氏名、撮影部位、撮影時の姿勢、および曝射条件を、各々対応する入力領域に操作パネル112を介して入力する。 When the initial information input screen shown in FIG. 15 is displayed on the display 111, the photographer can input the name of the subject to be imaged, the imaging region, the posture at the time of imaging, and the exposure conditions corresponding to each of the input areas. Is input via the operation panel 112.
 そして、撮影時の姿勢が立位または臥位である場合に、撮影者は、対応する立位台160の保持部162または臥位台164の保持部166に電子カセッテ40を保持させると共に放射線源121を対応する位置に位置決めした後、被検者を所定の撮影位置に位置させる。これに対し、撮影部位が腕部、脚部等の電子カセッテ40を保持部に保持させない状態で放射線画像の撮影を行う場合に、撮影者は、当該撮影部位を撮影可能な状態に被検者、電子カセッテ40、および放射線源121を位置決めする。その後、撮影者は、初期情報入力画面の下端近傍に表示されている終了ボタンを、操作パネル112を介して指定する。撮影者によって終了ボタンが指定されると、上記ステップ302が肯定判定となってステップ304に移行する。 When the posture at the time of imaging is the standing position or the lying position, the photographer holds the electronic cassette 40 in the holding section 162 of the corresponding standing table 160 or the holding section 166 of the lying table 164 and also the radiation source. After positioning 121 at the corresponding position, the subject is positioned at a predetermined imaging position. On the other hand, when a radiographic image is taken in a state where the imaging part does not hold the electronic cassette 40 such as an arm part or a leg part in the holding part, the photographer is ready to take a picture of the imaging part. The electronic cassette 40 and the radiation source 121 are positioned. Thereafter, the photographer designates an end button displayed near the lower end of the initial information input screen via the operation panel 112. When an end button is designated by the photographer, step 302 is affirmative and the process proceeds to step 304.
 ステップ304では、温度センサ46により計測された温度を示す情報(以下、「温度情報」という。)の送信を指示する指示情報を電子カセッテ40へ無線通信部119を介して送信した後、次のステップ306にて、当該温度情報の受信待ちを行う。上記温度情報の送信を指示する指示情報を受信すると、電子カセッテ40は、当該温度情報を、無線通信部60を介してコンソール110に送信する。これに応じて、上記ステップ306が肯定判定となってステップ308に移行する。 In step 304, instruction information for instructing transmission of information indicating the temperature measured by the temperature sensor 46 (hereinafter referred to as “temperature information”) is transmitted to the electronic cassette 40 via the wireless communication unit 119, and then In step 306, reception of the temperature information is awaited. When receiving the instruction information for instructing the transmission of the temperature information, the electronic cassette 40 transmits the temperature information to the console 110 via the wireless communication unit 60. In response to this, step 306 is affirmative and the process proceeds to step 308.
 ステップ308では、HDD116から前述した撮影情報(図13も参照。)を読み出し、次のステップ310にて、読み出した撮影情報における、電子カセッテ40から受信した温度情報により示される温度が属する温度範囲に対して放射線画像の撮影が許容されている撮影部位および撮影状態を特定する。 In step 308, the above-described shooting information (see also FIG. 13) is read from the HDD 116, and in the next step 310, the temperature indicated by the temperature information received from the electronic cassette 40 in the read shooting information is included. On the other hand, an imaging region and an imaging state in which radiographic imaging is allowed are specified.
 次のステップ312では、上記ステップ310の処理によって特定した撮影部位および撮影状態が、上記初期情報入力画面上で入力された情報(以下、「初期情報」という。)に一致するか否かを判定し、肯定判定となった場合は後述するステップ322に移行する一方、否定判定となった場合にはステップ314に移行する。 In the next step 312, it is determined whether or not the imaging region and the imaging state specified by the processing in step 310 match information input on the initial information input screen (hereinafter referred to as “initial information”). If the determination is affirmative, the process proceeds to step 322, which will be described later, whereas if the determination is negative, the process proceeds to step 314.
 ステップ314では、予め定められた警告画面をディスプレイ111により表示させるようにディスプレイドライバ117を制御し、次のステップ316にて所定情報の入力待ちを行う。 In step 314, the display driver 117 is controlled to display a predetermined warning screen on the display 111, and in the next step 316, input of predetermined information is waited.
 図16には、上記ステップ314の処理によってディスプレイ111により表示される警告画面の一例が示されている。図16に示すように、本実施の形態に係る警告画面では、指定した撮影ではシンチレータ8の劣化が進みやすいことを示す情報、代替の撮影状況(図16に示す例では、「立位撮影」。)を示す情報、および当該代替の撮影状況に変更するか否かの選択入力を促す情報が表示される。なお、本実施の形態では、上記代替の撮影状況として、上記ステップ310の処理によって特定した撮影部位および撮影状態の何れか1つの撮影状況を適用する。 FIG. 16 shows an example of a warning screen displayed on the display 111 by the processing in step 314 described above. As shown in FIG. 16, in the warning screen according to the present embodiment, information indicating that the deterioration of the scintillator 8 is likely to proceed in the designated shooting, an alternative shooting situation (in the example shown in FIG. 16, “standing position shooting”). .) And information for prompting a selection input as to whether or not to change to the alternative shooting situation are displayed. In the present embodiment, as the alternative imaging situation, any one imaging situation of the imaging region and the imaging state specified by the processing in step 310 is applied.
 図16に示す警告画面がディスプレイ111に表示されると、撮影者は、表示されている代替の撮影状況に変更する場合は、当該代替の撮影状況となるように被検者、電子カセッテ40、放射線源121の各位置関係を変更した後に、当該警告画面に表示されている「変更する」ボタンを、操作パネル112を介して指定する。これに対し、撮影者は、表示されている代替の撮影状況に変更しない場合は、そのままの状態で当該警告画面に表示されている「変更しない」ボタンを、操作パネル112を介して指定する。撮影者によって何れかのボタンが指定されると、上記ステップ316が肯定判定となってステップ318に移行する。 When the warning screen shown in FIG. 16 is displayed on the display 111, when the photographer changes to the displayed alternative shooting situation, the subject, the electronic cassette 40, After changing the positional relationship of the radiation source 121, the “change” button displayed on the warning screen is designated via the operation panel 112. On the other hand, if the photographer does not change to the displayed alternative shooting situation, the photographer designates the “do not change” button displayed on the warning screen as it is via the operation panel 112. If any button is designated by the photographer, step 316 is affirmative and the process proceeds to step 318.
 ステップ318では、上記警告画面で「変更する」ボタンが指定されたか否かを判定することにより、撮影者によって撮影状況の変更が指示されたか否かを判定し、否定判定となった場合はステップ322に移行する一方、肯定判定となった場合にはステップ320に移行して、初期情報に含まれる曝射条件を、上記警告画面で表示した代替の撮影状況に応じた曝射条件となるように変更した後、ステップ322に移行する。 In step 318, it is determined whether or not the photographer has instructed to change the shooting state by determining whether or not the “change” button is designated on the warning screen. If the determination is negative, step 318 is performed. On the other hand, if the determination is affirmative, the process proceeds to step 320 so that the exposure condition included in the initial information becomes the exposure condition corresponding to the alternative photographing situation displayed on the warning screen. After changing to step 322, the process proceeds to step 322.
 ステップ322では、初期情報に含まれる曝射条件を放射線発生装置120へ無線通信部119を介して送信することにより当該曝射条件を設定する。これに応じて放射線発生装置120の線源制御部122は、受信した曝射条件での曝射準備を行う。 In step 322, the exposure condition is set by transmitting the exposure condition included in the initial information to the radiation generator 120 via the wireless communication unit 119. In response to this, the radiation source control unit 122 of the radiation generator 120 prepares for exposure under the received exposure conditions.
 次のステップ324では、曝射開始を指示する指示情報を放射線発生装置120および電子カセッテ40へ無線通信部119を介して送信する。 In the next step 324, instruction information for instructing the start of exposure is transmitted to the radiation generator 120 and the electronic cassette 40 via the wireless communication unit 119.
 これに応じて、放射線源121は、放射線発生装置120がコンソール110から受信した曝射条件に応じた管電圧、管電流、および曝射期間で放射線Xを発生して射出する。放射線源121から曝射された放射線Xは、被検者を透過した後に電子カセッテ40に到達する。 Correspondingly, the radiation source 121 generates and emits radiation X at a tube voltage, a tube current, and an exposure period according to the exposure conditions received by the radiation generator 120 from the console 110. The radiation X exposed from the radiation source 121 reaches the electronic cassette 40 after passing through the subject.
 一方、電子カセッテ40のカセッテ制御部58は、上記曝射開始を指示する指示情報を受信すると、内蔵された放射線検出器20の各画素部32のコンデンサ9への電荷の蓄積を開始し、上記曝射条件で指定された曝射期間の経過後にゲート線ドライバ52を制御してゲート線ドライバ52から1ラインずつ順に各ゲート配線34にオン信号を出力させ、各ゲート配線34に接続された各薄膜トランジスタ10を1ラインずつ順にオンさせる。 On the other hand, when the cassette control unit 58 of the electronic cassette 40 receives the instruction information instructing the start of exposure, the cassette control unit 58 starts accumulating charges in the capacitors 9 of the respective pixel units 32 of the built-in radiation detector 20. After the elapse of the exposure period specified by the exposure condition, the gate line driver 52 is controlled to output an ON signal to each gate wiring 34 one line at a time from the gate line driver 52, and each gate line 34 connected to each gate wiring 34. The thin film transistors 10 are sequentially turned on line by line.
