JP2018002646A - 植物用薬剤 - Google Patents

植物用薬剤 Download PDF

Info

Publication number
JP2018002646A
JP2018002646A JP2016130958A JP2016130958A JP2018002646A JP 2018002646 A JP2018002646 A JP 2018002646A JP 2016130958 A JP2016130958 A JP 2016130958A JP 2016130958 A JP2016130958 A JP 2016130958A JP 2018002646 A JP2018002646 A JP 2018002646A
Authority
JP
Japan
Prior art keywords
plant
porous ceramic
titanium
powder
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016130958A
Other languages
English (en)
Inventor
山田 修
Osamu Yamada
修 山田
淳平 丸尾
Jumpei Maruo
淳平 丸尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSU KK
Original Assignee
OSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSU KK filed Critical OSU KK
Priority to JP2016130958A priority Critical patent/JP2018002646A/ja
Publication of JP2018002646A publication Critical patent/JP2018002646A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

【課題】(1)多種の植物病に効果を有し、(2)植物病害などには効くが人体毒性が無い安全性を有し、(3)耐性菌が出にくい新規の作用機序を有する植物用薬剤、及び該植物用薬剤を利用した植物病害の駆除又は防除方法を提供する。【解決手段】(1)チタニウム、並びに(2)炭素、ホウ素、窒素、及びケイ素からなる群から選択される少なくとも1種、を含む出発原料を燃焼合成することにより得られる多孔質セラミックを含有する植物用薬剤、並びに該植物用薬剤を施用する工程を備えた、植物病害の駆除又は防除方法。【選択図】なし

