JP2018003837A - 二元燃料大型ディーゼルエンジンの動作方法および二元燃料大型ディーゼルエンジン - Google Patents

二元燃料大型ディーゼルエンジンの動作方法および二元燃料大型ディーゼルエンジン Download PDF

Info

Publication number
JP2018003837A
JP2018003837A JP2017120778A JP2017120778A JP2018003837A JP 2018003837 A JP2018003837 A JP 2018003837A JP 2017120778 A JP2017120778 A JP 2017120778A JP 2017120778 A JP2017120778 A JP 2017120778A JP 2018003837 A JP2018003837 A JP 2018003837A
Authority
JP
Japan
Prior art keywords
gas
cylinder
air
diesel engine
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017120778A
Other languages
English (en)
Other versions
JP7475109B2 (ja
Inventor
オットー マルセル
Ott Marcel
オットー マルセル
アルター ローランド
Alder Roland
アルター ローランド
アクルール マチュー
Akrour Matthieu
アクルール マチュー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Winterthur Gas and Diesel AG
Original Assignee
Winterthur Gas and Diesel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winterthur Gas and Diesel AG filed Critical Winterthur Gas and Diesel AG
Publication of JP2018003837A publication Critical patent/JP2018003837A/ja
Priority to JP2022081237A priority Critical patent/JP2022107648A/ja
Application granted granted Critical
Publication of JP7475109B2 publication Critical patent/JP7475109B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/02Engines characterised by using fresh charge for scavenging cylinders using unidirectional scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/066Retrofit of secondary fuel supply systems; Conversion of engines to operate on multiple fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/10Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
    • F02D19/105Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous operating in a special mode, e.g. in a liquid fuel only mode for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0418Air humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/04Two-stroke combustion engines with electronic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2700/00Mechanical control of speed or power of a single cylinder piston engine
    • F02D2700/02Controlling by changing the air or fuel supply
    • F02D2700/0202Controlling by changing the air or fuel supply for engines working with gaseous fuel, including those working with an ignition liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】二元燃料大型ディーゼルエンジンのガスモードにおいて、好ましくない周囲条件下でも汚染物質排出量を大幅に増加させることなく、全負荷の少なくとも約100%で動作可能とする動作方法を提供すること。【解決手段】本発明によれば、液体燃料が燃焼のためにシリンダに導入される液体モードと、燃料としてのガスがシリンダに導入され、このガスが掃気と混合されて所定の空気ガス比で燃焼されるガスモードとで動作可能な二元燃料大型ディーゼルエンジン、特に長手方向掃気式2ストローク大型ディーゼルエンジンの動作方法であって、ガスモードでの動作中、空気ガス比の変化を検出可能とする制御パラメータが監視され、制御パラメータが制限値に達すると、ガスの燃焼のために空気ガス比を上昇させるパワーバランスモードで大型ディーゼルエンジンが動作される、動作方法が提案される。【選択図】図1