 放射線検出器20は、各ゲート配線34に接続された各薄膜トランジスタ10を1ラインずつ順にオンされると、1ラインずつ順に各コンデンサ9に蓄積された電荷が電気信号として各データ配線36に流れ出す。各データ配線36に流れ出した電気信号は信号処理部54でデジタルの画像データに変換されて、画像メモリ56に記憶される。 In the radiation detector 20, when the thin film transistors 10 connected to the gate lines 34 are turned on one line at a time, the charges accumulated in the capacitors 9 one line at a time flow out to the data lines 36 as electric signals. The electric signal flowing out to each data wiring 36 is converted into digital image data by the signal processing unit 54 and stored in the image memory 56.
 カセッテ制御部58は、撮影終了後、画像メモリ56に記憶された画像データを無線通信によりコンソール110へ送信する。 The cassette control unit 58 transmits the image data stored in the image memory 56 to the console 110 by wireless communication after the end of shooting.
 そこで、次のステップ326では、上記画像データが電子カセッテ40から受信されるまで待機し、次のステップ328にて、受信した画像データに対してシェーディング補正等の各種の補正を行う画像処理を実行する。 Therefore, in the next step 326, the process waits until the image data is received from the electronic cassette 40, and in the next step 328, image processing for performing various corrections such as shading correction on the received image data is executed. To do.
 次のステップ330では、上記画像処理が行われた画像データ(以下、「補正画像データ」と称する。)をHDD116に記憶し、次のステップ332にて、補正画像データにより示される放射線画像を、確認等を行うためにディスプレイ111によって表示させるようにディスプレイドライバ117を制御し、次のステップ334にて、補正画像データをRISサーバ150へ病院内ネットワーク102を介して送信した後、本放射線画像撮影処理プログラムを終了する。なお、RISサーバ150へ送信された補正画像データはデータベース150Aに格納され、医師が撮影された放射線画像の読影や診断等を行うことが可能となる。 In the next step 330, the image data subjected to the image processing (hereinafter referred to as “corrected image data”) is stored in the HDD 116, and in the next step 332, the radiation image indicated by the corrected image data is stored. The display driver 117 is controlled so as to be displayed on the display 111 for confirmation, etc., and in the next step 334, the corrected image data is transmitted to the RIS server 150 via the intra-hospital network 102, and then the radiographic imaging is performed. Terminate the processing program. Note that the corrected image data transmitted to the RIS server 150 is stored in the database 150A, so that the doctor can perform interpretation, diagnosis, and the like of the radiographic image taken.
 次に、図17を参照して、上記放射線画像撮影処理プログラムのステップ304の処理によって送信された温度情報の送信を指示する指示情報を受信した際の電子カセッテ40の作用を説明する。なお、図17は、この際に電子カセッテ40のCPU58Aにより実行される温度情報送信処理プログラムの処理の流れを示すフローチャートであり、当該プログラムはメモリ58Bの所定領域に予め記憶されている。 Next, with reference to FIG. 17, the operation of the electronic cassette 40 when receiving the instruction information for instructing the transmission of the temperature information transmitted by the process of step 304 of the radiographic image capturing processing program will be described. FIG. 17 is a flowchart showing the flow of the temperature information transmission processing program executed by the CPU 58A of the electronic cassette 40 at this time, and the program is stored in advance in a predetermined area of the memory 58B.
 図17のステップ400では、この時点のシンチレータ8の温度を示す温度情報を、温度センサ46から入力されている信号に基づいて導出し、次のステップ402にて、導出した温度情報を、無線通信部60を介してコンソール110に送信し、その後に本温度情報送信処理プログラムを終了する。 In step 400 of FIG. 17, temperature information indicating the temperature of the scintillator 8 at this time is derived based on a signal input from the temperature sensor 46, and in the next step 402, the derived temperature information is converted to wireless communication. It transmits to the console 110 via the part 60, and complete | finishes this temperature information transmission process program after that.
 ところで、本実施の形態に係る電子カセッテ40は、図8に示すように、放射線検出器20がTFT基板30側から放射線Xが照射されるように内蔵されている。 Incidentally, in the electronic cassette 40 according to the present embodiment, as shown in FIG. 8, the radiation detector 20 is incorporated so that the radiation X is irradiated from the TFT substrate 30 side.
 ここで、放射線検出器20は、図20に示すように、シンチレータ8が形成された側から放射線が照射されて、当該放射線の入射面の裏面側に設けられたTFT基板30により放射線画像を読み取る、いわゆる裏面読取方式とされた場合、シンチレータ8の上面側(TFT基板30の反対側)でより強く発光し、TFT基板30側から放射線が照射されて、当該放射線の入射面の表面側に設けられたTFT基板30により放射線画像を読み取る、いわゆる表面読取方式とされた場合、TFT基板30を透過した放射線がシンチレータ8に入射してシンチレータ8のTFT基板30側がより強く発光する。TFT基板30に設けられた各センサ部13には、シンチレータ8で発生した光により電荷が発生する。このため、放射線検出器20は、表面読取方式とされた場合の方が裏面読取方式とされた場合よりもTFT基板30に対するシンチレータ8の発光位置が近いため、撮影によって得られる放射線画像の分解能が高い。 Here, as shown in FIG. 20, the radiation detector 20 is irradiated with radiation from the side where the scintillator 8 is formed, and reads the radiation image by the TFT substrate 30 provided on the back side of the incident surface of the radiation. In the case of a so-called back surface reading method, light is emitted more intensely on the upper surface side (opposite side of the TFT substrate 30) of the scintillator 8, and radiation is irradiated from the TFT substrate 30 side. In the case of a so-called surface reading method in which a radiation image is read by the TFT substrate 30 thus formed, the radiation transmitted through the TFT substrate 30 enters the scintillator 8 and the TFT substrate 30 side of the scintillator 8 emits light more strongly. Electric charges are generated in each sensor unit 13 provided on the TFT substrate 30 by light generated by the scintillator 8. For this reason, since the radiation detector 20 is closer to the light emission position of the scintillator 8 with respect to the TFT substrate 30 when the front surface reading method is used than when the rear surface reading method is used, the resolution of the radiation image obtained by imaging is higher. high.
 また、放射線検出器20は、光電変換膜4を有機光電変換材料により構成しており、光電変換膜4で放射線がほとんど吸収されない。このため、本実施の形態に係る放射線検出器20は、表面読取方式により放射線がTFT基板30を透過する場合でも光電変換膜4による放射線の吸収量が少ないため、放射線に対する感度の低下を抑えることができる。表面読取方式では、放射線がTFT基板30を透過してシンチレータ8に到達する。このように、TFT基板30の光電変換膜4を有機光電変換材料により構成した場合、光電変換膜4での放射線の吸収が殆どなく放射線の減衰を少なく抑えることができるため、表面読取方式に適している。 In the radiation detector 20, the photoelectric conversion film 4 is made of an organic photoelectric conversion material, and the photoelectric conversion film 4 hardly absorbs radiation. For this reason, the radiation detector 20 according to the present embodiment suppresses a decrease in sensitivity to radiation because the amount of radiation absorbed by the photoelectric conversion film 4 is small even when radiation is transmitted through the TFT substrate 30 by the surface reading method. Can do. In the surface reading method, radiation passes through the TFT substrate 30 and reaches the scintillator 8. As described above, when the photoelectric conversion film 4 of the TFT substrate 30 is made of an organic photoelectric conversion material, the photoelectric conversion film 4 hardly absorbs radiation and can suppress radiation attenuation to a small extent. ing.
 また、薄膜トランジスタ10の活性層17を構成する非晶質酸化物や光電変換膜4を構成する有機光電変換材料は、いずれも低温での成膜が可能である。このため、基板1を放射線の吸収が少ないプラスチック樹脂、アラミド、バイオナノファイバで形成することができる。このように形成された基板1は放射線の吸収量が少ないため、表面読取方式により放射線がTFT基板30を透過する場合でも、放射線に対する感度の低下を抑えることができる。 Further, both the amorphous oxide constituting the active layer 17 of the thin film transistor 10 and the organic photoelectric conversion material constituting the photoelectric conversion film 4 can be formed at a low temperature. For this reason, the board | substrate 1 can be formed with a plastic resin, aramid, and bio-nanofiber with little radiation absorption. Since the substrate 1 formed in this way has a small amount of radiation absorption, even when the radiation passes through the TFT substrate 30 by the surface reading method, it is possible to suppress a decrease in sensitivity to radiation.
