JP2017538134A - 加圧水型原子炉から蒸気発生器を通して受動的に除熱するシステム - Google Patents

加圧水型原子炉から蒸気発生器を通して受動的に除熱するシステム Download PDF

Info

Publication number
JP2017538134A
JP2017538134A JP2017549160A JP2017549160A JP2017538134A JP 2017538134 A JP2017538134 A JP 2017538134A JP 2017549160 A JP2017549160 A JP 2017549160A JP 2017549160 A JP2017549160 A JP 2017549160A JP 2017538134 A JP2017538134 A JP 2017538134A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
steam generator
header
inlet pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017549160A
Other languages
English (en)
Other versions
JP6802801B2 (ja
Inventor
ウラジーミル ヴィクトロヴィッチ ベズレプキン
ウラジーミル ヴィクトロヴィッチ ベズレプキン
ウラジーミル グリゴリエヴィッチ シドロフ
ウラジーミル グリゴリエヴィッチ シドロフ
セルゲイ ボリソヴィッチ アレクセーエフ
セルゲイ ボリソヴィッチ アレクセーエフ
セルゲイ ヴィクトロヴィッチ スヴェトロフ
セルゲイ ヴィクトロヴィッチ スヴェトロフ
ウラジーミル オレゴヴィッチ ククテヴィッチ
ウラジーミル オレゴヴィッチ ククテヴィッチ
セルゲイ エヴゲニエヴィッチ セマーシコ
セルゲイ エヴゲニエヴィッチ セマーシコ
ティムラズ ゲオルギエヴィッチ ヴァルダニツェ
ティムラズ ゲオルギエヴィッチ ヴァルダニツェ
イゴール ミハイロヴィッチ イフコフ
イゴール ミハイロヴィッチ イフコフ
Original Assignee
ジョイント・ストック・カンパニー サイエンティフィック リサーチ アンド デザイン インスティテュート フォー エナジー テクノロジーズ アトムプロエクト
ジョイント・ストック・カンパニー サイエンティフィック リサーチ アンド デザイン インスティテュート フォー エナジー テクノロジーズ アトムプロエクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジョイント・ストック・カンパニー サイエンティフィック リサーチ アンド デザイン インスティテュート フォー エナジー テクノロジーズ アトムプロエクト, ジョイント・ストック・カンパニー サイエンティフィック リサーチ アンド デザイン インスティテュート フォー エナジー テクノロジーズ アトムプロエクト filed Critical ジョイント・ストック・カンパニー サイエンティフィック リサーチ アンド デザイン インスティテュート フォー エナジー テクノロジーズ アトムプロエクト
Publication of JP2017538134A publication Critical patent/JP2017538134A/ja
Application granted granted Critical
Publication of JP6802801B2 publication Critical patent/JP6802801B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0206Heat exchangers immersed in a large body of liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/023Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes, for nuclear reactors as far as they are not classified, according to a specified heating fluid, in another group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/08Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0054Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for nuclear applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

【課題】加圧水型原子炉から受動的に除熱するシステム(SG−PHRS)、すなわち冷却材(水)の自然循環により原子炉を冷却するシステムにおいて除熱効率及び冷却材の流動安定性を高めて信頼性を向上させる。【解決手段】受動式除熱システムが含む冷却材の循環路は、蒸気発生器、熱交換器、および複数の始動弁を有する。熱交換器は蒸気発生器よりも上で冷却水供給タンク内に配置され、入口パイプラインと出口パイプラインとで蒸気発生器に接続されている。熱交換器は、複数本の伝熱管によって相互に接続されている下側ヘッダーと上側ヘッダーとを含む。始動弁は出口パイプラインに取り付けられており、それぞれ呼び径が異なる。熱交換器はL/D≦20を条件に複数の並列部分に分割されている(L:各部分の半分の長さ、D:ヘッダーの呼び径)。循環路のうち入口パイプラインと出口パイプラインとの部分は並列であり、それぞれの分岐が個別に熱交換器の各部分に接続されている。【選択図】図1