Description

本発明は、二元燃料大型ディーゼルエンジンの動作方法に関し、特に液体燃料をシリンダに投入して燃焼させる液体モードと、ガスを燃料としてシリンダに投入するガスモードとで動作可能な長手方向掃気式2ストローク大型ディーゼルエンジンの動作方法に関する。本発明は、この方法で動作する二元燃料大型ディーゼルエンジンにも関する。
2ストロークまたは4ストロークエンジン、例えば長手方向掃気式2ストローク大型ディーゼルエンジンとして設計可能な大型ディーゼルエンジンは、船舶の動力装置として用いられたり、或いは、定置運転で例えば電気を作り出す大型発電機を駆動するために使用されたりすることが多い。一般に、エンジンはかなりの時間に亘って絶えず動作するため、動作安全性や可用性における要求が高い。このため、点検の間隔が長いこと、摩耗の程度が低いこと、運転材料を経済的に使用することがその運用者にとって重要な基準となる。
さらに、ここ数年において重要度が高まっている重大なポイントは、排ガスの質、特に、排ガス中の窒素酸化物濃度である。これに関して、法的規制およびそれに対応する排ガス基準の規制値がますます厳しくなってきている。これにより、特に2ストローク大型ディーゼルエンジンについては、高濃度の汚染物質を含む従来からの重油の燃焼のみならず、ディーゼル油などのその他の燃料の燃焼もますます問題視されている。これは、排出規制値の遵守がますます難しく、技術的により複雑でコスト高となり、最終的には、その遵守が経済的に不合理となっているからである。
それゆえに、実際に、既に以前より、いわゆる「二元燃料エンジン」に対するニーズがある。二元燃料エンジンとは、2種類の燃料で動作可能なエンジンである。ガスモードでは、LNG(液化天然ガス)といった天然ガス、液化石油ガス状のガス、または内燃機関を動作させるのに適したその他のガスが燃焼に用いられ、液体モードでは、同一のエンジンでガソリン、ディーゼル、重油、アルコール、石油の誘導体、石油と水との混合液、バイオ燃料、またはその他の適した液体燃料を燃焼できる。このようなエンジンは2ストロークエンジンでも4ストロークエンジンでもあり得るが、特に長手方向掃気式2ストローク大型ディーゼルエンジンでもあり得る。
よって、二元燃料エンジンは、燃料を自己発火させるという特徴をもつディーゼル運転以外に、燃料を外部着火させるという特徴をもつオットー運転でも動作することができる。燃料の自己発火は、特に、他の燃料の外部着火に利用できる。
液体モードでは、燃料はシリンダの燃焼室に直接投入され、そこで、自己発火の原理に従って燃焼される。ガスモードでは、シリンダの燃焼室で着火可能な混合気を生成するために、オットーの原理に基づいて気体状態のガスに掃気を混合することが知られている。この低圧プロセスでは通常、少量の液状燃料をタイミング良くシリンダの燃焼室または予燃室に噴射して、この燃料により上記空気ガス混合気をシリンダ内で着火させる。勿論、空気ガス混合気は、電子的に着火してもよいし、別の既知の方法で着火してもよい。動作中、二元燃料エンジンは、ガスモードから液体モードへ、またその逆に切り替わることができる。
二元燃料エンジンにおいて、ガスモード動作時にシリンダの燃焼室にガスを噴射するプロセスが、該エンジンにおける高信頼、低排出、そして安全な動作のために決定的に重要である。
液体モードまたはディーゼル運転においては掃気と液体燃料との比は比較的重要ではないが、特にガスモードにおける掃気とガスの比、いわゆる空気ガス比あるいは空燃比を正しく調節することが決定的に重要である。大型のディーゼルエンジンでは、通常、エンジンの負荷、すなわちエンジンの出力、トルク、または回転速度に応じて掃気圧または給気圧を生成するターボチャージャによって掃気または給気が供給される。シリンダ内の空気の質量は、所与の掃気圧に対し算出され、その後、エンジンによって生成される所要の駆動トルクまたは所望の回転速度毎にガス状燃料の適切な量を決定することができ、これにより、この動作状態における燃焼プロセスが最適なものとなる。
特に、ガスモードをオットーの原理に従って動作させる場合、低排出で、効率的で、且つ経済的に好ましくエンジンを動作させるには空気ガス比を正しく調節することが決定的に重要である。ガスの量が多すぎると、空気ガス混合気の濃度が高くなりすぎる。そのような混合気は、過度に速くまたは早い時期に燃焼してしまうため、高い機械的応力、エンジンのノッキング、および汚染物質の排出量の大幅な増加が引き起こされ得る。この場合、燃焼プロセスは、シリンダ内のピストンの動きに正しく適応しなくなるため、燃焼の一部が、ピストンの動きに反して起こることになる。
通常の動作条件下では、近年の大型ディーゼルエンジンにおいて空気ガス比を正しく調節することは特に問題ではないが、動作条件には著しい困難を引き起こし得るものもある。
この点に関し、通常の動作条件とは、例えば、大型ディーゼルエンジンの技術仕様が示す条件を意味し、全負荷時の最大出力、汚染物質排出量、燃料消費量などである。これらの技術仕様は、ISO3046−1などの国際基準(ISO)で定められた動作条件を示し、例えば25℃の周囲温度を示す。
大型ディーゼルエンジンは、通常、特に実際の稼働運転に引き渡される前やメンテナンス作業の枠内で、指示仕様に準拠しているかを検査される。例えば、国際海事機関(IMO)によって規制値が定められた汚染物質排出量についての検査が行われる。しかし、このような検査は、前述のISO条件下で行えないことが多く、これは重大な問題を招き得る。
例えば、いわゆる熱帯条件(tropical conditions)により、特にガスモード動作時において困難が生じ得る。熱帯条件とは、周囲空気の温度および/または相対湿度が非常に高いことを特徴とする周囲条件を意味し、例えば、温度は少なくとも27℃あるいは30℃を超え、または、相対湿度は30%、40%、さらには60%を超える。相対湿度が60%で気温が45℃というのが、熱帯条件の一例である。このような熱帯条件下では、シリンダに掃気を提供するためのターボチャージャが吸入する空気も、その温度および/または湿度が非常に高くなる。
温度の高い空気は密度が低く、また、湿度の高い空気は給気冷却器において非常に急速な水分凝縮や蒸気形成を引き起こすため、ターボチャージャが吸入する空気が暖かかったり湿っていたりすると、ターボチャージャ内の空気質量流量が著しく低下してしまう。空気ガス比に非常に敏感であるガスモードにおいてこのように空気質量流量が低下すると、ガスの燃焼は空気欠乏範囲に入りかねない。これは、シリンダ内の空気ガス比が低くなって空気ガス混合気が高濃度になりすぎることを意味し、これによって、大型ディーゼルエンジン内の燃焼が過度に速くなり、機械的応力が増加したり、汚染物質の排出量が非常に多くなったりしてしまう。このような状態になる場合またはなる前に、大型ディーゼルエンジンの負荷を低下または低減させて、ガスモードにおける空気欠乏範囲を回避しなくてはならない。
特に、大型ディーゼルエンジンを全負荷すなわち100%の負荷で動作させる試験運転において、許容範囲外の高い汚染物質排出がガスモードで起き得る。大型ディーゼルエンジンの稼働運転においても、周囲空気の温度および/または湿度が非常に高いといった好ましくない周囲条件によって、重大な問題が引き起こされ得る。通常、稼働運転において大型ディーゼルエンジンが100%の負荷つまり全負荷で動作することは滅多にないにしても、周囲空気の温度および/または湿度が非常に高いと、大型ディーゼルエンジンは、その公称全負荷の最大85%さらには最大75%でしか動作できなくなり、これは、経済面でも不利である。
本発明は、この問題に対処するものである。
この従来技術を根幹として、本発明は、特に前述の熱帯条件といった好ましくない周囲条件下でも、大型ディーゼルエンジンの汚染物質排出量を大幅に増加させることなく、二元燃料大型ディーゼルエンジンをガスモードにおいて全負荷の少なくとも約100%で動作可能とする二元燃料大型ディーゼルエンジンの動作方法を提案することを目的とする。また、本発明は、このような大型ディーゼルエンジンを提案することを目的とする。
これらの問題を解決する本発明の主題は、それぞれのカテゴリの独立請求項に記載の構成によって特徴付けられる。
本発明によれば、液体燃料が燃焼のためにシリンダに導入される液体モードと、燃料としてのガスがシリンダに導入され、ガスが掃気と混合されて所定の空気ガス比で燃焼されるガスモードとで動作可能な二元燃料大型ディーゼルエンジン、特に長手方向掃気式2ストローク大型ディーゼルエンジンの動作方法であって、ガスモードでの動作中、空気ガス比の変化を検出可能な制御パラメータが監視され、制御パラメータが制限値に達すると、大型ディーゼルエンジンがパワーバランスモードで動作され、このパワーバランスモードでは、ガスの燃焼のために空気ガス比が上昇される、動作方法が提案される。
