JP2018002974A - 蛍光材料、セラミックシンチレータおよび放射線検出器、並びに蛍光材料の製造方法 - Google Patents

蛍光材料、セラミックシンチレータおよび放射線検出器、並びに蛍光材料の製造方法 Download PDF

Info

Publication number
JP2018002974A
JP2018002974A JP2016135763A JP2016135763A JP2018002974A JP 2018002974 A JP2018002974 A JP 2018002974A JP 2016135763 A JP2016135763 A JP 2016135763A JP 2016135763 A JP2016135763 A JP 2016135763A JP 2018002974 A JP2018002974 A JP 2018002974A
Authority
JP
Japan
Prior art keywords
fluorescent material
time constant
radiation
radiation detector
decay time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016135763A
Other languages
English (en)
Other versions
JP6776671B2 (ja
Inventor
謙弥 田中
Kenya Tanaka
謙弥 田中
権田 正幸
Masayuki Gonda
正幸 権田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016135763A priority Critical patent/JP6776671B2/ja
Publication of JP2018002974A publication Critical patent/JP2018002974A/ja
Application granted granted Critical
Publication of JP6776671B2 publication Critical patent/JP6776671B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)

Abstract

【課題】蛍光の減衰時定数が小さい蛍光材料、セラミックシンチレータおよび放射線検出器、並びに蛍光材料の製造方法を提供する。【解決手段】蛍光材料は、(Gd1-α-βLαCeβ)3+a(Al1-u-vGauScv)5-bO12で表される組成を有し、前記LはYおよびLuの少なくとも一方であり、前記a、b、α、β、u、vが下記範囲を満足する。0≦a≦0.1、0≦b≦0.1、0≦α≦0.9、0.0167<β、0≦u≦0.686、0≦v≦0.024【選択図】なし

