JP2018004280A - 測定装置 - Google Patents

測定装置 Download PDF

Info

Publication number
JP2018004280A
JP2018004280A JP2016127055A JP2016127055A JP2018004280A JP 2018004280 A JP2018004280 A JP 2018004280A JP 2016127055 A JP2016127055 A JP 2016127055A JP 2016127055 A JP2016127055 A JP 2016127055A JP 2018004280 A JP2018004280 A JP 2018004280A
Authority
JP
Japan
Prior art keywords
measurement
light
stage
unit
measurement object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016127055A
Other languages
English (en)
Other versions
JP6695747B2 (ja
Inventor
茂人 村上
Shigeto Murakami
茂人 村上
政記 藤原
Masaki Fujiwara
政記 藤原
中務 貴司
Takashi Nakatsukasa
貴司 中務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keyence Corp filed Critical Keyence Corp
Priority to JP2016127055A priority Critical patent/JP6695747B2/ja
Publication of JP2018004280A publication Critical patent/JP2018004280A/ja
Application granted granted Critical
Publication of JP6695747B2 publication Critical patent/JP6695747B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】所望の箇所の計測値を容易に取得することが可能な測定装置を提供する。【解決手段】投光部110および受光部120を含むヘッド部190が設置部161と固定的に連結される。ステージ140上に測定対象物Sが載置され、パターンを有する測定光が投光部110から測定対象物Sに照射される。測定対象物Sにより反射された測定光が受光部120により受光され、受光量を表す受光信号が出力される。受光信号に基づいて測定対象物Sの点群データが生成される。複数の点群データが合成されることによって合成点群データが生成され、生成された合成点群データに基づいて、指定された箇所の計測値が算出される。ステージ140は傾斜載置面を有し、傾斜載置面上に測定対象物Sが載置される。【選択図】図4