Description

本発明は広くは原子力エネルギー分野に関し、特に、加圧水型原子炉から蒸気発生器を通して受動的に除熱するシステム(SG−PHRS)、すなわち循環路における冷却材(水)の自然循環によって原子炉を冷却するように設計されたシステムに関する。
本発明の背景技術によれば、同様な受動式除熱システムは数多く存在しており、それぞれが異なる構成を開示している。
特許文献1に開示された緊急除熱システムは、蒸気配管、水配管、凝縮器/蒸発器、及び貫流式の蒸気発生器を備えている。さらに、給水タンクが凝縮器/蒸発器と並列して蒸気配管及び水配管に接続されている。凝縮器/蒸発器との位置関係により、給水タンクは最上部が凝縮器/蒸発器内の界面の最上部よりも下に位置する。
特許文献2に記載された受動式反応炉冷却システムは、水冷式熱交換器と、排気管内に位置する空冷式熱交換器とを備えている。この空冷式熱交換器は、排気管内に設置された排出装置を含む。水冷式熱交換器によって生成された蒸気が排出装置の作動媒体である。
本発明に最も類似した技術は、特許文献3に開示されている、加圧水型原子炉から蒸気発生器を通して受動的に除熱するシステムである。このシステムは冷却材の循環路を備え、この循環路は蒸気発生器を含む。この蒸気発生器は、その上方に設置された冷却材供給タンクの中に位置する熱交換器と、入口パイプライン及び出口パイプラインにより接続されている。熱交換器の出口パイプラインには、呼び径の異なる2つの始動弁を有する起動装置が設置されている。熱交換器の表面積は以下の条件を満たす。
Figure 2017538134