Description

本開示は、Gd、Al、Gaを含む組成を有するガーネット型酸化物の蛍光材料、セラミックシンチレータおよび放射線検出器並びに蛍光材料の製造方法に関する。
放射線画像システムは、被写体にα線、β線、γ線、X線等の放射線を照射し、被写体を透過した放射線を画像化する。放射線画像システムは断層撮影などの医療分野、非破壊検査などの工業分野、手荷物検査などのセキュリティ分野、高エネルギー物理学などの学術分野等の多様な応用分野で利用されている。
現在、主として商業的に利用されている放射線画像システムは、放射線の強度を電気信号に変換する放射線検出器が用いられている。放射線検出器には、放射線の強度を光に変換する為のシンチレータと、光を電気信号に変換する為のCCD等の光検出器とを含む。例えば特許文献1では、Ceを発光元素とし、少なくともGd、Al、GaおよびO、およびYを含んだガーネット構造の蛍光材料を用いたX線検出器用のシンチレータが開示されている。放射線はシンチレータに入射すると、光に変換され、変換された光は光検出器によって、電気信号に変換される。これにより信号強度に応じた階調の画像が生成する。
種々の分野において、より高精細、かつ、より低放射線量で画像を取得できる放射線画像システムが求められている。このような放射線画像システムとして、光子の数を計測することができるフォトンカウンターを用いて、放射線を検出するフォトンカウンティング型の放射線検出器が検討されている。例えば、特許文献2は、放射線の強度を電気信号として直接検出することが可能なCdTeシンチレータを用いたX線CT装置を開示している。フォトンカウンティングによって放射線の強度をフォトンの数として検出することにより、S/N比が大きく、高解像度の画像が得られることが期待されている。また、測定に用いる放射線の強度を小さくできるため、低放射線量で測定が可能である。さらに、放射線のエネルギーを分解して強度を測定することが可能であるため、生体中の骨と血液を区別するなど組織を分解して描画する画像システムを得ることが可能となる。
特許5729352号公報 特開2012−34901号公報
特許文献2に開示されたX線CT装置は、放射線検出器としてCdTeシンチレータを用いる。CdTeシンチレータは比較的高価であり、毒性を有する。また、大型のCdTe単結晶を得ることが容易ではないため、放射線の検出面を大きくすることが難しい。
一方、特許文献1のように、間接変換方式の場合、放射線照射中の発光強度が高く、照射後の数ms後の特性である残光が小さいシンチレータが用いられる。しかし、以下において詳細に説明するように、従来の放射線検出器用の蛍光材料では、残光よりも1桁以上小さい、つまり、放射線照射後の数百μs後の特性である蛍光の減衰時定数は考慮されていない。このためフォトン数を計測するためのシンチレータとして用いることは難しい。したがって、製造コストおよび商業的な利用を考慮すると、シンチレータとして単結晶では無く、多結晶のセラミックシンチレータと光検出素子との組み合わせによって放射線を検出する間接方式のフォトンカウンティング型放射線検出器の開発が望まれる。
本開示は、この様な課題に鑑み、フォトンカウンティング型の放射線検出器に使用可能な蛍光材料、セラミックシンチレータおよび放射線検出器、並びに蛍光材料の製造方法を提供する。
本開示の蛍光材料は、(Gd1-α-βαCeβ3+a(Al1-u-vGauScv5-b12で表される組成からなり、前記LはYおよびLuの少なくとも一方であり、前記a、b、α、β、u、vが下記範囲を満足する。
0≦a≦0.1、
0≦b≦0.1、
0≦α≦0.9、
0.0167<β、
0≦u≦0.686、
0≦v≦0.024
前記βは下記範囲を満足していてもよい。
0.033≦β≦0.1
前記LはYであり、前記αは下記範囲を満足していてもよい。
0.7≦α≦0.9
本開示のセラミックシンチレータは、上記いずれかに記載の蛍光材料を含み、相対密度が99%以上である。
本開示の放射線検出器は、上記セラミックシンチレータと、光を電気信号、電流値または電圧値のいずれかに変換する光電変換素子とを備える。
本開示の蛍光材料の製造方法は、(Gd1-α-βαCeβ3+a(Al1-u-vGauScv5-b12で表され、a、b、α、β、u、vが下記範囲を満足する比率で、Gdと、LuおよびYの少なくとも一方である前記Lと、Ceと、Alと、Gaと、Scとをそれぞれ含む素原料を用意する工程と、
0≦a≦0.1、
0≦b≦0.1、
0≦α≦0.9、
0.0167<β、
0≦u≦0.686、
0≦v≦0.024
前記素原料を混合及び粉砕し、原料粉末を得る工程と、前記原料粉末を成形し、成形体を得る工程と、前記成形体を酸素雰囲気中、1650℃〜1700℃の温度で焼結させる工程とを包含する。
本開示によれば、蛍光の減衰時定数が小さく、フォトンカウンティング型の放射線検出器に使用可能な蛍光材料、及び蛍光材料の製造方法が得られる。また、このような特性を備えた蛍光材料を含み、大面積化が可能なセラミックシンチレータおよび放射線検出器が得られる。