Description

本発明は、測定対象物の測定を行う測定装置に関する。
三角測距方式の測定装置では、測定対象物の表面に光が照射され、その反射光が1次元または2次元に配列された画素を有する受光素子により受光される。受光素子により得られる受光量分布のピーク位置に基づいて、測定対象物の表面の高さを計測することができる。
非特許文献1においては、符号化された光と位相シフト法とを組み合わせた三角測距方式の形状測定が提案されている。また、非特許文献2においては、符号化された光とストライプ状の光とを組み合わせた三角測距方式の形状測定が提案されている。これらの方式においては、測定対象物の形状測定の精度を向上させることができる。
Toni F. Schenk, "Remote Sensing and Reconstruction for Three-Dimensional Objects and Scenes", Proceedings of SPIE, Volume 2572, pp. 1-9 (1995) Sabry F. El-Hakim and Armin Gruen, "Videometrics and Optical Methods for 3D Shape Measurement", Proceedings of SPIE, Volume 4309, pp. 219-231 (2001)
上記のような形状測定によって取得されるデータ(以下、測定データと呼ぶ。)に基づいて、測定対象物の所望の箇所の寸法等を算出することができる。例えば、測定データに基づいて、測定対象物の立体形状を表す画像が表示される。使用者が、表示された画像上で計測箇所を指定し、指定された箇所の計測値が測定データから算出される。
しかしながら、測定対象物の計測箇所での反射光が受光素子によって受光されないと、計測箇所の測定データが得られず、計測値を取得することができない。測定対象物の形状によっては、必要な測定データを得るために、治具等を用いて測定対象物を一定の姿勢に保持する必要がある。その場合、使用者にとって煩雑な作業が必要になる。特に、作業に不慣れな使用者にとっては、多大な手間および時間が必要になる。
本発明の目的は、所望の箇所の計測値を容易に取得することが可能な測定装置を提供することである。
(1)本発明に係る測定装置は、ステージ保持部と、上下方向の回転軸を中心に回転可能にステージ保持部により保持され、回転軸に対して非垂直でかつ測定対象物が載置される傾斜載置面を有するステージと、ステージに載置される測定対象物にパターンを有する測定光を照射する投光部と、測定対象物により反射された測定光を受光して受光量を表す受光信号を出力する受光部とを含むヘッド部と、投光部から測定対象物に対して測定光が斜め下方に導かれ、かつ受光部の光軸が測定対象物に向かって斜め下方に延びるように、ヘッド部とステージ保持部とを固定的に連結する連結部と、受光部により出力される受光信号に基づいて、測定対象物の立体形状を表す点群データを生成する点群データ生成手段と、点群データ生成手段により生成された一の点群データと他の点群データとを合成することにより合成点群データを生成する合成手段と、測定対象物の計測すべき箇所の指定を受け付け、合成手段により生成された合成点群データに基づいて、指定された箇所の計測値を算出する計測手段とを備える。
この測定装置においては、投光部および受光部を含むヘッド部がステージ保持部と固定的に連結される。ステージ保持部により保持されたステージの傾斜載置面上に測定対象物が載置され、パターンを有する測定光が投光部から測定対象物に照射される。測定対象物により反射された測定光が受光部により受光され、受光量を表す受光信号が出力される。受光信号に基づいて測定対象物の立体形状を表す点群データが生成される。
この場合、投光部、受光部およびステージが一体的に設けられているので、使用者は、これらの配置を調整する必要がなく、ステージ上に測定対象物を載置することで、測定対象物の点群データを得ることができる。また、上下方向の回転軸に対して非垂直な傾斜載置面に測定対象物が載置されるので、治具等を用いることなく測定対象物を傾斜姿勢に維持することができ、必要な箇所の点群データを容易に取得することができる。
また、ステージの回転軸が受光部の光軸と平行でないので、ステージが回転されることにより、受光部に向けられる測定対象物の箇所が変わる。そのため、ステージの回転位置が異なる状態で測定対象物に測定光が照射されることにより、測定対象物の異なる箇所での反射光が受光部によって受光される。したがって、ステージが回転されることにより、測定対象物の異なる箇所の点群データを生成することができる。
生成された複数の点群データが合成されることにより、合成点群データが生成される。合成点群データは、複数の点群データにより表される測定対象物の種々の箇所の立体形状を含む。したがって、生成された合成点群データに基づいて、測定対象物の所望の箇所の計測値を容易に取得することができる。
(2)ステージは、回転軸と直交する非傾斜載置面をさらに有してもよい。この場合、非傾斜載置面と傾斜載置面とを選択的に使用することができる。それにより、ステージ上の測定対象物の姿勢を容易に調整することができる。
(3)ステージは、非傾斜載置面を有し、ステージ保持部により保持されるステージプレートと、傾斜載置面を有し、ステージプレートに対して着脱可能な傾斜部とを含んでもよい。この場合、ステージプレートに対する傾斜部の着脱によって非傾斜載置面と傾斜載置面とを容易に切り替えることができる。
(4)ステージは、非傾斜載置面および傾斜載置面を選択的に形成するように、回転軸に垂直な面に対する傾斜角度を調整可能に設けられたステージプレートを含んでもよい。この場合、ステージプレートの傾斜角度の調整によって非傾斜載置面と傾斜載置面とを容易に切り替えることができる。
(5)測定装置は、ステージの回転を制御する回転制御手段をさらに備え、点群データ生成手段は、回転制御手段によりステージが第1の回転位置に位置されるときに受光部により出力される受光信号に基づいて一の点群データを生成し、回転制御手段によりステージが第2の回転位置に位置されるときに受光部により出力される受光信号に基づいて他の点群データを生成し、合成手段は、回転制御手段により制御されるステージの回転位置に基づいて一の点群データと他の点群データとを合成してもよい。
この場合、回転制御手段により制御されるステージの回転位置に基づいて、一の点群データが表す測定対象物の部分と、他の点群データが表す測定対象物の部分との位置関係を特定することができる。それにより、一の点群データと他の点群データとを容易に合成することができる。
(6)受光部は、光軸に対して垂直な撮像面を有し、回転制御部は、傾斜載置面が受光部の撮像面と正対するようにステージの回転位置を制御してもよい。この場合、測定対象物の必要な箇所の点群データを効率良く生成することができる。
(7)測定装置は、合成手段により生成された合成点群データのうち無効とすべき部分を設定する無効部分設定手段をさらに備えてもよい。この場合、不要な合成点群データの部分を無効とすることができる。それにより、計測箇所の指定が容易となる。
(8)測定装置は、合成手段により生成された合成点群データに基づいて測定対象物を任意の方向に見た画像を表す立体形状画像データを生成する立体形状画像データ生成手段と、合成手段により生成された合成点群データにより表される測定対象物の表面の一部に対応しかつ計測の基準となる基準面を設定する基準面設定手段と、合成手段により生成された合成点群データに基づいて、基準面設定手段により設定された基準面に対して垂直に測定対象物を見た画像を表す基準面画像データを生成する基準面画像データ生成手段とをさらに備え、計測手段は、立体形状画像データおよび基準面画像データのいずれか一方に対して計測すべき箇所の指定を受け付けてもよい。
この場合、使用者は、立体形状画像データによって表される画像を見て、測定対象物の立体形状を直感的に認識することができる。また、使用者は、基準面画像データによって表される画像を用いて、計測箇所の指定を容易に行うことができる。したがって、立体形状画像データおよび基準面画像データを順にまたは選択的に用いることにより、必要な計測値を効率良く得ることができる。
本発明によれば、測定対象物の所望の箇所の計測値を容易に取得することができる。
本発明の一実施の形態に係る測定装置の構成を示すブロック図である。 図1の測定装置の測定部の構成を示す模式図である。 図1のCPUにより実現される機能を示す機能ブロック図である。 測定部の模式的な外観斜視図である。 受光部とステージとの位置関係について説明するための図である。 ステージの具体的な構成例について説明するための図である。 傾斜部の傾斜について説明するための図である。 三角測距方式の原理を説明するための図である。 測定光の第1のパターンを説明するための図である。 測定光の第2のパターンを説明するための図である。 測定光の第3のパターンを説明するための図である。 測定対象物の特定の部分における画像が撮影されたタイミングと受光された光の強度との関係を示す図である。 測定光の第4のパターンを説明するための図である。 複数の視点から測定対象物を撮像することにより複数の立体形状データを生成する例を説明するための図である。 形状測定の準備の手順を示すフローチャートである。 形状測定の準備の手順における第1の調整の詳細を示すフローチャートである。 形状測定の準備の手順における第1の調整の詳細を示すフローチャートである。 形状測定の準備の手順における第2の調整の詳細を示すフローチャートである。 形状測定処理の概要を示すフローチャートである。 測定対象物の一例を示す外観斜視図である。 ステージに図20の測定対象物が載置された状態を示す図である。 ステージに図20の測定対象物が載置された状態を示す図である。 傾斜状態で生成された合成立体形状データに基づく対象物画像の例を示す図である。 無効部分の設定例について説明するための図である。 不要部分が除去された対象物画像の例を示す図である。 基準面の設定時におけるCPUの動作例を示すフローチャートである。 基準面画像の例を示す図である。 計測条件の設定例について説明するための図である。 基準面画像の他の例を示す図である。 プロファイルを取得すべき箇所の指定について説明するための図である。 プロファイル画像の例を示す図である。 正対状態での受光部、ステージおよび測定対象物の関係を示す図である。 ステージの他の構成例について説明するための図である。 ステージの他の構成例について説明するための図である。
以下、本発明の実施の形態に係る測定装置について図面を参照しながら説明する。
[1]測定装置の構成
図1は、本発明の一実施の形態に係る測定装置の構成を示すブロック図である。図2は、図1の測定装置500の測定部の構成を示す模式図である。以下、本実施の形態に係る測定装置500について、図1および図2を参照しながら説明する。図1に示すように、測定装置500は、測定部100、PC(パーソナルコンピュータ)200、制御部300および表示部400を備える。
図1に示すように、測定部100は、例えば投受光一体の撮像デバイスであり、投光部110、受光部120、照明光出力部130、ステージ140および制御基板150を含む。図2に示すように、投光部110は、測定光源111、パターン生成部112および複数のレンズ113,114を含む。受光部120は、撮像素子121aを有するカメラ121、およびレンズ122を含む。本例において、カメラ121は単眼カメラである。ステージ140上には、測定対象物Sが載置される。
図2の例においては、測定部100は2つの投光部110を含む。以下、2つの投光部110を区別する場合は、一方の投光部110を投光部110Aと呼び、他方の投光部110を投光部110Bと呼ぶ。投光部110A,110Bは受光部120の光軸A1を挟んで対称に配置される。受光部120の光軸A1は、カメラ121の撮像素子121aの中心およびレンズ122の中心を通る。
各投光部110A,110Bの測定光源111は、例えば青色LED(発光ダイオード)である。測定光源111は、ハロゲンランプ等の他の光源であってもよい。測定光源111から出射された光(以下、測定光と呼ぶ)は、レンズ113により適切に集光された後、パターン生成部112に入射する。
パターン生成部112は、例えばDMD(デジタルマイクロミラーデバイス)である。パターン生成部112は、LCD(液晶ディスプレイ)、LCOS(Liquid Crystal on Silicon:反射型液晶素子)またはマスクであってもよい。パターン生成部112に入射した測定光は、予め設定されたパターンおよび予め設定された強度(明るさ)に変換されて出射される。パターン生成部112により出射された測定光は、レンズ114により測定対象物Sの寸法よりも大きい径を有する光に変換された後、ステージ140上の測定対象物Sに照射される。
投光部110Aの測定光源111、レンズ113およびパターン生成部112は、受光部120の光軸A1と略平行に並ぶように配置される。同様に、投光部110Bの測定光源111、レンズ113およびパターン生成部112は、受光部120の光軸A1と略平行に並ぶように配置される。一方、投光部110A,110Bのレンズ114は、測定光源111、レンズ113およびパターン生成部112に対してオフセットするように配置される。これにより、投光部110A,110Bの光軸A2が受光部120の光軸A1に対して傾斜し、受光部120の両側方から測定対象物Sに向けて測定光が出射される。測定対象物Sによりステージ140の上方に反射された測定光は、受光部120のレンズ122により集光および結像され、カメラ121の撮像素子121aにより受光される。
本例においては、測定光の照射範囲を広くするため、一定の画角を有するように投光部110A,110Bが構成される。投光部110A,110Bの画角は、例えば、パターン生成部112の寸法およびレンズ114の焦点距離により定まる。また、受光部120の視野(撮像範囲)を広くするため、一定の画角を有するように受光部120が構成される。受光部120の画角は、例えば、撮像素子121aの寸法およびレンズ122の焦点距離により定まる。測定光の照射範囲および撮像範囲を広くする必要がない場合には、投光部110A,110Bおよび受光部120として、画角が略0度となるテレセントリック光学系が用いられてもよい。
測定部100は、倍率が異なる複数の受光部120を有してもよい。この場合、複数の受光部120を選択的に用いることにより、測定対象物Sを異なる倍率で撮像することができる。複数の受光部120の光軸は、互いに平行であることが好ましい。
カメラ121は、例えばCCD(電荷結合素子)カメラである。撮像素子121aは、例えばモノクロCCD(電荷結合素子)である。撮像素子121aは、CMOS(相補性金属酸化膜半導体)イメージセンサ等の他の撮像素子であってもよい。撮像素子121aの各画素からは、受光量に対応するアナログの電気信号(以下、受光信号と呼ぶ)が制御基板150に出力される。
モノクロCCDには、カラーCCDとは異なり、赤色波長の光を受光する画素、緑色波長の光を受光する画素および青色波長の光を受光する画素を設ける必要がない。ここで、測定光に青色波長等の特定波長を採用した場合、カラーCCDは特定波長の光を受光する画素しか計測に利用できないが、モノクロCCDにはそのような制約がない。そのため、モノクロCCDの計測の分解能はカラーCCDの分解能よりも高くなる。また、モノクロCCDには、カラーCCDとは異なり、各画素にカラーフィルタを設ける必要がない。そのため、モノクロCCDの感度はカラーCCDの感度よりも高くなる。これらの理由により、本例におけるカメラ121にはモノクロCCDが設けられる。
本例においては、照明光出力部130は、測定対象物Sに赤色波長の光、緑色波長の光および青色波長の光を時分割で出射する。この構成によれば、モノクロCCDを用いた受光部120により測定対象物Sのカラー画像を撮像することができる。
一方、カラーCCDが十分な分解能および感度を有する場合には、撮像素子121aは、カラーCCDであってもよい。この場合、照明光出力部130は、測定対象物Sに赤色波長の光、緑色波長の光および青色波長の光を時分割で照射する必要はなく、白色光を測定対象物Sに照射する。そのため、照明光源320の構成を単純にすることができる。
制御基板150には、図示しないA/D変換器(アナログ/デジタル変換器)およびFIFO(First In First Out)メモリが実装される。カメラ121から出力される受光信号は、制御部300による制御に基づいて、制御基板150のA/D変換器により一定のサンプリング周期でサンプリングされるとともにデジタル信号に変換される。A/D変換器から出力されるデジタル信号は、FIFOメモリに順次蓄積される。FIFOメモリに蓄積されたデジタル信号は画素データとして順次PC200に転送される。ここで、カメラ121が、例えば、モノクロCMOSカメラであって、撮像素子121aの各画素から受光量に対応するデジタルの電気信号が制御基板150へ出力される場合、A/D変換器は必ずしも必要ではない。
図1に示すように、PC200は、CPU(中央演算処理装置)210、ROM(リードオンリメモリ)220、作業用メモリ230、記憶装置240および操作部250を含む。また、操作部250は、キーボードおよびポインティングデバイスを含む。ポインティングデバイスとしては、マウスまたはジョイスティック等が用いられる。
ROM220には、システムプログラムが記憶される。作業用メモリ230は、RAM(ランダムアクセスメモリ)からなり、種々のデータの処理のために用いられる。記憶装置240は、ハードディスク等からなる。記憶装置240には、形状測定プログラムが記憶される。また、記憶装置240は、制御基板150から与えられる画素データ等の種々のデータを保存するために用いられる。
CPU210は、制御基板150から与えられる画素データに基づいて画像データを生成する。また、CPU210は、生成した画像データに作業用メモリ230を用いて各種処理を行うとともに、画像データに基づく画像を表示部400に表示させる。さらに、CPU210は、後述するステージ駆動部146に制御基板150を通して駆動信号を与える。表示部400は、例えばLCDパネルまたは有機EL(エレクトロルミネッセンス)パネルにより構成される。表示部400には、受光部120のカメラ121によりリアルタイムで取得される画像データ(以下、ライブ画像データと呼ぶ。)に基づいて、リアルタイムでの測定対象物Sの画像(以下、ライブ画像と呼ぶ)を表示させることができる。
一方の投光部110Aから測定光が照射された測定対象物Sの画像と他方の投光部110Bから測定光が照射された測定対象物Sの画像とが並ぶように表示部400に表示(2画面表示)されてもよい。また、一方の投光部110Aから測定光が照射された測定対象物Sの画像と他方の投光部110Bから測定光が照射された測定対象物Sの画像とが重なるように表示部400に表示する等の合成表示がされてもよい。