 また、本実施の形態によれば、図8に示すように、放射線検出器20をTFT基板30が天板41B側となるように筐体41内の天板41Bに貼り付けている。基板1を剛性の高いプラスチック樹脂、アラミド、バイオナノファイバで形成した場合、放射線検出器20自体の剛性が高いため、筐体41の天板41Bを薄く形成することができる。また、基板1を剛性の高いプラスチック樹脂やアラミド、バイオナノファイバで形成した場合、放射線検出器20自体が可撓性を有するため、撮影領域41Aに衝撃が加わった場合でも放射線検出器20が破損しづらい。 Further, according to the present embodiment, as shown in FIG. 8, the radiation detector 20 is attached to the top plate 41B in the housing 41 so that the TFT substrate 30 is on the top plate 41B side. When the substrate 1 is formed of a highly rigid plastic resin, aramid, or bionanofiber, the radiation detector 20 itself has high rigidity, so that the top plate 41B of the housing 41 can be formed thin. In addition, when the substrate 1 is formed of a highly rigid plastic resin, aramid, or bionanofiber, the radiation detector 20 itself has flexibility, so that even when an impact is applied to the imaging region 41A, the radiation detector 20 is damaged. It ’s hard.
 以上詳細に説明したように、本実施の形態では、シンチレータ8の温度に基づいて、当該シンチレータ8の温度に応じて予め定められた撮影を許容する撮影部位および撮影状態の少なくとも一方を特定しているので、特定した撮影部位および撮影状態の少なくとも一方を適用して放射線画像の撮影を行うことにより、シンチレータの劣化を抑制しつつ、シンチレータの温度に応じた放射線画像の撮影の制限を緩和することができる。 As described above in detail, in the present embodiment, based on the temperature of the scintillator 8, at least one of an imaging region and an imaging state that allow predetermined imaging according to the temperature of the scintillator 8 is specified. Therefore, by taking radiographic images by applying at least one of the specified imaging region and imaging state, it is possible to reduce radiographic imaging restrictions according to the scintillator temperature while suppressing degradation of the scintillator. Can do.
 特に、シンチレータ8を、CsIを含んで構成した場合、CsIは熱膨張率が50PPM程度と大きく、CsIの温度が上昇すると、CsIの柱状結晶間の隙間(1~数μm程度)が狭くなり、荷重による放射線検出器20の変形によって柱状結晶同士が接触する可能性が高くなる。 In particular, when the scintillator 8 includes CsI, CsI has a large coefficient of thermal expansion of about 50 PPM, and when the temperature of CsI rises, the gap (about 1 to several μm) between CsI columnar crystals becomes narrower. There is a high possibility that the columnar crystals come into contact with each other due to the deformation of the radiation detector 20 due to the load.
 従って、シンチレータ8としてCsIを含むものを適用する場合には、本実施の形態のようにシンチレータ8の温度の上昇に伴って大きな荷重が加わる撮影を制限することは極めて効果的である。 Therefore, when the one containing CsI is applied as the scintillator 8, it is extremely effective to limit the photographing applied with a large load as the temperature of the scintillator 8 is increased as in the present embodiment.
 また、本実施の形態では、撮影部位および撮影状態の少なくとも一方の特定結果が実際の撮影状況と一致しない場合に警告を行っているので、ユーザにとっての利便性を、より向上させることができる。 In the present embodiment, since the warning is given when the identification result of at least one of the imaging region and the imaging state does not match the actual imaging situation, the convenience for the user can be further improved.
 また、本実施の形態では、特定された撮影状態が実際の撮影状態と一致しない場合で、かつ代替の撮影状態がある場合に、当該代替の撮影状態を提示しているので、ユーザにとっての利便性を、より向上させることができる。 In this embodiment, when the specified shooting state does not match the actual shooting state and there is an alternative shooting state, the alternative shooting state is presented, which is convenient for the user. The sex can be further improved.
 また、本実施の形態では、前記撮影状態が、臥位での撮影および立位での撮影を含んでいるので、これらの撮影を行う形態において、シンチレータの劣化を抑制しつつ、シンチレータの温度に応じた放射線画像の撮影の制限を緩和することができる。 Further, in the present embodiment, since the shooting state includes shooting in the supine position and shooting in the standing position, in the mode in which these shootings are performed, the temperature of the scintillator is controlled while suppressing deterioration of the scintillator. The restriction of radiographic image capturing can be relaxed.
 また、本実施の形態では、センサ部13が、シンチレータ8で発生した光を受光することにより電荷が発生する有機光電変換材料を含んで構成されているので、電子カセッテ40の耐衝撃性を向上させることができる。 Moreover, in this Embodiment, since the sensor part 13 is comprised including the organic photoelectric conversion material which generate | occur | produces an electric charge by receiving the light which generate | occur | produced in the scintillator 8, the impact resistance of the electronic cassette 40 is improved. Can be made.
 また、本実施の形態では、放射線検出器20が、被写体を透過した放射線が透過する透過面を有する天板41Bの放射線が入射される面の反対側の面に直接的に取り付けられているので、電子カセッテ40の耐衝撃性を向上させることができる。 Further, in the present embodiment, the radiation detector 20 is directly attached to the surface opposite to the surface on which the radiation is incident on the top plate 41B having a transmission surface through which the radiation transmitted through the subject is transmitted. The impact resistance of the electronic cassette 40 can be improved.
 特に、本実施の形態では、放射線検出器20が天板41Bに離間可能に取り付けられていているので、効率的に筐体の交換を行うことができる。 In particular, in the present embodiment, since the radiation detector 20 is attached to the top plate 41B so as to be separable, the casing can be exchanged efficiently.
 また、本実施の形態では、天板41Bが放射線検出器20を収容する筐体41の一部を構成しているので、天板を筐体とは別に構成する場合に比較して、より簡易に天板を構成することができる。 In the present embodiment, since the top plate 41B constitutes a part of the housing 41 that houses the radiation detector 20, it is simpler than when the top plate is configured separately from the housing. A top plate can be constructed.
 また、本実施の形態では、TFT基板30および天板41Bの間に内部空間Bが形成されているので、放射線検出器20の天板41Bへの接着時に、TFT基板30および天板41Bに対する接着部材80の接着面に空気が残存していても、その残存していた空気を内部空間Bに逃がすことができる。また、内部空間Bと外部空間Aを連通する連通路82が接着部材80に形成されているので、外部空間Aの気圧が変化した場合でも、内部空間Bの圧力と外部空間Aの気圧とを一定に保つことができる。これにより、気圧変化によって天板41Bに対するTFT基板30の接着性が低下することを防止することができる。 In the present embodiment, since the internal space B is formed between the TFT substrate 30 and the top plate 41B, when the radiation detector 20 is bonded to the top plate 41B, the TFT substrate 30 and the top plate 41B are bonded. Even if air remains on the bonding surface of the member 80, the remaining air can escape to the internal space B. In addition, since the communication member 82 that communicates the internal space B and the external space A is formed in the adhesive member 80, the pressure in the internal space B and the air pressure in the external space A can be reduced even when the atmospheric pressure in the external space A changes. Can be kept constant. Thereby, it can prevent that the adhesiveness of the TFT substrate 30 with respect to the top plate 41B falls by atmospheric pressure change.
 また、本実施の形態では、連通路82が角部84を有している。そのため、外部空間Aから連通路82に空気と共に空気よりも質量の大きい異物が流入した場合でも、角部84を流通する空気の流れに前記異物が追従することができないので、前記異物が内部空間Bに混入することを防止することができる。これにより、放射線画像の品質低下に繋がる異物混入を抑えることができる。 Further, in the present embodiment, the communication passage 82 has a corner portion 84. Therefore, even when foreign matter having a mass larger than that of air flows into the communication path 82 from the external space A, the foreign matter cannot follow the flow of air flowing through the corner portion 84. Mixing into B can be prevented. As a result, it is possible to suppress contamination of foreign matter that leads to deterioration of the quality of the radiation image.
 さらに、連通路82が接着部材80に形成され、接着部材80がその全面に接着力を有しているので、角部84において、空気に追従できなかった異物が連通路82の壁面に付着し易くなる。従って、前記異物を連通路82内で確実に捕捉することができる。よって、内部空間Bへの異物の混入をより一層確実に防止することができる。 Further, since the communication path 82 is formed in the adhesive member 80 and the adhesive member 80 has adhesive force on the entire surface, the foreign matter that could not follow the air adheres to the wall surface of the communication path 82 at the corner 84. It becomes easy. Therefore, the foreign matter can be reliably captured in the communication path 82. Therefore, it is possible to more reliably prevent foreign matter from entering the internal space B.
 また、本実施の形態によれば、連通路82の通路幅dを空気が流通できる範囲内において、できる限り狭く設定されているので、比較的小さな金属粉等の異物の混入に対応することができる。なお、想定される異物の大きさに応じて連通路82の通路幅dを設定すると、効率的に異物の混入を防止することができる。 Further, according to the present embodiment, the passage width d of the communication passage 82 is set as narrow as possible within the range in which air can circulate, so that it is possible to cope with the mixing of foreign matters such as relatively small metal powder. it can. If the passage width d of the communication passage 82 is set according to the assumed size of the foreign matter, it is possible to efficiently prevent the foreign matter from being mixed.