したがって、空気ガス比の変化の検出を可能にする制御パラメータを、少なくともガスモードにおいて監視することが、本発明の非常に重要な側面である。制御パラメータの監視により、ガスの燃焼が空気欠乏範囲に入ってしまうこと、つまりシリンダにおいて早期燃焼のリスクがあることをタイムリーに検出できる。制御パラメータの現在値が制限値に達すると、大型ディーゼルエンジンはすぐに、シリンダ内の空気ガス比を上げるパワーバランスモードに切り替わる。ここで、制限パラメータの制限値は、ガスの燃焼がまだ速過ぎではないところ、つまり、空気ガス混合気の濃度がまだ高過ぎではないところに設定される。これにより、大型ディーゼルエンジンが、非常に好ましくない周囲条件下、特に熱帯条件下においても、汚染物質排出量および機械的応力のどちらも大幅に増加させずに、公称全負荷の少なくとも約100%で動作できるようになる。
パワーバランスモードを起動するための制御パラメータとしては、現在値がもともと入手可能である大型ディーゼルエンジンのパラメータ、そのような入手可能なパラメータから導出できるパラメータ、または特段の努力、特に技術装置の追加を要さずに記録できるパラメータを選択することが好ましい。好適な制御パラメータは、シリンダ圧力、シリンダ圧力と圧縮圧力との比(いわゆるスパーク・ジャンプ)、燃焼の速度、掃気を供給するためのターボチャージャの入口で吸入される空気の温度、ターボチャージャ用のウェイストゲート弁の位置、掃気を供給するためのターボチャージャの入口で吸入される空気の湿度、シリンダに投入される掃気の温度、掃気の現在の圧力(current pressure)、排ガス中の酸素濃度、および排ガス中の窒素酸化物濃度のうちの少なくとも1つを含む。
特に好ましい実施形態において、パワーバランスモードを起動するための制御パラメータは、空気ガス混合気を燃焼中のシリンダ圧力である。着火圧力ともされる、作業サイクルにおいてシリンダ内に発生する最大圧力を示すこの圧力は、通常二元燃料大型ディーゼルエンジンにおいて記録されているため入手可能であり、ガス燃焼中の空気ガス比の変化を特に確実に検出可能とする要素である。
この点に関して、制御パラメータの制限値は、シリンダの設計圧力であることが好ましい。大型ディーゼルエンジンにはそれぞれ、設計圧力がある。この圧力は、安全な動作を確実とするための、シリンダ圧力またはシリンダ内の着火圧力の最大値を示すものである。この好ましい実施形態において、制御パラメータとしてのシリンダ圧力が制限値としての設計圧力に達すると、パワーバランスモードが起動する。
特に単純であるために好ましい実施形態としては、ターボチャージャによって吸入される空気の温度が制限温度を超えた場合にパワーバランスモードが起動し、この制限温度は、少なくとも27℃である。
また、ターボチャージャによって吸入される空気の相対湿度が制限湿度を超えた場合にパワーバランスモードが起動し、制限湿度は少なくとも40%、好ましくは少なくとも60%とする手段も好ましい。この手段も、特に単純な方法で実現できる。
特に好ましい実施形態では、パワーバランスモードにおいて、ガスに加えて追加量の液体燃料がシリンダに投入される。これにより、ガス燃焼のために空気ガス比を上げることが特に簡単にできる。エンジンの要求出力の一部が液体燃料の燃焼により生成されるため、各ガス燃焼プロセスに必要なガスの量が低減される。このガス量の低減により、ガス燃焼のために空気ガス比を上げることができる。
非常に単純な技術装置で実現できるため、大型ディーゼルの液体モードで使用される噴射装置によって追加量の液体燃料をシリンダに投入することが好ましい。
この場合、先ず、最小追加量の液体燃料をシリンダに投入し、その後、大型ディーゼルエンジンの負荷が所望値に達するまで徐々に追加量を増加することが好ましい。つまり、パワーバランスモードが起動すると、まず、ガスに加えて、最小追加量の液体燃料がシリンダに投入される。この最小追加量が、早期燃焼(空気欠乏範囲)のリスクなしにエンジンの所望負荷を実現するのに不十分だった場合、その後の作業サイクルにおいて、エンジンの負荷が所望値に達するまで、液体燃料の追加量を徐々に増加させる。
汚染物質が増加するのを避けるために、液体燃料の追加量はできるだけ少なく維持され、特に、シリンダに投入される燃料の総量に対して20重量%以下、好ましくは15重量%以下であることが好ましい。
液体燃料の追加量は、シリンダに投入する燃料の総量に対して約5〜10重量%であると特に好ましい。特に、液体燃料を追加することによって、汚染物質排出量を低減できるという驚くべきことが実際的経験により明らかとなっており、これは特に有利である。さらに、液体燃料の追加量を上記の範囲内に制限しても、多くの用途において、大型ディーゼルエンジンを熱帯条件下においてもガスモードで全負荷動作可能とさせるのに十分である。
さらに好ましい実施形態によると、パワーバランスモードにおいて、追加量の掃気の生成を補助するブロワが作動される。この手段によれば、パワーバランスモードにおいて、ターボチャージャが生成する掃気の質量流量に加えて、より多くの掃気を生成することが可能となり、これによりシリンダ内のガス燃焼のために空気ガス比を上げることができる。この方法でも、大型ディーゼルエンジンを、好ましくない周囲条件下、特に熱帯条件下であっても、ガスモードにおいて全負荷で動作させることができる。
上記ブロワは、掃気の追加量の修正を可能とする可調整ブロワであることが好ましい。この可調整ブロワによってガス燃焼のための空気ガス比を連続的に増加または調整できるので、消費量および汚染物質排出量を最小限にするという点でガス燃焼を最適化できる。
ターボチャージャのコンプレッサと直列にブロワを配置して、ブロワがターボチャージャのコンプレッサを介して圧力差を低減し、掃気の質量流量を上げることが好ましい。ブロワを、コンプレッサの圧力側に配置することが特に好ましい。
このブロワまたは別のブロアをターボチャージャのコンプレッサと並列に配置することもできる。
本発明は、本発明に係る方法を用いて動作する二元燃料大型ディーゼルエンジン、特に長手方向掃気式2ストローク大型ディーゼルエンジンを提案する。
本発明による方法は、特に、二元燃料大型ディーゼルエンジンを改造するのに適している。本発明による方法は、技術装置に関して特段の努力を要せずに様々な用途において実現可能であるので、既存の大型ディーゼルを、好ましくない周囲条件下、特に熱帯条件下においても効率的に、環境に優しく、また全負荷で動作できるように、変形または改造するのに適している。
本発明のさらなる有利な手段や設計は、従属請求項から得られる。
以下、本発明を、技術的装置および方法に関して、実施形態と図面とに基づいてより詳しく説明する。
ガスモードで動作する二元燃料大型ディーゼルエンジンの実施形態における、空気ガス比からのトルクの依存を説明する概略図である。
以下に示す本発明の説明は、特に実際面で重要で、長手方向掃気式2ストローク大型ディーゼルエンジンとして設計された二元燃料大型ディーゼルエンジンを実施形態に基づき例示するものである。
二元燃料大型ディーゼルエンジンは、2種類の異なる燃料で動作可能なエンジンである。特に、この大型ディーゼルエンジンは、シリンダの燃焼室に液体燃料のみを噴射する液体モードで動作可能である。液体燃料は、重油やディーゼル油などであり、通常は燃焼室に直接、適切なタイミングで噴射され、そこで、ディーゼルの自己発火の原理に従って着火する。しかしこの大型ディーゼルエンジンは、天然ガスなどの燃料としてのガスであって、空気とガスの混合物の形態のガスを燃焼室で着火させるガスモードで動作することも可能である。本実施形態の大型ディーゼルエンジンは特に、低圧法に従ってガスモードで動作する。これは、気体状態のガスがシリンダに投入され、シリンダ内の空気またはシリンダの前の空気と混合されることを意味する。空気ガス混合気は、オットーの原理に従ってシリンダ内で外部着火される。この外部着火のためには、通常、燃焼室に少量の液体燃料を適切なタイミングで投入する必要がある。これにより、燃料の自己発火が起こり、結果として空気ガス混合気の外部着火が起こる。勿論、外部着火を電子的に、または他の方法で実現することも可能である。
大型ディーゼルエンジンは、4ストロークエンジンとしても、2ストロークエンジンとしても設計可能である。本実施形態の大型ディーゼルエンジンは、コモンレール式を用いて液体モードで動作する長手方向掃気式2ストローク大型ディーゼルエンジンとして設計される。