Description

本発明は、植物用薬剤、及び該植物用薬剤を利用した植物病害の駆除又は防除方法に関する。
植物の病原体は、いもち病に代表される植物病原菌、うどん粉病などの真菌、スス病、炭素病などの子嚢菌、700種以上のウィルスなど、判明しているだけでも多種多様であり、未発見の病原体も多数存在する。これらの個々の病原体に対する植物用薬剤は無数に必要となり、現実的には個別対処とならざるを得ない。
例えば、カビによるうどんこ病は、うどん粉をまぶしたようになる症状が葉及び花首に発生し、葉の表面が覆われると光合成が阻害され、生育不良になり、花が咲かない、果実が肥大しない、ひどい場合には枯死する、野菜の場合は食味が低下するなどの被害がある。農薬としてはアゾール系殺菌剤が使用される。
また、カプノデウム科に属する子嚢菌を原因菌とするスス病は、アブラムシ、カイガラムシなどの昆虫が植物体についたのちに、その分泌物を栄養として繁殖し、植物の組織に寄生するが、直接栄養はとらない。しかし、葉の表面が煤状になるため見かけが悪くなり、果実、盆栽などは商品価値がなくなるだけでなく、同化作用及び蒸散が妨げられるので樹勢が衰える。農薬としては、有機銅剤、TPN剤などの殺菌剤が用いられる。
イチゴ炭疽病は決定的な予防法が無く、無病苗の確保、及び土壌殺菌、有機系殺菌剤などが用いられる。
しかし、いずれの場合も、現状の農薬は改善されたとはいえ人体毒性の点からも憂慮され、人体毒性がほとんど無いか全く無い安全な植物用薬剤の開発が求められている。また、農薬の多用は植物病原体に新たな耐性菌を出現させており、耐性菌が出にくい作用機序を有する植物用薬剤の開発が望まれている。
1)表面の一部又は全部に酸化物系セラミックス層が形成され、2)当該セラミックス層以外の部分に非酸化物系セラミックスが含まれ、3)三次元網目構造を有する、ことを特徴とする多層セラミックス系多孔質材料が、特許文献1により報告されており、このセラミックス系多孔質材料は、2種以上の無機粉末からなる混合粉末を成形し、得られた成形体を空気中又は酸化性雰囲気中で燃焼合成反応させることにより製造することができる。
当該セラミックス系多孔質材料の用途としては、特許文献1には、フィルター、触媒又は触媒担体、センサー、生体材料、抗菌・防汚材料、気化器、放熱板又は熱交換器、電極材料、半導体ウェハー吸着板、吸着材、ガス放出用ベントホール、防振・防音材料、発熱体などが挙げられている。
また、(1)Ti及びZrの少なくとも1種、(2)Ag並びに(3)C、B、BN及びB4Cの少なくとも1種、を含む混合原料を燃焼合成することにより得られる多孔質セラミックスからなる銀イオン水生成用材料が、特許文献2により報告されている。特許文献2には、これにより製造された銀イオン水の用途としては、消臭、殺菌、抗菌などが挙げられている。
しかしながら、特許文献1及び2には、多孔質セラミック粉末自体の摂取が安全で人体毒性が無いことに関する記載は無く、銀イオンについては書かれているものの、ラジカルの発生とその種類、及びナノバブルの発生についても触れられていない。さらに、これらの文献には、多孔質セラミックスを農薬などの植物用薬剤として応用することについても開示はない。
特開2003−55063号公報 特開2006−69935号公報
前述するように、現行の農薬類では解決できない植物病が多く存在し、1種類の植物用薬剤で、未知のものを含めて多くの植物病に効果のあるものが求められている。
そこで、本発明は、(1)多種の植物病に効果を有し、(2)植物病害などには効くが人体毒性が無い安全性を有し、(3)耐性菌が出にくい新規の作用機序を有する植物用薬剤、及び該植物用薬剤を利用した植物病害の駆除又は防除方法を提供することを目的とする。
本発明者らは、数秒から数分という短時間の生産方法である燃焼合成技術を用いて簡便に作製される多孔質セラミックと接触した液体が、多数の植物病害に効果を有しつつ、人体毒性が認められず安全であり、且つ耐性菌が出にくい作用機序を有する植物用薬剤となり得るという知見を得た。
本発明は、これら知見に基づき、更に検討を重ねて完成されたものであり、次の植物用薬剤及び植物病害の予防又は防除方法を提供するものである。
項1.(1)チタニウム、並びに(2)炭素、ホウ素、窒素、及びケイ素からなる群から選択される少なくとも1種、を含む出発原料を燃焼合成することにより得られる多孔質セラミックを含有する植物用薬剤。
項2.前記出発原料が、銀、金、白金、鉄、及び銅からなる群から選択される少なくとも1種を更に含む、項1に記載の植物用薬剤。
項3.前記多孔質セラミックが、正電荷と負電荷部分が微細に分散した構造を有する、項1又は2に記載の植物用薬剤。
項4.前記多孔質セラミックの表面の一部又は全部に酸化物系セラミック層が形成されている、項1〜3のいずれか一項に記載の植物用薬剤。
項5.前記多孔質セラミックが、成形体又はその粉砕物である、項1〜4のいずれか一項に記載の植物用薬剤。
項6.ラジカル及びナノバブル含有液体を含有する植物用薬剤。
項7.前記ラジカル及びナノバブル含有液体が、項1〜5のいずれか一項に記載の多孔質セラミックと液体とを接触させることにより得られるものである、項6に記載の植物用薬剤。
項8.農薬、植物保護剤、植物病害予防剤、植物活性剤、植物成長剤、又は種子発芽率向上剤である、項1〜7のいずれか一項に記載の植物用薬剤。
項9.項1〜8のいずれか一項に記載の植物用薬剤を施用する工程を備えた、植物病害の駆除又は防除方法。
本発明の植物用薬剤は、主成分として炭化物、ホウ化物、窒化物、ケイ化物などの非酸化物セラミックを含有する多孔質セラミック、あるいはラジカル及びナノバブルを含有する液体を含有するものであって、従来の農薬などとは異なる新規な植物用薬剤である。本発明の植物用薬剤は、一種類のみで複数種の植物病害駆除及び防除効果を発揮し、人体毒性が無い安全性を有し、且つ耐性菌が出にくい新規の作用機序を有する。また、上記多孔質セラミックは、数秒から数分という短時間の生産方法である燃焼合成技術を用いて簡便に作製することが可能である。さらに、本発明の植物用薬剤は、植物病害の駆除に加えて、植物保護、植物病害予防、植物活性化、植物成長促進、種子発芽率の向上などにも効果が期待される。
うどんこ病に対する植物用薬剤の効果を示す写真である。A:植物用薬剤撒布前、B:植物用薬剤撒布後 スス病に対する植物用薬剤の効果を示す写真である。A:検体群、B:対照群 植物用薬剤によるイチゴ炭疽病菌の菌糸伸長抑制効果を示す写真である。上から、セラミック粉末体の添加濃度が1000ppm、100ppm、無添加(0ppm)の培地である。
以下、本発明について詳細に説明する。
本発明の植物用薬剤は、
(1)チタニウム、並びに(2)炭素、ホウ素、窒素、及びケイ素からなる群から選択される少なくとも1種、を含む出発原料を、空気中又は酸化性ガス雰囲気中で燃焼合成することにより得られる多孔質セラミック、又は、
ラジカル及びナノバブル含有液体
を含有することを特徴とする。
なお、本明細書において「含む、含有する(comprise)」とは、「本質的にからなる(essentially consist of)」という意味と、「からなる(consist of)」という意味をも包含する。
多孔質セラミック
本発明の植物用薬剤が含有する多孔質セラミック(以下、「本発明の多孔質セラミック」と称することもある)は、(1)チタニウム、並びに(2)炭素、ホウ素、窒素、及びケイ素からなる群から選択される少なくとも1種、を含む出発原料を燃焼合成することにより得られることを特徴とする。
上記出発原料は、混合粉末の形態でもよいが、特に成形体であることが好ましい。成形体とする場合は、例えば、プレス成形法、押し出し成形法などの公知の方法が利用できる。また、成形体の形状及び大きさは特に限定されず、用途、使用目的などに見合ったものを設計することができる。成分(2)が窒素ガスである場合、粉末がガス中に存在する状態で燃焼合成を行うこともでき、本発明における出発原料とは、窒素雰囲気中にチタニウムが存在するような場合も包含する。
上記成分(1)と成分(2)との混合割合は、燃焼合成が可能な範囲であれば制限されず、用いる成分の種類、最終製品の用途などに応じて適宜設定することができる。通常は成分(1):成分(2)の重量比は、チタニウム:炭素系では70重量%〜95重量%:30重量%〜5重量%程度、好ましくは75重量%〜89重量%:25重量%〜11重量%である。同様に、成分(1):成分(2)の重量比は、チタニウム:ホウ素系では60重量%〜90重量%:40重量%〜10重量%程度、好ましくは69重量%〜80重量%:31重量%〜20重量%である。また、成分(1):成分(2)の重量比は、チタニウム:窒素系では70重量%〜95重量%:30重量%〜5重量%程度、好ましくは77重量%〜88重量%:23重量%〜12重量%である。また、成分(1):成分(2)の重量比は、チタニウム:ケイ素系では35重量%〜90重量%:65重量%〜10重量%程度、好ましくは47重量%〜80重量%:53重量%〜20重量%である。
成分(2)は、燃焼合成が可能である限り、炭素、ホウ素、窒素、及びケイ素を単独で使用でき、あるいはそれらからなる(composed of)化合物(例えば、窒化ケイ素、炭化ケイ素、窒化ホウ素、炭化ホウ素など)も使用できる。
また、上記出発原料には、必要に応じて、成分(1)及び成分(2)以外の成分(成分(3))を更に配合することもできる。そのような成分(3)としては、好ましくは、銀、金、白金、鉄、銅などである。これらは1種又は2種以上を用いることができる。成分(3)の配合割合は、成分(3)の種類などに応じて適宜決定できる。通常は出発原料中1〜50重量%程度、好ましくは10〜20重量%とする。
また、上記成分(1)〜(3)は、燃焼合成が可能である限り、それぞれ別々の原料を用いることができ、あるいはそれからからなる(composed of)化合物を使用することもできる。
燃焼合成法は、出発原料に局所的着火して化学反応を起こさせた後は、化合物になる際に放出される化学反応熱により連鎖的に反応が進行し、数秒〜数分で生成物が得られる製造方法である。燃焼合成反応自体の方法、操作条件などは、従来と同様にすることができ、例えば、放電、レーザー照射、カーボンヒーターなどによる着火などにより出発原料を局部的に加熱することによって反応を開始させることができる。いったん反応が開始すれば、自発的な発熱により反応が進行し、最終的に目的とする多孔質セラミックを得ることができる。反応時間は、出発原料の大きさなどに依存して適宜設定することができ、通常は数秒〜数分程度である。また、出発原料に成分(3)を更に混合しておくことにより、それらの成分(3)が微細分散した多孔質セラミックを得ることができる。
燃焼合成反応は真空中や不活性雰囲気中でも実施できるが、反応雰囲気は空気中又は酸化性ガス雰囲気中とすることが望ましい。例えば、0.1気圧以上(好ましくは1気圧以上)の空気中で燃焼合成反応を好適に行うことができる。
本発明の多孔質セラミックは、通常3次元スケルトン構造を有している。本発明の多孔質セラミックは、特に、気孔(連通孔)が貫通孔であることが好ましい。本発明の多孔質セラミックの相対密度は限定的でなく適宜設定でき、通常30〜70%程度とすることが望ましい。相対密度又は気孔率は、成形体の密度、燃焼合成の反応温度、雰囲気圧力などによって制御することができる。また、細孔径分布は、通常0.1〜30μm程度である。
大気中(空気中)又は酸化性雰囲気中で燃焼合成反応を行うことで、表面部は酸化物系セラミック、内部は非酸化物系セラミックで構成される多孔質セラミックを得ることができる。
本発明の多孔質セラミックの形態及び大きさは限定されず、用途、使用目的などに見合ったものを設計することができる。形態としては、例えば、円板状、球状、棒状、板状、円柱状などの形態が挙げられる。また、粒径が数mm程度の顆粒のほか、部分的に多孔質形状を保持できる程度に粉砕した0.5〜100μmの粉末(粉砕物)とすることもできる。粉砕方法は、ジョークラッシャー、ディスクミル、オリエントミル、回転ボールミル、遊星型ボールミル、ジェットミルなど一般的に使用される粉砕機器を使用できる。
成分(1)のチタニウムの代わりに、チタニウムと元素周期律表の同族元素(IV族)であるジルコニウム(Zr)又はハフニウム(Hf)に置き換えたとしても同様の効果を発揮することは化学反応に関与する最外殻電子数から理論的に説明できる。しかしながら、ジルコニウム及びハフニウムは資源量も少なく植物用薬剤の成分として安定供給が困難である。
成分(1)及び成分(2)を含む場合、本発明の多孔質セラミックは、以下の(TC)式から(TS)式のいずれかの反応式又はそれらを組み合わせた反応式に従って、左辺式の原料粉末混合体に着火することにより発生する化学反応熱により、連鎖的に右辺式の生成物が合成される燃焼合成反応により製造することができる。
Ti+(1-X)C→TiC1-X 0≦X≦0.4 (TC)式
Ti+(2-X)B→XTiB+(1-X)TiB2 0≦X≦1 (TB)式
2Ti+(1-X)N2→2TiN1-X 0≦X≦0.4 (TN)式
5Ti+(3+7X)Si→5XTiSi2+(1-X)Ti5Si3 0≦X≦1 (TS)式
上記(TC)式から(TS)式いずれかの反応式、又はそれらを組み合わせた反応式に従って空気中又は酸化性ガス雰囲気中で燃焼合成した場合、得られる多孔質セラミックは、生成物の主相である非酸化物セラミックの表面層だけが酸素と反応し、熱力学的に安定な酸化物セラミック層をわずかに形成させたものであり、それらは以下の(TOC)式から(TOS)式で示される生成物又はそれらを組み合わせた生成物である。
(1-Z)TiC1-X+ZTiO2-X 0≦X≦0.4, 0≦Z≦0.4 (TOC)式
(1-Z)(XTiB+(1-X)TiB2)+ZTiO2-X 0≦X≦1, 0≦Z≦0.4 (TOB)式
(1-Z)TiN1-X+ZTiO2-X 0≦X≦0.4, 0≦Z≦0.4 (TON)式
(1-Z)(5XTiSi2+(1-X)Ti5Si3)+ZTiO2-X 0≦X≦1, 0≦Z≦0.4 (TOS)式
また、成分(1)〜成分(3)を含む場合、本発明の多孔質セラミックは、以下の(TCM)式から(TSM)式のいずれかの反応式又はそれらを組み合わせた左辺式の反応式に従って、原料粉末混合体に着火することにより発生する化学反応熱により、連鎖的に右辺式の生成物が合成される燃焼合成反応により製造することができる。なお、式中のMは、銀、金、白金、鉄、及び銅の少なくとも1種以上の金属又は合金を示す。