(Gd1-α-βαCeβ3+a(Al1-u-vGauScv5-b12組成式で示される蛍光材料であって、LがLuである場合における、Ce量βと蛍光の減衰時定数τとの関係を示す図である。 (Gd1-α-βαCeβ3+a(Al1-u-vGauScv5-b12組成式で示される蛍光材料であって、LがYである場合における、Ce量βと蛍光の減衰時定数τとの関係を示す図である。 (Gd1-α-βαCeβ3+a(Al1-u-vGauScv5-b12組成式で示される蛍光材料であって、Y量αと蛍光の減衰時定数τとの関係を示す図である。 (Gd1-α-βαCeβ3+a(Al1-u-vGauScv5-b12組成式で示される蛍光材料であって、Ga量uと蛍光の減衰時定数τとの関係を示す図である。 (Gd1-α-βαCeβ3+a(Al1-u-vGauScv5-b12組成式で示される蛍光材料であって、Sc量vと蛍光の減衰時定数τとの関係を示す図である。 (Gd1-α-βαCeβ3+a(Al1-u-vGauScv5-b12組成式で示される蛍光材料であって、LがLuである場合における、Ce量βと相対発光強度との関係を示す図である。 (Gd1-α-βαCeβ3+a(Al1-u-vGauScv5-b12組成式で示される蛍光材料であって、LがYである場合における、Ce量βと相対発光強度との関係を示す図である。 (Gd1-α-βαCeβ3+a(Al1-u-vGauScv5-b12組成式で示される蛍光材料であって、Y量αと相対発光強度との関係を示す図である。 (Gd1-α-βαCeβ3+a(Al1-u-vGauScv5-b12組成式で示される蛍光材料であって、Ga量uと相対発光強度との関係を示す図である。 (Gd1-α-βαCeβ3+a(Al1-u-vGauScv5-b12組成式で示される蛍光材料であって、Sc量vと相対発光強度との関係を示す図である。 実施例の蛍光材料の発光スペクトルの例を示す図である。
本願発明者は、フォトンカウンティング型の放射線検出器に使用可能な蛍光材料、セラミックシンチレータに必要な物性を検討し、その物性を実現し得る蛍光材料の組成を詳細に検討した。
従来の強度積分型の放射線検出器は、マイクロ秒からミリ秒オーダーの所定の時間間隔(この時間間隔を1フレームとよぶ)で放射線を対象物に照射し、対象物を透過した放射線が入射することによってシンチレータが発する蛍光を光検出器で検出し、電気信号に変換する。放射線は、上述の所定の時間間隔よりも短い期間、対象物に照射される。
シンチレータの蛍光材料は、放射線の照射時に強い蛍光を発するが、放射線照射が停止した後、すぐに蛍光はゼロとはならず、弱い蛍光が持続する。これを残光と呼ぶ。残光は例えば、放射線照射中の発光強度I0と、放射線照射停止から一定時間経過後の発光強度Irとを用い、Ir/I0(ppm)で定義される。一定時間とは、光検出器からの信号処理速度や、被対象物の被爆なども考慮してミリ秒(ms)のオーダーが選ばれる。
放射線画像システムは、ノイズ等による影響を低減するため、各フレームにおいて、放射線の照射時に放射線検知器から得られた電気信号から、放射線の照射停止時に放射線検知器から得られた電気信号を差し引いた信号を、検出した放射線の強度として処理する。このため、残光が大きいと、相対的に検出した放射線強度が小さくなる。このことから、従来の強度積分型の放射線検出器では、蛍光材料の残光は小さいことが好ましい。
これに対し、フォトンカウンティング型の放射線検出器は、蛍光材料の極めて短時間の発光(フォトン)の数を計測することが可能な光電子増倍管、マルチピクセルフォトンカウンター(シリコンフォトマルチプライヤー)などを備え、発光の数をパルス信号とし読み出す。フォトンカウンティング型の放射線検出器では、発光強度に一定の閾値を設けて読み出しを行うため、蛍光材料の発光強度は上述した従来の強度積分型の放射線検出器に求められる蛍光材料ほど大きくなくてよい。また、残光が生じていても、残光の強度が上述した閾値以下であれば、残光が検出されることはないため、残光の有無は発光の検出に大きな影響を与えない。
一方、フォトンカウンティング型の放射線検出器を備えた放射線画像システムでは、発光の数が放射線の強度に比例するため、蛍光の減衰時間が長いと、発光が重複し、正確な発光の数が検出できない。このため、フォトンカウンティング型の放射線検出器に用いられるシンチレータおよび蛍光材料は、非常に短い時間で傾向が減衰すること、具体的には、ナノ秒前後のオーダーの時間で発光強度が1/e程度まで減衰する特性が求められる。このように、フォトンカウンティング型の放射線検出器に好適に用いられる蛍光材料には、従来の放射線検出器用の蛍光材料とは全く異なる特性が求められる。
フォトンカウンティング型に類似の放射線検出器を用いた画像システムとして、陽電子断層画像(Positron Emission Tomography)システムが実用化されている。陽電子断層画像システムでは、γ線を高い時間分解能および位置分解能で検出することが必要である。陽電子断層画像システムには、Gd2SiO5:Ce(GSO)、Bi4Ge312(BGO)、Li2SiO5:Ce(LSO)、Lu2-xYSiO5(LYSO)などの単結晶酸化物からなるシンチレータが用いられる。これらの単結晶酸化物は、サブマイクロ秒程度の蛍光の減衰時定数を達成し得るが、フォトンカウンティング型の放射線検出器にはさらに減衰時定数が小さいことが求められる。また、単結晶酸化物であるため、大型のシンチレータを製造することが難しい場合がある。そのため、放射線の検出面が大きく、コスト及び商業的な利用を考慮した、フォトンカウンティング型の放射線検出器を用いた画像システムに、従来のシンチレータを用いることは難しい。
本願発明者は、このような課題に鑑み新規な蛍光材料、セラミックシンチレータおよび放射線検出器、並びに蛍光材料の製造方法を想到した。以下、本開示の蛍光材料、セラミックシンチレータおよび放射線検出器、並びに蛍光材料の製造方法を詳細に説明する。
(蛍光材料の組成および物性)
本開示の蛍光材料は、一般式(以下、一般式(1)と呼ぶ):(Gd1-α-βαCeβ3+a(Al1-u-vGauScv5-b12で示される組成からなる。LはYおよびLuの少なくとも一方であり、a、b、α、β、u、vはそれぞれ、以下の範囲を満たしている。
0≦a≦0.1
0≦b≦0.1
0≦α≦0.9
0.0167<β
0≦u≦0.686
0≦v≦0.024
上記一般式(1)において、酸素の組成比は12であると定めている。これは、本開示の蛍光材料がガーネット型の結晶構造を備えているとし、酸素を基準として組成比を決定しているからである。しかし、本開示の蛍光材料は完全なガーネット構造を備えていなくてもよい。aおよびbの値によっては、蛍光材料は、酸素欠損または酸素過剰であるガーネット構造を備えていることもある。つまり、酸素欠損や酸素過剰であるかどうかにかかわらず、酸素の組成比を12であるとして組成式を定めた場合に、組成式におけるa、b、α、β、u、vがそれぞれの範囲を満たしていればよい。