ここで、Qphrs=Gsteamrはシステムの出力する熱量であり、Gsteamは循環路の入口における蒸気の流量であり、rは蒸気の潜熱であり、Kheは熱交換器の配管の熱伝達係数であり、Δtheは原子炉格納容器内と大気圧下との間での飽和蒸気の温度差である。
ロシア特許第78600号明細書 ロシア特許第52245号明細書 ロシア特許第96283号明細書
しかし、上述の設計はいずれも、システムに十分な除熱能力を与えることができない。さらに、周知のシステムの熱交換回路には水撃現象(ウォーターハンマー)の可能性がある。
本発明の目的は、蒸気発生器を通した除熱を効率よく、且つ確実に行うシステムを提供することである。本発明の技術的効果は、除熱効率及び熱交換回路における流動安定性を高め、その結果、システムの動作の信頼性を向上させることである。
上記の技術的効果は以下の実施形態により実現される。加圧水型原子炉から蒸気発生器を通して受動的に除熱するシステムは、少なくとも1本の冷却材(水)循環路を有し、前記冷却材循環路は、前記原子炉からの熱を通す蒸気発生器と、前記蒸気発生器よりも上で冷却水供給タンク内に配置され、入口パイプラインと出口パイプラインとによって前記蒸気発生器に接続されており、複数本の伝熱管によって相互に接続されている下側ヘッダーと上側ヘッダーとを有する組み合わせ式の熱交換器と、前記出口パイプラインに取り付けられている、呼び径が異なる複数の始動弁とを備え、前記熱交換器は、並列に配置された複数の部分に、L/D≦20(Lが各部分の半分の長さであり、Dがヘッダーの呼び径である。)を条件にして分割されており、前記冷却材循環路のうち前記入口パイプラインの部分と前記出口パイプラインの部分とは並列するパイプラインの1組であって、それぞれの分岐が個別に、上方に位置する前記熱交換器の各部分に接続されたものとして設計されている。
上記の技術的効果はまた、以下に特定される本発明の実施態様の選択肢のいずれにおいても実現される。
・前記熱交換器は、前記複数本の伝熱管における圧力損失ΔРtubeが、前記上側ヘッダーの長手方向に沿った圧力損失ΔРheadに対し、ΔРtube/ΔРhead≧1.5の条件を満たすように設計されている。
・前記入口パイプラインのうち共通配管の分岐点から最高点までの少なくとも一部が、水平方向に対して少なくとも10°の上り勾配を含む。
・前記入口パイプラインのうち共通配管の分岐点から最高点までは、上り勾配が水平方向に対して10°未満である部分を更に有し、その部分の長さLsec1及び径Dsec1がLsec1/Dsec1≦10の条件を満たす。
・前記入口パイプラインのうち最高点から前記上側ヘッダーまでの少なくとも一部は、水平方向に対して少なくとも10°の下り勾配を含む。
・前記入口パイプラインのうち最高点から前記上側ヘッダーまでは、下り勾配が水平方向に対して10°未満である部分を更に含み、その部分の長さLsec2及び径Dsec2がLsec2/Dsec2≦10の条件を満たす。
・前記出口パイプラインのうち、前記下側ヘッダーから、分岐が共通配管へ合流する点までの少なくとも一部が、水平方向に対して少なくとも10°の下り勾配を含む。
・前記出口パイプラインのうち、前記下側ヘッダーから、分岐が共通配管へ合流する点までは、下り勾配が水平方向に対して10°未満である部分を更に含み、その部分の長さLsec3及び径Dsec3がLsec3/Dsec3≦10の条件を満たす。
・前記入口パイプラインの最高点が前記冷却水供給タンクの外に位置する。
・前記熱交換器の各部分において前記複数本の伝熱管がジグザグに配置されている。
・前記熱交換器の各部分において隣接するいずれの2本の伝熱管も間隔は50mm以上である。
・前記熱交換器の各部分において前記複数本の伝熱管は、水平方向に対して少なくとも10°の下り勾配を有する。
・前記システムは、それぞれが前記循環路を1本ずつ有する4本の独立した流路を備える。
実験によれば、上記のシステムにおけるパラメータ間の関係は蒸気発生器からの除熱を最大限に効率化する。これは、システムの入口パイプラインと出口パイプラインとの設計、すなわち冷却材を熱交換器の各部分へ個別に供給し、且つ各部分から個別に除去するための構成が最適化され、各部分の半分の長さと熱交換器のヘッダーの呼び径との間の関係が適切に最小化され、伝熱管間の位置関係が最適化されるからである。
熱交換器の各部分の半分の長さとヘッダーの呼び径との相関関係は、伝熱管間で分配される冷却材の流れの不均等性が最小化されるように、すなわち、いわゆる「ヘッダー効果」が抑制されるように設定される。配管における流れの均等な分配は、熱交換器のエネルギー効率及び性能の向上にとって重要な条件の一つである。熱交換器のヘッダーの流路間での冷却材の分配を改善するのに用いられる手法の一つは、ヘッダーにおける媒体の流れの圧力損失を抑制することである。これは、製造工程能力及びその他の設計特性の範囲内でヘッダーを短くし、且つその呼び径を拡大することで実現される。ヘッダーがL/D≦20という条件を満たすことで、ヘッダーの長手方向に沿った圧力損失が最小化され、伝熱管間に分配される冷却材の流れの均等性が最も高い。一方、L/Dが20を超える場合、熱交換器の流路間における媒体分布の均等性が損なわれる結果、冷却材の質量流量が不安定化し、ひいては熱交換器の出力する熱量が低下する。