2画面表示がされる場合には、例えば、一定の周期(数Hz)で投光部110A,110Bから測定対象物Sに交互に測定光が照射され、投光部110Aから測定対象物Sに測定光が照射されているときに取得される画像および投光部110Bから測定対象物Sに測定光が照射されているときに取得される画像が表示部400に別個に表示される。使用者は、表示される画像を見ながら、投光部110Aから測定光が出射されるときの受光部120の受光量および投光部110Bから測定光が出射されるときの受光部120の受光量をそれぞれ調整することができる。受光部120の受光量は、投光部110A,110Bから出射される測定光の明るさまたは受光部120の露光時間を変化させることにより調整可能である。
合成表示がされる場合も、2画面表示がされる場合と同様に、使用者は、表示される画像を見ながら、投光部110Aから測定光が出射されるときの受光部120の受光量および投光部110Bから測定光が出射されるときの受光部120の受光量をそれぞれ調整することができる。この場合、表示部400においては、合成表示の画像に加えて、一方の投光部110Aから測定光が照射された測定対象物Sの画像と、他方の投光部110Bから測定光が照射された測定対象物Sの画像とが並ぶように表示されてもよい。または、表示部400においては、2画面表示の画像と合成表示の画像とが切り替えて表示されてもよい。あるいは、表示部400においては、合成表示の画像と、一方の投光部110Aから測定光が照射された測定対象物Sの画像と、他方の投光部110Bから測定光が照射された測定対象物Sの画像とが、切り替えて表示されてもよい。
図2に示すように、ステージ140は、ステージベース141およびステージプレート142を含む。ステージベース141上にステージプレート142が配置される。ステージプレート142は、測定対象物Sが載置される載置面を有する。ここで、ステージプレート142の載置面内で互いに直交する2方向をX方向およびY方向と定義し、それぞれ矢印X,Yで示す。また、載置面に対して直交する方向をZ方向と定義し、矢印Zで示す。また、Z方向に平行な軸を中心に回転する方向をθ方向と定義し、矢印θで示す。ステージプレート142には、クランプまたは治具等を取り付けるための取付部(例えばねじ孔)が設けられてもよい。
ステージプレート142の載置面の上方には、略円柱状の測定可能領域MRが設定される。測定可能領域MRは、投光部110A,110Bにより測定光を照射可能でかつ受光部120により撮像可能な領域である。測定可能領域MRの大きさおよび位置は、カメラ121のレンズ122の倍率および焦点位置等によって異なる。倍率が異なる複数の受光部120が設けられる場合には、使用される受光部120によって測定可能領域MRが異なる。
ステージ140は回転機構143に取り付けられる。回転機構143は、例えばステッピングモータを含む。回転機構143は、図1のステージ操作部145またはステージ駆動部146により駆動され、ステージ140を回転軸Axを中心にθ方向に回転させる。本例において、回転軸Axは鉛直方向に延びる。回転軸Axの方向は鉛直方向に限らず、鉛直方向に対して僅かに傾斜していてもよい。使用者は、ステージ操作部145を手動で操作することにより、ステージ140をθ方向に回転させることができる。また、ステージ駆動部146は、PC200より制御基板150を通して与えられる駆動信号に基づいて、回転機構143に電流を供給することにより、ステージ140を受光部120に相対的にθ方向に回転させることができる。
なお、本実施の形態では、ステージ140はステッピングモータにより駆動することが可能であるとともに手動により操作することが可能であるが、これに限定されない。ステージ140はステッピングモータでのみ駆動することが可能であってもよいし、手動でのみ操作することが可能であってもよい。また、ステッピングモータに代えて、サーボモータ等の他の駆動装置が用いられてもよい。
制御部300は、制御基板310および照明光源320を含む。制御基板310には、図示しないCPUが実装される。制御基板310のCPUは、PC200のCPU210からの指令に基づいて、投光部110、受光部120および制御基板150を制御する。制御基板310および照明光源320は、測定部100に搭載されてもよい。ただし、制御基板310および照明光源320は熱を生じやすく、その熱の影響によって測定部100の精度が低下する可能性がある。したがって、測定部100の精度を確保するために、制御基板310および照明光源320が測定部100の外部に設けられることが好ましい。
照明光源320は、例えば赤色光、緑色光および青色光を出射する3つのLEDを含む。各LEDから出射される光の輝度を制御することにより、照明光源320から任意の色の光を発生することができる。照明光源320から発生される光(以下、照明光と呼ぶ)は、導光部材(ライトガイド)を通して測定部100の照明光出力部130から出力される。図2の照明光出力部130は、円環形状を有し、受光部120を取り囲むようにステージ140の上方に配置される。これにより、影が発生しないように照明光出力部130から測定対象物Sに照明光が照射される。なお、照明光出力部130および照明光源320は、外部装置として設けられてもよい。
図3は、図1のCPU210により実現される機能を示す機能ブロック図である。図3に示すように、CPU210は、点群データ生成部501、合成部502、計測部503、回転制御部504、無効部分設定部505、立体形状画像データ生成部506、基準面設定部507および基準面画像データ生成部508を含む。
点群データ生成部501は、受光部120により出力される受光信号に基づいて、測定対象物Sの立体形状を表す点群データを生成する。合成部502は、点群データ生成部501により生成された複数の点群データを合成することにより合成点群データを生成する。計測部503は、測定対象物Sの計測すべき箇所の指定を受け付け、合成部502により生成された合成点群データに基づいて、指定された箇所の計測値を算出する。回転制御部504は、ステージ駆動部146を制御することにより、ステージ140の回転を制御する。無効部分設定部505は、合成部502により生成された合成点群データのうち無効とすべき部分を設定する。立体形状画像データ生成部506は、合成部502により生成された合成点群データに基づいて、測定対象物Sを任意に方向に見た画像を表す立体形状画像データを生成する。基準面設定部507は、合成部502により生成された合成点群データにより表される前記測定対象物の表面の一部に対応しかつ計測の基準となる基準面を設定する。基準面画像データ生成部508は、合成部502により生成された合成点群データに基づいて、基準面設定部507により設定された基準面に対して垂直に測定対象物Sを見た画像を表す基準面画像データを生成する。これらの機能の詳細については後述する。
点群データ生成部501、合成部502、計測部503、回転制御部504、無効部分設定部505、立体形状画像データ生成部506、基準面設定部507および基準面画像データ生成部508は、CPU210がROM220または記憶装置240に記憶された形状測定プログラムを実行することにより実現される。これらの機能部は、電子回路等のハードウエアにより実現されてもよい。
図4は、測定部100の模式的な外観斜視図である。図4では、測定部100の外観が太い実線で示されるとともに、測定部100の内部に設けられる一部の構成要素が点線で示される。図4に示すように、測定部100は台座170を含む。台座170には、2つの投光部110、受光部120、照明光出力部130および制御基板150が取り付けられる。この状態で、2つの投光部110、受光部120および照明光出力部130の位置関係が台座170により固定される。また、照明光出力部130は、略円筒形状を有し、受光部120を取り囲むように配置されている。照明光出力部130の一端部には、楕円形状を有する照明光の出射口131が形成されている。さらに、2つの投光部110は、受光部120および照明光出力部130を挟んで並ぶように配置される。
台座170には、2つの投光部110、受光部120、照明光出力部130および制御基板150の一部を収容するヘッドケーシング180が取り付けられる。2つの投光部110、受光部120、照明光出力部130、制御基板150、台座170およびヘッドケーシング180によりヘッド部190が構成される。
測定部100は、設置部161およびスタンド部162を含む。設置部161は、平坦な底面を有するとともに略一定幅で一方向に延びるように形成されている。スタンド部162は、設置部161の一端部に接続され、設置部161の一端部から上方に延びるように形成される。設置部161上にステージ140が回転可能に保持される。ヘッド部190の台座170は、スタンド部162の上端に着脱可能に構成されている。スタンド部162によりヘッド部190と設置部161とが固定的に連結される。これにより、ステージ140、2つの投光部110および受光部120の位置関係が一定に保持される。
各投光部110は、測定光の照射される照射領域IRがステージ140およびその上方の空間を含むように位置決めされる。測定光は、各投光部110から測定対象物Sに対して斜め下方に導かれる。各受光部120は、図2のカメラ121による撮像領域TRがステージ140およびその上方の空間を含むように位置決めされる。図4では、各投光部110の照射領域IRが二点鎖線で示されるとともに、受光部120の撮像領域TRが一点鎖線で示される。
図5は、受光部120とステージ140との位置関係について説明するための図である。図5には、側方から見た受光部120およびステージ140が示される。図5に示すように、受光部120の光軸A1は、ステージ140の回転軸Axに対して傾斜しており、ステージ140上の測定対象物Sに向かって斜め下方に延びる。
受光部120は、光軸A1に垂直な仮想的な撮像面120aを有する。撮像面120aが向けられる領域が、受光部120によって撮像される領域となる。本例では、測定可能領域MRに対して撮像面120aが斜め下方に向けられる。水平面に対する撮像面120aの傾斜角度D1は、例えば45度に設定される。
図6は、ステージ140の具体的な構成例について説明するための図である。図6(a)は、ステージ140の模式的平面図であり、図6(b)は、ステージ140の模式的断面図である。図6(a)に示すように、ステージ140のステージプレート142は、平面視において略円形を有する。ステージプレート142は、略半円状の固定部401および略半円状の傾斜部402を含む。
図6(b)に示すように、固定部401は、ステージベース141上に固定される。傾斜部402は、軸部材403により固定部401に連結される。軸部材403は、ステージ140の回転軸Axに対して垂直(本例では水平)に延びる。固定部401は平坦な固定載置面401aを有し、傾斜部402は平坦な傾斜載置面402aを有する。固定載置面401aおよび傾斜載置面402aにより載置面142aが構成される。
固定載置面401aは、ステージ140の回転軸に対して垂直であり、本例では水平である。傾斜部402は、軸部材403を中心に回転可能であり、傾斜載置面402aがステージ140の回転軸Axに対して垂直となる水平姿勢(図6の姿勢)と、傾斜載置面402aがステージ140の回転軸Axに対して非垂直となる傾斜姿勢とに切り替えられる。
傾斜部402とステージベース141との間には、支持部404が設けられる。支持部404は、ステージベース141の上面に設けられた取付部141aに回転可能に取り付けられる。傾斜部402の下面には、支持部404を係止するための複数(本例では3つ)の係止部402vが設けられる。本例において、係止部402vは凹部である。
図7は、傾斜部402の傾斜について説明するための図である。図7(a)〜図7(c)に示すように、傾斜部402が傾斜されるともに支持部404が起立され、支持部404の上端部が傾斜部402のいずれかの係止部402vに嵌合される。これにより、傾斜部402が傾斜姿勢に維持される。
本例では、傾斜部402vに3つの係止部402vが設けられており、水平面に対する傾斜載置面402aの傾斜角度D2を3段階(水平姿勢を含めると4段階)に切替可能である。図7(a)の例では、傾斜角度D2が45度であり、図7(b)の例では、傾斜角度D2が60度であり、図7(c)の例では、傾斜角度D2が30度である。傾斜角度D2は、一の値(例えば、45度)にのみ調整可能であってもよく、無段階で任意の値に調整可能であってよい。また、傾斜部402を駆動する傾斜駆動部が設けられ、CPU210の指示によって傾斜駆動部が傾斜部402を自動的に傾斜させてもよい。
また、本例では、傾斜部402が傾斜されると、軸部材403よりも固定部401に近い傾斜載置面402aの部分が、固定部401の上面よりも低くなる。そのため、傾斜載置面402aに載置される測定対象物Sが、固定部401の縁部によって係止される。これにより、測定対象物Sが傾斜姿勢に維持される。
[2]測定対象物の形状測定
(1)三角測距方式による形状測定
測定部100においては、三角測距方式により測定対象物Sの形状が測定される。図8は、三角測距方式の原理を説明するための図である。図8に示すように、測定光の光軸A2と受光部120の光軸A1との間の角度αが予め設定される。角度αは、0度よりも大きく90度よりも小さい。
ステージ140上に測定対象物Sが載置されない場合、投光部110から出射される測定光は、ステージ140の載置面の点Oにより反射され、受光部120に入射する。一方、ステージ140上に測定対象物Sが載置される場合、投光部110から出射される測定光は、測定対象物Sの表面の点Aにより反射され、受光部120に入射する。
点Oと点Aとの間のX方向における距離をdとすると、ステージ140の載置面に対する測定対象物Sの点Aの高さhは、h=d÷tan(α)により与えられる。図1のPC200のCPU210は、制御基板150により与えられる測定対象物Sの画素データに基づいて、X方向における点Oと点Aとの間の距離dを測定する。また、CPU210は、測定された距離dに基づいて、測定対象物Sの表面の点Aの高さhを算出する。測定対象物Sの表面の複数の点の高さを算出することにより、測定対象物Sの三次元的な形状が測定される。
測定対象物Sの表面の複数の点に測定光を照射するために、図1の投光部110からは種々のパターンを有する測定光が出射される。測定光のパターンは、図2のパターン生成部112により制御される。以下、測定光のパターンについて説明する。
(2)測定光の第1のパターン
図9は、測定光の第1のパターンを説明するための図である。図9(a)は、ステージ140上の測定対象物Sに投光部110から測定光を照射した状態を示す。図9(b)は、測定光が照射された測定対象物Sの平面図を示す。図9(a)に示すように、第1のパターンとして、Y方向に平行な直線状の断面を有する測定光(以下、ライン状測定光と呼ぶ)が投光部110から出射される。この場合、図9(b)に示すように、ステージ140に照射されたライン状測定光の部分と測定対象物Sの表面に照射されたライン状測定光の部分とは、測定対象物Sの表面の高さhに対応する距離dだけX方向に互いにずれる。したがって、距離dを測定することにより、測定対象物Sの高さhを算出することができる。
測定対象物Sの表面のY方向に沿った複数の部分が異なる高さを有する場合には、各部分について上記の距離dを測定することにより、Y方向に沿った複数の部分の高さhを算出することができる。
また、図1のCPU210は、X方向の一の位置でY方向に沿った複数の部分について距離dを測定した後、Y方向に平行なライン状測定光をX方向に走査することにより、X方向の他の位置でY方向に沿った複数の部分について距離dを測定する。これにより、X方向の複数の位置におけるY方向に沿った測定対象物Sの複数の部分の高さhが算出される。測定対象物SのX方向の寸法よりも広い範囲でライン状測定光をX方向に走査することにより、測定対象物Sの表面の各点の高さhを算出することができる。これにより、測定対象物Sの三次元的な形状を測定することができる。
(3)測定光の第2のパターン
図10は、測定光の第2のパターンを説明するための図である。図10に示すように、第2のパターンとして、Y方向に平行な直線状の断面を有しかつX方向に強度が正弦波状に変化するパターンを有する測定光(以下、正弦波状測定光と呼ぶ)が投光部110から複数回(本例においては4回)出射される。
図10(a)は、1回目に出射される正弦波状測定光を示す。1回目に出射される正弦波状測定光の強度は、測定対象物Sの表面上の任意の部分P0において初期位相φを有する。この正弦波状測定光が出射されることにより、測定対象物Sの表面で反射された光が受光部120により受光される。受光された光の強度が測定対象物Sの画素データに基づいて測定される。測定対象物Sの表面上の部分P0により反射された光の強度をI1とする。
図10(b)は、2回目に出射される正弦波状測定光を示す。2回目に出射される正弦波状測定光の強度は、測定対象物Sの表面上の部分P0において位相(φ+π/2)を有する。この正弦波状測定光が出射されることにより、測定対象物Sの表面で反射された光が受光部120により受光される。受光された光の強度が測定対象物Sの画素データに基づいて測定される。測定対象物Sの表面上の部分P0により反射された光の強度をI2とする。
図10(c)は、3回目に出射される正弦波状測定光を示す。3回目に出射される正弦波状測定光の強度は、測定対象物Sの表面上の部分P0において位相(φ+π)を有する。この正弦波状測定光が出射されることにより、測定対象物Sの表面で反射された光が受光部120により受光される。受光された光の強度が測定対象物Sの画素データに基づいて測定される。測定対象物Sの表面上の部分P0により反射された光の強度をI3とする。
図10(d)は、4回目に出射される正弦波状測定光を示す。4回目の正弦波状測定光の強度は、測定対象物Sの表面上の部分P0において位相(φ+3π/2)を有する。この正弦波状測定光が出射されることにより、測定対象物Sの表面で反射された光が受光部120により受光される。受光された光の強度が測定対象物Sの画素データに基づいて測定される。測定対象物Sの表面上の部分P0により反射された光の強度をI4とする。
初期位相φは、φ=tan−1[(I1−I3)/(I2−I4)]で与えられる。初期位相φから測定対象物Sの任意の部分の高さhが算出される。この方式によれば、4回の光の強度の測定により、測定対象物Sの各部分の初期位相φを高速かつ容易に算出することができる。なお、初期位相φは、異なる位相を有する測定光を少なくとも3回出射し、受光される光の強度を測定することにより算出することができる。測定対象物Sの表面上の各部分の高さhを算出することにより、測定対象物Sの三次元的な形状を測定することができる。
(4)測定光の第3のパターン
図11は、測定光の第3のパターンを説明するための図である。図11に示すように、第3のパターンとして、Y方向に平行でかつX方向に並ぶような直線状の断面を有する測定光(以下、縞状測定光と呼ぶ)が投光部110から複数回(本例においては16回)出射される。すなわち、縞状測定光においては、Y方向に平行な直線状の明部分およびY方向に平行な直線状の暗部分がX方向に周期的に配列される。
1回目の縞状測定光が出射されることにより、測定対象物Sの表面で反射された光が受光部120により受光される。受光された光の強度が、測定対象物Sの1番目の撮影画像の画素データに基づいて測定される。図11(a)は、1回目の縞状測定光に対応する測定対象物Sの1番目の撮影画像である。