(1-Y)(Ti+(1-X)C)+YM→(1-Y)TiC1-X+YM 0≦X≦0.4, 0<Y≦0.4 (TCM)式
(1-Y)(Ti+(2-X)B)+YM→(1-Y)(XTiB+(1-X)TiB2)+YM 0≦X≦1, 0<Y≦0.4 (TBM)式
(1-Y)(2Ti+(1-X)N2)+YM→2(1-Y)TiN1-X+YM 0≦X≦0.4, 0<Y≦0.4 (TNM)式
(1-Y)(5Ti+(3+7X)Si)+YM→(1-Y)(5XTiSi2+(1-X)Ti5Si3)+YM 0≦X≦1, 0<Y≦0.4 (TSM)式
上記(TCM)式から(TSM)式のいずれかの反応式、又はそれらを組み合わせた反応式に従って空気中又は酸化性ガス雰囲気中で燃焼合成した場合、得られる多孔質セラミックは、生成物の主相である非酸化物セラミックの表面層だけが酸素と反応し、熱力学的に安定な酸化物セラミック層をわずかに形成させたものであり、それらは以下の(TOCM)式から(TOSM)式で示される生成物又はそれらを組み合わせた生成物である。
(1-Z)((1-Y)TiC1-X+YM)+ZTiO2-X 0≦X≦0.4, 0<Y≦0.4, 0≦Z≦0.4 (TOCM)式
(1-Z)((1-Y)(XTiB+(1-X)TiB2)+YM)+ZTiO2-X 0≦X≦1, 0<Y≦0.4, 0≦Z≦0.4 (TOBM)式
(1-Z)(2(1-Y)TiN1-X+YM)+ZTiO2-X 0≦X≦0.4, 0<Y≦0.4, 0≦Z≦0.4 (TONM)式
(1-Z)((1-Y)(5XTiSi2+(1-X)Ti5Si3)+YM)+ZTiO2-X 0≦X≦1, 0<Y≦0.4, 0≦Z≦0.4 (TOSM)式
以下の(BN)式から(OBNM)式の反応式又は生成物は、成分(2)として窒化ホウ素を使用した場合のものである。なお、式中のMは、銀、金、白金、鉄、及び銅の少なくとも1種以上の金属又は合金を示す。
(3-X)Ti+2(1-X)BN→(1-X)TiB2+2TiN1-X 0≦X≦0.4 (BN)式
(1-Y)((3-X)Ti+2(1-X)BN)+YM→(1-Y)((1-X)TiB2+2TiN1-X)+YM 0≦X≦0.4, 0<Y≦0.4 (BNM)式
(1-Z)((1-X)TiB2+2TiN1-X)+ZTiO2-X 0≦X≦0.4, 0≦Z≦0.4 (OBN)式
(1-Z)((1-Y)((1-X)TiB2+2TiN1-X)+YM)+ZTiO2-X 0≦X≦0.4, 0<Y≦0.4, 0≦Z≦0.4 (OBNM)式
ラジカル及びナノバブル含有液体
本発明の植物用薬剤は、ラジカル及びナノバブル含有液体を含有することを特徴とする。
上記液体としては、ラジカル及びナノバブルを生成させることができるものであって且つ植物用薬剤に使用できる液体であれば特に限定されず、例えば、水、水溶液などが挙げられ、具体的には、蒸留水、純水、超純水、水道水、井戸水、ミネラルウォーター、食塩水、緩衝溶液などが挙げられる。
上記ラジカル(フリーラジカル)としては、本発明の効果が得られるものであれば特に限定されず、好ましくはヒドロキシラジカル(・OH)、カーボンラジカル(・C)及びメチルラジカル(・CHm, 1≦m≦3)であり、より好ましくはヒドロキシラジカル及びメチルラジカルである。ラジカルは1種又は2種以上のいずれであってもよい。
上記ナノバブルの直径の分布は、10〜500nm、好ましくは10〜100nmの範囲に入ることが望ましい。また、上記ナノバブルは、液体中に好ましくは100万〜1億個/mL、より好ましくは500万〜5000万個/mL含まれる。
上記ラジカル及びナノバブル含有液体は、本発明の多孔質セラミックと液体とを接触させることにより製造することができる。本発明の多孔質セラミックと液体との割合は特に限定されず適宜設定することができ、一般的には、液体1リットルに対して本発明の多孔質セラミック1μg〜500g程度の範囲内から適宜設定することができる。本発明の多孔質セラミックと液体との混合に際しては、常温下で両者を混合することができる。また、必要に応じて、攪拌することもできる。
本発明の多孔質セラミックと液体との混合に際して、超音波を照射することが望ましい。超音波照射によって、より効果的にラジカルの発生を促進させることができる。超音波照射は、公知の装置を使用して行うことができる。
ラジカル及びナノバブル含有液体から多孔質セラミックを除去する場合は、一般的なフィルターなどによる濾過分離法が使用可能である。さらに、分離方法の一つとして、鉄などの磁性体を均一微細分散した多孔質セラミックの作製が可能であることから、これらの磁性体多孔質セラミックを投入してラジカル及びナノバブル含有液体を作製した後に、磁石などを用いて磁性体多孔質セラミックを吸着分離除去することができる。
化合物合成時の化学反応熱を利用した燃焼合成では2500℃〜3500℃までの急速昇温〜急速冷却により多孔質セラミックが形成される。このような急激な温度変化を伴って高速合成される多孔質セラミックの特徴として、格子欠陥が緩和されるほどの時間的余裕がないため、凍結されて格子欠陥がそのまま残ると考えられる。このため、格子欠陥を含む不均一生成物となり、部分的に正孔(ホール)及び電子の局在化が生じる。金属などを熱した場合、金属表面から熱電子放出が起こることは良く知られている事実である。いかなる理論にも拘束されることを望むものではないが、多孔質セラミックの局在化に起因する電位差によって形成される電場が、ラジカル発生機構の一因と考えられる。これは燃焼合成特有の現象であり、均一なセラミック焼結体では上記のような部分的に正孔(ホール)及び電子の局在化を生み出すことは不可能である。
このように、燃焼合成材料である本発明の多孔質セラミックは、セラミック焼結体とは異なる特性を有しており、燃焼合成材料の特性に基づいて本発明の効果が得られると推測される。しかしながら、そのような特性を正確に解析することは困難であるため、本発明の多孔質セラミックを構造又は特性により直接特定することは困難である。
また、上記ラジカル及びナノバブル含有液体についても、ラジカルのライフタイムは数マイクロ秒〜数秒程度であると言われており、ラジカルの量は経時的に大きく変化するため、構造又は特性により直接特定することは基本的に困難である。
燃焼合成は出発原料から化合物を生成する際の発熱反応を有効に利用した製造方法であり、得られる多孔質セラミックは通常の合成方法で得たセラミックとは異なる電気的特性を有する。3000℃までの急熱と放冷による急冷とが秒単位で起こるため、格子欠陥及び結晶構造に歪みが生じるものと考えられる。この結果、全体としては電気的中性を保持しつつ局在化した電場が形成され、正電荷と負電荷とが微細分散分布した分極化合物になると考えられる。このような電気的特性を直接的に測定することは困難であるが、以下のような間接的な実験結果より証明される。
本発明の多孔質セラミック粉末を水に分散した懸濁液を光学顕微鏡で観察した時、粒子径が100μm以下では、粉末粒子が回転、移動などの運動をしていることがわかった。これは分極した粒子が、それぞれ周囲の粒子より電気力を受けて複雑な運動をしていると考えれば物理的に理解できる。また、粉末粒子が結合する時もあった。これは電気的異符号の粉末粒子が近づいた場合、電気的引力で結合したものと考えられる。
植物用薬剤
本発明の植物用薬剤は、上記多孔質セラミック、並びに/又はラジカル及びナノバブル含有液体を含有することを特徴とする。
本発明における植物用薬剤は、具体的には、農薬、植物保護剤、植物病害予防剤、植物活性剤、植物成長剤、種子発芽率向上剤などとして使用可能なものであり、これらの意味を包含する。
本発明の植物用薬剤は、植物に対して施用される。本発明の植物用薬剤が対象とする植物には、一般的な野菜及び果物、樹木、コンブ、ワカメなどの藻類、キノコなどの菌類などが含まれる。本発明の植物用薬剤が対象とする植物としては、例えば、稲、小麦、大麦、トウモロコシ、大豆、エンドウ、インゲン、ジャガイモ、テンサイ、サツマイモ、サトイモ、キャベツ、レタス、タマネギ、トマト、キュウリ、ホウレンソウ、ナス、スイカ、カボチャ、サトウキビ、ピーマン、イチゴ、リンゴ、ナシ、モモ、カキ、カンキツ、ブドウ、綿、バラ、ヒマワリ、チューリップ、キク、白カシなどが挙げられる。
本発明の植物用薬剤の作用機序は、いかなる理論にも拘束されることを望むものではないが、本発明の多孔質セラミックが液体と接触することで水溶液中にラジカルとナノバブル、及び/又は金属イオンが発生し、それらが植物病原菌の組織破壊及び代謝阻害を誘導して死滅させること、並びに真菌及び子嚢菌に対しては菌糸の増殖抑制効果及び残効性能を有することに加えて、植物ウィルスに対しては不活化させることで、農薬、植物保護剤、植物活性剤、植物成長剤、及び植物病害予防剤としての機能を奏すると考えられる。
本発明の植物用薬剤は、上記記多孔質セラミック並びにラジカル及びナノバブル含有液体以外の成分としては、担体、界面活性剤、乳化剤、分散剤、浸透剤、増粘剤、湿潤剤、防腐剤、安定剤、固着剤、着色剤、消泡剤などを必要に応じて適宜配合することができる。また、本発明の植物用薬剤は、散布剤、水和剤、乳剤、粉剤、エアゾール剤、顆粒水和剤、フロアブル剤、ペースト剤、懸濁剤、液剤などの形態に公知の方法により適宜製剤化することができる。本発明の植物用薬剤は、そのまま使用するか、又は希釈剤で所定の濃度に希釈して使用することができる。また、本発明の植物用薬剤では、上記多孔質セラミック並びにラジカル及びナノバブル含有液体以外にも、殺虫剤、殺ダニ剤、除草剤などの農薬を併用使用することができる。
本発明の植物用薬剤における上記多孔質セラミックの含量は、植物用薬剤全量中10-7〜100重量%、好ましくは0.01〜99.9重量%、より好ましくは0.1〜99重量%の範囲から適宜選択することが可能である。
本発明の植物用薬剤における上記ラジカル及びナノバブル含有液体の含量は、植物用薬剤全量中10-8〜100容量%、好ましくは0.001〜99.9容量%、より好ましくは0.01〜99容量%の範囲から適宜選択することが可能である。
本発明の植物用薬剤は、通常の農薬類と同様に散布することができる。本発明の植物用薬剤の施用方法としては、例えば、植物体への散布処理、土壌表面への散布処理、土壌中への注入処理、植物種子への塗沫処理、植物種子への浸漬処理、植物種子への吹き付け処理などが挙げられる。
本発明の植物用薬剤の施用量は、対象病害、対象植物、病害の発生程度、剤型、施用方法などに応じて適宜選択することができる。
本発明の植物用薬剤が対象とする植物病害としては、本発明の効果が得られる限り特に限定されないが、例えば、以下の植物病害を挙げることができる。
イネのいもち病(Pyricularia oryzae)、紋枯病(Thanatephorus cucumeris)、ごま葉枯病(Cochliobolus miyabeanus)、馬鹿苗病(Gibberella fujikuroi)、苗立枯病(Pythium spp.、Fusarium spp.、Trichoderma spp.、Rhizopus spp.、Rhizoctonia solaniなど)、稲こうじ病(Claviceps virens)、黒穂病(Tilletia barclayana);ムギ類のうどんこ病(Erysiphe graminis f.sp.hordei)、さび病(Puccinia striiformis、Puccinia graminis、Puccinia recondita、Puccinia hordei)、斑葉病(Pyrenophora graminea)、網斑病(Pyrenophora teres)、赤かび病(Fusarium graminearum、Fusarium culmorum、Fusarium avenaceum、Microdochium nivale)、雪腐病(Typhula incarnata、Typhula ishikariensis、Micronectriella nivalis)、裸黒穂病(Ustilago nuda、Ustilago tritici、Ustilago nigra、Ustilago avenae)、なまぐさ黒穂病(Tilletia caries、Tilletia pancicii)、眼紋病(Pseudocercosporella herpotrichoides)、株腐病(Rhizoctonia cerealis)、雲形病(Rhynchosporium secalis)、葉枯病(Septoria tritici)、ふ枯病(Leptosphaeria nodorum)、苗立枯病(Fusarium spp.、Pythium spp.、Rhizoctonia spp.、Septoria nodorum、Pyrenophora spp.)、立枯病(Gaeumannomyces graminis)、炭疽病(Colletotrichum graminicola)、麦角病(Claviceps purpurea)、斑点病(Cochliobolus sativus);トウモロコシの赤かび病(Fusarium graminearumなど)、苗立枯病(Fusarium avenaceum、 Penicillium spp.、 Pythium spp.、Rhizoctonia spp.)、さび病(Puccinia sorghi)、ごま葉枯病(Cochliobolus heterostrophus)、黒穂病(Ustilago maydis)、炭疽病(Colletotrichum graminicola)、北方斑点病(Cochliobolus carbonum);