ガーネット型の酸化物からなる蛍光材料は、放射線に対して安定な金属酸化物である。蛍光材料の発光は、例えばX線励起により生成した電子および正孔が発光イオンにおいて結合することにより生じる。Gd、Al、Gaを含むガーネット型の酸化物において、Ceは発光イオンとして機能する。本開示の蛍光材料の特徴の1つは、従来の強度積分型の放射線検出器に用いられる蛍光材料よりも多くのCeを含んでいる点にある。これにより、生成した正孔−電子対がより短い時間でCeにおいて結合し、発光する。このため蛍光の減衰時定数が小さくなる。
本開示の蛍光材料は、上記一般式(1)に含まれる元素からなり、それ以外の元素は不可避的不純物を除いて一切含まない。これは、減衰時定数が含まれる元素に依存して変化するため、本開示の元素以外を含む場合、減衰時定数が大きくなることがあるためである。
本開示において、蛍光の減衰時定数τは、励起光であるX線の照射停止時刻をゼロとして、X線照射停止後の蛍光の発光強度がX線照射中の蛍光の発光強度に対する強度比で1/e(=0.3679)になる時刻で定義される。より具体的には、例えば、パルスX線管を用い、30kVの管電圧でX線を発生させ、蛍光材料にX線を照射した場合において、X線の照射停止後、発光強度が1/eに減衰するまでの時間を時定数τと定義する。減衰時定数の単位は時間であるため、残光のように強度比(ppm)ではなく、ナノ秒(ns)などとなる。
一般式(1)におけるCe量を示すβは、0.00167<βを満たしている。βがこの条件を満たすことによって、減衰の時定数τがフォトンカウンティング型の放射線検出器に用いることができる程度に小さくなる。先述したとおり、減衰時定数は材料に含まれる元素に依存して変化するが、一般式(1)のβの条件を満たすことで、現在一般的に入手可能なシンチレータ用の蛍光材料における蛍光の減衰の時定数τの1/10程度となる。βが0.00167以下である場合、十分には小さくならない。一方、βが大きいほど、蛍光の減衰時定数は小さくなるため、減衰の時定数が小さいという観点ではβに上限はない。ただし、βが大きくなり、Ceの含有量が増えるに従い、蛍光材料に粒成長が生じやすく、異相が生じやすくなるため、緻密な焼結体を得ることが困難になる。また、Ceの含有量が増えるに従い、Ce原子間の距離が小さくなり、エネルギーの回遊(いわゆる濃度消光)による発光強度が低下する。このため、βはβ≦0.1を満たすことが好ましい。
L元素(YまたはLu)の量を示すαは、0≦α≦0.9とする。好ましくは、αは、0.7≦α≦0.8を満たしている。L元素の量を示すαも蛍光の減衰時定数τと相関があり、上述した範囲内において、αの値が大きいと、蛍光の減衰時定数τは小さくなる。また、αの値が大きくなると、発光強度が低下する。
フォトンカウンティング型の放射線検出器として、PETなどに用いられているシンチレータの減衰時定数が約40ns程度である。本開示において、L元素がLuであって、つ0.033≦β≦0.1、又は、L元素がYであって、0.69≦αかつ0.16≦β≦0.1、のいずれかを満たすとき、減衰時定数τが40ns以下となるため好ましい。さらに、L元素がYであって、0.066≦β≦0.1、0.58≦u≦0.69、のいずれかを満たすとき、減衰時定数τが20ns以下となるためさらに好ましい。
Ga量を示すuは、0≦u≦0.686とする。Ga量を示すuも蛍光の減衰時定数τと相関があり、上述した範囲内において、uの値が大きいと、蛍光の減衰時定数τは小さくなる。また、uの値が大きくなると、発光強度が低下する。
Sc量を示すvは、0≦v≦0.024とする。Scの量は、0≦v≦0.024の範囲において、蛍光の減衰時定数τおよび蛍光の発光強度にはあまり影響を与えず、焼結体(セラミック)の結晶粒径に影響を及ぼす。v=0では異常粒成長が生じて、蛍光材料の密度が低下しやすくなる。このため、v=0の場合には、組成の均一性を高め、焼結時の精密な温度制御を行うことが好ましい。一方、vの値が0.024を超えると、発光強度が低下する。
a、bの範囲は共に、0≦a≦0.1、0≦b≦0.1とする。aとbとは同じ値をとることが好ましいが、素原料などに含まれるSiやFe等の不純物元素の固溶や秤量誤差などにより、異なる値をとる場合もある。a≠bのときは結晶中に酸素欠陥が生じ易く、発光強度が低下する場合がある。
aが0未満の負の数であると、ガーネット型結晶構造において希土類元素が占有する(Gd1-α-βαCeβ)サイトにイオンの空孔が生成し残光が増加する。また、発光強度が極端に低下する。よってaは0以上とする。工業的な量産においては組成のバラツキを考慮して0<a、0<b、さらには0.0001≦a、0.0001≦bとすることが好ましい。但し、a、bが0.1を超えると異相であるペロブスカイト型の結晶構造の相(GdAlO3)が生成されやすくなる。この異相は本開示の蛍光材料のガーネット型の結晶構造の相と屈折率が異なるため光散乱が生じ発光強度が低下する。
減衰時定数が小さいことに加えて、特に高い発光強度と低い残光特性を同時に満たすためには、aを0<a≦0.07、bを0<b≦0.07の範囲内にすることがより好ましく、さらには0.0001≦a≦0.05、0.0001≦b≦0.05の範囲内にすることが特に好ましい。