2回目の縞状測定光は、1回目の縞状測定光から明部分および暗部分をX方向に1単位だけ移動させたパターンを有する。2回目の縞状測定光が出射されることにより、測定対象物Sの表面で反射された光が、受光部120により受光される。受光された光の強度が測定対象物Sの2番目の撮影画像の画素データに基づいて測定される。
3回目の縞状測定光は、2回目の縞状測定光から明部分および暗部分をX方向に1単位だけ移動させたパターンを有する。3回目の縞状測定光が出射されることにより、測定対象物Sの表面で反射された光が受光部120により受光される。受光された光の強度が、測定対象物Sの3番目の撮影画像の画素データに基づいて測定される。
同様の動作が繰り返されることにより、4〜16回目の縞状測定光に対応する光の強度が、測定対象物Sの4〜16番目の撮影画像の画素データに基づいてそれぞれ測定される。X方向の周期が16単位である縞状測定光が16回出射されることにより、測定対象物Sの表面の各部分に縞状測定光が照射される。なお、図11(b)は、7回目の縞状測定光に対応する測定対象物Sの7番目の撮影画像である。図11(c)は、13回目の縞状測定光に対応する測定対象物Sの13番目の撮影画像である。
図12は、測定対象物Sの特定の部分における画像が撮影されたタイミング(番数)と受光された光の強度との関係を示す図である。図12の横軸は画像の順番を示し、縦軸は受光された光の強度を示す。上述のように、測定対象物Sの各部分について、1〜16番目の撮影画像が生成される。また、生成された1〜16番目の撮影画像の各画素に対応する光の強度が測定される。
図12に示すように、撮影画像の番号に対応する撮影画像の各画素の光の強度を図示することにより散布図が得られる。得られた散布図に例えばガウシアン曲線、スプライン曲線または放物線をフィッティングさせることにより、光の強度が最大になるときの撮影画像の番号(番数)を1未満の精度で推定することができる。図12の例においては、フィッティングされた点線で示す曲線により、9番目と10番目との間である仮想的な9.38番目の撮影画像において、光の強度が最大になることが推定される。
また、フィッティングされた曲線により、光の強度の最大値を推定することができる。測定対象物Sの各部分において推定された光の強度が最大となる撮影画像の番号に基づいて、測定対象物Sの各部分の高さhを算出することができる。この方法によれば、S/N(信号/ノイズ)比が十分に大きい光の強度に基づいて、測定対象物Sの三次元的な形状が測定される。これにより、測定対象物Sの形状測定の精度を向上させることができる。
なお、正弦波状測定光または縞状測定光等の周期的なパターン形状を有する測定光を用いた測定対象物Sの形状測定においては、測定対象物Sの表面の各部分の相対的な高さ(高さの相対値)が測定される。これは、パターンを形成するY方向に平行な複数の直線(縞)の各々を識別することができず、複数の直線の1周期(2π)の整数倍に相当する不確かさが存在することにより、絶対位相が求まらないからである。そのため、測定対象物Sの一の部分の高さとその部分に隣接する部分の高さが連続的に変化しているという仮定に基づいて、測定された高さのデータに公知のアンラッピング処理が行われてもよい。
(5)測定光の第4のパターン
図13は、測定光の第4のパターンを説明するための図である。図13に示すように、第4のパターンとして、Y方向に平行な直線状の断面を有しかつ明部分と暗部分とがX方向に並ぶ測定光(以下、コード状測定光と呼ぶ)が投光部110から複数回(本例においては4回)出射される。コード状測定光の明部分および暗部分の割合は、それぞれ50%である。
本例においては、測定対象物Sの表面がX方向において複数(図13の例では16)の領域に分割される。以下、複数に分割されたX方向における測定対象物Sの領域をそれぞれ第1〜第16の領域と呼ぶ。
図13(a)は、1回目に出射されるコード状測定光を示す。1回目に出射されるコード状測定光は、測定対象物Sの第1〜第8の領域に照射される明部分を有する。また、1回目に出射されるコード状測定光は、測定対象物Sの第9〜第16の領域に照射される暗部分を有する。これにより、1回目に出射されるコード状測定光においては、明部分と暗部分とがY方向に平行でかつX方向に並ぶ。また、1回目に出射されるコード状測定光の明部分および暗部分の割合は、それぞれ50%である。
図13(b)は、2回目に出射されるコード状測定光を示す。2回目に出射されるコード状測定光は、測定対象物Sの第5〜第12の領域に照射される明部分を有する。また、2回目に出射されるコード状測定光は、測定対象物Sの第1〜第4および第13〜第16の領域に照射される暗部分を有する。これにより、2回目に出射されるコード状測定光においては、明部分と暗部分とがY方向に平行でかつX方向に並ぶ。また、2回目に出射されるコード状測定光の明部分および暗部分の割合は、それぞれ50%である。
図13(c)は、3回目に出射されるコード状測定光を示す。3回目に出射されるコード状測定光は、測定対象物Sの第1、第2、第7〜第10、第15および第16の領域に照射される明部分を有する。また、3回目に出射されるコード状測定光は、測定対象物Sの第3〜第6および第11〜第14の領域に照射される暗部分を有する。これにより、3回目に出射されるコード状測定光においては、明部分と暗部分とがY方向に平行でかつX方向に並ぶ。また、3回目に出射されるコード状測定光の明部分および暗部分の割合は、それぞれ50%である。
図13(d)は、4回目に出射されるコード状測定光を示す。4回目に出射されるコード状測定光は、測定対象物Sの第1、第4、第5、第8、第9、第12、第13および第16の領域に照射される明部分を有する。また、4回目に出射されるコード状測定光は、測定対象物Sの第2、第3、第6、第7、第10、第11、第14および第15の領域に照射される暗部分を有する。これにより、4回目に出射されるコード状測定光においては、明部分と暗部分とがY方向に平行でかつX方向に並ぶ。また、4回目に出射されるコード状測定光の明部分および暗部分の割合は、それぞれ50%である。
コード状測定光の明部分に論理“1”が割り当てられ、コード状測定光の暗部分に論理“0”が割り当てられる。また、測定対象物Sの各領域に照射される1回目〜4回目のコード状測定光の論理の並びを符号と呼ぶ。この場合、測定対象物Sの第1の領域には、符号“1011”のコード状測定光が照射される。これにより、測定対象物Sの第1の領域は、符号“1011”に符号化される。
測定対象物Sの第2の領域には、符号“1010”のコード状測定光が照射される。これにより、測定対象物Sの第2の領域は、符号“1010”に符号化される。測定対象物Sの第3の領域には、符号“1000”のコード状測定光が照射される。これにより、測定対象物Sの第3の領域は、符号“1000”に符号化される。同様に、測定対象物Sの第16の領域には、符号“0011”のコード状測定光が照射される。これにより、測定対象物Sの第16の領域は、符号“0011”に符号化される。
このように、測定対象物Sの隣り合う領域の間では、符号のいずれかの桁が“1”のみ異なるようにコード状測定光が測定対象物Sに複数回照射される。すなわち、コード状測定光は、明部分および暗部分がグレイコード状に変化するように、複数回測定対象物Sに照射される。
測定対象物Sの表面の各領域で反射された光が受光部120により受光される。受光された光の符号を測定することにより、測定対象物Sの領域ごとに、測定対象物Sが存在することにより変化した符号が得られる。得られた符号と領域ごとに測定対象物Sが存在しない場合の符号との差分を求めることにより、図8の距離dに相当する距離を算出することができる。ここで、画像におけるX軸方向には、上記の符号は1回のみ出現するというコード状測定光を用いた測定方法の特徴から、距離dの絶対的な値が算出される。これにより、測定対象物Sのその領域の絶対的な高さ(高さの絶対値)が算出される。測定対象物Sの表面上の全ての領域の高さを算出することにより、測定対象物Sの三次元的な形状を測定することができる。
上記の説明においては、測定対象物Sの表面がX方向において16の領域に分割され、コード状測定光が投光部110から4回出射されたが、これに限定されない。測定対象物Sの表面がX方向において2の領域(Nは自然数)に分割され、コード状測定光が投光部110からN回出射されてもよい。上記の説明においては、理解を容易にするためにNは4に設定されている。後述の形状測定処理においては、Nは例えば8に設定される。したがって、測定対象物Sの表面はX方向において256の領域に分割される。
コード状測定光を用いた測定対象物Sの形状測定においては、コード状測定光を分離して識別可能な距離、すなわち1画素分に相当する距離が最小の分解能となる。したがって、受光部120のX方向における視野の画素数が1024画素である場合、高さが例えば10mmの測定対象物Sを10mm÷1024≒10μmの分解能で計測することができる。分解能は低いが絶対値を算出可能なコード状測定光を用いた形状測定と絶対値を算出できないが分解能が高い正弦波状測定光または縞状測定光を用いた形状測定とを組み合わせることにより、測定対象物Sの高さの絶対値をより高い分解能で算出することができる。
特に、図11の縞状測定光を用いた測定対象物Sの形状測定においては、分解能を1/100画素にすることができる。なお、1/100画素の分解能は、受光部120のX方向における視野の画素数が1024画素である場合、測定対象物Sの表面をX方向において約100000の領域に分割すること(すなわちN≒17)に相当する。そのため、コード状測定光を用いた形状測定と縞状測定光を用いた形状測定と組み合わせることにより、測定対象物Sの高さの絶対値をさらに高い分解能で算出することができる。
上述のライン状測定光を測定対象物S上で走査する方法は一般に光切断法と呼ばれる。一方、正弦波状測定光、縞状測定光またはコード状測定光を測定対象物Sに照射する方法は、パターン投影法に分類される。また、パターン投影法の中でも、正弦波状測定光または縞状測定光を測定対象物Sに照射する方法は位相シフト法に分類され、コード状測定光を測定対象物Sに照射する方法は空間コード法に分類される。
位相シフト法においては、周期的な投影パターンである正弦波状測定光または縞状測定光を出射した際に、測定対象物Sが存在しない場合の基準高さ位置から反射した受光量に基づいて計算された位相と、測定対象物Sが存在する場合の測定対象物S表面から反射した受光量に基づいて計算された位相との位相差から測定対象物Sの高さを求める。位相シフト法においては、個々の周期的な縞が区別できず、縞1周期分(2π)の整数倍に相当する不確かさが存在するため、絶対位相が求まらないという欠点がある。しかしながら、光切断法に比べて取得する画像の枚数が少ないため測定時間が比較的短く、測定分解能が高いという長所がある。
一方、空間コード法おいては、測定対象物Sの領域ごとに、測定対象物Sが存在することによって変化した符号が得られる。得られた符号と測定対象物Sが存在しない場合の符号との差分を領域ごとに求めることにより、測定対象物Sの絶対的な高さを求めることができる。空間コード法においても、比較的少数の画像により測定が可能であり、絶対的な高さを求めることができるという長所がある。しかしながら、位相シフト法に比べると測定分解能に限界がある。
これらの投影法は、各々短所および長所を有しているが、いずれも三角測距の原理を用いている点は共通である。上記のような複数のパターンのうち1または複数のパターンの測定光が投影された測定対象物Sの画像データ(以下、パターン画像データと呼ぶ)に基づいて、測定対象物Sの立体形状を表す点群(ポイントクラウド)データが生成される。
以下の説明では、測定対象物Sの立体形状を表す点群データを立体形状データと呼ぶ。立体形状データは、測定対象物Sの表面上の複数の点の位置データを含む。位置データは、例えば、X方向、Y方向およびZ方向における座標を表す。この場合、立体形状データのうち任意の点のデータをPn(nは自然数)とすると、Pnは、例えば装置座標系の座標値を用いて(Xn,Yn,Zn)で表すことができる。なお、立体形状データは、点群データに基づいて生成される面情報データにより構成されてもよく、ポリゴンメッシュ等の他の形式のデータを含んでもよい。立体形状データに基づいて、測定対象物Sの立体形状を表す画像(以下、立体形状画像と呼ぶ)を表示することができる。
本実施の形態においては、立体形状画像は、二次元座標系が定義された任意の平面上に立体形状データが投影された状態を示す画像であり、使用者による計測箇所の指定を受け付けるための画像である。使用者は、測定対象物Sを見る方向(測定対象物Sに対する受光部120の位置)として立体形状データが投影される平面を指定することができる。それにより、立体形状画像により表される測定対象物Sの向きが変化する。
投光部110および受光部120に対する測定対象物Sの位置および姿勢が一定であると、測定対象物Sの一部にしか測定光が照射されない。また、測定対象物Sの一部で反射される光しか受光部120に入射しない。そのため、測定対象物Sの表面の広範囲に渡る立体形状データを求めることができない。そこで、測定対象物Sの位置または姿勢を変化させることにより、互いに異なる複数の視点で測定対象物Sが撮像され、複数の視点にそれぞれ対応する複数の立体形状データが取得される。取得された複数の立体形状データが合成されることにより、合成立体形状データ(合成点群データ)が生成される。
図14は、複数の視点から測定対象物Sを撮像することにより複数の立体形状データを生成する例を説明するための図である。例えば、図14(a)に示すように、使用者により測定対象物Sの位置および姿勢がステージ140上で調整された後、測定光を用いて測定対象物Sが撮像されることにより最初の立体形状データが生成される。最初の立体形状データに基づく立体形状画像の一例が図14(d)に示される。立体形状データは、測定対象物Sの表面で反射して受光部120に入射する測定光に基づいて生成される。そのため、測定対象物Sの表面のうち受光部120に向けられている部分については立体形状データが生成されるが、受光部120に向けられていない部分については立体形状データを生成することができない。
そこで、図14(b)に示すように、図2の回転機構143によりステージ140が一定角度回転された後、測定光を用いて測定対象物Sが撮像されることにより2番目の立体形状データが生成される。図13(b)の例では、ステージ140が図14(a)の状態から反時計回りに所定角度回転されている。2番目の立体形状データに基づく立体形状画像の一例が図14(e)に示される。上記のように、ステージ140が回転すると、その回転に伴って測定対象物Sの表面のうち受光部120に向けられる部分が変化する。その結果、最初の撮像時には取得されなかった部分を含む立体形状データが生成される。
さらに、図14(c)に示すように、図2の回転機構143によりステージ140が一定角度回転された後、測定光を用いて測定対象物Sが撮像されることにより3番目の立体形状データが生成される。図14(c)の例では、ステージ140が図14(b)の状態から反時計回りに所定角度回転されている。3番目の立体形状データに基づく立体形状画像の一例が図14(f)に示される。
このようにして、ステージ140の回転および測定対象物Sの撮像が繰り返されることにより、複数の視点に対応する複数の立体形状データが生成される。ステージ140の1回の回転角度およびその回転の回数は、予め定められていてもよく、使用者が任意に指定可能であってもよい。これらの立体形状データが合成されることにより、測定対象物Sの広範囲の立体形状を表す合成立体形状データが生成される。
本実施の形態では、受光部120、投光部110およびステージ140の相対位置が一定であり、これらの相対位置を表すパラメータ(以下、機器パラメータ)が、例えば図1の記憶装置240に予め記憶される。また、図1のステージ駆動部146が回転機構143を駆動する場合、例えばステージ140の回転角度が使用者により予め指定され、記憶された角度に基づいてステージ駆動部146が制御される。この場合、ステージ140の回転角度は、例えば図1のROM220または作業用メモリ230に記憶される。図1のCPU210は、複数の立体形状データを合成する際に、記憶された回転角度および機器パラメータに基づいて、複数の立体形状データの位置合わせを容易にかつ正確に行うことができる。また、位置合わせの詳細設定および補正等を使用者が行ってもよい。
ステージ140の回転角度を検出するセンサ等が設けられてもよい。この場合、使用者がステージ操作部145を操作してステージ140を回転させる場合であっても、センサによって検出された角度および上記の機器パラメータに基づいて、複数の立体形状データの位置合わせを容易にかつ正確に行うことができる。
[3]テクスチャ画像
測定部100においては、照明光出力部130から測定対象物Sに照明光が照射された状態または投光部110A,110Bから測定対象物Sに均一な測定光が照射された状態で、測定対象物Sの外観(表面状態)を表す画像データ(以下、テクスチャ画像データと呼ぶ。)が生成される。均一な測定光とは、パターンを有さない測定光であり、照明光の代わりに用いることができる。測定対象物Sの表面状態は、例えば模様または色彩を含む。以下、テクスチャ画像データにより表される画像をテクスチャ画像と呼ぶ。
テクスチャ画像データの種々の例について説明する。例えば、測定対象物Sに対して受光部120の焦点位置が相対的に変化されつつ複数のテクスチャ画像データが取得される。その複数のテクスチャ画像データが合成されることにより、測定対象物Sの表面の全体に焦点が合ったテクスチャ画像データ(以下、全焦点テクスチャ画像データと呼ぶ)が生成される。
また、異なる複数の撮像条件で複数のテクスチャ画像データが取得されてもよい。撮像条件は、例えば、受光部120の露光時間、照明光出力部130からの照明光の強度(明るさ)または投光部110からの均一な測定光の強度(明るさ)等を含む。取得された複数のテクスチャ画像データを用いて公知のハイダイナミック(HDR)合成が行われる。これにより、明るさの差異による黒つぶれおよび白とび等が抑制されたテクスチャ画像データ(以下、HDRテクスチャ画像データと呼ぶ)が生成される。
また、焦点位置が変化されるとともに撮像条件が変化されてもよい。具体的には、測定対象物Sに対して受光部120の焦点位置が相対的に変化されるとともに、各焦点位置において異なる複数の撮像条件でテクスチャ画像データが取得される。取得された複数のテクスチャ画像データを合成することにより、測定対象物Sの表面の全体に焦点が合い、かつ黒つぶれおよび白とび等が抑制されたテクスチャ画像データを生成することができる。
各テクスチャ画像データは、測定対象物Sの各点の色または輝度を表すテクスチャ情報(光学的表面状態を表す情報)を含む。一方、上記の合成立体形状データは、測定対象物Sのテクスチャ情報を含まない。そこで、合成立体形状データといずれかのテクスチャ画像データとが合成されることにより、合成立体形状データにテクスチャ情報が付与されたテクスチャ付き立体形状データが生成される。