冷却水循環路の構成を示す。 熱交換器の一部に入口パイプライン及び出口パイプラインが接続された箇所の構成を示す。 熱交換器の部分の1つの構成を示す。 事故の場合、原子炉施設が冷却される間における蒸気発生器内の圧力、熱交換器の出力熱量、及びSG−PHRS回路内の冷却材の流量の経時変化を表す時間関数の計算値(I)と実験値(II)とを示す。 事故の場合、原子炉施設が冷却される間における炉心上部の圧力、炉心の出口における冷却材の温度、システムの流路の熱容量、及び燃料被覆管の最高温度の経時変化を表す時間関数を示す。
特許請求の範囲に記載のシステムは冷却材(水)の循環路の組み合わせである。本発明の好ましい実施形態において、このシステムは4本の完全に独立した流路から成り、各流路が1本ずつ循環路を有する。
循環路(図1参照。)は、蒸気発生器(1)と、蒸気発生器(1)よりも上で冷却水供給タンク(3)内に配置された組み合わせ式の熱交換器(2)とを備えている。熱交換器(2)の各部分は、入口パイプライン(4)と出口パイプライン(5)とによって蒸気発生器(1)に接続されている。これにより、熱交換器(2)の内部空間は蒸気発生器(1)の蒸気室に連通する。すなわち、システムの循環路の内部空間は閉じている。
熱交換器は16個の伝熱部分に並列に分割されている。各伝熱部分は2つに分かれている(図2、図3参照)。各伝熱部分の半分の長さLとヘッダーの呼び径Dとの間の関係は次の条件を満たす:L/D≦20。
熱交換器(2)の各部分(図3の(a)、(c)参照。)は、複数本の伝熱管(8)により相互に接続された上側ヘッダー(6)と下側ヘッダー(7)、及び、これらのヘッダーに取り付けられ、これらを入口パイプライン(4)と出口パイプライン(5)とに接続している上側T字管継手(9)と下側T字管継手(10)とを有する。
この好ましい実施形態においては、各伝熱管(8)は(各ヘッダーと接続している)屈曲形状の端部と直線形状の中央部分とを有する。この屈曲部分は、水平方向に対して少なくとも10°の下り勾配を含む。熱交換器の各伝熱部分は屈曲形状の異なる2種類の伝熱管(8)、すなわち「短い」伝熱管(8a)と「長い」伝熱管(8b)とを有する(図3の(b)参照)。これらの伝熱管は交互に配置され、伝熱管列におけるジグザグ配置を構成している。
レニングラード第二原子力発電所に対して実施される本発明の特定の形態においては、伝熱部分はタンク(3)の下部で水面(高さ5.8m)よりも下に位置する。各部分の伝熱管束は140本の屈曲形状の伝熱管(外径16mm、内径12mm)からなる。これらの伝熱管は、入口である上側ヘッダーと出口である下側ヘッダー(いずれも外径108mm、内径90mm)とに接続されている。上側ヘッダーと下側ヘッダーとの半分の長さはいずれも960mmである。隣接するいずれの2本の伝熱管も間隔は50mm以上である。上下のヘッダー間の距離は1.95mであり、伝熱管の平均長さは2.124mである。各部分の伝熱面積は14.1m2である。したがって、本発明のこの特定の実施形態において、システムの各流路の総伝熱面積は239m2である。
分岐点を終点とする入口パイプライン(4)の主部は外径が273mmであり、内径が233mmである。分岐点を起点とする出口パイプライン(5)の主部は外径が108mmであり、内径が90mmである。
16個の並列な伝熱部分の動作中、ヘッダー効果を防ぐ目的でシステムの設計には、共通の分配ヘッダーと集約ヘッダーとがいずれも含まれていない。この目的に則って、循環路のうち入口パイプライン(4)と出口パイプライン(5)との部分は並列したパイプラインの1組であり、それぞれの分岐が個別に各伝熱部分に接続されている(図1参照)。各伝熱部分は個別に、入口パイプライン(4)からの入口部分(14)と出口パイプライン(5)への出口部分(15)とを含む(図2参照)。これらの部分(14)、(15)は、各伝熱部分を半分に分割している中央点においてヘッダー(6)、(7)に接続されている(図2、図3参照)。
本発明の好ましい実施形態においては、入口パイプライン(4)は上側の分岐点(11)で2本に分岐し、各分岐がさらに2本に分岐し、それらの分岐の先も同様である。こうして、入口パイプラインは16本に分岐し、各分岐は、対応付けられた伝熱部分の上側T字管継手(9)に接続されている。入口パイプラインの最高点は冷却水供給タンクの外に位置する。上側T字管継手(9)と下側T字管継手(10)とには、結合によって16個の伝熱部分のそれぞれを形成している2つの部分(各伝熱部分の半分)が接続されている。