本開示の蛍光材料の密度は、以下に説明する相対密度の評価において99%以上であることが好ましい。相対密度の計算方法は以下の通りである。まず、一般式(1)において、a=0、b=0、α=0、β=0、u=2/5、v=0の場合(組成式:Gd3Al3Ga212)の格子定数をICDD(International Centre for Diffraction Data)のデータより引用し、それを基準に体積を算出する。次に相対密度を算出しようとする試料の組成式から質量として式量を算出する。そして、体積と式量とから求めた密度を理論密度とする。次に、蛍光材料の実測密度を測定し、前記理論密度で割って相対密度を算出する。相対密度が小さい場合、十分なX線の吸収が行われなくなるため、99%以上が好ましい。また、Gd元素をαの値に基づいてL元素に置換するために、a=0、b=0、α=0、β=0、u=2/5、v=0の格子定数を基準に算出しており、場合によっては、相対密度は100%を超えることもある。ただし、大きく超える場合、結晶構造が変わってしまっている可能性が高い。本開示の実施例からは相対密度は102.5%以下であればガーネット構造を備えていることをXRD(X−Ray Diffraction)によって確認している。
本開示の蛍光材料は、硫黄を含まない。このためGd22S系の蛍光材料と異なり、硫化物を原料として用いないことにより、高い密度の焼結体を得ることができ、これによって光の透過率が上がり高い発光強度を実現し得る。
本開示の蛍光材料は、530nm程度以上575nm程度以下の範囲に発光スペクトルのピークを有する。ピーク波長は、例えば、Ga量を示すuを変化させることにより調整することができる。本開示の蛍光材料の発光スペクトルにおけるピーク波長は、上述した、GSO、BGO、LSO、LYSOなどの単結晶酸化物のピーク波長より長く、長波長側(赤色側)にシフトしている。このため、特に、Siアバランシェフォトダイオード等、赤外および近赤外の光に高い感度を有する光検出器と組み合わせることによって、フォトンカウンティング型の放射線検出器を実現することが可能である。
(蛍光材料の製造方法)
本開示による蛍光材料の製造方法の一例を説明する。まず、一般式(1)で表される比率で、Gdと、LuおよびYの少なくとも一方と、Ceと、Alと、Gaと、Scとを含む素原料を用意する。具体的には、ガドリニウム、イットリウムおよび/またはルテチウム、セリウム、アルミニウム、ガリウムおよびスカンジウムの元素の、酸化物、又は炭酸塩等の素原料を用意し、これらの元素が一般式(1)で示す組成比となるように素原料を秤量する。次に、秤量した素原料に必要に応じて溶媒を加え、ボールミル等で混合及び粉砕する。混合物を乾燥させることによって原料粉末を得る。原料粉末を適当な篩で造粒し、プレス成形することによって成形体を得る。その後、成形体を酸素雰囲気中、1650℃〜1700℃の温度で、0.5〜12時間保持することによって焼結する。これにより、多結晶の蛍光材料が得られる。本開示による蛍光材料の製造方法において、得られた蛍光材料における元素比は、用いた素原料の元素の比から大きくずれることは無い。このため、素原料における、Gdと、LuおよびYの少なくとも一方と、Ceと、Alと、GaとScとの比を得られた蛍光材料の組成比とすることができる。
上記製造方法の他、本開示の蛍光材料は、無機塩法などによって製造することも可能である。
本開示の蛍光材料は、一般的なセラミックと同様の工程によって作製することが可能であるため、低コストで生産性に優れた蛍光材料であり、かつ、大面積のセラミックシンチレータを比較的容易に作製することが可能である。そのため、本開示のセラミックシンチレータを用いることにより、単結晶シンチレータと異なり、大量の蛍光材料を配列したり、大面積のセラミックシンチレータを加工することで、放射線の検出面が大きな放射線検出器を容易に得ることができる。
(蛍光材料を用いた実施形態)
[セラミックシンチレータ]
得られた多結晶の蛍光材料を、例えば、内周スライサーで適当な厚さの板として切断し、酸素雰囲気中、例えば1250℃〜1350℃の温度で、0.5〜12時間保持することによって熱処理を施す。その後、表面に光学研磨を施すことによって、セラミックシンチレータが得られる。焼結によって得られた蛍光材料が所望の形状を有している場合には、上述した熱処理および光学研磨を施すことによって、セラミックシンチレータを得ることが可能である。
[放射線検出器]
本開示のセラミックシンチレータと、高感度に光を計測可能な光電子増倍管や、マルチピクセルフォトンカウンター(シリコンフォトマルチプライヤー)などの光検出器とを組み合わせることによって、放射線検出器を構成することができる。例えば、放射線検出器は、受光面を備える光電子増倍管、マルチピクセルフォトンカウンター等の光検出器と、前記光検出器の受光面に配置されたセラミックシンチレータとを備える。セラミックシンチレータには、上述した本開示のセラミックシンチレータを用いることができる。光検出器は、好ましくは光に対して高感度であり、極めて短時間の発光を計測可能である。さらに好ましくは530nm程度以上600nm程度以下の波長範囲において、検出感度を有する。上述したように、シンチレータを構成している蛍光材料における蛍光の減衰定数は小さい。このため、高時間分解能な光検出器と組み合わせて、放射線を検出することが可能であり、フォトンの数が計測可能な光電子増倍管、マルチピクセルフォトンカウンター等と好適に組わせることが可能である。
(実施例)
種々の組成の蛍光材料を作製し、特性を調べた結果を説明する。
[試料作製条件1]
L元素にLuを用い、表1に示すようにCe量を異ならせた試料1〜4を作製し、Ce量と蛍光の減衰時定数τおよび発光強度との関係を調べた。容量1リットルの樹脂製ポットに表1の組成になるように200gの素原料(酸化ルテチウム、酸化ガドリニウム、酸化セリウム、酸化アルミニウム、酸化ガリウムおよび酸化スカンジウム)を秤量し、直径5mmの高純度アルミナボール1250gおよびエタノール200mlをいっしょに入れ、ボールミルを用いて40時間混合及び粉砕を行った後乾燥した。この原料粉末を目開き150μmの篩で造粒をした後、500kg/cm2の圧力で一軸プレス成形し、さらに3000kg/cm2の加圧力で冷間静水圧プレスを行い、理論密度に対して相対密度56%の成形体を得た。この成形体をアルミナこう鉢に入れ、フタをして、100vol%の酸素雰囲気中、1650〜1700℃の温度で、12時間の焼結を行い、焼結体を得た。得られた焼結体は、内周スライサーを用いて幅20mm、長さ30mm、厚さ1.75mmの板に機械加工後、100vol%の酸素雰囲気中、1300℃の温度で、2時間の熱処理を行った。熱処理後、表面に光学研磨を施し、多結晶の蛍光材料のセラミックシンチレータを得た。