液体モード用の噴射システム、ガスモード用のガス供給系、ガス給気系、掃気あるいは給気を提供する排ガス系またはターボチャージャ、および大型ディーゼルエンジンの監視・制御システムなどの、大型ディーゼルエンジンの構成や各構成要素は、2ストローク設計についても4ストローク設計についても当業者にはよく知られていることから、これ以上の説明は必要としない。
本実施形態の長手方向掃気式2ストローク大型ディーゼルエンジンでは、掃気スリットが通常、各シリンダまたはシリンダライナーの下部に設けられている。これらのスリットは、シリンダ内のピストンの動きにより周期的に開閉する。掃気スリット開放時には、ターボチャージャからブースト・プレッシャーで供給される掃気が掃気スリットからシリンダへ入る。シリンダヘッドやシリンダカバーの略中央には、排気弁が配置され、この排気弁を通って、燃焼プロセスを経た燃焼ガスがシリンダから排気系へと排出される。液体燃料を噴射する1以上の燃料噴射ノズルが、例えば、シリンダヘッドの排気弁近傍に設けられる。また、ガスモードにおけるガス供給のために設けられるガス供給系は、1つのガス入口ノズルを有する少なくとも1つのガス入口弁を備える。ガス入口ノズルは、典型的にはシリンダの壁に、例えばピストンの上死点と下死点との中間の高さの位置に設けられている。
さらに、以下では例として、大型ディーゼルエンジンを船舶の電源装置に適用するものとして説明する。
今日、排ガスの法的規制によって、大型ディーゼルエンジンは、沿岸近くではガスモードで動作しなくてはならないことが多い。そうしないと、特に窒素酸化物NOxおよび硫黄酸化物について排ガスの要請された規制値を遵守できないからである。
ガスモードでは、空気ガス混合気を効率的且つ低公害で燃焼できるかどうかは、空気の量とガスの量との比に敏感に左右される。この比率は、通常、燃焼に利用可能な空気の質量と燃料として使用されるガスの質量との比を示す値λで示される。
最適な空気ガス比は、エンジンにより生成される駆動トルクに左右され、よって、船舶の所望速度に左右される。
図1は空気ガス比1と、エンジンによって生成されて船舶に動力を与えるトルク2との例示的関係を概略図で示す。特に図1に示すトルク2は、正味平均有効圧力(BMEP:Brake Mean Effective Pressure)トルクである。正味平均有効圧力は、基本的に、1作業サイクル(2ストロークエンジンではピストン運動1回分の期間、4ストロークエンジンではピストン運動2回分の期間)においての平均トルクのことである。
図1の例では、ノッキング限界3および不着火限界4の2つの限界曲線がみられる。ノッキング限界3の左側に示される動作状態では、空気ガス混合気の濃度が高すぎる、つまり、混合気における空気の割合が十分でない。混合気の濃度が高すぎると、早期燃焼、エンジンのノッキング、早期着火といった様々な問題が起こる可能性がある。これはつまり、ガスの量が多いことにより、シリンダ内の混合気の自己発火による燃焼が早く始まってしまうことによる(作業サイクルに基づいた場合)。不着火限界4の右側に示される動作状態では、空気ガス混合気の濃度が低すぎる、つまり、ガスの量が、燃焼室で最適な燃焼を起こすのに十分でない。
したがって、ガスモードにおいて、大型ディーゼルエンジンが常に空気ガス比の最適な範囲内、すなわちノッキング限界3と不着火限界4との間の範囲内で動作するように努力がなされている。このために、図1には空気ガス比1とエンジンが生成するトルク2との関係を示す動作ライン6がある。動作ライン6の端部、つまり符号7で示す点は、大型ディーゼルエンジンの100%負荷時の動作である全負荷時に生成されるトルクに対応する。点7から動作ライン6を下に辿ると、部分負荷範囲を通って、その下の低負荷範囲を通って、そして空気ガス比を表す横軸上における動作ライン6の始点にたどり着く。動作ライン6は、例えば空気ガス比が2の時と空気ガス比が3の時との間の範囲である。図1において、動作ライン6の始点は、例えば空気ガス比が2.5の時に対応する。
前述の曲線、つまりノッキング限界3、不着火限界4、および動作ライン6はそれぞれ、ISO条件、すなわち、大型ディーゼルエンジンの技術仕様が参照する標準化条件を参照する。よって、これら曲線3,4,6は、特に気温25℃を参考にしている。ここで、気温とは、周囲空気の温度またはターボチャージャによって吸入される周囲空気の温度を意味する。
図1はさらに、ターボチャージャの特徴ライン8を備える。これもまた、25℃の吸引周囲空気の温度を参考にしている。この特徴ライン8は、ターボチャージャが、トルク2、つまり大型ディーゼルエンジンが動作する負荷に従って掃気として供給可能な最大空気質量流量を示す。特徴ライン8の左側に示される領域は、ターボチャージャが、シリンダ内の空気ガス比1の所望値を実現するのに十分な掃気の質量流量を生成できる範囲である。この特徴ライン8を超えて特徴ライン8の右側の領域に達すると、ターボチャージャによって生成される掃気の質量流量は、シリンダ内の空気ガス比1の所望値を実現するのに十分ではなくなる。
図1から分かるように、ISO条件下、つまり、特に25℃のとき点7の全負荷動作時において、ターボチャージャの特徴ライン8から十分な距離がある。この距離は通常、ウェイストゲート・マージンと呼ばれ、図1において両矢印9によって示される。大型ディーゼルエンジンが100%負荷(全負荷)で動作すると、ウェイストゲート・マージンは、ターボチャージャの特徴ライン8からの安全距離を構成する。この距離により、ターボチャージャが供給する掃気が、如何なる場合でもシリンダ内の空気ガス比の所望値を実現するのに十分となる。
実際、大型ディーゼルエンジンの排気系には、ウェイストゲート弁とされる専用の弁が設けられる。この弁は、ターボチャージャに送り込まれる排ガスの質量流量の調節を助ける。ウェイストゲート弁が完全にまたは部分的に開弁していると、排ガスの一部がターボチャージャに入らないため、ターボチャージャは最大出力を達成しない。ウェイストゲート弁が完全に閉弁していると、排ガスの総質量流量がターボチャージャに送り込まれ、ターボチャージャは最大出力を生み出す、つまり、最大掃気質量流量を生成する。
大型ディーゼルエンジンが熱帯条件下でガスモード動作すると、図1において、以下に説明するいくつかの変化が起きる。熱帯条件とは、周囲空気、つまりターボチャージャが吸入する空気が、高温および/または高湿であることを特徴とする条件を意味する。高温とは、少なくとも27℃の温度を意味する。熱帯条件下では、周囲空気の温度は30℃、さらには35℃を超えて、例えば45℃になることもある。周囲空気の温度とは、ターボチャージャの入口における空気の温度を意味する。高湿とは、少なくとも40%、特に少なくとも50%の周囲空気の相対湿度を意味する。しかし、湿度は、60%もしくはそれ以上でもあり得る。
ターボチャージャに吸い込まれる空気が高湿および高温の両方であると、特に問題が起きる。これは、高温であると、空気の濃度が低い、つまりは、ターボチャージャを通る空気質量流量が低減することを意味し、高湿であると、特に給気冷却器の下流で、より多くの水分または蒸気が凝縮されるからである。
図1において、熱帯条件の影響を質的に表す。アポストロフィ付きの符号は、熱帯条件下での大型ディーゼルエンジンの動作を示すものである。
熱帯条件の影響のひとつは、ノッキング限界3が、矢印Aで示されるように図の右側に移動して、熱帯ノッキング限界3’形成することである。このシフトは、特に、掃気の温度の上昇および燃焼後にシリンダの燃焼室内にとどまる排ガス量の増加によって起きる。
ターボチャージャの特徴ライン8は、図1の矢印Bで示されるように図の下方向に移動し、熱帯特徴ライン8’を形成する。このシフトは、前述のように、吸入される空気が高温であると、空気の濃度が低くなり、より凝縮が起こるということに主に起因する。
大型ディーゼルエンジンの動作ライン6は、低負荷範囲および部分負荷範囲では基本的に変わらない。しかし、それより上の負荷範囲(以下、高負荷範囲)、つまり図1において全負荷の約80%より上の負荷範囲では、熱帯動作ライン6’として示されるように、左側に強く屈曲している。結果として、ISO条件下での全負荷動作(100%負荷)を表す点7が移動して、熱帯条件下での全負荷動作を表す点7’となる。このシフトは、図1において矢印Cで示される。
図1に示す実施形態では、熱帯条件下でも全負荷動作(点7’)が可能であるが、このような動作は最適なものではない。熱帯点7’(全負荷)が、熱帯ノッキング限界3’と、ターボチャージャの熱帯特徴ライン8’との両方の上にあることが分かる。熱帯特徴ライン8’がさらに下方に、または熱帯ノッキング限界3’がさらに右側に移動すると、大型ディーゼルエンジンの全負荷での動作には、早期燃焼のリスクが伴ってしまう。