出口パイプライン(5)は下側の分岐点(12)から上流において同様な分岐構造を含み、各分岐は伝熱部分の下側T字管継手(10)に接続されている。
伝熱管内における圧力損失ΔРtubeと上側ヘッダーの長手方向に沿った圧力損失ΔРheadとの間の関係は次の条件を満たす:ΔРtube/ΔРhead≧1.5。
入口パイプラインのうち共通配管の分岐点から最高点までは上り勾配を含み、最高点と上側ヘッダーとの間は下り勾配である。出口パイプラインもまた下り勾配を含む。パイプラインの傾斜角は水平方向に対して少なくとも10°である。これには例外があり、パイプラインのある部分の傾斜角は10°未満である。それらの部分では長さLsecと径Dsecとの間の関係が次の条件を満たす:Lsec/Dsec≦10。
出口パイプライン(5)には、呼び径の異なる2つの始動弁(13)、「大型」と「小型」とが並列に取り付けられている。これらの始動弁は、対応付けられた冷却モードではシステムを自動的に起動させ、待機モードではいずれも閉じられている。
本発明のある実施形態においては、「小型」の始動弁はDN50の呼び径を有し、57×5.5mmのバイパス管に実装されている。このバイパス管はT字管継手により出口パイプラインに接続されている。このバイパス管には、「小型」の始動弁よりも下流に、復水量制御用の手動式制御弁が設置されている。「小型」の始動弁としては電磁弁(ソレノイドバルブ)が使用される。この弁は通常は開かれている。
「大型」の始動弁はDN100の呼び径を有し、出口パイプラインのうち、「大型」の始動弁を含むバイパス管との2つの接続点の間の部分に実装されている。この部分にもバイパス管と同様、復水量制御用の手動式制御弁が設置されている。「大型」の始動弁としては電動弁が使用される。この弁は通常は閉じられている。自動制御システム(APCS:automatic process control system)からの信号に応じて「大型」の始動弁は自動的に開く。「大型」の始動弁が開いているSG−PHRSの流路は1本当たりの最大熱容量が、タンクの水温30°Cではおよそ52MWである。同様の条件下で「小型」の始動弁が操作された場合、この流路の最大熱容量はおよそ28MWである。
本発明のシステムは以下のように動作する。
動作を開始させる目的で始動弁(13)のいずれかが開かれる。これにより、蒸気発生器(1)の蒸気室から入口パイプライン(4)を通して熱交換器の各部分(2)へ供給される蒸気で冷却材の自然循環が始まる。この蒸気は熱交換器内で液化され、生成された凝縮液は出口パイプライン(5)を通して蒸気発生器(1)へ流される。熱交換器(2)の配管内で蒸気が液化される際、熱エネルギーが循環路内の冷却材からタンク(3)内の冷却水へ移動する。この冷却水が沸点まで加熱された後、タンク内の水から蒸気が生成されてシステムの環境へ放出される。こうして、熱が蒸気発生器からシステムの環境へ除去される。
SG−PHRSのこの設計案の実施可能性と効率とを実験で正当化する目的で、NPO CKTIに建てられたSG−PHRSの大型の模型を用いて大がかりな調査が行われた。この模型における実物大の設備に対する流量と熱容量との相似比はおよそ1:110である。
図4は、電源喪失事故の場合において原子炉施設が冷却される状況のシミュレーションを対象とする調査結果を示す。シミュレートされた事故の処理時間に対する蒸気発生器の模型内の圧力の依存性を図4の(a)が示し、熱容量の依存性を図4の(b)が示し、冷却材の流量の依存性を図4の(c)が示す。線IはKORSARコードを用いて計算された値を示し、線IIは実験データを示す。
この調査の計算結果と実験結果とはいずれも次のことを示す。本発明のシステムは、冷却材の質量流量と温度とをいずれも変動させることなく確実に除熱し、蒸気発生器の圧力を着実に下げる。施設が始動する間と冷却される間とのいずれにおいてもウォーターハンマーが発生しない。さらに、実験データと計算データとはかなり一致している。
図5は、24時間の長期にわたる電源喪失という、設計基準を超える事故を対象とする計算結果を示す。事故の処理時間に対する炉心上部の圧力の依存性を図5の(a)が示し、炉心出口における冷却材の温度の依存性を図5の(b)が示し、SG−PHRSの流路の熱容量の依存性を図5の(c)が示し、燃料被覆管の最高温度の依存性を図5の(d)が示す。
上記の計算及び実験による正当化が証明するとおり、上記のパラメータを有する本発明のシステムは、それが機能すべき場合である原子炉施設事故のすべての態様において、蒸気発生器から除熱する間、冷却材の自然循環を安定に保つ。したがって、本発明のシステムは、想定される事故のすべての態様において原子炉施設を効率的に、且つ確実に冷却する。このシステムが、電源喪失及び給水の完全停止を含む事故に適用されることにより、事故の発生時から24時間は、原子炉施設の自己完結的動作が保証される。