 ところで、一般的に、シンチレータ8はTFT基板30よりも脆弱である。そのため、シンチレータ8を天板41Bに接着部材80にて接着した場合、放射線検出器20を剥離するときにシンチレータ8が破損するおそれがある。しかしながら、本実施の形態では、接着部材80にてTFT基板30を天板41Bに接着しているので、放射線検出器20を剥離するときにシンチレータ8が破損する懸念を排除することができる。 Incidentally, the scintillator 8 is generally more fragile than the TFT substrate 30. Therefore, when the scintillator 8 is bonded to the top plate 41B with the adhesive member 80, the scintillator 8 may be damaged when the radiation detector 20 is peeled off. However, in the present embodiment, since the TFT substrate 30 is bonded to the top plate 41B with the adhesive member 80, the concern that the scintillator 8 is damaged when the radiation detector 20 is peeled can be eliminated.
 また、撮影環境によっては、天板41Bに被写体(患者)を乗せた状態で撮影を行うことがある。この場合、天板41Bに傷が付き易い。そして、天板41Bに傷が付いた場合、当該傷が固定パターンノイズとして放射線画像に表示されることがあるため、筐体41を交換することが望ましい。しかしながら、天板41Bに放射線検出器20を剥離不能に貼り付けた場合、筐体41を交換するときに、高価な放射線検出器20も一緒に交換する必要がありコストが掛かる。本実施の形態によれば、放射線検出器20を天板41Bに対して剥離可能に接着しているので、効率的に筐体41の交換を行うことができる。 Depending on the shooting environment, shooting may be performed with the subject (patient) on the top board 41B. In this case, the top plate 41B is easily damaged. When the top plate 41B is scratched, it may be displayed on the radiographic image as fixed pattern noise, so it is desirable to replace the housing 41. However, when the radiation detector 20 is pasted to the top plate 41B so as not to be peeled off, it is necessary to replace the expensive radiation detector 20 together when the casing 41 is replaced, which increases costs. According to the present embodiment, since the radiation detector 20 is detachably bonded to the top plate 41B, the housing 41 can be efficiently replaced.
 [第2の実施の形態]
 本第2の実施の形態では、シンチレータ8の温度を、放射線検出器20のセンサ部13に発生する暗電流に基づいて検出する場合の形態例について説明する。すなわち、本実施の形態は、放射線検出器20がシンチレータ8とTFT基板30が密着して構成されていることから、TFT基板30側で発生する暗電流を利用してシンチレータ8の温度を検出するものである。なお、本実施の形態に係る撮影システム104の構成は、上記第1の実施の形態に係る撮影システム104と同様であるため、ここでの説明は省略する。
[Second Embodiment]
In the second embodiment, an example in which the temperature of the scintillator 8 is detected based on a dark current generated in the sensor unit 13 of the radiation detector 20 will be described. That is, in the present embodiment, since the radiation detector 20 is configured such that the scintillator 8 and the TFT substrate 30 are in close contact with each other, the temperature of the scintillator 8 is detected using the dark current generated on the TFT substrate 30 side. Is. Note that the configuration of the imaging system 104 according to the present embodiment is the same as that of the imaging system 104 according to the first embodiment, and a description thereof will be omitted here.
 まず、図18を参照して、放射線画像の撮影を行う際の本第2の実施の形態に係るコンソール110の作用を説明する。なお、図18は、この際にコンソール110のCPU113によって実行される、本第2の実施の形態に係る放射線画像撮影処理プログラムの処理の流れを示すフローチャートであり、当該プログラムはROM114の所定領域に予め記憶されている。また、図18における図14と同一の処理を実行するステップには、図14と同一のステップ番号を付し、その説明を省略する。 First, with reference to FIG. 18, the operation of the console 110 according to the second embodiment when radiographic images are taken will be described. FIG. 18 is a flowchart showing the flow of processing of the radiographic imaging program according to the second embodiment, which is executed by the CPU 113 of the console 110 at this time, and the program is stored in a predetermined area of the ROM 114. Stored in advance. Also, steps in FIG. 18 that execute the same processing as in FIG. 14 are assigned the same step numbers as in FIG. 14, and descriptions thereof are omitted.
 図18のステップ304’では、放射線検出器20のセンサ部13に発生する暗電流を示す情報(以下、「暗電流情報」という。)の送信を指示する指示情報を電子カセッテ40へ無線通信部119を介して送信した後、次のステップ306’にて、当該暗電流情報の受信待ちを行う。上記暗電流情報の送信を指示する指示情報を受信すると、電子カセッテ40は、当該暗電流情報を、無線通信部60を介してコンソール110に送信する。これに応じて、上記ステップ306’が肯定判定となってステップ307に移行する。 In step 304 ′ of FIG. 18, instruction information for instructing transmission of information indicating the dark current generated in the sensor unit 13 of the radiation detector 20 (hereinafter referred to as “dark current information”) is transmitted to the electronic cassette 40 as a wireless communication unit. After the transmission via 119, the next step 306 ′ waits for reception of the dark current information. When receiving the instruction information instructing transmission of the dark current information, the electronic cassette 40 transmits the dark current information to the console 110 via the wireless communication unit 60. In response, step 306 ′ is affirmative and the process proceeds to step 307.
 ステップ307では、電子カセッテ40から受信した暗電流情報に基づいて、シンチレータ8の温度を示す温度情報を導出する。なお、本実施の形態では、電子カセッテ40の暗電流とシンチレータ8の温度との関係を示す情報を、電子カセッテ40と同型の実機を用いた実験や、電子カセッテ40の設計仕様に基づくコンピュータ・シミュレーション等によって予め得ておき、当該情報から受信した暗電流情報により示される暗電流に対応する温度を導出することにより、上記温度情報を導出している。 In step 307, temperature information indicating the temperature of the scintillator 8 is derived based on the dark current information received from the electronic cassette 40. In the present embodiment, information indicating the relationship between the dark current of the electronic cassette 40 and the temperature of the scintillator 8 is obtained from an experiment using an actual machine of the same type as the electronic cassette 40 or a computer / computer based on the design specifications of the electronic cassette 40. The temperature information is derived by deriving a temperature corresponding to the dark current indicated by the dark current information received from the information in advance by simulation or the like.
 なお、この形態に限らず、暗電流は8℃で約2倍になることが知られているので、電子カセッテ40の工場出荷時等において所定温度であるときの暗電流値と当該所定温度とを予め記憶しておき、電子カセッテ40から受信した暗電流情報により示される暗電流値と、予め記憶しておいた暗電流値との差分から温度を逆算する形態としてもよい。 In addition, it is known that the dark current is approximately doubled at 8 ° C. without being limited to this form. Therefore, when the electronic cassette 40 is shipped from the factory, the dark current value at the predetermined temperature and the predetermined temperature May be stored in advance, and the temperature may be calculated backward from the difference between the dark current value indicated by the dark current information received from the electronic cassette 40 and the dark current value stored in advance.
 その後、ステップ310’では、ステップ308の処理によって読み出した撮影情報における、上記ステップ307の処理によって導出した温度情報により示される温度が属する温度範囲に対して放射線画像の撮影が許容されている撮影部位および撮影状態を特定する。 Thereafter, in step 310 ′, radiographic images are allowed to be captured in the temperature range to which the temperature indicated by the temperature information derived by the processing of step 307 belongs in the imaging information read out by the processing of step 308. And the shooting state.
 次に、図19を参照して、上記放射線画像撮影処理プログラムのステップ304’の処理によって送信された暗電流情報の送信を指示する指示情報を受信した際の電子カセッテ40の作用を説明する。なお、図19は、この際に電子カセッテ40のCPU58Aにより実行される暗電流情報送信処理プログラムの処理の流れを示すフローチャートであり、当該プログラムはメモリ58Bの所定領域に予め記憶されている。 Next, with reference to FIG. 19, the operation of the electronic cassette 40 when receiving the instruction information for instructing the transmission of the dark current information transmitted by the process of step 304 'of the radiographic imaging processing program will be described. FIG. 19 is a flowchart showing the flow of the dark current information transmission processing program executed by the CPU 58A of the electronic cassette 40 at this time, and the program is stored in advance in a predetermined area of the memory 58B.
 図19のステップ450では、この時点の放射線検出器20におけるセンサ部13の暗電流を示す暗電流情報を次のように導出する。 In step 450 of FIG. 19, dark current information indicating the dark current of the sensor unit 13 in the radiation detector 20 at this time is derived as follows.
 すなわち、まず、この時点で放射線検出器20において蓄積されている電荷を排出するリセット動作を行った後、予め定められた電荷蓄積期間で放射線検出器20による撮影を行う。この際、放射線は曝射されていないため、当該撮影によって得られた画像データが放射線検出器20のセンサ部13における暗電流を示す情報となる。 That is, first, after performing a reset operation for discharging the charges accumulated in the radiation detector 20 at this time, imaging is performed by the radiation detector 20 in a predetermined charge accumulation period. At this time, since radiation is not exposed, the image data obtained by the imaging is information indicating the dark current in the sensor unit 13 of the radiation detector 20.
 そして、以上によって得られた画像データから、予め定められた領域(本実施の形態では、放射線検出器20の中央部を含む一部領域)に対応するデータの平均値を暗電流情報として導出する。 Then, from the image data obtained as described above, an average value of data corresponding to a predetermined region (in this embodiment, a partial region including the central portion of the radiation detector 20) is derived as dark current information. .