テクスチャ付き立体形状データは、測定対象物Sの表面上の複数の点の位置データを含むとともに各点の位置データに対応付けられた当該点の色または輝度を示すデータを含む。この場合、テクスチャ付き立体形状データのうち任意の点のデータをTPn(nは自然数)とすると、TPnは、例えば装置座標系の座標値と、赤色、緑色および青色の三原色の成分(R,G,B)とを用いて(Xn,Yn,Zn,Rn,Gn,Bn)で表すことができる。または、TPnは、例えば装置座標系の座標値と、輝度値(I)とを用いて(Xn,Yn,Zn,In)で表すことができる。テクスチャ付き立体形状データは、点群データに基づいて生成される面情報データにより構成されてもよい。
以下の説明では、一定の焦点位置および撮像条件で取得されたテクスチャ画像データにより表されるテクスチャ画像を通常テクスチャ画像と呼び、全焦点テクスチャ画像データにより表される画像を全焦点テクスチャ画像と呼び、HDRテクスチャ画像データにより表される画像をHDRテクスチャ画像と呼ぶ。また、テクスチャ付き立体形状データにより表される画像をテクスチャ付き立体形状画像と呼ぶ。
[4]形状測定処理
(1)形状測定の準備
測定対象物Sの形状測定処理を実行する前に、使用者は、形状測定の準備を行う。図15は、形状測定の準備の手順を示すフローチャートである。以下、図1、図2および図15を参照しながら形状測定の準備の手順を説明する。まず、使用者は、測定対象物Sをステージ140上に載置する(ステップS1)。次に、使用者は、投光部110から測定対象物Sに測定光を照射する(ステップS2)。続いて、使用者は、表示部400に表示されたライブ画像を見ながら、取得されるライブ画像の明るさ、ならびに測定対象物Sの位置および姿勢の調整(以下、第1の調整と呼ぶ)を行う(ステップS3)。ステップS3において取得されるライブ画像の明るさは、測定光の光量および受光部120の露光時間のうち少なくとも一方を変化させることにより調整することができる。本実施の形態では、測定光を用いて取得されるライブ画像の明るさを観察に適した明るさにするために、測定光の光量または受光部120の露光時間のうち一方が調整される。なお、取得されるライブ画像の明るさは、測定光の光量を一定にし、受光部120の露光時間により調整されることが好ましい。それにより、測定光の光量の変化に伴って測定光源111の温度が変化することによる計測精度の低下が抑制される。
ステップS2では、上記の第1〜第4のパターンの測定光のいずれかが測定対象物Sに照射されてもよく、均一な測定光が測定対象物Sに照射されてもよい。ステップS3において、測定対象物Sの計測すべき箇所(以下、計測箇所と呼ぶ)に影が発生していない場合には、使用者は、測定対象物Sの位置および姿勢の調整を行う必要はなく、測定光の光量または受光部120の露光時間の調整を行えばよい。
次に、使用者は、測定光の照射を停止するとともに、照明光出力部130から測定対象物Sに照明光を照射する(ステップS4)。続いて、使用者は、表示部400に表示されたライブ画像を見ながら、取得されるライブ画像の明るさの調整(以下、第2の調整と呼ぶ)を行う(ステップS5)。ステップS5において取得されるライブ画像の明るさは、基本的にステップS3の例と同様に、照明光の光量および受光部120の露光時間のうち少なくとも一方を変化させることにより調整することができる。本実施の形態では、照明光を用いて取得されるライブ画像の明るさを観察に適した明るさにするために、照明光の光量または受光部120の露光時間のうち一方が調整される。
次に、使用者は、表示部400に表示されたライブ画像を確認し、光量、受光部120の露光時間、測定対象物Sの位置および姿勢(以下、観察状態と呼ぶ)が適切であるか否かを判定する(ステップS6)。ステップS6においては、測定対象物Sに測定光が照射されてもよく、照明光が照射されてもよく、または測定光および照明光が順に照射されてもよい。
ステップS6において、観察状態が適切でないと判定した場合、使用者は、ステップS2の処理に戻る。一方、ステップS6において、観察状態が適切であると判定した場合、使用者は、形状測定の準備を終了する。
なお、上記の説明においては、第1の調整の後に第2の調整が行われるが、これに限定されない。第2の調整の後に第1の調整が行われてもよい。この場合、使用者は、第2の調整において測定対象物Sの位置および姿勢を調整し、第1の調整時に測定対象物Sの所望の部分に測定光が照射されていることを確認してもよい。測定対象物Sの所望の部分に測定光が照射されていない場合には、測定対象物Sの位置および姿勢を再調整し、再度第2の調整として照明光の光量または受光部120の露光時間の調整等を行ってもよい。
(2)第1の調整
図16および図17は、形状測定の準備の手順における第1の調整の詳細を示すフローチャートである。以下、図1、図2、図16および図17を参照しながら形状測定の準備の手順における第1の調整の詳細を説明する。以下、投光部110A,110Bのうち一方から出射される測定光を一方の測定光と呼び、他方から出射される測定光を他方の測定光と呼ぶ。ここで、本実施の形態に係る測定部100においては、一方および他方の測定光の光量をそれぞれ独立して設定することができる。また、一方の測定光を用いて測定対象物Sを撮像する際の受光部120の露光時間と、他方の測定光を用いて測定対象物Sを撮像する際の受光部120の露光時間とをそれぞれ独立して設定することができる。
まず、使用者は、取得されるライブ画像の明るさを観察に適した明るさにするために、一方の測定光の光量または受光部120の露光時間を仮調整する(ステップS11)。次に、使用者は、表示部400に表示される測定対象物Sのライブ画像の倍率(以下、視野サイズと呼ぶ)を調整する(ステップS12)。具体的には、倍率が異なる複数の受光部120が用いられる場合、使用者は、いずれかの受光部120を選択する。それにより、選択された受光部120により取得されるライブ画像が表示部400に表示される。低倍率の受光部120が選択されるときの視野サイズは、高倍率の受光部120が選択されるときの視野サイズよりも大きくなる。なお、測定部100は、デジタルズーム機能を有してもよい。この場合、使用者は、受光部120により取得されるライブ画像の表示倍率を調整することができる。
続いて、使用者は、表示部400に表示されるライブ画像に基づいて、測定対象物Sの位置および姿勢が適切であるか否かを判定する(ステップS13)。ここで、測定対象物Sの計測箇所に影が発生していない場合、使用者は、測定対象物Sの位置および姿勢が適切であると判断する。一方、測定対象物Sの計測箇所に影が発生している場合、使用者は、測定対象物Sの位置および姿勢が適切でないと判断する。
ステップS13において、測定対象物Sの位置および姿勢が適切でないと判定した場合、使用者は、測定対象物Sの位置および姿勢を調整する(ステップS14)。具体的には、使用者は、回転機構143によってステージ140を回転させる、または手で測定対象物Sを動かすことにより、測定対象物Sの位置および姿勢を調整する。その後、使用者は、ステップS13の処理に戻る。
一方、ステップS13において、測定対象物Sの位置および姿勢が適切であると判定した場合、使用者は、表示部400に表示されるライブ画像に基づいて、取得されるライブ画像の明るさが観察に適した明るさであるか否か、すなわち測定対象物Sに照射される一方の測定光の光量または受光部120の露光時間が適切であるか否かを判定する(ステップS15)。
ステップS15において、一方の測定光の光量または受光部120の露光時間が適切でないと判定した場合、使用者は、一方の測定光の光量または受光部120の露光時間を調整する(ステップS16)。その後、使用者は、ステップS15の処理に戻る。
一方、ステップS15において、一方の測定光の光量または受光部120の露光時間が適切であると判定した場合、使用者は、表示部400に表示されたライブ画像から、観察状態が適切であるか否かを判定する(ステップS17)。ステップS17において、観察状態が適切でないと判定した場合、使用者は、ステップS14またはステップS16の処理に戻る。具体的には、観察状態のうち測定対象物Sの位置および姿勢が適切でないと判定した場合、使用者は、ステップS14の処理に戻る。観察状態のうち光(一方の測定光)の光量または受光部120の露光時間が適切でないと判定した場合、使用者は、ステップS16の処理に戻る。
一方、ステップS17において、観察状態が適切であると判定した場合、使用者は、一方の測定光の照射を停止するとともに、他方の投光部110Bから測定対象物Sに測定光を照射する(図17のステップS18)。続いて、使用者は、表示部400に表示されたライブ画像を見ながら、取得されるライブ画像の明るさを観察に適した明るさにするために、他方の測定光の光量または受光部120の露光時間の調整を行う(ステップS19)。
その後、使用者は、表示部400に表示されるライブ画像に基づいて、取得されるライブ画像の明るさが観察に適した明るさであるか否か、すなわち他方の測定光の光量または受光部120の露光時間が適切であるか否かを判定する(ステップS20)。ステップS20において、他方の測定光の光量または受光部120の露光時間が適切でないと判定した場合、使用者は、ステップS19の処理に戻る。一方、ステップS20において、他方の測定光の光量または受光部120の露光時間が適切であると判定した場合、使用者は、第1の調整を終了する。第1の調整が行われることにより、立体形状データを生成するために最適な一方および他方の測定光の光量条件、または一方および他方の測定光にそれぞれ対応する受光部120の露光時間の条件が設定される。なお、他方の投光部110Bを使用しない場合には、使用者は、ステップS17の処理の後、ステップS18〜S20の手順を省略して第1の調整を終了してもよい。
(3)第2の調整
図18は、形状測定の準備の手順における第2の調整の詳細を示すフローチャートである。以下、図1、図2および図18を参照しながら形状測定の準備の手順における第2の調整の詳細を説明する。ここで、本実施の形態に係る測定部100においては、照明光の光量を一方および他方の測定光の光量から独立して設定することができる。また、照明光を用いて測定対象物Sを撮像する際の受光部120の露光時間を、一方および他方の測定光を用いて測定対象物Sを撮像する際の受光部120の露光時間から独立して設定することができる。
まず、使用者は、取得されるライブ画像の明るさを観察に適した明るさにするために、照明光の光量または受光部120の露光時間を調整する(ステップS31)。次に、使用者は、表示部400に表示されるライブ画像に基づいて、取得されるライブ画像の明るさが観察に適した明るさであるか否か、すなわち測定対象物Sに照射される照明光の光量または受光部120の露光時間が適切であるか否かを判定する(ステップS32)。
ステップS32において、照明光の光量または受光部120の露光時間が適切でないと判定した場合、使用者は、ステップS31の処理に戻る。一方、ステップS32において、照明光の光量または受光部120の露光時間が適切であると判定した場合、使用者は、表示すべきテクスチャ画像の種類を選択し(ステップS33)、第2の調整を終了する。テクスチャ画像の種類は、例えば、通常テクスチャ画像、全焦点テクスチャ画像、HDRテクスチャ画像を含む。第2の調整が行われることにより、テクスチャ画像データを生成するために最適な照明光の光量条件、または照明光に対応する受光部120の露光時間の条件が設定される。
また、ステップS33において、全焦点テクスチャ画像またはHDRテクスチャ画像が選択された場合には、全焦点テクスチャ画像データまたはHDRテクスチャ画像データを適切に取得するための設定が別途行われてもよい。例えば、全焦点テクスチャ画像が選択された場合には、焦点位置の変化範囲等が設定されてもよい。また、HDRテクスチャ画像データが選択された場合には、撮像条件の詳細等が設定されてもよい。また、これらの設定に基づいて、プレビュー用の全焦点テクスチャ画像またはHDRテクスチャ画像が表示部400に表示されてもよい。
(4)形状測定処理
図15〜図18の形状測定の準備の後、測定対象物Sの形状測定処理が実行される。図19は、形状測定処理の概要を示すフローチャートである。使用者が、CPU210に形状測定処理の開始を指示すると、CPU210は、第1の調整において設定された光量条件または露光時間の条件に従って、投光部110から測定対象物Sに測定光を照射し、測定光のパターンが投影された測定対象物Sの画像データ(パターン画像データ)を取得する(ステップS41)。取得されたパターン画像データは、作業用メモリ230に記憶される。
次に、CPU210は、取得したパターン画像データを所定の計測アルゴリズムで処理することにより、測定対象物Sの立体形状を示す立体形状データを生成する(ステップS42)。生成された立体形状データは、作業用メモリ230に記憶される。
次に、CPU210は、図18のステップS33で選択されたテクスチャ画像の種類に対応するテクスチャ画像データを取得する(ステップS43)。取得されたテクスチャ画像データは、作業用メモリ230に記憶される。
次に、CPU210は、予め設定された生成条件に基づいて、測定対象物Sについての全ての撮像が終了したか否かを判定する(ステップS44)。全ての撮像が終了していない場合、CPU210は、生成条件に基づいてステージ140(図2)を予め定められた角度だけ回転させ(ステップS45)、ステップS41の処理に戻る。
ステップS44において全ての撮像が終了すると、CPU210は、ステップS42の処理が複数繰り返されることにより生成された複数の立体形状データを合成して合成立体形状データを生成する(ステップS46)。次に、CPU210は、ステップS43の処理が複数繰り返されることにより生成された複数のテクスチャ画像データと合成立体形状データとを合成することにより、テクスチャ付き立体形状データを生成する(ステップS47)。なお、ステップS41〜S45の処理が1度しか実行されていない場合、ステップS46の処理は省略される。
次に、CPU210は、生成された合成立体形状データまたはテクスチャ付き立体形状データに基づいて、測定対象物Sの立体形状画像またはテクスチャ付き立体形状画像を表示部400に表示させる(ステップS48)。この場合、使用者は、表示すべき画像を適宜選択することができる。ステップS48において、測定対象物Sの計測箇所が適切に表示されていない場合、使用者は、図16〜図18の第1および第2の調整を再度行ってもよい。その後、CPU210は、使用者により設定された計測条件に基づいて、計測箇所の計測を実行する(ステップS49)。計測条件の設定については後述する。これにより、形状測定処理を終了する。
[5]ステージの切替
図20は、測定対象物Sの一例を示す外観斜視図である。図20(a)には、斜め上方から見た測定対象物Sが示され、図20(b)には、斜め下方から見た測定対象物Sが示される。図20(a)に示すように、測定対象物Sは、平板状の基板B1、および略直方体状の素子B2を含む。素子B2は、基板B1の上面に実装されている。また、図20(b)に示すように、基板B1の下面の一対の角部には、円形の断面を有する一対の凹部B1aがそれぞれ設けられている。
図21および図22は、ステージ140に図20の測定対象物Sが載置された状態を示す図である。図21の例では、傾斜部402が水平姿勢にあり、回転軸Axに垂直な載置面142a上に測定対象物Sが載置されている。以下の説明では、ステージ140の傾斜部402が水平姿勢にある状態を標準状態と呼び、傾斜部402が傾斜姿勢にある状態を傾斜状態と呼ぶ。
図21(a)の例では、基板B1の上面が上方にむけられている。この場合、ステージ140を回転させることにより、基板B1の上面、ならびに素子B2を受光部120により撮像することができる。一方、ステージ140を回転させても、基板B1の下面を受光部120により撮像することはできない。したがって、基板B1の下面の立体形状データを生成することはできない。
また、図21(b)の例では、基板B1の下面が上方に向けられている。この場合、ステージ140を回転させることにより、基板B1の下面を受光部120により撮像することができる。一方、ステージ140を回転させても、基板B1の上面および素子B2を受光部120により撮像することはできない。したがって、基板B1の上面および素子B2の立体形状データを生成することはできない。
このように、標準状態では、測定対象物Sの姿勢が一定である場合に、測定対象物Sの一部の立体形状データを生成することができない。そのような部分に計測箇所がある場合、使用者がステージ140上における測定対象物Sの姿勢を変化させて、測定対象物Sの姿勢毎に立体形状データを生成する必要がある。
図20の測定対象物Sにおいて、素子B2の寸法および基板B1の凹部B1aの径の両方の計測を行うためには、例えば、図21(a)の例のように、基板B1の上面が上方を向くように測定対象物Sを載置して一度立体形状データを生成し、さらに、図21(b)の例のように、基板B1の下面が上方を向くように測定対象物Sを載置して再度立体形状データを生成する必要がある。また、これらの立体形状データから合成立体形状データを生成するためには、使用者が立体形状データの位置合わせ等を行う必要がある。したがって、作業時間が長くなるとともに、使用者の負担も大きくなる。
これに対して、傾斜状態では、測定対象物Sの姿勢を変化させることなく、測定対象物Sのより広い部分を撮像することができる。図22(a)および図22(b)の例では、傾斜部402の傾斜角度D2が、受光部120の撮像面120aの傾斜角度D1よりも大きく設定されており、例えば傾斜角度D2が60度に設定されている。また、基板B1の下面が傾斜部402の傾斜載置面402aと重なるように、測定対象物Sが傾斜部402上に載置されている。基板B1の一部は傾斜部402の外周よりも外側に位置しており、一対の凹部B1aを含む基板B1の下面の部分が傾斜部402と重ならずに露出している。
図22(a)に示すように、傾斜部402が固定部401よりも受光部120の遠くに位置し、傾斜載置面402aが受光部120に向けられた状態では、測定対象物Sの基板B1の上面および素子B2が受光部120により撮像される。それにより、基板B1の上面および素子B2を含む立体形状データを生成することができる。
一方、図22(b)に示すように、傾斜部402が固定部401よりも受光部120の近くに位置し、傾斜載置面402aが受光部120の反対側に向けられた状態では、基板B1の下面の露出部分が、受光部120に向けられる。それにより、基板B1の下面の一部を受光部120によって撮像することができる。したがって、基板B1の下面の一部の立体形状データを生成することができる。
このように、測定対象物Sの姿勢が一定である場合に、標準状態では生成することができない測定対象物Sの部分の立体形状データを傾斜状態では生成することができる。したがって、傾斜状態では、ユーザに負担を強いることなく測定対象物Sのより広い部分の合成立体形状データを生成することができる。
合成立体形状データに基づく画像の表示について説明する。以下の説明では、立体形状画像およびテクスチャ付き立体形状画像を対象物画像と総称する。図23は、傾斜状態で生成された合成立体形状データに基づく対象物画像の例を示す図である。図23に示すように、合成立体形状データは、受光部120によって撮像された測定対象物Sおよびその周辺部の位置データを含む。以下、受光部120によって撮像される測定対象物Sおよびその周辺部を撮像物と呼ぶ。