Figure 2018002974
[試料作製条件2]
L元素にYを用い、表2に示すようにCe量を異ならせた試料5〜9を作製した。素原料として酸化イットリウムを用いたこと以外は試料作製条件1と同様にして試料5〜9を作製した。
Figure 2018002974
[試料作製条件3]
L元素にYを用い、表3に示すようにY量を異ならせた試料11〜15を作製した。素原料として酸化イットリウムを用いたこと以外は試料作製条件1と同様にして試料11〜15を作製した。
Figure 2018002974
[試料作製条件4]
L元素にYを用い、表4に示すようにGa量を異ならせた試料16〜21を作製した。素原料として酸化イットリウムを用いたこと以外は試料作製条件1と同様にして試料16〜21を作製した。
Figure 2018002974
[試料作製条件5]
L元素にYを用い、表5に示すようにSc量を異ならせた試料22〜25を作製した。素原料として酸化イットリウムを用いたこと以外は試料作製条件1と同様にして試料22〜25を作製した。
Figure 2018002974
[特性の測定]
作製した試料1〜9、11〜25の蛍光の減衰時定数τを求めた。パルスX線管を用い、30kVの管電圧でX線を発生させ、試料1〜9、11〜25にX線を照射し、X線の照射停止後、発光強度が1/eに減衰するまでの時間を減衰時定数τとして求めた。蛍光の測定には、浜松ホトニクス製蛍光寿命測定器のQuantaurus−τ(Quantaurus−Tau)を用いた。
発光強度は、シリコンフォトダイオード(浜松ホトニクス製S2281)を用いて測定した。Gd22S:Prの発光強度を100%とした場合の相対値(%)に換算して整理した。減衰時定数τおよび相対発光強度の測定結果を表6に示す。
また、LがLuである場合およびYである場合のCe量βと減衰時定数τとの関係をそれぞれ、図1および図2に示す。Y量αと減衰時定数τとの関係を図3に示す。Ga量uと減衰時定数τとの関係を図4に示す。Sc量vと減衰時定数τとの関係を図5に示す。
さらに、LがLuである場合およびYである場合のCe量βと相対発光強度との関係をそれぞれ、図6および図7に示す。Y量αと相対発光強度との関係を図8に示す。Ga量uと相対発光強度との関係を図9に示す。Sc量vと相対発光強度との関係を図10に示す。
得られた試料1〜9、11〜25の実測密度をアルキメデスの原理に基づき、水を使用した液中秤量法によって求めた。相対密度は、実測密度を理論密度で除することによって求めた。いずれの試料も99%以上の相対密度を有することを確認した。
試料16および21のスペクトル(強度の波長分布)を測定した。結果を図11に示す。測定には、小型分光器(OceanOptics社製USB2000)を用いた。
Figure 2018002974
[考察]
図1から分かるように、L元素がLuである場合、Ceの含有量βが0.0167よりも大きくなれば、蛍光の減衰時定数τは、40nsよりも小さくなる。また、図2から分かるように、L元素がYである場合には、Ceの含有量βが0.167よりも大きくなれば、蛍光の減衰時定数τは、40nsよりも小さくなる。さらにL元素がLuであってもYであっても、Ceの含有量βが0.033以上であれば、減衰時定数τは40nsよりも小さくなる。この値は、単結晶のLSOおよびLYSOと同程度以上であり、βが0.033以上であることによって、高時間分解能のセラミックシンチレータおよび放射線検出器が実現し得ることがわかる。
図3に示すように、Yの含有量αが増えるにしたがい減衰時定数τが小さくなる。0.7≦αであれば、減衰時定数τは40nsよりも小さいことが分かる。同様に図4に示すように、Gaの含有量uが増えるにしたがい、減衰時定数τが小さくなる。これに対し、図5に示すように、Scの含有量vは、減衰時定数τにはあまり影響しない。
図6および図7に示すように、発光強度は、Ceの含有量βが大きくなるにつれて、小さくなる。L元素がLuであってもYであっても、Ceの含有量βが0.167よりも大きいと相対発光強度が70%以下になる。図8、図9および図10に示すように、Gdの含有量α、Gaの含有量uおよびScの含有量vは、相対発光強度への影響が小さい。
図11は、(Gd0.1690.797Ce0.03323.01(Al0.401Ga0.587Sc0.0124.9912(試料20)および(Gd0.1690.797Ce0.03323.01(Al0.988Sc0.0124.9912(試料16)のスペクトルを示す。それぞれ、530nmおよび575nmにピークを有している。図11に示した試料以外のスペクトルを測定した結果、一般式(1)で示される組成を有することによって、スペクトルは、530nm程度以上575nm程度以下の範囲にピークを有することが分かった。
以上の結果から、本開示の蛍光材料によれば、一般式(1)の組成を有することにより、減衰時定数τが小さく、フォトンカウンティング型の放射線検出器に使用可能な蛍光材料を得ることが確認できた。
本開示の蛍光材料、セラミックシンチレータおよび放射線検出器、並びに蛍光材料の製造方法は、種々の用途の蛍光材料、セラミックシンチレータおよび放射線検出器に好適に用いられ、例えば、放射線画像システム用のフォトンカウンティング型の放射線検出器に好適に用いられる。