トマト、キュウリ、豆類、イチゴ、ジャガイモ、キャベツ、ナス、レタスなどの灰色かび病(Botrytis cinerea);トマト、キュウリ、豆類、イチゴ、ジャガイモ、ナタネ、キャベツ、ナス、レタスなどの菌核病(Sclerotinia sclerotiorum);トマト、キュウリ、豆類、ダイコン、スイカ、ナス、ナタネ、ピーマン、ホウレンソウ、テンサイなどの各種野菜の苗立枯病(Rhizoctonia spp.、Pythium spp.、Fusarium spp.、Phytophthora spp.、Sclerotinia sclerotiorumなど);ダイズの紫斑病(Cercospora kikuchii)、黒とう病(Elsinoe glycines)、黒点病(Diaporthe phaseolorum)、リゾクトニア根腐病(Rhizoctonia solani)、茎疫病(Phytophthora megasperma)、べと病(Peronospora manshurica)、さび病(Phakopsora pachyrhizi)、炭疽病(Colletotrichum truncatum);ウリ類のべと病(Pseudoperonospora cubensis)、うどんこ病(Sphaerotheca fuliginea)、炭疽病(Colletotrichum lagenarium)、つる枯病(Mycosphaerella melonis)、つる割病(Fusarium oxysporum)、疫病(Phytophthora parasitica、Phytophthora melonis、Phytophthora nicotianae、Phytophthora drechsleri、Phytophthora capsiciなど);ナタネの黒斑病(Alternaria brassicae);アブラナ科野菜の黒斑病(Alternaria brassicaeなど)、白斑病(Cercosporella brassicae)、根朽病(Leptosphaeria maculans)、根こぶ病(Plasmodiophora brassicae)、べと病(Peronospora brassicae);トマトの輪紋病(Alternaria solani)、葉かび病(Cladosporium fulvum)、疫病(Phytophthora infestans)、萎凋病(Fusarium oxysporum)、根腐病(Pythium myriotylum、Pythium dissotocum)、炭疽病(Colletotrichum phomoides);キャベツの株腐病(Rhizoctonia solani)、萎黄病(Fusarium oxysporum);ハクサイの尻腐病(Rhizoctonia solani)、黄化病(Verticillium dahliae);ネギのさび病(Puccinia allii)、黒斑病(Alternaria porri)、白絹病(Sclerotium rolfsii)、白色疫病(Phytophthora porri);ナスのうどんこ病(Sphaerotheca fuligineaなど)、すすかび病(Mycovellosiella nattrassii)、疫病(Phytophthora infestans)、褐色腐敗病(Phytophthora capsici);ラッカセイの黒渋病(Mycosphaerella personatum)、褐斑病(Cercospora arachidicola);エンドウのうどんこ病(Erysiphe pisi)、べと病(Peronospora pisi)、褐紋病(Mycosphaerella pinodes);ソラマメのべと病(Peronospora viciae)、疫病(Phytophthora nicotianae);インゲンの炭疽病(Colletotrichum lindemuthianum);ジャガイモの夏疫病(Alternaria solani)、黒あざ病(Rhizoctonia solani)、疫病(Phytophthora infestans)、銀か病(Spondylocladium atrovirens)、乾腐病(Fusarium oxysporum、Fusarium solani)、粉状そうか病(Spongospora subterranea);イチゴのうどんこ病(Sphaerotheca humuli)、疫病(Phytophthora nicotianae)、炭疽病(Glomerella cingulata)、果実腐敗病(Pythium ultimum Trow var. ultimum);
ブドウのべと病(Plasmopara viticola)、さび病(Phakopsora ampelopsidis)、うどんこ病(Uncinula necator)、黒とう病(Elsinoe ampelina)、晩腐病(Glomerella cingulata)、黒腐病(Guignardia bidwellii)、つる割病(Phomopsis viticola)、すす点病(Zygophiala jamaicensis)、灰色かび病(Botrytis cinerea)、芽枯病(Diaporthe medusaea)、紫紋羽病(Helicobasidium mompa)、白紋羽病(Rosellinia necatrix);リンゴのうどんこ病(Podosphaera leucotricha)、黒星病(Venturia inaequalis)、斑点落葉病(Alternaria alternata(Apple pathotype))、赤星病(Gymnosporangium yamadae)、モニリア病(Monilinia mali)、腐らん病(Valsa ceratosperma)、輪紋病(Botryosphaeria berengeriana)、炭疽病(Colletotrichum acutatum)、すす点病(Zygophiala jamaicensis)、すす斑病(Gloeodes pomigena)、黒点病(Mycosphaerella pomi)、紫紋羽病(Helicobasidium mompa)、白紋羽病(Rosellinia necatrix)、胴枯病(Phomopsis mali、Diaporthe tanakae)、褐斑病(Diplocarpon mali);カキの炭疽病(Gloeosporium kaki)、落葉病(Cercospora kaki、Mycosphaerella nawae)、うどんこ病(Phyllactinia kakikora);ナシの黒斑病(Alternaria alternata(Japanese pear pathotype))、黒星病(Venturia nashicola)、赤星病(Gymnosporangium haraeanum)、輪紋病(Physalospora piricola)、胴枯病(Diaporthe medusaea、Diaporthe eres)、セイヨウナシの疫病(Phytophthora cactorum);カンキツの黒点病(Diaporthe citri)、緑かび病(Penicillium digitatum)、青かび病(Penicillium italicum)、そうか病(Elsinoe fawcettii);
ヒマワリの菌核病(Sclerotinia sclerotiorum);モモの黒星病(Cladosporium carpophilum)、フォモプシス腐敗病(Phomopsis sp.)、疫病(Phytophthora sp.)、炭疽病(Gloeosporium laeticolor);オウトウの炭疽病(Glomerella cingulata)、幼果菌核病(Monilinia kusanoi)、灰星病(Monilinia fructicola);バラの黒星病(Diplocarpon rosae)、うどんこ病(Sphaerotheca pannosa、Colletotrichum gloesporioides)、べと病(Peronospora sparsa)、疫病(Phytophthora megasperma);キクの褐斑病(Septoria chrysanthemi-indici)、白さび病(Puccinia horiana)、疫病(Phytophthora cactorum);白カシのスス病;
本発明の植物用薬剤は、主成分として炭化物、ホウ化物、窒化物、ケイ化物などの非酸化物セラミックを含有する多孔質セラミック、あるいはラジカル及びナノバブルを含有する液体を含有するものであり、従来の農薬などとは異なる新規な植物用薬剤である。本発明の植物用薬剤は、一種類のみで複数種の植物病害駆除及び防除効果を発揮し、人体毒性が無い安全性を有し、且つ耐性菌が出にくい新規の作用機序を有する。また、上記多孔質セラミックは、数秒から数分という短時間の生産方法である燃焼合成技術を用いて簡便に作製することが可能である。さらに、本発明の植物用薬剤は、植物病害の駆除に加えて、植物保護、植物病害予防、植物活性化、植物成長促進、種子発芽率の向上などにも効果が期待される。
以下に実施例を挙げて、本発明の内容を更に詳細に説明するが、本発明はこれらに限定されるものではない。
製造例1:(TC)式
チタン原料として平均粒径45μmの粉末を用いた。カーボン原料として1次粒径が0.1μm以下のカーボン粉末を造粒して2次粒径が1mm程度の顆粒にしたものを用いた。チタン原料とカーボン原料を重量比0.8:0.2で秤量後、十分に攪拌混合したものを出発原料とした。これを直径20mm、高さ20mmの円柱状にプレス成形を行い、相対密度50%の圧粉体を得た。この圧粉体をアルゴン雰囲気中で上面一部にレーザー着火を行ったところ、約4秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、主成分は炭化チタン(TiC1-X)になっていることが分かった。このようにして(TC)式で示される炭化チタンの多孔質セラミック成形体が製造できた。
製造例2:(TOC)式
製造例1と同様の圧粉体を空気中で上面一部に放電着火を行ったところ、約3秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、内部層は炭化チタンからなり、表面層は炭化チタンが空気中の酸素と反応して熱力学的に安定な酸化チタン(TiO2-X)からなっていることが分かった。このようにして(TOC)式で示される酸化チタンを含む炭化チタンの多孔質セラミック成形体が製造できた。なお、全体に占める酸化チタンの割合は10重量%以下であった。
製造例3:(TCM)式
チタン原料として平均粒径45μmの粉末を用いた。カーボン原料として1次粒径が0.1μm以下のカーボン粉末を造粒して2次粒径が1mm程度の顆粒にしたものを用いた。金属原料として平均粒径45μmの銀粉末を用いた。チタン原料とカーボン原料と金属原料を重量比0.66:0.17:0.17で秤量後、十分に攪拌混合したものを出発原料とした。これを直径20mm、高さ20mmの円柱状にプレス成形を行い、相対密度45%の圧粉体を得た。この圧粉体をアルゴン雰囲気中で表面部にレーザー着火を行ったところ、約4秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、主成分は炭化チタン(TiC1-X)と銀(Ag)からなっていることが分かった。蛍光X線回折で元素分布を調べた結果、炭化チタンの周囲に銀が均一に微細分散しており、塊状に溶融凝固している部分はなかった。このようにして(TCM)式で示される銀を含む炭化チタンの多孔質セラミック成形体が製造できた。
製造例4:(TOCM)式
製造例3と同様の圧粉体を空気中で放電着火を行ったところ、約3秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、内部層は炭化チタンと銀からなり、表面層は酸化チタン(TiO2-X)と銀からなっていることが分かった。このようにして(TOCM)式で示される酸化チタンを含む銀が微細分散した炭化チタンの多孔質セラミック成形体が製造できた。
製造例5:(TB)式
チタン原料として平均粒径45μmの粉末を用いた。ボロン原料として、粒径10μm以下の粉末を用いた。チタン原料とボロン原料を重量比0.75:0.25で秤量後、十分に攪拌混合したものを出発原料とした。これを直径16mm、高さ30mmの円柱状にプレス成形を行い、相対密度50%の圧粉体を得た。この圧粉体をアルゴン雰囲気中で上面一部にレーザー着火を行ったところ、約1秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、主成分は2ホウ化チタン(TiB2)とホウ化チタン(TiB)との混合層になっていることが分かった。このようにして(TB)式で示されるホウ化チタンの多孔質セラミック成形体が製造できた。
製造例6:(TOB)式
製造例5と同様の圧粉体を空気中で上面一部に放電着火を行ったところ、約1秒以下で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、内部層はホウ化チタンからなり、表面層はホウ化チタンが空気中の酸素と反応して熱力学的に安定な酸化チタン(TiO2-X)からなっていることが分かった。このようにして(TOB)式で示される酸化チタンを含むホウ化チタンの多孔質セラミック成形体が製造できた。なお、全体に占める酸化チタンの割合は10重量%以下であった。
製造例7:(TBM)式
チタン原料として平均粒径45μmの粉末を用いた。ボロン原料として、粒径10μm以下の粉末を用いた。金属原料として平均粒径45μmの金粉末を用いた。チタン原料とボロン原料と金属原料を重量比6.75:2.25:1で秤量後、十分に攪拌混合したものを出発原料とした。これを直径16mm、高さ30mmの円柱状にプレス成形を行い、相対密度50%の圧粉体を得た。この圧粉体をアルゴン雰囲気中で上面一部にレーザー着火を行ったところ、約1秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、主成分は2ホウ化チタン(TiB2)とホウ化チタン(TiB)と金(Au)からなっていることが分かった。蛍光X線回折で元素分布を調べた結果、ホウ化チタンの周囲に金が均一に微細分散しており、塊状に溶融凝固している部分はなかった。このようにして(TBM)式で示される金を含むホウ化チタンの多孔質セラミック成形体が製造できた。
製造例8:(TOBM)式
製造例7と同様の圧粉体を空気中で放電着火を行ったところ、約1秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、内部層は2ホウ化チタン(TiB2)とホウ化チタン(TiB)と金(Au)からなり、表面層は酸化チタン(TiO2-X)と金からなっていることが分かった。このようにして(TOBM)式で示される酸化チタンを含む金が微細分散したホウ化チタンの多孔質セラミック成形体が製造できた。
製造例9:(TN)式