図23の対象物画像GTは、撮像物として、測定対象物Sおよびステージプレート142を含む。通常、測定対象物Sに対して計測を行う上で、測定対象物Sの周囲の部分の表示は不要である。そこで、本実施の形態では、対象物画像GTから不要な箇所を除去することができる。具体的には、合成立体形状データに対して、無効とすべき部分(以下、無効部分と呼ぶ)を設定することができる。その場合、合成立体形状データの無効部分は用いられることなく対象物画像データが生成される。
図24は、無効部分の設定例について説明するための図である。使用者は、対象物画像GTにおける撮像物の向きを任意に変更することができる。具体的には、使用者が撮像物の向きの変更を指示すると、合成立体形状データに基づいて対象物画像データが更新され、更新後の対象物画像データに基づいて、撮像物の向きが変更された状態の対象物画像GTが表示される。
図24の対象物画像GTには、測定対象物Sおよびステージプレート142の側面が表される。この状態で、使用者は、ポインタ等によって対象物画像GT上で無効領域を指定する。図24(a)の例では、測定対象物Sの外縁の外側の部分が無効部分に設定される。これにより、図24(b)に示すように、対象物画像GTから測定対象物S以外の部分を除去することができる。
図25は、不要部分が除去された対象物画像GTの例を示す図である。図25に示すように、対象物画像GTにステージプレート142が含まれないので、測定対象物Sの全体の立体形状をより容易に認識することができる。また、後述の計測時にも、合成立体形状データの無効部分は用いられないので、誤った計測値が算出されることが防止される。
なお、無効部分の候補となる位置データが例えば図1の記憶装置240に予め記憶され、使用者の指示に応じて無効部分が設定されてもよい。例えば、傾斜部402が水平姿勢にあるときのステージプレート142の表面の位置データが、第1の無効データとして記憶され、傾斜部402が傾斜姿勢にあるときのステージプレート142の表面の位置データが、第2の無効データとして記憶される。標準状態で合成立体形状データを生成した場合には、第1の無効データに基づいて無効部分を設定することにより、対象物画像GTからステージプレート142を除去することができる。また、傾斜状態で合成立体形状データを生成した場合には、第2の無効データに基づいて無効部分を設定することにより、対象物画像GTからステージプレート142を除去することができる。このように、合成立体形状データの生成毎に無効部分を指定する必要がなく、予め記憶された位置データに基づいて対象物画像GTから不要な箇所を容易に除去することができる。
[6]計測値の取得
図19のステップS50において、使用者は、表示部400に表示された対象物画像GTを見ながら、計測条件を設定する。計測条件は、計測項目および計測箇所を含む。計測項目は、計測すべきパラメータの種類であり、距離、高さ、直径および面積等を含む。また、計測項目として、計測箇所を特定するための幾何形状(例えば、点、直線、円、面、球、円筒および円錐等)が指定されてもよい。
計測条件の設定について説明する。まず、計測の基準となる基準面が設定される。図26は、基準面の設定時におけるCPU210の動作例を示すフローチャートである。
使用者は、表示された対象物画像GT上で基準面とすべき測定対象物Sの面を指定する。例えば、表示部400に対象物画像GTとともにポインタが表示される。使用者は、操作部250を操作してポインタを移動させ、対象の面をポインタにより指定する。CPU210は、基準面とすべき面が指定されたか否かを判定する(ステップS61)。面が指定されていない場合、CPU210は、ステップS61の処理を繰り返す。
次に、CPU210は、合成立体形状データに基づいて、指定された面に最も近い平面を抽出し(ステップS62)、抽出された平面を基準面に設定する(ステップS63)。通常、測定対象物Sの各面は、僅かに凹凸を含む、または僅かに湾曲している等、完全な平面ではない。そこで、指定された面と最も一致度が高い仮想的な平面が抽出され、基準面に設定される。次に、CPU210は、設定された基準面に基づいて基準面画像データを生成し、生成された基準面画像データを用いて表示部400に基準面画像を表示する(ステップS64)。基準面画像は、基準面に対して測定対象物Sを垂直に見た2次元的(平面図的)な画像である。すなわち、基準面画像においては、設定された基準面が表示部400の画面と平行になっている。
図27は、基準面画像の例を示す図である。図27の基準面画像GSにおいては、基板B1の下面が指定され、基準面に設定されている。そのため、素子B2の上面が表示部400の画面と略平行である。図28は、計測条件の設定例について説明するための図である。図28(a)の例では、計測項目として、直径が指定され、計測箇所として、一方の凹部B1aが指定される。この場合、計測箇所は基準面上に設定される。計測項目および計測箇所が指定されると、合成立体形状データに基づいて、指定された計測項目および計測箇所に対応する計測値が算出され、基準面画像GS上に表示される。図28(b)の例では、基準面画像GS上に、凹部B1aの直径として“xx(mm)”が表示される。
図28の例では、基準面画像GSを用いて計測条件の設定が行われるが、対象物画像GTを用いて計測条件が設定されてもよい。例えば、計測項目として2面間の距離が指定される。また、対象物画像GT上で、計測箇所として測定対象物Sの2つの面が指定される。この場合、指定された2面間の距離が計測値として算出され、対象物画像GT上に表示される。対象物画像GTを用いて計測条件が設定される場合には、基準面が設定されなくてもよい。
図29は、基準面画像GSの他の例を示す図である。図29の基準面画像GSにおいては、基板B1の上面に対応するように基準面が設定されている。図29の例では、測定対象物Sの各部に、基準面に対する高さの差分に応じた色が付される。ここで、高さとは、基準面に対して垂直な方向における基準面からの距離を意味する。図29においては、色の違いがドットパターンの違いで表される。この場合、使用者は、基準面と他の部分との高さの差を容易に認識することができる。基準面画像は、立体形状データまたはテクスチャ付き立体形状データを所定の基準面からの高さで表した高さ画像として機能する。
合成立体形状データに基づいて、測定対象物Sのプロファイル(断面形状)を表す画像(以下、プロファイル画像と呼ぶ。)が表示されてもよい。図30は、プロファイルを取得すべき箇所の指定について説明するための図であり、図31は、プロファイル画像の例を示す図である。
図30の例では、基準面画像GS上において、線分LSによりプロファイルを取得すべき測定対象物Sの箇所が指定される。この場合、合成立体形状データに基づいて、線分LSを通りかつ基準面に垂直な面上における測定対象物Sのプロファイルを表すプロファイルデータが生成される。生成されたプロファイルデータに基づいて、図31のプロファイル画像GPが表示される。プロファイル画像GPは、測定対象物Sのプロファイルを表すプロファイル線PLを含む。
プロファイル画像GPを用いて計測条件が設定されてもよい。図30の例では、計測項目として、2面間の距離が指定され、計測箇所として、プロファイル線PL上の線分L11および線分L12が指定される。線分L11,L12は、測定対象物Sの基板B1の上面および素子B2の上面にそれぞれ対応する。この場合、合成立体形状データまたはプロファイルデータに基づいて、線分L11と線分L12との間の距離(基板B1の上面と素子B3の上面との間の距離)が計測値として算出される。算出された計測値“yy”は、プロファイル画像GP上に表示される。
[7]正対状態
受光部120の撮像面120a(図5)とステージ140の傾斜載置面402aとが正対するように、傾斜部402の傾斜角度およびステージ140の回転位置が調整されてもよい。以下、受光部120の撮像面120aとステージ140の傾斜載置面402aとが正対する状態を正対状態と呼ぶ。なお、撮像面120aと傾斜載置面402aとが正対するとは、傾斜載置面402aと撮像面120aとが互いに平行である場合に限らず、傾斜載置面402aと撮像面120aとが一定範囲内の角度(例えば、10度以下)をなす場合も含む。
図32は、正対状態での受光部120、ステージ140および測定対象物Sの関係を示す図である。図32の例では、受光部120の撮像面120aの傾斜角度D1と、ステージ140の傾斜部402の傾斜角度D2とが互いに等しく、撮像面120aと傾斜載置面402aとが互いに平行である。
傾斜部402はステージベース141と一体的に設けられているので、正対状態となるステージ140の回転位置は一定である。図1のCPU210は、使用者の指示に基づいて、正対状態となるようにステージ140の回転位置を調整することができる。
図32に示すように、標準状態では鉛直上方に向けられる測定対象物Sの箇所(以下、上面領域と呼ぶ。)が、正対状態では受光部120に向けられる。そのため、正対状態では、上面領域の立体形状データが生成される。
計測箇所が上面領域にある場合には、複数の立体形状データを合成することなく、正対状態で生成された立体形状データのみを用いて、計測箇所の計測を行うことができる。それにより、不要な立体形状データを生成することがないので、計測箇所の計測を迅速に行うことができる。
また、正対状態で生成された立体形状データを用いて、上面領域を表す対象物画像GTを表示することができる。上面領域に含まれる測定対象物Sの面(例えば、基板B1の上面)を基準面に指定する場合、使用者は、対象物画像GT上で基準面を容易に指定することができる。そのため、使用者は、基準面の設定および計測条件の設定を効率良く迅速に行うことができる。
[8]効果
本実施の形態に係る測定装置500においては、投光部110、受光部120およびステージ140が一体的に設けられているので、使用者は、これらの配置を調整する必要がなく、ステージ140上に測定対象物Sを載置することで、測定対象物Sの立体形状データを得ることができる。また、ステージ140の回転軸Axに対して非垂直な傾斜載置面402aに測定対象物Sが載置されるので、治具等を用いることなく測定対象物Sを傾斜姿勢に維持することができ、必要な箇所の点群データを容易に取得することができる。
また、ステージ140の回転軸Axが受光部120の光軸A1と平行でないので、ステージ140を回転させることにより、受光部120に向けられる測定対象物Sの箇所が変わる。そのため、測定対象物Sの異なる箇所が受光部120により撮像される。したがって、測定対象物の異なる箇所の立体形状データを生成することができる。さらに、生成された複数の点群データが合成されることにより合成立体形状データが生成される。合成立体形状データは、複数の立体形状データにより表される測定対象物の種々の箇所の立体形状を含む。したがって、生成された合成立体形状データに基づいて、測定対象物の所望の箇所の計測値を容易に算出することができる。
また、本実施の形態では、ステージ140の傾斜部402が水平姿勢と傾斜姿勢とに切替可能であるので、回転軸Axに対して垂直な載置面142aと、回転軸Axに対して傾斜する傾斜載置面402aとを選択的に使用することができる。それにより、目的に応じて、ステージ140上の測定対象物Sの姿勢を容易に調整することができる。
また、本実施の形態では、対象物画像GTを表す対象物画像データおよび基準面画像GSを表す基準面画像データがそれぞれ生成される。使用者は、対象物画像GTを見て、測定対象物Sの立体形状を直感的に認識することができる。また、使用者は、基準面画像GSを用いて、計測箇所の指定を容易に行うことができる。したがって、立体形状画像データおよび基準面画像データを順にまたは選択的に用いることにより、必要な計測値を効率良く得ることができる。
[9]他の実施の形態
(1)図33および図34は、ステージ140の他の構成例について説明するための図である。図33の例では、ステージプレート142が、2つの固定部401u,401vおよび傾斜部402を含む。傾斜部402は、傾斜角度を調整可能に固定部401uと固定部401vとの間に設けられる。この場合、ステージ140の中心部上に測定対象物Sを傾斜姿勢で載置することができ、測定対象物Sが撮像領域TR(図4)から外れることが防止される。また、傾斜部402の寸法を小さくすることにより、傾斜部402と重なる測定対象物Sの領域を小さくすることができ、測定対象物Sのより広い範囲の立体形状データを生成することができる。
図34の例では、ステージプレート142が固定部401と傾斜部402とに分割されていない。ステージプレート142の載置面142a上に、傾斜部材410が取り付けられる。傾斜部材410は、ステージプレート142に対して着脱可能である。傾斜部材410は、傾斜載置面410aを有するとともに、傾斜載置面410a上に載置された測定対象物Sを係止するための係止部411を有する。
ステージ140の回転位置と傾斜載置面402aの向きとを対応付けるため、載置面142a上における傾斜部材410の取付位置は一定であることが好ましい。本例では、ステージプレート142に複数の孔部142hが設けられ、傾斜部材410の底面に複数の孔部142hにそれぞれ対応する複数の突起部410bが設けられる。傾斜部材410の突起部410bがステージプレート142の複数の孔部142hに挿入されることにより、載置面142a上の予め定められた位置にステージプレート142が取り付けられる。孔部142hおよび突起部410bが設けられる代わりに、ステージプレート142に傾斜部材410の取付位置を表す印等が付されてもよい。
本例においても、測定対象物Sを傾斜姿勢に維持することができる。そのため、上記実施の形態と同様に、測定対象物Sの必要な箇所の点群データを容易に生成することができる。また、傾斜部材410の着脱によって回転軸Axに対して垂直な載置面142aと回転軸Axに対して傾斜する傾斜載置面410aとを選択的に使用することができる。それにより、目的に応じて、ステージ140上の測定対象物Sの姿勢を容易に調整することができる。
なお、傾斜載置面410aの傾斜角度が異なる複数種類の傾斜部材410が用いられてもよい。また、一の傾斜部材410において、傾斜載置面410aの傾斜角度が可変であってもよい。
(2)上記実施の形態では、CPU210がステージ140の回転位置に基づいて複数の立体形状データを合成するが、本発明はこれに限らない。例えば、使用者がステージ操作部145を操作してステージ140を回転させる場合、または使用者が測定対象物Sを把持して測定対象物Sの姿勢を変化させる場合に、使用者が複数の立体形状データを位置合わせして合成し、合成立体形状データを生成してもよい。
(3)上記実施の形態では、使用者が対象物画像GT上で測定対象物Sのいずれかの面を指定することにより基準面が設定されるが、基準面が自動的に設定されてもよい。例えば、上記のように、正対状態で立体形状データが生成されることにより、測定対象物Sを平面図的に表す対象物画像GTを表示することができる。そこで、その対象物画像GTにおいて、奥行き方向の傾きが最も小さい測定対象物Sの面(受光部120の撮像面120aに対する角度が最も小さい測定対象物Sの面)が特定され、特定された面との一致度が最も高い平面が抽出され、その平面が基準面に設定されてもよい。
(4)上記実施の形態では、受光部120に単眼カメラが用いられるが、単眼カメラに代えてまたは単眼カメラに加えて、複眼カメラが用いられてもよい。また、複数の受光部120が用いられ、ステレオ法によって立体形状データが生成されてもよい。また、上記実施の形態では、2つの投光部110が用いられるが、立体形状データの生成が可能であれば、1つの投光部110のみが用いられてもよく、または3つ以上の投光部110が用いられてもよい。
また、投光部110からの均一な測定光を用いてライブ画像データおよびテクスチャ画像データを取得する場合には、照明光出力部130および照明光源320が設けられなくてもよい。また、パターン画像データを合成してテクスチャ画像データを生成することも可能であり、その場合にも照明光出力部130および照明光源320が設けられなくてもよい。
また、上記実施の形態では、パターン画像データ、ライブ画像データおよびテクスチャ画像データが共通の受光部120によって取得されるが、立体形状データを取得するための受光部と、ライブ画像データおよびテクスチャ画像データを取得するための受光部とが別個に設けられてもよい。
また、上記実施の形態では、三角測距法により点群データが生成されるが、TOF(Time Of Flight)法等の他の方法により点群データが生成されてもよい。
(5)上記実施の形態では、ステージ駆動部146によりステージ140が回転軸Axの周りで回転可能に構成され、他の方向には移動しないが、本発明はこれに限定されない。
ステージ140は、例えば回転軸Axの周りで回転可能であるとともに、X方向、Y方向およびZ方向のうち少なくとも一方向に移動可能に構成されてもよい。この場合、ステージ140に対して一定姿勢で測定対象物Sが載置された状態で、ステージ140の回転角度および位置を自在に変更することができる。したがって、より多様な視点で測定対象物Sを撮像することができる。その結果、測定対象物Sのより広い範囲の合成立体形状データを生成することが可能になる。
[10]請求項の各構成要素と実施の形態の各部との対応関係
以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。
上記実施の形態においては、設置部161がステージ保持部の例であり、ステージ140がステージの例であり、傾斜載置面402a,410aが傾斜載置面の例であり、ヘッド部190がヘッド部の例であり、投光部110が投光部の例であり、受光部120が受光部の例であり、スタンド部162が連結部の例であり、点群データ生成部501が点群データ生成手段の例であり、合成部502が合成手段の例であり、計測部503が計測手段の例であり、載置面142aが非傾斜載置面の例であり、ステージプレート142がステージプレートの例であり、傾斜部材410が傾斜部の例であり、回転制御部504が回転制御手段の例であり、撮像面120aが撮像面の例であり、無効部分設定部505が無効部分設定手段の例であり、立体形状画像データ生成部506が立体形状画像データ生成手段の例であり、基準面設定部507が基準面設定手段の例であり、基準面画像データ生成部508が基準面画像データ生成手段の例である。
請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。
本発明は、測定対象物の測定を行う種々の測定装置に利用可能である。
100 測定部
110 投光部
111 測定光源
112 パターン生成部
113,114 レンズ
120 受光部
130 照明光出力部
140 ステージ
150 制御基板
200 PC
210 CPU
220 ROM
230 作業用メモリ
240 記憶装置
250 操作部
300 制御部
320 照明光源
400 表示部
500 測定装置
S 測定対象物