よって、本発明は、このような深刻な条件、特に熱帯周囲条件の下では、大型ディーゼルエンジンを、ガスモード時、パワーバランスモードにて動作させることを提案する。本発明によると、空気ガス比の変化を検出可能とする制御パラメータが制限値に達したときに、パワーバランスモードが起動される。
好ましい制御パラメータは、着火圧ともされるシリンダ圧力である。この圧力は、空気ガス混合気の燃焼中にシリンダの燃焼室に存在する圧力である。より正確には、シリンダ圧力または着火圧は、作業サイクルにおいてシリンダに生じる最大圧力である。例えば空気ガス比が低下すると、一般的に、燃焼室における燃焼が加速する。燃焼の速度が増加するとシリンダ圧力が上昇するので、シリンダ圧力に基づいてシリンダの空気ガス比の変化を検出することができる。
シリンダ圧力を制御パラメータとして用いる場合の制御パラメータの制限値は、シリンダの設計圧力、つまり通常動作時のシリンダの最大許容圧力であることが好ましいが、必ずしもそうでなくてもよい。設計圧力は、長手方向掃気式2ストローク大型ディーゼルエンジンの場合、典型的には150バールと200バールとの間、例えば180バールである。
ここで、大型ディーゼルエンジンが高負荷範囲、つまり全負荷の少なくとも75%、好ましくは全負荷の少なくとも85%で動作中にシリンダ圧力が制限値に達したと検出されると、パワーバランスモードが作動して、大型ディーゼルエンジンが空気欠乏範囲、つまり図の熱帯ノッキング限界3’の左側の範囲で動作することが回避される。
勿論、この他にも、パワーバランスモードが作動されるべきであると検出するのに適した制御パラメータがある。1つ以上の制御パラメータを監視することも可能である。制御パラメータとして好適なのは、例えば、シリンダ内の燃焼速度、シリンダ圧力と圧縮圧力との比、ターボチャージャ用ウェイストゲート弁の位置、ターボチャージャの入口で吸入される空気の温度、ターボチャージャの入口で吸入される空気の湿度、シリンダに投入される掃気の温度、掃気の現在の圧力、排ガス中の酸素濃度、および排ガス中の酸化窒素濃度である。各制御パラメータに適した制限値は、例えば、シミュレーション、実験、または実験によるデータに基づいて算出または決定できる。
シリンダ圧力と圧縮圧力との比とは、作業サイクル中にシリンダ内に存在する最大圧力と、空気ガス混合気の着火の直前においてシリンダ内に存在する圧力(圧縮圧力)との比である。
ウェイストゲート弁の位置(ポジション)とは、ウェイストゲート弁の開度のことである。ウェイストゲート弁が完全に開弁していると、ターボチャージャに入る排ガスは、その最大可能量ではない(ターボチャージャは最小掃気質量流量を生成する)。ウェイストゲート弁が完全に閉弁していると、全ての排ガスがシリンダからターボチャージャに伝導され、ターボチャージャは最大出力すなわち最大掃気質量流量を生成する。
大型ディーゼルエンジンが全負荷の少なくとも75%、より好ましくは全負荷の少なくとも85%の高負荷範囲で動作していて、ターボチャージャが吸入する空気の温度が制限温度を超えた場合に、パワーバランスモードを作動させるという実施形態も、単純で好ましい。制限温度は、少なくとも27℃であるが、例えば、30℃、35℃、または45℃以上であってもよい。
さらに、大型ディーゼルエンジンが全負荷の少なくとも75%、より好ましくは全負荷の少なくとも85%の高負荷範囲で動作していて、ターボチャージャが吸入する空気の相対湿度が制限湿度を超えた場合に、パワーバランスモードを作動させるというのも可能である。制限湿度は、少なくとも40%、好ましくは60%である。これにより、動作方法を、特に簡単に実現できる。
本発明によると、パワーバランスモードでは、ガス燃焼のため空気ガス比が上げられる。パワーバランスモードの作動前、制御パラメータが制限値に近づき達すると、シリンダ内の空気ガス比の低下、つまり熱帯ノッキング限界(図1)に近づいていると検出できる。そしてパワーバランスモードを作動し、特にガス燃焼のために空気ガス比が上げられる。
ここで、パワーバランスモードにおいて、ガスに加えて、追加量の液体燃料を燃焼室に投入するという手段が特に好ましい。この手段により、ガス燃焼のために空気ガス比を特に簡単に上げることができる。エンジンの要求出力の一部が液体燃料の燃焼により生成されるため、各ガス燃焼プロセスに必要なガスの量が低減される。このガス量の低減により、ガス燃焼のために空気ガス比を上げることができる。
単純な技術装置で実現できるため、大型ディーゼルの液体モードで使用される噴射装置によって追加量の液体燃料をシリンダに投入することが好ましい。つまり、液体モードの液体燃料噴射に用いられるのと同じ噴射ノズルで、シリンダの燃焼室に液体燃料を噴射する。
勿論、ガスモードにおいて液体燃料を追加的に噴射することによって、大型ディーゼルエンジンの汚染物質排出量が大幅に増加しないようにすることが求められ、またこれは可能である。このため、液体燃料の追加量は、できる限り少なくする。驚くべきことに、このような追加量の噴射によって汚染物質排出量が低減されるという実際的経験すらある。
追加量の液体燃料を噴射するには、先ず、最小追加量の液体燃料をシリンダに投入して、その後、大型ディーゼルエンジンの負荷が所望値に達するまで徐々に追加量を増加することが好ましい。つまり、パワーバランスモードが作動すると、まず、ガスに加えて、最小追加量の液体燃料がシリンダに投入される。この最小追加量が、早期燃焼(図1の熱帯ノッキング限界3’の左側の空気欠乏範囲)のリスクなしにエンジンの所望負荷を実現するのに不十分だった場合は、その後の作業サイクルにおいて、エンジンの負荷が所望値に達するまで、液体燃料の追加量を徐々に増加させる。
汚染物質が大幅に増加するのを避けるために、前述のように、液体燃料の追加量は、できるだけ少なく、または最適な範囲内で維持され、特に、シリンダに投入される燃料の総量に対して、20重量%以下、好ましくは15重量%以下であることが好ましい。
勿論、適した追加量は、特定の用途ごとに異なる。実際的経験によると、多くの用途において、液体燃料の追加量は、シリンダに投入する燃料の総量に対して、約5〜10重量%で十分である。この追加量によって、大型ディーゼルエンジンは通常、熱帯条件下においてもガスモードで全負荷動作可能となる。特に、液体燃料の追加によって、汚染物質排出量を低減できることが明らかとなっている。
パワーバランスモードにおいてガス燃焼のために空気ガス比を上げるその他の好ましい方法としては、パワーバランスモードにおいて、追加量の掃気の生成を補助するブロワを作動させる方法がある。この手段によれば、パワーバランスモードにおいて、ターボチャージャが生成する掃気の質量流量に加えて、より多くの掃気を生成することが可能となり、これによりシリンダ内のガス燃焼のために空気ガス比を上げることができる。この方法でも、大型ディーゼルエンジンを、好ましくない周囲条件下、特に熱帯条件下であっても、ガスモードにおいて全負荷で動作させることができる。
上記ブロワは、掃気の追加量の修正を可能とする可調整ブロワであることが好ましい。この可調整ブロワによってガス燃焼のための空気ガス比を連続的に増加または調整できるので、消費量および汚染物質排出量を最小限にするという点でガス燃焼を最適化できる。
ターボチャージャのコンプレッサと直列にブロワを配置して、ブロワがターボチャージャのコンプレッサを介して圧力差を下げて、掃気の質量流量を上げることが好ましい。ブロワを、高圧側、すなわちコンプレッサの流れ方向後方に直列配置することが特に好ましい。
上記ブロワの代わりに、あるいは上記ブロワに加えて、別のブロワをターボチャージャのコンプレッサと並列に配置することもできる。
パワーバランスモードにおいて空気ガス比を上げる上記の2つの方法、つまり、追加量の液体燃料を噴射することと、追加のブロワを作動させることとは、いずれか一方もしくは両方を実施できる。
本発明による方法は、特に二元燃料大型ディーゼルエンジンを改造するのに適している。本発明による方法は、技術装置に関して特段の努力を要せずに様々な用途において実現可能であるので、既存の大型ディーゼルを、好ましくない周囲条件下、特に熱帯条件下においても効率的に、環境に優しく、また全負荷で動作できるように、変形または改造するのに適している。
本発明による方法は、例えば、稼働運転で使用される前の大型ディーゼルエンジンのテストランで用いるのに特に有利である。これは、テストでは大型ディーゼルエンジンは全負荷すなわち100%の負荷でも動作しなくてはならないためである。