チタン原料として平均粒径45μmの粉末を用いた。これを直径10mm、高さ20mmの円柱状にプレス成形を行い、相対密度40%の圧粉体を得た。この圧粉体を1.5気圧の窒素雰囲気中で上面一部にヒータ強熱着火を行ったところ、約2秒で燃焼波が連鎖的に進行して燃焼合成した。この時点での窒化率は10%以下と低く、残留チタンが認められる。そこで冷却後に取り出し、45μm以下程度まで粉砕して、再度、同形状にプレス成形を行い、相対密度30%の圧粉体を得た。この圧粉体を60気圧の高圧窒素雰囲気中で上面一部にヒータ強熱着火を行ったところ、約4秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、主成分は窒化チタン(TiN0.9)になっていることが分かった。このようにして(TN)式で示される炭化チタンの多孔質セラミック成形体が製造できた。
製造例10:(TON)式
チタン原料として平均粒径45μmの粉末を用いた。これを直径10mm、高さ20mmの円柱状にプレス成形を行い、相対密度40%の圧粉体を得た。この圧粉体を1.5気圧の窒素雰囲気中で上面一部にヒータ強熱着火を行ったところ、約2秒で燃焼波が連鎖的に進行して燃焼合成した。この時点での窒化率は10%以下と低く、残留チタンが認められた。そこで冷却後に取り出し、45μm以下程度まで粉砕して、再度、同形状にプレス成形を行い、相対密度30%の圧粉体を得た。この圧粉体を30気圧の高圧空気雰囲気中で上面一部にヒータ強熱着火を行ったところ、約4秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、内部層は窒化チタンからなり、表面層は窒化チタンが空気中の酸素と反応して熱力学的に安定な酸化チタン(TiO2-X)からなっていることが分かった。このようにして(TON)式で示される酸化チタンを含む窒化チタンの多孔質セラミック成形体が製造できた。なお、全体に占める酸化チタンの割合は20重量%以下であった。
製造例11:(TNM)式
チタン原料として平均粒径45μmの粉末を用いた。金属原料として粒径45μm以下の白金粉末を用いた。チタン原料と金属原料を重量比0.9:0.1で秤量後、十分に攪拌混合したものを出発原料とした。この圧粉体を1.5気圧の窒素雰囲気中で上面一部にヒータ強熱着火を行ったところ、約2秒で燃焼波が連鎖的に進行して燃焼合成した。この時点での窒化率は10%以下と低く、残留チタンが認められた。そこで冷却後に取り出し、45μm以下程度まで粉砕して、再度、同形状にプレス成形を行い、相対密度30%の圧粉体を得た。この圧粉体を60気圧の高圧窒素雰囲気中で上面一部にヒータ強熱着火を行ったところ、約4秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、主成分は窒化チタン(TiN0.9)と白金(Pt)からなっていることが分かった。蛍光X線回折で元素分布を調べた結果、窒化チタンの周囲に白金が均一に微細分散しており、塊状に溶融凝固している部分はなかった。このようにして(TNM)式で示される白金を微細分散した窒化チタンの多孔質セラミック成形体が製造できた。
製造例12:(TONM)式
チタン原料として平均粒径45μmの粉末を用いた。金属原料として粒径45μm以下の白金粉末を用いた。チタン原料と金属原料を重量比0.9:0.1で秤量後、十分に攪拌混合したものを出発原料とした。この圧粉体を1.5気圧の窒素雰囲気中で上面一部にヒータ強熱着火を行ったところ、約2秒で燃焼波が連鎖的に進行して燃焼合成した。この時点での窒化率は10%以下と低く、残留チタンが認められた。そこで冷却後に取り出し、45μm以下程度まで粉砕して、再度、同形状にプレス成形を行い、相対密度30%の圧粉体を得た。この圧粉体を30気圧の高圧空気雰囲気中で上面一部にヒータ強熱着火を行ったところ、約4秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、内部層は窒化チタンと白金からなり、表面層は窒化チタンが空気中の酸素と反応して熱力学的に安定な酸化チタン(TiO2-X)と白金からなっていることが分かった。このようにして(TONM)式で示される酸化チタンを含む白金が微細分散した窒化チタンの多孔質セラミック成形体が製造できた。なお、全体に占める酸化チタンの割合は20重量%以下であった。
製造例13:(TS)式
チタン原料として平均粒径100μmの粉末を用いた。シリコン原料として粒径1μm以下の粉末を用いた。チタン原料とシリコン原料を重量比0.74:0.26で秤量後、十分に攪拌混合したものを出発原料とした。これを一辺15mm、長さ100mmの棒状にプレス成形を行い、相対密度50%の圧粉体を得た。この圧粉体をアルゴン雰囲気中で上面一部にレーザー着火を行ったところ、約6秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、主成分はケイ化チタン(Ti5Si3)になっていることが分かった。このようにして(TS)式で示されるケイ化チタンの多孔質セラミック成形体が製造できた。
製造例14:(TOS)式
製造例13と同様の圧粉体を空気中で放電着火を行ったところ、約4秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、内部層はケイ化チタンからなり、表面層は酸化チタン(TiO2-X)からなっていることが分かった。このようにして(TOS)式で示される酸化チタンを含むケイ化チタンの多孔質セラミック成形体が製造できた。なお、全体に占める酸化チタンの割合は10重量%以下であった。
製造例15:(TSM)式
チタン原料として平均粒径100μmの粉末を用いた。シリコン原料として粒径1μm以下の粉末を用いた。金属原料として平均粒径45μmの鉄粉末を用いた。チタン原料とシリコン原料と金属原料を重量比0.67:0.23:0.1で秤量後、十分に攪拌混合したものを出発原料とした。これを一辺15mm、長さ100mmの棒状にプレス成形を行い、相対密度50%の圧粉体を得た。この圧粉体をアルゴン雰囲気中で上面一部にレーザー着火を行ったところ、約6秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、主成分はケイ化チタン(Ti5Si3)と鉄(Fe)からなっていることが分かった。蛍光X線回折で元素分布を調べた結果、ケイ化チタンの周囲に鉄が均一に微細分散しており、塊状に溶融凝固している部分はなかった。このようにして(TSM)式で示される鉄を含むケイ化チタンの多孔質セラミック成形体が製造できた。
製造例16:(TOSM)式
製造例15と同様の圧粉体を空気中で放電着火を行ったところ、約5秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、内部層はケイ化チタンと鉄からなり、表面層は酸化チタン(TiO2-X)と鉄からなっていることが分かった。このようにして(TOSM)式で示される酸化チタンを含む鉄が微細分散したケイ化チタンの多孔質セラミック成形体が製造できた。なお、全体に占める酸化チタンの割合は10重量%以下であった。
製造例17:(BN)式
チタン原料として平均粒径45μmの粉末を用いた。窒化ホウ素原料として、平均粒径数μmの粉末を用いた。チタン原料と窒化ホウ素原料を重量比0.74:0.26で秤量後、十分に攪拌混合したものを出発原料とした。これを直径40mm、高さ40mmの円柱状にプレス成形を行い、相対密度50%の圧粉体を得た。この圧粉体をアルゴン雰囲気中で上面一部にレーザー着火を行ったところ、約8秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、主成分は2ホウ化チタン(TiB2)と窒化チタン(TiN)との混合層になっていることが分かった。このようにして(BN)式で示されるホウ化チタンと窒化チタンからなる多孔質セラミック成形体が製造できた。
製造例18:(OBN)式
製造例17と同様の圧粉体を空気中で上面一部に放電着火を行ったところ、約7秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、内部層はホウ化チタンと窒化チタンからなり、表面層はホウ化チタン及び窒化チタンが空気中の酸素と反応して熱力学的に安定な酸化チタン(TiO2-X)からなっていることが分かった。このようにして(OBN)式で示される酸化チタンを含むホウ化チタンと窒化チタンからなる多孔質セラミック成形体が製造できた。なお、全体に占める酸化チタンの割合は10重量%以下であった。
製造例19:(BNM)式
チタン原料として平均粒径45μmの粉末を用いた。窒化ホウ素原料として、平均粒径数μmの粉末を用いた。金属原料として平均粒径10μmの銅粉末を用いた。チタン原料と窒化ホウ素原料と金属原料を重量比0.59:0.21:0.2で秤量後、十分に攪拌混合したものを出発原料とした。これを直径40mm、高さ40mmの円柱状にプレス成形を行い、相対密度50%の圧粉体を得た。この圧粉体をアルゴン雰囲気中で上面一部にレーザー着火を行ったところ、約8秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、主成分は2ホウ化チタン(TiB2)と窒化チタン(TiN)と銅(Cu)との混合層からなっていることが分かった。蛍光X線回折で元素分布を調べた結果、ホウ化チタン及び窒化チタンの周囲に銅が均一に微細分散しており、塊状に溶融凝固している部分はなかった。このようにして(BNM)式で示される銅を含むホウ化チタンと窒化チタンからなる多孔質セラミック成形体が製造できた。
製造例20:(OBNM)式
製造例19と同様の圧粉体を空気中で放電着火を行ったところ、約7秒で燃焼波が連鎖的に進行して燃焼合成した。自然放冷後に取り出した生成物を粉末X線回折装置で結晶層の同定を行ったところ、内部層は2ホウ化チタン(TiB2)と窒化チタン(TiN)と銅(Cu)からなり、表面層は酸化チタン(TiO2-X)と銅からなっていることが分かった。このようにして(OBNM)式で示される酸化チタンを含む銅が微細分散したホウ化チタンと窒化チタンからなる多孔質セラミック成形体が製造できた。なお、全体に占める酸化チタンの割合は10重量%以下であった。
以後の試験例において、多孔質セラミックの成形体(連続的につながった1個の塊)を「セラミック成形体」と記し、それらを粉砕したものを「セラミック粉末体」と記すことにする。また、セラミック成形体を水又は水溶液に投入してできる物は「セラミック加工水」と記し、セラミック粉末体を水又は水溶液に投入してできる物は「セラミック粉末含有水」と記す。
試験例1:ラジカル及びナノバブル測定
本発明の多孔質セラミックに液体を接触させることにより得られる液体に含有するラジカルの測定を行った。製造例1で得られたセラミック粉末体((TC)式で示される非酸化物セラミック)、又は製造例2で得られたセラミック粉末体((TOC)式で示される酸化物セラミックを少量含む非酸化物セラミック)を純水と接触させた場合、ヒドロキシラジカル(・OH)の存在が確認された。また、製造例3で得られたセラミック粉末体((TCM)式で示される金属が分散した非酸化物セラミック)、及び製造例4で得られたセラミック粉末体((TOCM)式で示される金属が微細分散した酸化物セラミックを少量含む非酸化物セラミック)を純水と接触させた場合、ヒドロキシラジカル(・OH)に加えてメチルラジカル(・CHm)の存在が確認された。なお、ラジカル種に関しては電子スピン共鳴装置(ESR)により測定した。スピントラップ剤にDMPO(濃度5%)を用い、Xバンドの測定周波数帯で、最大磁場強度は0.65Tとし、掃引時間を120秒とした。
DNAのメチル化、ヒドロキシメチル化などエピゲノムが遺伝子のスイッチとなりオン/オフするエピジェネティクスはポストゲノムにおける重要なテーマであり、この研究によりこれまでのゲノム研究で明らかにできなかった生命現象及び植物病の原因が明らかになると言われている。DNAのメチル化(5mC)及びヒドロキシメチル化(5hmC)とは、シトシンにメチル基又はヒドロキシメチル基が付加されることをいう。今回、ヒドロキシラジカル及びメチルラジカルの発生が確認されており、これがエピジェネティクスの破綻防止に関与することで、植物保護、植物病害予防、植物活性、植物成長、種子発芽率向上などに寄与している可能性が考えられる。
本発明の多孔質セラミックに液体を接触させることにより得られる液体に含有するナノバブルの測定を行った。燃焼合成で得られた多孔質セラミックの代表例として製造例1から製造例12のセラミック成形体12種を純水と接触させた場合、いずれも1mL中に含まれるナノバブルの個数は、ほぼ同数の10個であった。次にナノバブル径の測定を行った結果、いずれも約20nmから約400nmのバブル径分布であることが分かった。なお、ナノバブル個数は、ナノ粒子トラッキング解析手法により求めた。ナノバブル量は、ナノバブルの平均直径から求めた体積に個数を乗じて、全体積を算出した。この結果、単位体積中の水に含まれるナノバブル濃度はおおよそ5ppbであった。
現在、自動車及び火力発電での排気ガスが問題になっている。PM2.5(2.5μm)程度のサイズでは肺などの呼吸器を通して固体微粒子が血液中に入ることはほぼ無いが、新しくPM0.5(500nm)問題が浮上してきた。タバコの副流煙がこれに相当する。これほどの微粒子になれば、肺胞から血液中に取り込まれる結果、呼吸器系以外に循環器系の疾患など人体に重大な影響を起こすことが疫学的に報告されている。PM0.5という固体微粒子ですら血液中に取り込まれる事実より、今回の多孔質セラミックと水との接触によって生成したナノバブルは、固体でなく気体であると共にバブル径が約20nmから約400nmと更に小さいため容易に植物及び菌類の細胞に吸収されると考えられる。
試験例2:毒性試験
現行用いられる農薬類は少なからず人体毒性を有する、一方、本発明の植物用薬剤は人体に取り入れたとしても無毒性であり安全であることが特徴である。そこで細胞レベル及び動物レベルでの毒性試験を行った。
1)細胞レベル in vitro試験