Claims (6)

  1. (Gd1-α-βαCeβ3+a(Al1-u-vGauScv5-b12で表される組成からなり、
    前記LはYおよびLuの少なくとも一方であり、
    前記a、b、α、β、u、vが下記範囲を満足する蛍光材料。
    0≦a≦0.1、
    0≦b≦0.1、
    0≦α≦0.9、
    0.0167<β、
    0≦u≦0.686、
    0≦v≦0.024
  2. 前記LはLuであって、0.033≦β≦0.1、
    又は、前記LはYであって、0.69≦α、かつ、0.0167<β≦0.1、
    のいずれかを満たす請求項1に記載の蛍光材料。
  3. 前記LがYであって、0.066≦β≦0.1、
    又は、0.58≦u≦0.69、
    のいずれかを満たす請求項2に記載の蛍光材料。
  4. 請求項1から3のいずれかに記載の蛍光材料を含み、相対密度が99%以上であるセラミックシンチレータ。
  5. 請求項4に記載のセラミックシンチレータと、
    光を電気信号、電流値または電圧値のいずれかに変換する光電変換素子と
    を備えた放射線検出器。
  6. (Gd1-α-βαCeβ3+a(Al1-u-vGauScv5-b12で表され、a、b、α、β、u、vが下記範囲を満足する比率で、Gdと、LuおよびYの少なくとも一方である前記Lと、Ceと、Alと、Gaと、Scとをそれぞれ含む素原料を用意する工程と、
    0≦a≦0.1、
    0≦b≦0.1、
    0≦α≦0.9、
    0.0167<β、
    0≦u≦0.686、
    0≦v≦0.024
    前記素原料を混合及び粉砕し、原料粉末を得る工程と、
    前記原料粉末を成形し、成形体を得る工程と、
    前記成形体を酸素雰囲気中、1650℃〜1700℃の温度で焼結させる工程と、
    を包含する蛍光材料の製造方法。
JP2016135763A 2016-07-08 2016-07-08 蛍光材料、セラミックシンチレータおよび放射線検出器、並びに蛍光材料の製造方法 Active JP6776671B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016135763A JP6776671B2 (ja) 2016-07-08 2016-07-08 蛍光材料、セラミックシンチレータおよび放射線検出器、並びに蛍光材料の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135763A JP6776671B2 (ja) 2016-07-08 2016-07-08 蛍光材料、セラミックシンチレータおよび放射線検出器、並びに蛍光材料の製造方法