Claims (15)

  1. 液体燃料が燃焼のためにシリンダに導入される液体モードで動作可能であり、また燃料としてのガスが前記シリンダに導入されるガスモードであって、前記ガスが掃気と混合されて、所定の空気ガス比で燃焼されるガスモードでも動作可能な二元燃料大型ディーゼルエンジン、特に長手方向掃気式2ストローク大型ディーゼルエンジンの動作方法であって、
    前記ガスモードでの動作中、前記空気ガス比の変化の検出を可能にする制御パラメータが監視され、また
    前記制御パラメータが制限値に達すると前記大型ディーゼルエンジンがパワーバランスモードで動作され、このパワーバランスモードでは、前記空気ガス比が、ガスの燃焼のために上昇される、動作方法。
  2. 前記パワーバランスモードを起動するための前記制御パラメータが、
    シリンダ圧力、
    シリンダ圧力と圧縮圧力の比、
    燃焼の速度、
    掃気を提供するためにターボチャージャの入口で吸入される空気の温度、
    前記ターボチャージャ用のウェイストゲート弁の位置、
    掃気を提供するためにターボチャージャの入口で吸入される空気の湿度、
    前記シリンダに導入される前記掃気の温度、
    前記掃気の現在の圧力、
    排ガス中の酸素濃度、
    排ガス中の窒素酸化物濃度
    のうちの少なくとも1つを含む、請求項1に記載の方法。
  3. 前記パワーバランスモードを起動するための前記制御パラメータが、前記空気ガス混合気の燃焼中のシリンダ圧力である、請求項1または2に記載の方法。
  4. 前記制御パラメータの制限値が、前記シリンダの設計圧力である、請求項3に記載の方法。
  5. ターボチャージャによって吸入される空気の温度が制限温度を超えたると前記パワーバランスモードが起動され、また前記制限温度が少なくとも27℃である、請求項1から4までのいずれか一項に記載の方法。
  6. ターボチャージャによって吸入される空気の相対湿度が制限湿度を超えると前記パワーバランスモードが起動され、また前記制限湿度が少なくとも40%、好ましくは少なくとも60%である、請求項1から5までのいずれか一項に記載の方法。
  7. 前記パワーバランスモードにおいて、前記ガスに加えて、追加量の液体燃料が前記シリンダに導入される、請求項1から6までのいずれか一項に記載の方法。
  8. 前記追加量の液体燃料が、前記大型ディーゼルエンジンの前記液体モードで用いられる噴射装置によって前記シリンダに導入される、請求項7に記載の方法。
  9. 最初に最小追加量の液体燃料が前記シリンダに導入され、その後、前記大型ディーゼルエンジンの所望の負荷に達するまで前記追加量が漸次増加される、請求項7または8に記載の方法。
  10. 前記液体燃料の追加量が、前記シリンダに導入される燃料の総量の20重量%以下、好ましくは15重量%以下である、請求項7から9までのいずれか一項に記載の方法。
  11. 前記液体燃料の追加量が、前記シリンダに導入される燃料の総量の約5〜10重量%の範囲内である、請求項7から9までのいずれか一項に記載の方法。
  12. 前記パワーバランスモードにおいて、追加量の掃気の生成を補助するブロワが起動される、請求項1から11までのいずれか一項に記載の方法。
  13. 前記ブロワが、前記掃気の追加量の修正を助ける調整可能ブロワである、請求項12に記載の方法。
  14. 前記ブロワが、ターボチャージャのコンプレッサと直列に配置される、請求項12または13に記載の方法。
  15. 請求項1から14までのいずれか一項に記載の方法で動作する二元燃料大型ディーゼルエンジン、特に長手方向掃気式2ストローク大型ディーゼルエンジン。
JP2017120778A 2016-07-05 2017-06-20 二元燃料大型ディーゼルエンジンの動作方法および二元燃料大型ディーゼルエンジン Active JP7475109B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022081237A JP2022107648A (ja) 2016-07-05 2022-05-18 二元燃料大型ディーゼルエンジンの動作方法および二元燃料大型ディーゼルエンジン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16177876.6 2016-07-05
EP16177876 2016-07-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022081237A Division JP2022107648A (ja) 2016-07-05 2022-05-18 二元燃料大型ディーゼルエンジンの動作方法および二元燃料大型ディーゼルエンジン