(TOB)式で表される一例として製造例6に示されるセラミック成形体を培養液に添加した検体を用いて、Madin-Darby canine kidney (MDCK)細胞に対する細胞毒性を調べた。約5グラムのセラミック成形体1個を純水1Lに入れて24時間室温静置した検体原液をリン酸緩衝生理食塩水(PBS : Phosphate Buffered saline)で10倍段階希釈した後、原液又は希釈液50μLと5%胎児血清(FBS : Fetal Bovine serum)を含むDulbecco's Modified Eagle's Medium (DMEM)に懸濁したMDCK細胞50μLを96ウェルプレートに植え込んだ。MDCK細胞数は5×10個である。その後、炭酸ガス孵卵器で4日間培養を行った。培養後、4%ホルマリンと0.1%クリスタルバイオレットを溶解したPBSを各ウェルに100μL加えた後、室温で10分間静置し、細胞を染色した。
染色後、水道水で洗浄し乾燥させた後に、エタノールを各ウェルに50μL加えて、クリスタルバイオレットを溶出させ、585nmの吸光度を測定した。細胞にPBSを加えたウェルの吸光度を生細胞率100%として、検体の細胞毒性を確認した。この結果を表1に示す。対照区のセラミック成形体添加無しの結果を生細胞率100%として、各検体の生細胞率を算出し、生細胞率が50%以下の場合を細胞毒性有りと判断した。
検体原液の場合でも生細胞率は104.0±3.0%であり、対照と差は認められなかった。原液を希釈した検体では、当然、生細胞率はほぼ100%となった。したがって、製造例6のセラミック成形体を培養液に投入してもMDCK細胞に対して毒性を示さなかった。
同様の方法で(TOC)式と(TOCM)式で示される多孔質セラミックの一例として製造例2、製造例4のセラミック粉末体を添加した培養液を検体に用いて、Madin-Darby canine kidney (MDCK)細胞に対する細胞毒性を調べた。この結果を表2に示す。検体原液は培養液に対して各セラミック粉末体の添加濃度を1000ppmとし、希釈液は10倍段階希釈で0.001ppmまで7種類とした。対照区のPBSのみの結果を、生細胞率100%として各検体の生細胞率を算出し、生細胞率が50%以下の場合を細胞毒性有りと判断した。
この結果、最も濃度が高い1000ppm添加培養液でも60%以上の生細胞率であり、(TOC)式と(TOCM)式で示される各セラミック粉末体の細胞毒性は認められなかった。
2)遺伝子毒性試験(AMES試験)
(TOCM)式で示される多孔質セラミックの代表例として製造例4で得たセラミック粉末体の遺伝子突然変異誘発性について、細菌を用いる復帰突然変異試験により検討した。遵守したGLPは「医薬品の安全性に関する非臨床試験の実施の基準に関する省令」(平成9年3月26日厚生省令第21号)であり、経済協力開発機構が定めるOECD Guideline for the Testing of Chemicals 471 (21st July 1997: Bacterial Reverse Mutation Test)を参照した。
セラミック粉末体の遺伝子突然変異誘発性を検討するため、ネズミチフス菌(Salmonella typhimurium) TA100、TA98、TA1535及びTA1537株、並びに大腸菌(Escherichia coli) WP2uvrA株を用いて復帰突然変異試験を行った。試験は、ラット肝S9による代謝活性化系存在下(+S9処理)及び代謝活性化系非存在下(-S9処理)の両処理のプレインキュベーション法により行った。セラミック粉末体処理群では、ガイドラインに規定されている最高用量を含む用量(プレ試験:0.500〜5000μg/プレート、用量設定試験:0.762〜5000μg/プレート、本試験:19.5〜5000μg/プレート)で試験を実施した。
その結果、セラミック粉末体処理群では、代謝活性化系の有無にかかわらず、陰性対照群の2倍以上の復帰変異コロニー数の増加は認められなかった。また、用量設定試験における陰性結果は、本試験において再現された。陽性対照物質は、各試験菌株に対し、明確な突然変異誘発作用を示した。以上の結果から、当該試験条件下において、セラミック粉末体は細菌に対して遺伝子突然変異誘発性を示さないもの(陰性)と判定した。
3)遺伝子毒性試験(小核-コメットコンビネーション試験)
(TOCM)式で示される多孔質セラミックの代表例として製造例4で得たセラミック粉末体のin vivoにおけるDNA損傷性及び小核赤血球誘発性について、ラットを用いるコメット-小核コンビネーション試験により検討した。遵守したGLPは「医薬品の安全性に関する非臨床試験の実施の基準に関する省令」(平成9年3月26日厚生省令第21号)であり、経済協力開発機構が定めるOECD Guideline for the Testing of Chemicals 489 (26 September 2014: IN VIVO MAMMALIAN ALKALINE COMET ASSAY)及びOECD Guideline for the Testing of Chemicals 474 (21st July 1997: Mammalian Erythrocyte Micronucleus Test)を参照した。また、当該試験は、「動物の愛護及び管理に関する法律」(昭和48年10月1日法律第105号、最終改正:平成25年6月12日法律第38号)及び「実験動物の飼養及び保管並びに苦痛の軽減に関する基準」(平成18年4月28日環境省告示第88号、最終改正:平成25年8月30日環境省告示第84号)を遵守して実施された。当該試験は実施機関の動物実験委員会により試験開始前に審査、承認されており、実施機関において定める「動物実験に関する指針」(2014年6月2日)に記載された動物倫理評価基準に従って実施された。
セラミック粉末体の用量は、ガイドラインの上限である2000mg/kgを最高用量とし、1000及び500mg/kgの計3用量を設定し、Crl:CD(SD)系雄ラットに1日1回、3日間連続して経口投与した。最終投与3時間後に、コメットアッセイ用に肝臓及び胃を、小核試験用に大腿骨を摘出し、標本を作製した。コメットアッセイでは、DNA損傷性の指標である% tail DNA (%TD)を計測した。小核試験では、小核を有する幼若赤血球(MNIE)の出現頻度及び観察赤血球数に対する幼若赤血球数(IE)の割合を計測した。
その結果、被験物質処理群での%TD及びMNIEは、統計学的に有意な増加は認められなかった。なお、IEの割合については、1000及び2000mg/kgで統計学的に有意な増加が認められたが、試験施設の背景データから求めた基準値(平均±3SD)内であった。以上の結果より、当該試験条件下において、セラミック粉末体は、ラット骨髄細胞に対する小核誘発性並びに肝臓及び胃に対するDNA損傷性を示さない(陰性)と判断した。
4)急性経口毒性試験(単回投与)
(TOCM)式で示される多孔質セラミックの代表例として製造例4で得たセラミック粉末体を用いてラットの急性経口投与毒性試験を実施した。遵守したGLPは「医薬品の安全性に関する非臨床試験の実施の基準に関する省令」(平成9年3月26日厚生省令第21号)であり、経済協力開発機構が定めるOECD Guideline for Testing of Chemicals 420 (17th December 2001: Acute Oral Toxicity - Fixed Dose Procedure)を参照した。また、当該試験は、「動物の愛護及び管理に関する法律」(昭和48年10月1日法律第105号、最終改正:平成25年6月12日法律第38号)及び「実験動物の飼養及び保管並びに苦痛の軽減に関する基準」(平成18年4月28日環境省告示第88号、最終改正:平成25年8月30日環境省告示第84号)を遵守して実施された。当該試験は実施機関の動物実験委員会により試験開始前に審査、承認されており、実施機関において定める「動物実験に関する指針」(2014年6月2日)に記載された動物倫理評価基準に従って実施された。
セラミック粉末体の急性経口毒性を検討するため、一晩絶食させた7〜8週齢のCrl:CD(SD)系雌性ラット5匹に、被験物質を2000mg/kgの用量で単回強制経口投与した。投与後14日間を観察期間とし、動物の一般状態及び体重推移を観察した。観察期間終了後、全身の諸器官及び組織を肉眼的に観察(剖検)した。その結果、観察期間を通じて死亡例はなく、一般状態及び体重推移にも毒性影響は認められなかった。また、剖検においても、被験物質投与の影響と考えられる異常は認められなかった。以上より、本試験条件下において、セラミック粉末体の毒性影響は、いずれの観察、測定及び検査にも認められず、ラット単回経口投与時のLD50は2000mg/kgを超える用量と考えられた。
5)慢性経口毒性試験(複数回投与)
(TOCM)式で示される多孔質セラミックの代表例として製造例4で得たセラミック粉末体を用いて、ラットによる慢性経口投与毒性試験を実施した。経済協力開発機構が定めるOECD Guideline for the Testing of Chemicals 408 (21st September, 1998: Repeated Dose 90-day Oral Toxicity Study in Rodents)を参照して、セラミック粉末体をラットに90日間反復経口投与し、当該被験物質の反復暴露時の毒性を調べた。また、当該試験は、「動物の愛護及び管理に関する法律」(昭和48年10月1日法律第105号、最終改正:平成25年6月12日法律第38号)及び「実験動物の飼養及び保管並びに苦痛の軽減に関する基準」(平成18年4月28日環境省告示第88号、最終改正:平成25年8月30日環境省告示第84号)を遵守して実施された。当該試験は実施機関の動物実験委員会により試験開始前に審査、承認されており、実施機関において定める「動物実験に関する指針」(2014年6月2日)に記載された動物倫理評価基準に従って実施された。
製造例4で得たセラミック粉末体を被験物質として、0、40、200及び1000mg/kg/dayの用量で4群(雌雄各10匹/群)のCrl:CD(SD)ラット(合計80匹)に90日間反復経口投与した。投与期間を通じて一般状態観察、体重及び摂餌量の測定を行い、投与期間終了時に血液学的検査、器官重量測定及び全身諸器官の肉眼的観察(剖検)を行った。その結果、試験期間を通じて、いずれの試験群においても死亡動物は認められず、一般状態観察、体重及び摂餌量の測定、血液学的検査、器官重量測定並びに剖検においても、被験物質投与による毒性変化は認められなかった。以上のとおり、本試験条件下では、1000mg/kg/day群においても、いずれの観察、測定及び検査に対して、被験物質投与による毒性変化は認められなかった。
以上の1)から5)で分かるように、経済協力開発機構が定める食品安全に関する試験を実施した結果、細胞毒性テストにおいて陰性(毒性無し)、3種類の遺伝子毒性テストにおいて全て陰性(毒性無し)、2種類の経口投与毒性テストにおいて全て陰性(毒性無し)となった。これにより本発明の植物用薬剤は、仮に人が摂取しても毒性の無い優れた特徴を有する安全な植物用薬剤となることが証明された。
試験例3:バラのうどんこ病
農薬を使用していない温室栽培のバラにうどんこ病が発生した(図1A)。そこで、製造例4のセラミック成形体500個を300リットルの水に投入し、8時間以上経過して作製したセラミック加工水を毎日450リットル(朝に150リットル、夕方300リットル)撒布した。その結果、21日後にはほぼ正常に復帰した(図1B)。
試験例4:白カシのスス病
スス病になった白カシの樹木2本を試験に用いた。2本ともほとんど葉がない状態まで剪定を行い、検体群の樹木には製造例8のセラミック粉末体を1000ppmの濃度となるように水道水に入れたセラミック粉末含有水3リットルを1回のみ幹全体にスプレー撒布した。そして、新しい葉が出た際に検体群と対照群を比較した。検体群の葉は図2Aに示すように斑点などが認められず正常であるのに対して、対照群では図2Bに示すようにスス病が再発した。このように、セラミック粉末含有水を病害の葉に撒布しなくても良く、幹に撒布するだけでスス病の再発防止となることが判明した。
試験例5:イチゴ炭疽病(Colletotrichum gloesporioides)
セラミック粉末体がイチゴ炭疽病菌胞子の発芽率とその後の菌糸伸長に及ぼす影響について実験を行った。製造例12のセラミック粉末体を用いて、添加濃度が無添加(0ppm)、100ppm、1000ppmとなるように3種類のPDA(ポテト・デキストロース寒天)培地を作製した。このセラミック粉末添加培地上に、10個/mLのイチゴ炭疽病胞子懸濁液100μLを滴下し、24時間後の発芽率を計測した。また、このときの菌糸伸長の状況について顕微鏡観察した。
その結果、表3に示すようにセラミック粉末体の有無にかかわらず発芽率は99%前後であり、イチゴ炭疽病菌の胞子発芽に対して抑制効果は認められなかった。しかし、図3に示したように発芽後のイチゴ炭疽病菌の菌糸伸長は、セラミック粉末体添加濃度1000ppm及び100ppmの培地上で、ともに無添加に比べて抑制されることが明らかとなり、その伸長抑制効果は1000ppmで最も高かった。このように、植物用薬剤を用いることにより、胞子の発芽抑制はできないものの、菌糸伸長抑制が認められたことから病害蔓延速度を遅延させることができる。
試験例6:発芽試験
セラミック粉末含有水が種子の発芽率に及ぼす効果について検証した。用いた種子はマメ科に属するリョクトウ(緑豆)の種である。これを無添加の水道水、及び製造例16のセラミック粉末体を水道水に添加した濃度5000ppm又は1000ppmのセラミック粉末含有水の3群の水溶液に、各100個ずつ種子を浸漬させた。その後、種子を取り出して群毎に吸水スポンジの上に等間隔で並べて、1週間後の発芽率を調べた結果が表4である。実験は室内で実施し、3群は温度、湿度とも同一条件であり、吸水スポンジの含水量も同一とした。セラミック粉末含有水に浸漬させた種子は、無添加処理と比較して発芽率が10%向上した。また、濃度による発芽率の差異は認められなかった。この発芽率向上の要因としては、付着している植物菌が殺菌されることや、詳細は不明ながらセラミック粉末含有水が発芽活性に寄与した結果と考えられる。
当業者は、本発明の範囲を逸脱することなく、開示の植物用薬剤及びその使用方法に様々な変更を施すことができる。このように、類似の代用物及び改変は本発明の範囲に属するものとみなされる。