Claims (8)

  1. ステージ保持部と、
    上下方向の回転軸を中心に回転可能に前記ステージ保持部により保持され、前記回転軸に対して非垂直でかつ測定対象物が載置される傾斜載置面を有するステージと、
    前記ステージに載置される測定対象物にパターンを有する測定光を照射する投光部と、前記測定対象物により反射された測定光を受光して受光量を表す受光信号を出力する受光部とを含むヘッド部と、
    前記投光部から前記測定対象物に対して測定光が斜め下方に導かれ、かつ前記受光部の光軸が前記測定対象物に向かって斜め下方に延びるように、前記ヘッド部と前記ステージ保持部とを固定的に連結する連結部と、
    前記受光部により出力される受光信号に基づいて、前記測定対象物の立体形状を表す点群データを生成する点群データ生成手段と、
    前記点群データ生成手段により生成された一の点群データと他の点群データとを合成することにより合成点群データを生成する合成手段と、
    前記測定対象物の計測すべき箇所の指定を受け付け、前記合成手段により生成された合成点群データに基づいて、前記指定された箇所の計測値を算出する計測手段とを備える、測定装置。
  2. 前記ステージは、前記回転軸と直交する非傾斜載置面をさらに有する、請求項1記載の測定装置。
  3. 前記ステージは、
    前記非傾斜載置面を有し、前記ステージ保持部により保持されるステージプレートと、
    前記傾斜載置面を有し、前記ステージプレートに対して着脱可能な傾斜部とを含む、請求項1または2記載の測定装置。
  4. 前記ステージは、
    前記非傾斜載置面および前記傾斜載置面を選択的に形成するように、前記回転軸に垂直な面に対する傾斜角度を調整可能に設けられたステージプレートを含む、請求項1〜3のいずれか一項に記載の測定装置。
  5. 前記ステージの回転を制御する回転制御手段をさらに備え、
    前記点群データ生成手段は、前記回転制御手段により前記ステージが第1の回転位置に位置されるときに前記受光部により出力される受光信号に基づいて前記一の点群データを生成し、前記回転制御手段により前記ステージが第2の回転位置に位置されるときに前記受光部により出力される受光信号に基づいて前記他の点群データを生成し、
    前記合成手段は、前記回転制御手段により制御される前記ステージの回転位置に基づいて前記一の点群データと前記他の点群データとを合成する、請求項1〜4のいずれか一項に記載の測定装置。
  6. 前記受光部は、前記光軸に対して垂直な撮像面を有し、
    前記回転制御部は、前記傾斜載置面が前記受光部の前記撮像面と正対するように前記ステージの回転位置を制御する、請求項5記載の測定装置。
  7. 前記合成手段により生成された合成点群データのうち無効とすべき部分を設定する無効部分設定手段をさらに備える、請求項1〜6のいずれか一項に記載の測定装置。
  8. 前記合成手段により生成された合成点群データに基づいて前記測定対象物を任意の方向に見た画像を表す立体形状画像データを生成する立体形状画像データ生成手段と、
    前記合成手段により生成された合成点群データにより表される前記測定対象物の表面の一部に対応しかつ計測の基準となる基準面を設定する基準面設定手段と、
    前記合成手段により生成された合成点群データに基づいて、前記基準面設定手段により設定された基準面に対して垂直に前記測定対象物を見た画像を表す基準面画像データを生成する基準面画像データ生成手段とをさらに備え、
    前記計測手段は、前記立体形状画像データおよび前記基準面画像データのいずれか一方に対して計測すべき箇所の指定を受け付ける、請求項1〜7のいずれか一項に記載の測定装置。
JP2016127055A 2016-06-27 2016-06-27 測定装置 Active JP6695747B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016127055A JP6695747B2 (ja) 2016-06-27 2016-06-27 測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016127055A JP6695747B2 (ja) 2016-06-27 2016-06-27 測定装置