 次のステップ452では、上記ステップ450の処理によって導出した暗電流情報を、無線通信部60を介してコンソール110に送信し、その後に本暗電流情報送信処理プログラムを終了する。 In the next step 452, the dark current information derived by the processing in step 450 is transmitted to the console 110 via the wireless communication unit 60, and then the dark current information transmission processing program is terminated.
 以上詳細に説明したように、本実施の形態では、上記第1の実施の形態における効果に加えて、センサ部13に発生する暗電流に基づいてシンチレータ8の温度を検出しているので、シンチレータ8の温度を温度センサにより検出する場合に比較して、より低コスト化することができる。 As described above in detail, in the present embodiment, in addition to the effects of the first embodiment, the temperature of the scintillator 8 is detected based on the dark current generated in the sensor unit 13. Compared with the case where the temperature of 8 is detected by the temperature sensor, the cost can be further reduced.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施の形態に多様な変更または改良を加えることができ、当該変更または改良を加えた形態も本発明の技術的範囲に含まれる。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. Various modifications or improvements can be added to the above-described embodiment without departing from the gist of the invention, and embodiments to which such modifications or improvements are added are also included in the technical scope of the present invention.
 また、上記の実施の形態は、クレームにかかる発明を限定するものではなく、また実施の形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。前述した実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜の組み合わせにより種々の発明を抽出できる。実施の形態に示される全構成要件から幾つかの構成要件が削除されても、効果が得られる限りにおいて、この幾つかの構成要件が削除された構成が発明として抽出され得る。 Further, the above-described embodiment does not limit the invention according to the claims, and all combinations of features described in the embodiment are not necessarily essential to the solution means of the invention. The embodiments described above include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. Even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, as long as an effect is obtained, a configuration from which these some constituent requirements are deleted can be extracted as an invention.
 例えば、上記実施の形態では、撮影を許容する撮影状況と実際の撮影状況とが一致しない場合にコンソール110によって警告や代替の撮影状況の提示を行う場合について説明したが、本発明はこれに限定されるものではなく、これらを電子カセッテ40において実行する形態としてもよい。この場合、上記実施の形態に比較して、コンソール110による負荷を軽減することができる。 For example, in the above-described embodiment, a case has been described in which the console 110 presents a warning or an alternative shooting situation when the shooting situation that allows shooting does not match the actual shooting situation. However, the present invention is not limited to this. However, these may be executed in the electronic cassette 40. In this case, the load on the console 110 can be reduced as compared with the above embodiment.
 また、上記実施の形態では、センサ部13が、シンチレータ8で発生した光を受光することにより電荷が発生する有機光電変換材料を含んで構成されている場合について説明したが、本発明はこれに限定されるものではなく、センサ部13として有機光電変換材料を含まずに構成されたものを適用する形態としてもよい。 In the above embodiment, the case where the sensor unit 13 is configured to include an organic photoelectric conversion material that generates charges by receiving light generated by the scintillator 8 has been described. It is not limited, It is good also as a form which applies what was comprised without including an organic photoelectric conversion material as the sensor part 13. FIG.
 また、上記実施の形態では、代替の撮影状況を1つのみ提示する場合について説明したが、本発明はこれに限定されるものではなく、代替の撮影状況が複数ある場合には、当該複数の撮影状況の2つ以上の組み合わせを提示する形態としてもよい。この場合、上記実施の形態に比較して、撮影者による撮影状況の選択肢が増えるため、シンチレータの温度に応じた放射線画像の撮影の制限を、より緩和することができる。 In the above embodiment, the case where only one alternative shooting situation is presented has been described. However, the present invention is not limited to this, and when there are a plurality of alternative shooting situations, A combination of two or more shooting situations may be presented. In this case, as compared with the above-described embodiment, since there are more choices of imaging conditions by the photographer, it is possible to further relax restrictions on radiographic imaging according to the scintillator temperature.
 また、上記実施の形態では、連通路82に角部84を複数設けた場合について説明したが、本発明はこれに限定されるものではなく、一例として図21に示すように、連通路90に角部92を1つだけ有していてもよい。これにより、接着部材80に連通路90を容易に形成することができる。 Moreover, although the said embodiment demonstrated the case where the corner | angular part 84 was provided with two or more in the communicating path 82, this invention is not limited to this, As shown in FIG. Only one corner 92 may be provided. Thereby, the communication path 90 can be easily formed in the adhesive member 80.
 また、天板41Bから放射線検出器20を剥離するときに、有機溶剤等を接着部材80に流し込み、接着部材80の接着性を弱くした上で放射線検出器20を剥離してもよい。この場合、接着部材80が角部を有しているので、前記有機溶剤が接着部材80にしみ込み易くなる。 Further, when the radiation detector 20 is peeled from the top plate 41B, an organic solvent or the like may be poured into the adhesive member 80 to weaken the adhesiveness of the adhesive member 80 and then the radiation detector 20 may be peeled off. In this case, since the adhesive member 80 has corners, the organic solvent can easily penetrate into the adhesive member 80.
 さらに、上記実施の形態では、電子カセッテ40の筐体41の内部にカセッテ制御部58や電源部70を収容するケース42と放射線検出器20とを重ならないように配置した場合について説明したが、これに限定されるものではない。例えば、放射線検出器20とカセッテ制御部58や電源部70を重なるように配置してもよい。 Furthermore, in the above-described embodiment, the case has been described in which the case 42 that accommodates the cassette control unit 58 and the power supply unit 70 and the radiation detector 20 are arranged in the housing 41 of the electronic cassette 40 so as not to overlap. It is not limited to this. For example, the radiation detector 20 and the cassette control unit 58 or the power supply unit 70 may be arranged so as to overlap each other.
 また、上記実施の形態では、電子カセッテ40とコンソール110との間、放射線発生装置120とコンソール110との間で、無線にて通信を行う場合について説明したが、本発明はこれに限定されるものではなく、例えば、これらの少なくとも一方を有線にて通信を行う形態としてもよい。 Moreover, although the said embodiment demonstrated the case where it communicated by radio | wireless between the electronic cassette 40 and the console 110, and between the radiation generator 120 and the console 110, this invention is limited to this. For example, at least one of these may be configured to perform wired communication.
 また、上記実施の形態では、放射線としてX線を適用した場合について説明したが、本発明はこれに限定されるものではなく、γ線等の他の放射線を適用する形態としてもよい。 In the above embodiment, the case where X-rays are applied as radiation has been described. However, the present invention is not limited to this, and other radiation such as γ-rays may be applied.
 また、放射線検出器20のセンサ部13として、光電変換膜4を、有機光電変換材料を含む材料で構成した有機CMOSセンサを用いてもよく、放射線検出器20のTFT基板30として、薄膜トランジスタ10としての有機材料を含む有機トランジスタを、可撓性を有するシート上にアレイ状に配列した有機TFTアレイ・シートを用いてもよい。上記の有機CMOSセンサは、例えば、特開2009-212377号公報に開示されている。また、上記の有機TFTアレイ・シートは、例えば「日本経済新聞、“東京大学、「ウルトラフレキシブル」な有機トランジスタを開発”、[online]、[平成23年5月8日検索]、インターネット<URL:http://www.nikkei.com/tech/trend/article/g=96958A9C93819499E2EAE2E0E48DE2EAE3E3E0E2E3E2E2E2E2E2E2E2;p=9694E0E7E2E6E0E2E3E2E2E0E2E0>」に開示されている。 Further, as the sensor unit 13 of the radiation detector 20, an organic CMOS sensor in which the photoelectric conversion film 4 is made of a material containing an organic photoelectric conversion material may be used. As the TFT substrate 30 of the radiation detector 20, the thin film transistor 10. An organic TFT array sheet in which organic transistors including the organic material are arranged in an array on a flexible sheet may be used. The above organic CMOS sensor is disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-212377. In addition, the organic TFT array sheet described above is, for example, “Nihon Keizai Shimbun,“ The University of Tokyo, “Developing“ Ultra Flexible ”Organic Transistor” ”, [online], [Search May 8, 2011], Internet <URL : Http://www.nikkei.com/tech/trend/article/g=96958A9C93819499E2EAE2E0E48DE2EAE3E3E0E2E3E2E2E2E2E2E2E2; p = 9694E0E7E2E6E0E2E3E2E2E0E2E0> ”
 放射線検出器20のセンサ部13としてCMOSセンサを用いる場合、高速に光電変換を行うことができる利点や、基板を薄くすることができる結果、表面読取方式(以下、ISS(Irradiation Side Sampling)方式という。)を採用した場合に放射線の吸収を抑制することができると共に、マンモグラフィによる撮影にも好適に適用することができる利点がある。 When a CMOS sensor is used as the sensor unit 13 of the radiation detector 20, the advantage of being able to perform photoelectric conversion at high speed and the result of being able to thin the substrate are the surface reading method (hereinafter referred to as ISS (Irradiation Side Sampling) method). .) Can be used to suppress the absorption of radiation and can be suitably applied to mammography.