Claims (9)

  1. (1)チタニウム、並びに(2)炭素、ホウ素、窒素、及びケイ素からなる群から選択される少なくとも1種、を含む出発原料を燃焼合成することにより得られる多孔質セラミックを含有する植物用薬剤。
  2. 前記出発原料が、銀、金、白金、鉄、及び銅からなる群から選択される少なくとも1種を更に含む、請求項1に記載の植物用薬剤。
  3. 前記多孔質セラミックが、正電荷と負電荷部分が微細に分散した構造を有する、請求項1又は2に記載の植物用薬剤。
  4. 前記多孔質セラミックの表面の一部又は全部に酸化物系セラミック層が形成されている、請求項1〜3のいずれか一項に記載の植物用薬剤。
  5. 前記多孔質セラミックが、成形体又はその粉砕物である、請求項1〜4のいずれか一項に記載の植物用薬剤。
  6. ラジカル及びナノバブル含有液体を含有する植物用薬剤。
  7. 前記ラジカル及びナノバブル含有液体が、請求項1〜5のいずれか一項に記載の多孔質セラミックと液体とを接触させることにより得られるものである、請求項6に記載の植物用薬剤。
  8. 農薬、植物保護剤、植物病害予防剤、植物活性剤、植物成長剤、又は種子発芽率向上剤である、請求項1〜7のいずれか一項に記載の植物用薬剤。
  9. 請求項1〜8のいずれか一項に記載の植物用薬剤を施用する工程を備えた、植物病害の駆除又は防除方法。
JP2016130958A 2016-06-30 2016-06-30 植物用薬剤 Pending JP2018002646A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016130958A JP2018002646A (ja) 2016-06-30 2016-06-30 植物用薬剤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016130958A JP2018002646A (ja) 2016-06-30 2016-06-30 植物用薬剤