Publications (2)

Publication Number Publication Date
JP2018004280A true JP2018004280A (ja) 2018-01-11
JP6695747B2 JP6695747B2 (ja) 2020-05-20

Family

ID=60948874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016127055A Active JP6695747B2 (ja) 2016-06-27 2016-06-27 測定装置

Country Status (1)

Country Link
JP (1) JP6695747B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114008406A (zh) * 2019-06-27 2022-02-01 大塚电子株式会社 测量装置以及测量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747822A (en) * 1994-10-26 1998-05-05 Georgia Tech Research Corporation Method and apparatus for optically digitizing a three-dimensional object
JP2003269936A (ja) * 2002-03-19 2003-09-25 Sanyo Electric Co Ltd 自動採寸方法
JP2003302211A (ja) * 2002-04-11 2003-10-24 Canon Inc 3次元画像処理装置及び方法
JP2009276249A (ja) * 2008-05-15 2009-11-26 Toyota Motor Corp ステータコイルの形状検査方法および形状検査装置
JP2011059006A (ja) * 2009-09-11 2011-03-24 Fuji Xerox Co Ltd 位置計測用標識体および位置計測システム
JP2012008867A (ja) * 2010-06-25 2012-01-12 Topcon Corp 点群データ処理装置、点群データ処理システム、点群データ処理方法、および点群データ処理プログラム
JP2013228267A (ja) * 2012-04-25 2013-11-07 Panasonic Corp 表示装置、表示方法、及びプログラム
JP2014106094A (ja) * 2012-11-27 2014-06-09 Keyence Corp 形状測定装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747822A (en) * 1994-10-26 1998-05-05 Georgia Tech Research Corporation Method and apparatus for optically digitizing a three-dimensional object
JP2003269936A (ja) * 2002-03-19 2003-09-25 Sanyo Electric Co Ltd 自動採寸方法
JP2003302211A (ja) * 2002-04-11 2003-10-24 Canon Inc 3次元画像処理装置及び方法
JP2009276249A (ja) * 2008-05-15 2009-11-26 Toyota Motor Corp ステータコイルの形状検査方法および形状検査装置
JP2011059006A (ja) * 2009-09-11 2011-03-24 Fuji Xerox Co Ltd 位置計測用標識体および位置計測システム
JP2012008867A (ja) * 2010-06-25 2012-01-12 Topcon Corp 点群データ処理装置、点群データ処理システム、点群データ処理方法、および点群データ処理プログラム
JP2013228267A (ja) * 2012-04-25 2013-11-07 Panasonic Corp 表示装置、表示方法、及びプログラム
JP2014106094A (ja) * 2012-11-27 2014-06-09 Keyence Corp 形状測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114008406A (zh) * 2019-06-27 2022-02-01 大塚电子株式会社 测量装置以及测量方法

Also Published As

Publication number Publication date
JP6695747B2 (ja) 2020-05-20

Similar Documents

Publication Publication Date Title
JP6029394B2 (ja) 形状測定装置
US10415958B2 (en) Measuring device
US8885176B2 (en) Shape measuring device, shape measuring method, and shape measuring program
US9151600B2 (en) Shape measuring device, shape measuring method, and shape measuring program
JP6116164B2 (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP6695746B2 (ja) 測定装置
JP6736383B2 (ja) 測定装置
JP6691838B2 (ja) 測定装置
JP6004851B2 (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP6161775B2 (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP6279048B2 (ja) 形状測定装置
JP5956911B2 (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP6161253B2 (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP6695748B2 (ja) 測定装置
JP6476252B2 (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP2014055814A (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP6695747B2 (ja) 測定装置
JP7154084B2 (ja) 三次元形状測定装置および三次元形状測定プログラム
JP5956932B2 (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP6077287B2 (ja) 光学顕微鏡及びパターン投影計測方法
JP6025466B2 (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP2017227610A (ja) 三次元測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200422

R150 Certificate of patent or registration of utility model

Ref document number: 6695747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250