 これに対し、放射線検出器20のセンサ部13としてCMOSセンサを用いる場合の欠点として、結晶シリコン基板を用いた場合において放射線に対する耐性が低いことが挙げられる。このため、従来は、センサ部とTFT基板との間にFOP(ファイバ光学プレート)を設ける等といった対策を行う技術もあった。 On the other hand, as a defect when a CMOS sensor is used as the sensor unit 13 of the radiation detector 20, there is a low resistance to radiation when a crystalline silicon substrate is used. For this reason, conventionally, there has been a technique for taking measures such as providing an FOP (fiber optical plate) between the sensor unit and the TFT substrate.
 この欠点を踏まえて、放射線に対する耐性の高い半導体基板として、SiC(炭化ケイ素)基板を用いる技術が適用できる。SiC基板を用いることにより、ISS方式として用いることができる利点や、SiCはSiと比較して内部抵抗が小さく、発熱量が少ないため、動画撮影を行う際の発熱量の抑制、CsIの温度上昇に伴う感度低下を抑制することができる利点がある。 Based on this drawback, a technique using a SiC (silicon carbide) substrate as a semiconductor substrate having high resistance to radiation can be applied. Advantages that can be used as an ISS method by using a SiC substrate, and because SiC has a lower internal resistance and a smaller amount of heat generation than Si, it suppresses the amount of heat generation when shooting movies, and raises the temperature of CsI There is an advantage that it is possible to suppress a decrease in sensitivity due to.
 このように、SiC基板等の放射線に対する耐性が高い基板は一般にワイドキャップ(~3eV程度)なので、一例として図24に示すように、吸収端が青領域に対応する440nm程度である。よって、この場合は、緑領域で発光するCsI:Tlや、GOS等のシンチレータを用いることができない。 As described above, a substrate having a high resistance to radiation such as a SiC substrate is generally a wide cap (about 3 eV), and as an example, as shown in FIG. 24, the absorption edge is about 440 nm corresponding to the blue region. Therefore, in this case, a scintillator such as CsI: Tl or GOS that emits light in the green region cannot be used.
 これに対し、アモルファスシリコンの感度特性から、これらの緑領域で発光するシンチレータの研究が盛んに行われてきたため、当該シンチレータを用いることの要望が高い。このため、光電変換膜4を緑領域での発光を吸収する有機光電変換材料を含む材料で構成することにより、緑領域で発光するシンチレータを用いることができる。 In contrast, the scintillator that emits light in these green regions has been actively researched due to the sensitivity characteristics of amorphous silicon, and therefore there is a high demand for using the scintillator. For this reason, the scintillator which light-emits in a green area | region can be used by comprising the photoelectric converting film 4 with the material containing the organic photoelectric conversion material which absorbs light emission in a green area | region.
 光電変換膜4を、有機光電変換材料を含む材料により構成し、薄膜トランジスタ10を、SiC基板を用いて構成した場合、光電変換膜4と薄膜トランジスタ10との感度波長領域が異なるので、シンチレータによる発光が薄膜トランジスタ10のノイズとならない。 When the photoelectric conversion film 4 is formed of a material containing an organic photoelectric conversion material and the thin film transistor 10 is formed using a SiC substrate, the photoelectric conversion film 4 and the thin film transistor 10 have different sensitivity wavelength regions, and thus the light emitted by the scintillator is emitted. There is no noise of the thin film transistor 10.
 また、光電変換膜4として、SiCと有機光電変換材料を含む材料とを積層させれば、CsI:Naのような、主として青領域の発光を受光することに加えて、緑領域の発光も受光することができる結果、感度の向上に繋がる。また、有機光電変換材料は放射線の吸収が殆どないため、ISS方式に好適に用いることができる。 Further, if SiC and a material containing an organic photoelectric conversion material are laminated as the photoelectric conversion film 4, in addition to receiving light emission mainly in the blue region, such as CsI: Na, light emission in the green region is also received. As a result, the sensitivity can be improved. In addition, since the organic photoelectric conversion material hardly absorbs radiation, it can be suitably used for the ISS system.
 なお、SiCが放射線に対する耐性が高いのは、放射線が当たっても原子核が弾き飛ばされにくいためであり、この点は、例えば、「日本原子力研究所、“宇宙や原子力分野などの高放射線環境下で長く使える半導体素子を開発”、[online]、[平成23年5月8日検索]、インターネット<URL:http://www.jaea.go.jp/jari/jpn/publish/01/ff/ff36/sic.html>」に開示されている。 Note that SiC is highly resistant to radiation because it is difficult for nuclear nuclei to be blown off even when exposed to radiation. Develop semiconductor devices that can be used for a long time ", [online], [Search May 8, 2011], Internet <URL: http://www.jaea.go.jp/jari/jpn/publish/01/ff/ ff36 / sic.html> ”.
 また、SiC以外の放射線に対する耐性が高い半導体材料として、C(ダイヤモンド)、BN、GaN、AlN、ZnO等が挙げられる。これらの軽元素半導体材料が耐放射線性が高いのは、主としてワイドギャップ半導体であるがために電離(電子-正孔対形成)に要するエネルギーが高く、反応断面積が小さいことや、原子間のボンディングが強く、原子変位生成が起こりにくいことに起因する。なお、この点については、例えば、「電子技術総合研究所、“原子力エレクトロニクスの新展開”、[online]、[平成23年5月8日検索]、インターネット<URL:http://www.aist.go.jp/ETL/jp/results/bulletin/pdf/62-10to11/kobayashi150.pdf>」に開示されている。また、GaNの耐放射線性については、例えば、「東北大学、“窒化ガリウム素子の放射線耐性評価”、[online]、[平成23年5月8日検索]、インターネット<URL:http://cycgw1.cyric.tohoku.ac.jp/~sakemi/ws2007/ws/pdf/narita.pdf>」に開示されている。 Moreover, C (diamond), BN, GaN, AlN, ZnO etc. are mentioned as a semiconductor material with high tolerance with respect to radiations other than SiC. These light element semiconductor materials have high radiation resistance because they are mainly wide-gap semiconductors, so they require high energy for ionization (electron-hole pair formation), small reaction cross-sections, This is due to the fact that bonding is strong and atomic displacement is less likely to occur. Regarding this point, for example, “Electronics Research Institute,“ New Development of Nuclear Electronics ”, [online], [Search May 8, 2011], Internet <URL: http: //www.aist .go.jp / ETL / jp / results / bulletin / pdf / 62-10to11 / kobayashi150.pdf> ”. Regarding the radiation resistance of GaN, for example, “Tohoku University,“ Evaluation of radiation resistance of gallium nitride device ”, [online], [Search May 8, 2011], Internet <URL: http: // cycgw1 .cyric.tohoku.ac.jp / ~ sakemi / ws2007 / ws / pdf / narita.pdf> ”.
 なお、GaNは青色LED以外の用途として熱伝導性がよいことと、絶縁耐性が高いことから、パワー系の分野でIC化が研究されている。また、ZnOは、主に青~紫外線領域で発光するLEDが研究されている。 In addition, since GaN has good thermal conductivity as a use other than blue LEDs and has high insulation resistance, ICs are being studied in the field of power systems. As for ZnO, an LED that emits light mainly in the blue to ultraviolet region has been studied.
 ところで、SiCを用いる場合、バンドギャップEgがSiの約1.1eVから約2.8eVとなるため、光の吸収波長λが短波長側にシフトする。具体的には、波長λ=1.24/Eg×1000であるので、440nm程度までの波長に感度が変化する。よって、SiCを用いる場合、一例として図25に示すように、シンチレータも緑領域で発光するCsI:Tl(ピーク波長:約565nm)よりも青領域で発光するCsI:Na(ピーク波長:約420nm)の方が発光波長として適していることになる。蛍光体としては青発光がよいので、CsI:Na(ピーク波長:約420nm)、BaFX:Eu(XはBr,I等のハロゲン、ピーク波長:約380nm)、CaWO(ピーク波長:約425nm)、ZnS:Ag(ピーク波長:約450nm)、LaOBr:Tb、YS:Tb等が適している。特に、CsI:NaとCRカセッテ等で用いられているBaFX:Eu、スクリーンやフイルム等で用いられているCaWOが好適に用いられる。 By the way, when SiC is used, the band gap Eg is changed from about 1.1 eV to about 2.8 eV of Si, so that the light absorption wavelength λ shifts to the short wavelength side. Specifically, since the wavelength λ = 1.24 / Eg × 1000, the sensitivity changes to wavelengths up to about 440 nm. Therefore, when SiC is used, as shown in FIG. 25 as an example, the scintillator emits light in the blue region more than CsI: Tl (peak wavelength: about 565 nm) that emits light in the green region, as well as CsI: Na (peak wavelength: about 420 nm). This is more suitable as the emission wavelength. Since the phosphor emits blue light well, CsI: Na (peak wavelength: about 420 nm), BaFX: Eu (X is a halogen such as Br and I, peak wavelength: about 380 nm), CaWO 4 (peak wavelength: about 425 nm) ZnS: Ag (peak wavelength: about 450 nm), LaOBr: Tb, Y 2 O 2 S: Tb, and the like are suitable. In particular, BaFX: Eu used in CsI: Na and CR cassettes, and CaWO 4 used in screens and films are preferably used.
 一方、放射線に対する耐性が高いCMOSセンサとして、SOI(Silicon On Insulator)によりSi基板/厚膜SiO/有機光電変換材料の構成を用いてCMOSセンサを構成してもよい。 On the other hand, as a CMOS sensor having high resistance to radiation, a CMOS sensor may be configured by using a configuration of Si substrate / thick film SiO 2 / organic photoelectric conversion material by SOI (Silicon On Insulator).