Publications (2)

Publication Number Publication Date
JP2018003837A true JP2018003837A (ja) 2018-01-11
JP7475109B2 JP7475109B2 (ja) 2024-04-26

Family

ID=56363755

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017120778A Active JP7475109B2 (ja) 2016-07-05 2017-06-20 二元燃料大型ディーゼルエンジンの動作方法および二元燃料大型ディーゼルエンジン
JP2022081237A Pending JP2022107648A (ja) 2016-07-05 2022-05-18 二元燃料大型ディーゼルエンジンの動作方法および二元燃料大型ディーゼルエンジン

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022081237A Pending JP2022107648A (ja) 2016-07-05 2022-05-18 二元燃料大型ディーゼルエンジンの動作方法および二元燃料大型ディーゼルエンジン

Country Status (4)

Country Link
EP (1) EP3267017A1 (ja)
JP (2) JP7475109B2 (ja)
KR (1) KR102327514B1 (ja)
CN (1) CN107575313A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176626A (ja) * 2019-04-15 2020-10-29 ヴィンタートゥール ガス アンド ディーゼル アーゲー 大型エンジンの運転方法及び大型エンジン

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722572A1 (en) 2019-04-12 2020-10-14 Winterthur Gas & Diesel Ltd. Internal combustion engine
EP3872330A1 (de) * 2020-02-25 2021-09-01 Winterthur Gas & Diesel AG Verfahren zum betreiben eines grossdieselmotors, sowie grossdieselmotor
CN111636969B (zh) * 2020-06-05 2021-04-16 吉林大学 一种二冲程双燃料发动机的供油供气控制方法及系统
KR20230034149A (ko) 2021-09-02 2023-03-09 빈터투르 가스 앤 디젤 아게 대형 엔진 작동 방법 및 대형 엔진
DK181214B1 (en) * 2021-10-26 2023-05-09 Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland A large two-stroke uniflow scavenged gaseous fueled engine and method for controlling supply of liquid fuel
KR20240018363A (ko) 2022-08-02 2024-02-13 빈터투르 가스 앤 디젤 아게 대형 엔진에서 조기 점화를 검출하기 위한 방법 및대형 엔진

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108582A2 (en) * 1982-10-30 1984-05-16 Cryogas Engineering Limited Fuel oil injection engine using gas
JP2007529676A (ja) * 2004-03-15 2007-10-25 ワルトシラ フィンランド オサケユキチュア 適応型負荷バランスシステム
JP2008144649A (ja) * 2006-12-08 2008-06-26 Mitsubishi Heavy Ind Ltd 学習機能付きエンジン及びその運転パラメータ設定方法
JP2008196482A (ja) * 2007-02-08 2008-08-28 Waertsilae Schweiz Ag 長手方向に掃気される2ストロークの大きなディーゼル機関のシリンダに給気を充填する方法、及びまた長手方向に掃気される2ストロークの大きなディーゼル機関
KR20140117920A (ko) * 2013-03-27 2014-10-08 현대중공업 주식회사 이중연료엔진의 엔진 컨트롤 시스템
JP2015086867A (ja) * 2013-10-30 2015-05-07 エムエーエヌ・ディーゼル・アンド・ターボ・フィリアル・アフ・エムエーエヌ・ディーゼル・アンド・ターボ・エスイー・ティスクランド パイロット油噴射のための、及び自己着火内燃機関の燃焼室に気体燃料を噴射するための、燃料弁