Claims (13)

  1. 加圧水型原子炉から受動的に除熱するシステムであって、少なくとも1本の冷却材循環路を有し、前記冷却材循環路は、
    前記原子炉からの熱を通す蒸気発生器(1)と、
    前記蒸気発生器(1)よりも上で冷却水供給タンク(3)内に配置され、入口パイプライン(4)と出口パイプライン(5)とによって前記蒸気発生器(1)に接続されており、複数本の伝熱管(8)によって相互に接続されている下側ヘッダー(7)と上側ヘッダー(6)とを有する組み合わせ式の熱交換器(2)と、
    前記出口パイプライン(5)に取り付けられている、呼び径が異なる複数の始動弁(13)と
    を備え、
    前記熱交換器(2)は、並列に配置された複数の部分に、L/D≦20(Lが各部分の半分の長さであり、Dがヘッダーの呼び径である。)を条件にして分割されており、
    前記冷却材循環路のうち前記入口パイプライン(4)の部分と前記出口パイプライン(5)の部分とは並列するパイプラインの1組であって、それぞれの分岐が個別に、上方に位置する前記熱交換器(2)の各部分に接続されたものとして設計されている
    ことを特徴とするシステム。
  2. 前記熱交換器(2)は、前記複数本の伝熱管における圧力損失ΔРtubeが、前記上側ヘッダーの長手方向に沿った圧力損失ΔРheadに対し、ΔРtube/ΔРhead≧1.5の条件を満たすように設計されていることを特徴とする請求項1に記載のシステム。
  3. 前記入口パイプライン(4)のうち共通配管の分岐点から最高点までの少なくとも一部が、水平方向に対して少なくとも10°の上り勾配を含むことを特徴とする請求項1に記載のシステム。
  4. 前記入口パイプライン(4)のうち共通配管の分岐点から最高点までは、上り勾配が水平方向に対して10°未満である部分を更に有し、その部分の長さLsec1及び径Dsec1がLsec1/Dsec1≦10の条件を満たすことを特徴とする請求項3に記載のシステム。
  5. 前記入口パイプライン(4)のうち最高点から前記上側ヘッダー(6)までの少なくとも一部は、水平方向に対して少なくとも10°の下り勾配を含むことを特徴とする請求項1に記載のシステム。
  6. 前記入口パイプライン(4)のうち最高点から前記上側ヘッダー(6)までは、下り勾配が水平方向に対して10°未満である部分を更に含み、その部分の長さLsec2及び径Dsec2がLsec2/Dsec2≦10の条件を満たすことを特徴とする請求項5に記載のシステム。
  7. 前記出口パイプライン(5)のうち、前記下側ヘッダー(7)から、分岐が共通配管へ合流する点までの少なくとも一部が、水平方向に対して少なくとも10°の下り勾配を含むことを特徴とする請求項1に記載のシステム。
  8. 前記出口パイプライン(5)のうち、前記下側ヘッダー(7)から、分岐が共通配管へ合流する点までは、下り勾配が水平方向に対して10°未満である部分を更に含み、その部分の長さLsec3及び径Dsec3がLsec3/Dsec3≦10の条件を満たすことを特徴とする請求項7に記載のシステム。
  9. 前記入口パイプライン(4)の最高点が前記冷却水供給タンク(3)の外に位置することを特徴とする請求項1に記載のシステム。
  10. 前記熱交換器(2)の各部分において前記複数本の伝熱管(8)がジグザグに配置されていることを特徴とする請求項1に記載のシステム。
  11. 前記熱交換器(2)の各部分において隣接するいずれの2本の伝熱管(8)も間隔は50mm以上であることを特徴とする請求項1に記載のシステム。
  12. 前記熱交換器(2)の各部分において前記複数本の伝熱管(8)は、水平方向に対して少なくとも10°の下り勾配を有することを特徴とする請求項1に記載のシステム。
  13. それぞれが前記循環路を1本ずつ有する4本の独立した流路を備えた請求項1から請求項12までのいずれかに記載のシステム。
JP2017549160A 2014-12-04 2015-11-16 加圧水型原子炉から蒸気発生器を通して受動的に除熱するシステム Active JP6802801B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2014148909 2014-12-04
RU2014148909/07A RU2595640C2 (ru) 2014-12-04 2014-12-04 Система пассивного отвода тепла от водоводяного энергетического реактора через парогенератор
PCT/RU2015/000780 WO2016089249A1 (ru) 2014-12-04 2015-11-16 Система пассивного отвода тепла из водоводяного энергетического реактора через парогенератор