 なお、この構成に適用可能な技術としては、例えば、「宇宙航空研究開発機構(JAXA)宇宙科学研究所、“民生用最先端SOI技術と宇宙用耐放射線技術の融合により耐放射線性を持つ高機能論理集積回路の開発基盤を世界で初めて構築”、[online]、[平成23年5月8日検索]、インターネット<URL:http://www.jaxa.jp/press/2010/11/20101122_soi_j.html>」が挙げられる。 Technologies that can be applied to this configuration include, for example, “Japan Aerospace Exploration Agency (JAXA) Institute for Space Science,“ High radiation resistance by combining the most advanced consumer SOI technology and radiation resistance technology for space. “Development of functional logic integrated circuit development platform for the first time in the world”, [online], [Search May 8, 2011], Internet <URL: http://www.jaxa.jp/press/2010/11/20101122_soi_j .html> ".
 なお、SOIにおいては膜厚SOIの放射線耐性が高いため、高放射線耐久性素子としては、完全分離型厚膜SOI、部分分離型厚膜SOI等が例示される。なお、これらのSOIについては、例えば、「特許庁、“SOI(Silicon On Insulator)技術に関する特許出願技術動向調査報告”、[online]、[平成23年5月8日検索]、インターネット<URL:http://www.jpo.go.jp/shiryou/pdf/gidou-houkoku/soi.pdf>」に開示されている。 In addition, since the radiation resistance of the film thickness SOI is high in the SOI, examples of the high radiation durability element include a complete separation type thick film SOI and a partial separation type thick film SOI. As for these SOIs, for example, “Patent Office,“ Patent Application Technology Trend Survey Report on SOI (Silicon On Insulator) Technology ”, [online], [Search May 8, 2011], Internet <URL: http://www.jpo.go.jp/shiryou/pdf/gidou-houkoku/soi.pdf> ”.
 さらに、放射線検出器20の薄膜トランジスタ10等が光透過性を有しない構成(例えば、アモルファスシリコン等の光透過性を有しない材料で活性層17を形成した構成)であっても、この薄膜トランジスタ10等を、光透過性を有する基板1(例えば合成樹脂製の可撓性基板)上に配置し、基板1のうち薄膜トランジスタ10等が形成されていない部分は光が透過するように構成することで、光透過性を有する放射線検出器20を得ることは可能である。光透過性を有しない構成の薄膜トランジスタ10等を、光透過性を有する基板1上に配置することは、第1の基板上に作製した微小デバイスブロックを第1の基板から切り離して第2の基板上に配置する技術、具体的には、例えばFSA(Fluidic Self-Assembly)を適用することで実現できる。上記のFSAは、例えば「富山大学、“微少半導体ブロックの自己整合配置技術の研究”、[online]、[平成23年5月8日検索]、インターネット<URL:http://www3.u-toyama.ac.jp/maezawa/Research/FSA.html>」に開示されている。 Further, even if the thin film transistor 10 or the like of the radiation detector 20 does not have light transmission (for example, a structure in which the active layer 17 is formed of a material having no light transmission such as amorphous silicon), the thin film transistor 10 or the like. Is disposed on a light-transmitting substrate 1 (for example, a flexible substrate made of synthetic resin), and a portion of the substrate 1 where the thin film transistor 10 or the like is not formed is configured to transmit light. It is possible to obtain a radiation detector 20 having optical transparency. Arranging the thin film transistor 10 or the like having a non-light-transmitting structure on the light-transmitting substrate 1 is performed by separating the micro device block manufactured on the first substrate from the first substrate. This can be realized by applying the technology disposed above, specifically, for example, FSA (Fluidic Self-Assembly). The above FSA is, for example, “Toyama University,“ Study on Self-Aligned Placement Technology of Small Semiconductor Blocks ”, [online], [Search May 8, 2011], Internet <URL: http: //www3.u- toyama.ac.jp/maezawa/Research/FSA.html> ”.
 その他、上記実施の形態で説明したRIS100の構成(図1参照。)、放射線撮影室の構成(図2参照。)、電子カセッテ40の構成(図3~図11参照。)、撮影システム104の構成(図12参照。)は一例であり、本発明の主旨を逸脱しない範囲内において、不要な部分を削除したり、新たな部分を追加したり、接続状態等を変更したりすることができることは言うまでもない。 In addition, the configuration of the RIS 100 described in the above embodiment (see FIG. 1), the configuration of the radiation imaging room (see FIG. 2), the configuration of the electronic cassette 40 (see FIGS. 3 to 11), and the imaging system 104 The configuration (see FIG. 12) is an example, and an unnecessary part can be deleted, a new part can be added, or the connection state can be changed without departing from the gist of the present invention. Needless to say.
 また、上記実施の形態で説明した撮影情報の構成(図13参照。)も一例であり、本発明の主旨を逸脱しない範囲内において、不要な情報を削除したり、新たな情報を追加したりすることができることは言うまでもない。 The configuration of the shooting information described in the above embodiment (see FIG. 13) is also an example, and unnecessary information is deleted or new information is added without departing from the gist of the present invention. It goes without saying that you can do it.
 また、上記実施の形態で説明した各種プログラムの処理の流れ(図14,図17~図19参照。)も一例であり、本発明の主旨を逸脱しない範囲内において、不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ換えたりすることができることは言うまでもない。 Further, the processing flow of various programs described in the above embodiment (see FIGS. 14 and 17 to 19) is also an example, and unnecessary steps can be deleted without departing from the gist of the present invention. Needless to say, new steps can be added or the processing order can be changed.
 さらに、上記実施の形態で説明した各種画面の構成(図15,図16参照。)も一例であり、本発明の主旨を逸脱しない範囲内において、不要な情報を削除したり、新たな情報を追加したりすることができることは言うまでもない。 Furthermore, the configuration of various screens described in the above embodiment (see FIGS. 15 and 16) is also an example, and unnecessary information is deleted or new information is added without departing from the gist of the present invention. Needless to say, it can be added.
 日本出願2010-192923及び日本出願2011-137586の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosures of Japanese Application 2010-192923 and Japanese Application 2011-137586 are incorporated herein by reference in their entirety. All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (14)

  1.  入射された放射線を光に変換するシンチレータ、および該シンチレータで変換された光を検出するセンサ部を有する放射線検出器を備え、前記放射線により示される放射線画像を撮影する放射線画像撮影装置と、
     前記シンチレータの温度を検出する検出部と、
     前記シンチレータの温度に応じて前記放射線画像撮影装置による撮影を許容する撮影部位および撮影状態の少なくとも一方を示す撮影情報が予め記憶された記憶部、および前記放射線画像撮影装置により放射線画像の撮影を行う際に前記検出部により検出された温度に基づいて、前記記憶部に記憶された前記撮影情報から前記放射線画像撮影装置による撮影を許容する撮影部位および撮影状態の少なくとも一方を特定する特定部を備え、前記放射線画像撮影装置の動作を制御する制御装置と、
     を有する放射線画像撮影システム。
    A radiation image capturing apparatus that includes a scintillator that converts incident radiation into light, and a radiation detector that includes a sensor unit that detects light converted by the scintillator, and that captures a radiation image indicated by the radiation;
    A detector for detecting the temperature of the scintillator;
    A radiographic image is captured by the storage unit in which imaging information indicating at least one of an imaging region and an imaging state in which imaging by the radiographic imaging device is allowed according to the temperature of the scintillator is stored, and the radiographic imaging device A specifying unit that specifies at least one of an imaging region and an imaging state that allow imaging by the radiographic imaging device from the imaging information stored in the storage unit based on the temperature detected by the detection unit. A control device for controlling the operation of the radiographic imaging device;
    A radiographic imaging system comprising:
  2.  前記検出部は、前記センサ部に発生する暗電流に基づいて前記シンチレータの温度を検出する
     請求項1記載の放射線画像撮影システム。
    The radiographic imaging system according to claim 1, wherein the detection unit detects a temperature of the scintillator based on a dark current generated in the sensor unit.
  3.  前記制御装置は、前記特定部による特定結果が実際の撮影状況と一致しない場合に警告を行う警告部をさらに備えた
     請求項1または請求項2記載の放射線画像撮影システム。
    The radiographic imaging system according to claim 1, wherein the control device further includes a warning unit that issues a warning when a result of identification by the identification unit does not match an actual imaging situation.
  4.  前記特定部は、少なくとも前記撮影状態を特定し、
     前記制御装置は、前記特定部により特定された撮影状態が実際の撮影状態と一致しない場合で、かつ代替の撮影状態がある場合に、当該代替の撮影状態を提示する提示部をさらに備えた
     請求項1から請求項3の何れか1項記載の放射線画像撮影システム。
    The specifying unit specifies at least the shooting state,
    The control device further includes a presentation unit that presents the alternative shooting state when the shooting state specified by the specifying unit does not match the actual shooting state and there is an alternative shooting state. The radiographic imaging system according to any one of claims 1 to 3.