Publications (1)

Publication Number Publication Date
JP2018002646A true JP2018002646A (ja) 2018-01-11

Family

ID=60947387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016130958A Pending JP2018002646A (ja) 2016-06-30 2016-06-30 植物用薬剤

Country Status (1)

Country Link
JP (1) JP2018002646A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230762A1 (ja) * 2018-05-30 2019-12-05 株式会社アクアソリューション 斑点細菌病の防除方法
JP2020063382A (ja) * 2018-10-18 2020-04-23 株式会社田中金属製作所 土壌障害の予防又は改善剤
CN112236039A (zh) * 2018-05-30 2021-01-15 株式会社水改质 白粉病的防治方法
WO2021262642A1 (en) * 2020-06-23 2021-12-30 Sintx Technologies, Inc. Antipathogenic devices and methods thereof for antifungal applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055063A (ja) * 2001-06-07 2003-02-26 Osamu Yamada セラミックス系多孔質材料の製造方法
JP2008206448A (ja) * 2007-02-27 2008-09-11 Sharp Corp 除菌可能な水耕栽培装置および水耕栽培方法
JP2010094026A (ja) * 2007-01-17 2010-04-30 Posi Inc 多層構造を有する水貯蔵装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055063A (ja) * 2001-06-07 2003-02-26 Osamu Yamada セラミックス系多孔質材料の製造方法
JP2010094026A (ja) * 2007-01-17 2010-04-30 Posi Inc 多層構造を有する水貯蔵装置
JP2008206448A (ja) * 2007-02-27 2008-09-11 Sharp Corp 除菌可能な水耕栽培装置および水耕栽培方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230762A1 (ja) * 2018-05-30 2019-12-05 株式会社アクアソリューション 斑点細菌病の防除方法
CN112236039A (zh) * 2018-05-30 2021-01-15 株式会社水改质 白粉病的防治方法
EP3804520A4 (en) * 2018-05-30 2021-07-28 AQUASOLUTION Corporation METHOD OF CONTROLLING MEALDOW
JPWO2019230762A1 (ja) * 2018-05-30 2021-07-29 株式会社アクアソリューション 斑点細菌病の防除方法
JP2020063382A (ja) * 2018-10-18 2020-04-23 株式会社田中金属製作所 土壌障害の予防又は改善剤
JP7327922B2 (ja) 2018-10-18 2023-08-16 株式会社Tks 土壌障害の予防又は改善剤
WO2021262642A1 (en) * 2020-06-23 2021-12-30 Sintx Technologies, Inc. Antipathogenic devices and methods thereof for antifungal applications

Similar Documents

Publication Publication Date Title
JP2018002646A (ja) 植物用薬剤
JP6752327B2 (ja) 微生物農薬組成物、その製造方法及び微生物農薬の安定化方法
WO2012020777A1 (ja) 植物病害防除組成物およびその用途
CN106922694A (zh) 一种杀菌组合物
CN106922706A (zh) 一种杀菌组合物
CN109320452B (zh) 喹啉类衍生物及其制备方法和用途
CN106922695A (zh) 一种杀菌组合物
TW201105233A (en) Compounds derived from muscodor fungi
CN110384109A (zh) 一种杀菌组合物
CN110384104A (zh) 一种杀菌组合物
JP6366073B2 (ja) 植物保護剤及び植物病害の防除方法
JP2024501816A (ja) フサリシジンa、フサリシジンb及び殺真菌剤を含む混合物及び組成物
CN106922720A (zh) 一种杀菌组合物
CN106922721A (zh) 一种杀菌组合物
CN106922697A (zh) 一种杀菌组合物
CN106922698A (zh) 一种杀菌组合物
CN106922693A (zh) 一种杀菌组合物
JP2014231485A (ja) 殺菌性組成物
CN106922699A (zh) 一种杀菌组合物
CN106922702A (zh) 一种杀菌组合物
KR100838542B1 (ko) 피리딜에틸벤즈아미드 유도체 및 식물병원성 진균 유기체내 호흡 사슬의 전자 운반을 억제할 수 있는 화합물을포함하는 살진균성 조성물
JP6799315B2 (ja) 農園芸用殺菌剤組成物及びその施用方法
WO2021153759A1 (ja) 植物病害防除組成物及び植物病害防除方法
JP2016160195A (ja) 殺菌成分を含む水性懸濁製剤
CN106922705A (zh) 一种杀菌组合物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210126