Publications (2)

Publication Number Publication Date
JP2018002974A true JP2018002974A (ja) 2018-01-11
JP6776671B2 JP6776671B2 (ja) 2020-10-28

Family

ID=60947382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135763A Active JP6776671B2 (ja) 2016-07-08 2016-07-08 蛍光材料、セラミックシンチレータおよび放射線検出器、並びに蛍光材料の製造方法

Country Status (1)

Country Link
JP (1) JP6776671B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3567406A1 (en) * 2018-05-09 2019-11-13 Nuctech Company Limited Afterglow detection device and afterglow detection method
KR20210031208A (ko) * 2019-09-11 2021-03-19 한국광기술원 가시광 및 근적외선 파장 대역을 발광하는 형광체 플레이트 및 그의 제조방법
WO2022050417A1 (ja) 2020-09-04 2022-03-10 東芝マテリアル株式会社 セラミックシンチレータ、フォトンカウンティング型x線検出器、及び、セラミックシンチレータの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095737A1 (ja) * 2009-02-23 2010-08-26 株式会社東芝 固体シンチレータ、放射線検出器およびx線断層写真撮影装置
WO2012105202A1 (ja) * 2011-01-31 2012-08-09 国立大学法人東北大学 シンチレータ用ガーネット型結晶、及びこれを用いた放射線検出器
JP2012184397A (ja) * 2011-02-16 2012-09-27 Hitachi Metals Ltd 多結晶シンチレータ及びその製造方法並びに放射線検出器
JP2013002882A (ja) * 2011-06-14 2013-01-07 Furukawa Co Ltd 放射線検出器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095737A1 (ja) * 2009-02-23 2010-08-26 株式会社東芝 固体シンチレータ、放射線検出器およびx線断層写真撮影装置
WO2012105202A1 (ja) * 2011-01-31 2012-08-09 国立大学法人東北大学 シンチレータ用ガーネット型結晶、及びこれを用いた放射線検出器
JP2012184397A (ja) * 2011-02-16 2012-09-27 Hitachi Metals Ltd 多結晶シンチレータ及びその製造方法並びに放射線検出器
JP2013002882A (ja) * 2011-06-14 2013-01-07 Furukawa Co Ltd 放射線検出器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3567406A1 (en) * 2018-05-09 2019-11-13 Nuctech Company Limited Afterglow detection device and afterglow detection method
KR20210031208A (ko) * 2019-09-11 2021-03-19 한국광기술원 가시광 및 근적외선 파장 대역을 발광하는 형광체 플레이트 및 그의 제조방법
KR102272829B1 (ko) * 2019-09-11 2021-07-05 한국광기술원 가시광 및 근적외선 파장 대역을 발광하는 형광체 플레이트 및 그의 제조방법
WO2022050417A1 (ja) 2020-09-04 2022-03-10 東芝マテリアル株式会社 セラミックシンチレータ、フォトンカウンティング型x線検出器、及び、セラミックシンチレータの製造方法
KR20230045049A (ko) 2020-09-04 2023-04-04 도시바 마테리알 가부시키가이샤 세라믹 신틸레이터, 포톤 카운팅형 x선 검출기 및 세라믹 신틸레이터의 제조 방법

Also Published As

Publication number Publication date
JP6776671B2 (ja) 2020-10-28

Similar Documents

Publication Publication Date Title
US8431042B2 (en) Solid state scintillator material, solid state scintillator, radiation detector, and radiation inspection apparatus
US9193903B2 (en) Solid scintillator, radiation detector, and radiation examination device
US8129685B2 (en) Fluorescent material, scintillator using same, and radiation detector using same
CN103249805B (zh) 包含掺杂稀土硅酸盐的发光材料
KR100706114B1 (ko) 섬광 결정과 이를 제조하는 방법과 이를 사용하는 방법
DK2671940T3 (en) Single crystal of garnet type to a scintillator, and a radiation detector using the same
US8815122B2 (en) Polycrystalline scintillator for detecting soft X-rays
US9175216B2 (en) Ceramic scintillator body and scintillation device
EP1043383A1 (en) Phosphors, and radiation detectors and x-ray ct unit made by using the same
JP2010235388A (ja) 透明セラミックス及びその製造方法並びにその透明セラミックスを用いたデバイス
Cherepy et al. Performance of europium-doped strontium iodide, transparent ceramics and bismuth-loaded polymer scintillators
RU2745924C1 (ru) Керамический сцинтиллятор на основе композиций кубического граната для позитронно-эмиссионной томографии (пэт)
US20110024684A1 (en) Solid scintillator, radiation detector, and x-ray tomographic imaging apparatus
Luo et al. Microstructure and optical characteristics of Ce: Gd3 (Ga, Al) 5O12 ceramic for scintillator application
JP6776671B2 (ja) 蛍光材料、セラミックシンチレータおよび放射線検出器、並びに蛍光材料の製造方法
TW201521685A (zh) 閃爍體材料、放射線檢測器以及放射線檢查裝置
EP1882024B1 (en) Procedure to obtain gd2o2s: pr for ct with a very short afterglow
Cherepy et al. Transparent ceramic scintillator fabrication, properties, and applications
US8907292B2 (en) Tungstate-based scintillating materials for detecting radiation
CN106715646B (zh) 荧光材料、闪烁体、闪烁体阵列以及放射线检测器
EP3030629B1 (en) Ce3+ activated luminescent compositions for application in imaging systems
JP7302706B2 (ja) セラミックシンチレータおよび放射線検出器
JP7459593B2 (ja) セラミック蛍光材料、シンチレータアレイ、放射線検出器および放射線コンピュータ断層撮影装置
JP2021143288A (ja) シンチレータ、放射線検知器、及び放射線画像システム
Shah et al. LaBr/sub 3: Ce scintillators for gamma ray spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R150 Certificate of patent or registration of utility model

Ref document number: 6776671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250