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307759A (ja) 2004-04-16 2005-11-04 Toyota Industries Corp 予混合圧縮自着火機関の運転方法及び予混合圧縮自着火機関
DE102004037971A1 (de) * 2004-08-05 2006-02-23 Bayerische Motoren Werke Ag Verbrennungsmotor, insbesondere für Gasbetrieb
FI121031B (fi) 2008-03-31 2010-06-15 Waertsilae Finland Oy Säätöjärjestelmä ja menetelmä kaasua käyttävän polttomoottorin sylinterien tasapainottamiseksi
US8413643B2 (en) * 2009-06-12 2013-04-09 Ford Global Tehnologies, LLC Multi-fuel engine control system and method
IT1401826B1 (it) * 2010-09-27 2013-08-28 Magneti Marelli Spa Metodo di controllo della velocita' di un motore a combustione interna sovralimentato mediante un turbocompressore
EP2633170A1 (en) 2010-10-29 2013-09-04 AFV Alternative Fuel Vehicle Dual fuel engine system
KR101251513B1 (ko) * 2010-12-06 2013-04-05 기아자동차주식회사 Lp-egr이 적용된 엔진의 제어 방법
DE102011003687A1 (de) * 2011-02-07 2012-08-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur dynamischen Vorsteuerung eines Kraftstoff-Luft-Gemisches für einen Verbrennungsmotor
CN104066960B (zh) 2011-11-22 2018-05-11 西港能源有限公司 一种给柔性燃料内燃机添加燃料的设备及方法
DE102012009318B4 (de) * 2012-05-10 2021-05-06 MAN Energy Solutions, branch of MAN Energy Solutions SE, Germany Dieselmotor und Verfahren zur Leistungssteigerung eines bestehenden Dieselmotors
JP6028967B2 (ja) * 2012-07-31 2016-11-24 国立研究開発法人 海上・港湾・航空技術研究所 ガスエンジン用燃料噴射装置及びそれを搭載したガスエンジン装置
JP2014098339A (ja) * 2012-11-14 2014-05-29 Mitsubishi Heavy Ind Ltd ディーゼルエンジンの制御装置、ディーゼルエンジン、及びディーゼルエンジンの制御方法
US9334813B2 (en) 2013-01-31 2016-05-10 Electro-Motive Diesel, Inc. Control system for a dual-fuel engine
KR101938014B1 (ko) * 2013-05-07 2019-04-10 현대중공업 주식회사 이중연료엔진의 노킹 제어 장치 및 방법
DK178174B1 (en) * 2013-10-29 2015-07-20 Man Diesel & Turbo Deutschland A large slow running turbocharged two-stroke internal combustion engine with crossheads and exhaust gas recirculation and method for operating thereof
US10190509B2 (en) 2013-12-23 2019-01-29 Ge Global Sourcing Llc System and method for controlling a dual fuel engine
EP2907993B1 (en) 2014-02-13 2019-11-06 Caterpillar Motoren GmbH & Co. KG Method for balancing cylinders of an internal combustion engine
AT516426B1 (de) * 2014-10-28 2019-08-15 Innio Jenbacher Gmbh & Co Og Verfahren zur Regelung eines Dual-Fuel-Motors
JP6341511B2 (ja) 2014-10-29 2018-06-13 株式会社三井E&Sホールディングス 希薄予混合ガスエンジンの負荷追従性向上システム
KR102473305B1 (ko) * 2015-12-30 2022-12-01 엘지디스플레이 주식회사 백라이트 유닛과 이를 포함하는 모바일 전자 기기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108582A2 (en) * 1982-10-30 1984-05-16 Cryogas Engineering Limited Fuel oil injection engine using gas
JP2007529676A (ja) * 2004-03-15 2007-10-25 ワルトシラ フィンランド オサケユキチュア 適応型負荷バランスシステム
JP2008144649A (ja) * 2006-12-08 2008-06-26 Mitsubishi Heavy Ind Ltd 学習機能付きエンジン及びその運転パラメータ設定方法
JP2008196482A (ja) * 2007-02-08 2008-08-28 Waertsilae Schweiz Ag 長手方向に掃気される2ストロークの大きなディーゼル機関のシリンダに給気を充填する方法、及びまた長手方向に掃気される2ストロークの大きなディーゼル機関
KR20140117920A (ko) * 2013-03-27 2014-10-08 현대중공업 주식회사 이중연료엔진의 엔진 컨트롤 시스템
JP2015086867A (ja) * 2013-10-30 2015-05-07 エムエーエヌ・ディーゼル・アンド・ターボ・フィリアル・アフ・エムエーエヌ・ディーゼル・アンド・ターボ・エスイー・ティスクランド パイロット油噴射のための、及び自己着火内燃機関の燃焼室に気体燃料を噴射するための、燃料弁

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176626A (ja) * 2019-04-15 2020-10-29 ヴィンタートゥール ガス アンド ディーゼル アーゲー 大型エンジンの運転方法及び大型エンジン

Also Published As

Publication number Publication date
EP3267017A1 (de) 2018-01-10
KR20180005109A (ko) 2018-01-15
CN107575313A (zh) 2018-01-12
JP2022107648A (ja) 2022-07-22
KR102327514B1 (ko) 2021-11-17
JP7475109B2 (ja) 2024-04-26

Similar Documents

Publication Publication Date Title
JP2018003837A (ja) 二元燃料大型ディーゼルエンジンの動作方法および二元燃料大型ディーゼルエンジン
CN111810322B (zh) 内燃发动机
US9422893B2 (en) Control apparatus and method for an internal combustion engine
US8091536B2 (en) Method and apparatus of fuelling an internal combustion engine with hydrogen and methane
US9822727B2 (en) Method and systems for adjusting engine cylinder operation based on a knock sensor output
US9228506B2 (en) Multi-fuel control system and method
EP2423493A1 (en) Upper level key parameter definition for SBS Logical Biodiesel Sensor
US20110288744A1 (en) Multi-fuel control system and method
KR102206923B1 (ko) 이중 연료 엔진의 기체 연료 모드의 종료 방법
KR20160102339A (ko) 이중 연료 선박 연소 엔진, 연소시에 조기 점화를 제어하기 위한 방법, 저압 이중 연료 연소 엔진을 위한 개장 키트, 및 연소실 내로의 불활성 가스 도입을 제어하기 위한 컴퓨터 프로그램 제품
CN104204507B (zh) 带增压器的内燃机的控制装置
US20190120133A1 (en) FOR NATURAL GAS ENGINES TO REDUCE NOx EMISSIONS
KR102510399B1 (ko) 대형 디젤 엔진 작동 방법 및 대형 디젤 엔진
JP7125245B2 (ja) 大型ディーゼル機関を運転する方法、この方法の使用、及び大型ディーゼル機関
JP7122799B2 (ja) 大型ディーゼル機関を運転する方法、この方法の使用、及び大型ディーゼル機関
KR102018999B1 (ko) 피스톤 엔진의 작동 방법 및 피스톤 엔진
US9121363B2 (en) Fuel injection pattern and timing
EP4317667A1 (en) A method for detecting pre-ignition in a large engine and a large engine
EP4144974A1 (en) A method for operating a large engine and a large engine
CN109642506B (zh) 气体运行的内燃机和用于其运行的方法
CA2894064C (en) Improvements for natural gas engines to reduce nox emissions
Kapilan et al. Experimental investigations on a compressed natural gas operated dual fuel engine
Nagarajan et al. A New Approach for Utilisation of Lpg-Dee in Homogeneous Charge Compression Ignition (Hcci) Engine
Rózycki Emission of a Dual-Fuel Turbocharged Compression Ignition Engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210409

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210709

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220518

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220518

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220525

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220526

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220715

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220720

C27B Notice of submission of publications, etc. [third party observations]

Free format text: JAPANESE INTERMEDIATE CODE: C2714

Effective date: 20220823

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221021

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230414

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230714

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230814

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240416

R150 Certificate of patent or registration of utility model

Ref document number: 7475109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150