Publications (2)

Publication Number Publication Date
JP2017538134A true JP2017538134A (ja) 2017-12-21
JP6802801B2 JP6802801B2 (ja) 2020-12-23

Family

ID=56092073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017549160A Active JP6802801B2 (ja) 2014-12-04 2015-11-16 加圧水型原子炉から蒸気発生器を通して受動的に除熱するシステム

Country Status (16)

Country Link
US (1) US10030865B2 (ja)
EP (1) EP3229238B1 (ja)
JP (1) JP6802801B2 (ja)
KR (1) KR102199055B1 (ja)
CN (1) CN107210072B (ja)
AR (1) AR102874A1 (ja)
BR (1) BR112017011924B1 (ja)
CA (1) CA2969831C (ja)
EA (1) EA037574B1 (ja)
HU (1) HUE051203T2 (ja)
JO (1) JO3697B1 (ja)
MY (1) MY186200A (ja)
RU (1) RU2595640C2 (ja)
UA (1) UA121982C2 (ja)
WO (1) WO2016089249A1 (ja)
ZA (1) ZA201704489B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579405A (zh) * 2019-08-29 2019-12-17 中广核核电运营有限公司 一种核电站辅助给水系统及其加热方法
JP2022502626A (ja) * 2018-09-28 2022-01-11 ジョイント・ストック・カンパニー サイエンティフィック リサーチ アンド デザイン インスティテュート フォー エナジー テクノロジーズ アトムプロエクト 極端な影響後に原子力発電所を安全な状態にする方法とシステム
JP7494399B2 (ja) 2020-12-30 2024-06-03 ジョイント ストック カンパニー アトムエネルゴプロエクト 受動的熱除去システムの監視方法および装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2018124839A (ru) * 2017-06-30 2020-02-04 Акционерное Общество "Научно-Исследовательский И Проектно-Конструкторский Институт Энергетических Технологий "Атомпроект" Тройниковый узел смешения потоков системы продувки-подпитки ядерного реактора
KR102592944B1 (ko) * 2020-12-09 2023-10-20 한국수력원자력 주식회사 판쉘형 열 교환기를 포함하는 일체형 원자로
CN114023470B (zh) * 2021-09-17 2024-04-16 中国船舶重工集团公司第七一九研究所 非能动换热系统和反应堆系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628094A (ja) * 1985-07-01 1987-01-16 フラマト−ム 加圧水型原子炉用の自動調整緊急冷却装置
JP2006170532A (ja) * 2004-12-16 2006-06-29 Nikken Setsubi:Kk 隠蔽温水暖房システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4126629A1 (de) * 1991-08-12 1993-03-11 Siemens Ag Sekundaerseitiges nachwaermeabfuhrsystem fuer druckwasser-kernreaktoren
DE4126630A1 (de) * 1991-08-12 1993-02-18 Siemens Ag Sekundaerseitiges nachwaermeabfuhrsystem fuer druckwasser-kernreaktoren
US5169595A (en) * 1991-09-03 1992-12-08 General Electric Company Reactor core isolation cooling system
US5307390A (en) * 1992-11-25 1994-04-26 General Electric Company Corium protection assembly
YU73393A (sh) * 1993-11-24 1996-05-20 Slobodan Milošević Ventil - klizni regulator protoka sa komorom
JP4180801B2 (ja) * 2001-01-11 2008-11-12 三菱電機株式会社 冷凍空調サイクル装置
JP4592773B2 (ja) * 2008-02-29 2010-12-08 株式会社東芝 静的冷却減圧系および加圧水型原子力プラント
RU96283U1 (ru) * 2010-03-16 2010-07-20 Открытое акционерное общество "Санкт-Петербургский научно-исследовательский и проектно-конструкторский институт "АТОМЭНЕРГОПРОЕКТ" (ОАО "СПбАЭП") Система пассивного отвода тепла через парогенератор
CN102169733B (zh) * 2011-02-14 2013-10-23 中国核电工程有限公司 一种核电站非能动与能动相结合的专设安全系统
JP2013088158A (ja) * 2011-10-14 2013-05-13 Hitachi-Ge Nuclear Energy Ltd 原子力プラントの非常用復水システムとその運用方法
CN102522127B (zh) * 2011-12-23 2014-07-30 中国核电工程有限公司 非能动安全壳热量导出系统
CN203839054U (zh) * 2014-02-27 2014-09-17 中国核电工程有限公司 用于非能动安全壳冷却系统的核级螺旋管换热器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628094A (ja) * 1985-07-01 1987-01-16 フラマト−ム 加圧水型原子炉用の自動調整緊急冷却装置
JP2006170532A (ja) * 2004-12-16 2006-06-29 Nikken Setsubi:Kk 隠蔽温水暖房システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022502626A (ja) * 2018-09-28 2022-01-11 ジョイント・ストック・カンパニー サイエンティフィック リサーチ アンド デザイン インスティテュート フォー エナジー テクノロジーズ アトムプロエクト 極端な影響後に原子力発電所を安全な状態にする方法とシステム
JP7282696B2 (ja) 2018-09-28 2023-05-29 ジョイント・ストック・カンパニー サイエンティフィック リサーチ アンド デザイン インスティテュート フォー エナジー テクノロジーズ アトムプロエクト 極端な影響後に原子力発電所を安全な状態にする方法とシステム
CN110579405A (zh) * 2019-08-29 2019-12-17 中广核核电运营有限公司 一种核电站辅助给水系统及其加热方法
JP7494399B2 (ja) 2020-12-30 2024-06-03 ジョイント ストック カンパニー アトムエネルゴプロエクト 受動的熱除去システムの監視方法および装置