  5.  前記撮影状態は、臥位での撮影および立位での撮影を含む
     請求項1から請求項4の何れか1項記載の放射線画像撮影システム。
    The radiographic imaging system according to any one of claims 1 to 4, wherein the imaging state includes imaging in a supine position and imaging in a standing position.
  6.  前記センサ部は、前記シンチレータで発生した光を受光することにより電荷が発生する有機光電変換材料を含んで構成されている
     請求項1から請求項5の何れか1項記載の放射線画像撮影システム。
    The radiographic imaging system according to any one of claims 1 to 5, wherein the sensor unit includes an organic photoelectric conversion material that generates charges by receiving light generated by the scintillator.
  7.  前記放射線検出器は、被写体を透過した放射線が透過する透過面を有する天板の前記放射線が入射される面の反対側の面に直接的に取り付けられている
     請求項1から請求項6の何れか1項記載の放射線画像撮影システム。
    The said radiation detector is directly attached to the surface on the opposite side of the surface into which the said radiation enters of the top plate which has the permeation | transmission surface which the radiation which permeate | transmitted the object permeate | transmits. The radiation image capturing system according to claim 1.
  8.  前記シンチレータは、ヨウ化セシウムを含んで構成され、
     前記放射線検出器は、前記放射線が前記センサ部、前記シンチレータの順に入射されるように積層されている
     請求項7記載の放射線画像撮影システム。
    The scintillator is configured to include cesium iodide,
    The radiation image capturing system according to claim 7, wherein the radiation detector is stacked so that the radiation is incident on the sensor unit and the scintillator in this order.
  9.  前記放射線検出器は、前記天板に離間可能に取り付けられている
     請求項7または請求項8記載の放射線画像撮影システム。
    The radiographic imaging system according to claim 7, wherein the radiation detector is detachably attached to the top plate.
  10.  前記放射線画像撮影装置は、
     前記放射線検出器と前記天板との間に内部空間が形成されるように前記放射線検出器を前記天板に対して接着する接着部材と、
     前記内部空間および外部を連通すると共に、外部から前記内部空間への異物の混入を阻止する通気部と、
     をさらに備えた請求項7から請求項9の何れか1項記載の放射線画像撮影システム。
    The radiographic image capturing apparatus includes:
    An adhesive member that bonds the radiation detector to the top plate so that an internal space is formed between the radiation detector and the top plate;
    A ventilation portion that communicates the internal space and the outside, and prevents foreign matter from entering the internal space from the outside, and
    The radiographic imaging system according to claim 7, further comprising:
  11.  前記天板は、前記放射線検出器を収容する筐体の一部を構成する
     請求項7から請求項10の何れか1項記載の放射線画像撮影システム。
    The radiographic imaging system according to any one of claims 7 to 10, wherein the top plate constitutes a part of a housing that houses the radiation detector.
  12.  前記シンチレータは、ヨウ化セシウムを含んで構成されている
     請求項1から請求項7の何れか1項記載の放射線画像撮影システム。
    The radiographic imaging system according to any one of claims 1 to 7, wherein the scintillator includes cesium iodide.
  13.  入射された放射線を光に変換するシンチレータ、および該シンチレータで変換された光を検出するセンサ部を有する放射線検出器と、
     前記シンチレータの温度を検出する検出部と、
     前記シンチレータの温度に応じて前記放射線検出器による撮影を許容する撮影部位および撮影状態の少なくとも一方を示す撮影情報が予め記憶された記憶部と、
     前記放射線検出器により放射線画像の撮影を行う際に前記検出部により検出された温度に基づいて、前記記憶部に記憶された前記撮影情報から前記放射線検出器による撮影を許容する撮影部位および撮影状態の少なくとも一方を特定する特定部と、
     を備えた放射線画像撮影装置。
    A scintillator for converting incident radiation into light, and a radiation detector having a sensor unit for detecting the light converted by the scintillator;
    A detector for detecting the temperature of the scintillator;
    A storage unit in which imaging information indicating at least one of an imaging region and an imaging state allowing imaging by the radiation detector according to the temperature of the scintillator is stored;
    An imaging region and an imaging state that allow imaging by the radiation detector from the imaging information stored in the storage unit based on the temperature detected by the detection unit when radiographic images are captured by the radiation detector A specific part that identifies at least one of
    A radiographic imaging apparatus comprising:
  14.  コンピュータを、
     入射された放射線を光に変換するシンチレータ、および該シンチレータで変換された光を検出するセンサ部を有する放射線検出器を備え、前記放射線により示される放射線画像を撮影する放射線画像撮影装置における前記シンチレータの温度を、前記センサ部に発生する暗電流に基づいて検出する検出部と、
     前記放射線画像撮影装置により放射線画像の撮影を行う際に前記検出部により検出された温度に基づいて、前記放射線画像撮影装置による撮影を許容する撮影部位および撮影状態の少なくとも一方を特定する特定部と、
     として機能させるためのプログラムを記憶したコンピュータ可読媒体。
    Computer
    A scintillator that converts incident radiation into light, and a radiation detector that includes a sensor unit that detects light converted by the scintillator, and includes a scintillator in a radiation image capturing apparatus that captures a radiation image indicated by the radiation. A detection unit for detecting a temperature based on a dark current generated in the sensor unit;
    A specifying unit that specifies at least one of an imaging region and an imaging state that allow imaging by the radiographic imaging device based on a temperature detected by the detection unit when radiographic imaging is performed by the radiographic imaging device; ,
    A computer-readable medium storing a program for functioning as a computer.
PCT/JP2011/065304 2010-08-30 2011-07-04 Radiation imaging system, radiation imaging device, and computer-readable recording medium WO2012029403A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010192923 2010-08-30
JP2010-192923 2010-08-30
JP2011-137586 2011-06-21
JP2011137586A JP2012071105A (en) 2010-08-30 2011-06-21 Radiation image photographing system, radiation image photographing device, and program

Publications (1)

Publication Number Publication Date
WO2012029403A1 true WO2012029403A1 (en) 2012-03-08

Family

ID=45772514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065304 WO2012029403A1 (en) 2010-08-30 2011-07-04 Radiation imaging system, radiation imaging device, and computer-readable recording medium

Country Status (2)

Country Link
JP (1) JP2012071105A (en)
WO (1) WO2012029403A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7010135B2 (en) * 2018-05-08 2022-01-26 コニカミノルタ株式会社 Radiation imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028234A (en) * 2007-07-26 2009-02-12 Fujifilm Corp Radiographic imaging system
JP2009028373A (en) * 2007-07-27 2009-02-12 Fujifilm Corp Radiation image photographing system
JP2009204482A (en) * 2008-02-28 2009-09-10 Fujifilm Corp Radiation image photographing device and its control method
JP2010075671A (en) * 2008-08-28 2010-04-08 Fujifilm Corp Radiation detector, radiation image radiographing system and temperature compensating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028234A (en) * 2007-07-26 2009-02-12 Fujifilm Corp Radiographic imaging system
JP2009028373A (en) * 2007-07-27 2009-02-12 Fujifilm Corp Radiation image photographing system
JP2009204482A (en) * 2008-02-28 2009-09-10 Fujifilm Corp Radiation image photographing device and its control method
JP2010075671A (en) * 2008-08-28 2010-04-08 Fujifilm Corp Radiation detector, radiation image radiographing system and temperature compensating method

Also Published As

Publication number Publication date
JP2012071105A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP5676632B2 (en) Radiation image capturing apparatus, program executed by the apparatus, and radiation image capturing method
JP5766710B2 (en) Radiation imaging apparatus and program
JP6033363B2 (en) Radiation detection panel
JP5676405B2 (en) Radiation image capturing apparatus, radiation image capturing system, program, and radiation image capturing method
JP5485308B2 (en) Radiographic imaging apparatus, radiographic imaging method and program
JP5485312B2 (en) Radiation detection apparatus, radiographic imaging apparatus, radiation detection method and program
WO2012014612A1 (en) Radiography device and radiography system
JP2012200455A (en) Radiographic imaging system and program
WO2012014543A1 (en) Radiation detector panel
WO2011152323A1 (en) Radiological imaging device
JP5634894B2 (en) Radiation imaging apparatus and program
JP5901723B2 (en) Radiographic imaging system, radiographic imaging apparatus and program
JP5490026B2 (en) Radiation imaging equipment
JP5705534B2 (en) Radiation image capturing apparatus, radiation image capturing method, and radiation image capturing control processing program
WO2012029403A1 (en) Radiation imaging system, radiation imaging device, and computer-readable recording medium
JP5595940B2 (en) Radiation imaging equipment
WO2012023311A1 (en) Radiation detecting panel
JP5616237B2 (en) Radiation imaging equipment
JP2012047584A (en) Radiation image photographing apparatus, radiation image photographing system, and program
JP5496938B2 (en) Radiation image processing system, program, and defective pixel correction method
WO2012056950A1 (en) Radiation detector and radiographic imaging device
JP2013066602A (en) Radiographic imaging system, radiographic imaging apparatus, radiographic imaging method and program
JP5616238B2 (en) Radiation imaging equipment
JP2012048169A (en) Radiation image photographing device
JP2015034823A (en) Radiographic imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821421

Country of ref document: EP

Kind code of ref document: A1