Also Published As

Publication number Publication date
WO2016089249A1 (ru) 2016-06-09
HUE051203T2 (hu) 2021-03-01
BR112017011924A2 (pt) 2018-01-16
EP3229238A4 (en) 2018-11-21
EA037574B1 (ru) 2021-04-15
CN107210072B (zh) 2019-07-23
EP3229238A1 (en) 2017-10-11
KR102199055B1 (ko) 2021-01-07
CN107210072A (zh) 2017-09-26
US20170336065A1 (en) 2017-11-23
AR102874A1 (es) 2017-03-29
US10030865B2 (en) 2018-07-24
ZA201704489B (en) 2020-01-29
RU2595640C2 (ru) 2016-08-27
CA2969831A1 (en) 2016-06-09
JO3697B1 (ar) 2020-08-27
JP6802801B2 (ja) 2020-12-23
MY186200A (en) 2021-06-30
EP3229238B1 (en) 2020-07-08
BR112017011924B1 (pt) 2022-05-17
UA121982C2 (uk) 2020-08-25
CA2969831C (en) 2020-06-30
EA201650094A1 (ru) 2017-11-30
KR20170105499A (ko) 2017-09-19
RU2014148909A (ru) 2016-06-27

Similar Documents

Publication Publication Date Title
JP6802801B2 (ja) 加圧水型原子炉から蒸気発生器を通して受動的に除熱するシステム
US10720250B2 (en) Containment internal passive heat removal system
RU197487U1 (ru) Тройниковый узел смешения потоков системы продувки-подпитки ядерного реактора
CN107250664B (zh) 用于反应堆设备的卧式蒸汽发生器
CN103277147A (zh) 双动力orc发电系统及其发电方法
CN103063058A (zh) 一种新型卧式冷却器
CN103267423A (zh) 核电站安全壳内的热交换器
CN103982886A (zh) 局部射流的小循环倍率管壳式高温余热蒸汽锅炉
US20150255181A1 (en) Nuclear power generation system
CN109712726B (zh) 一种海洋核动力平台反应堆余热排出系统
CN106642040B (zh) 一种流量分配均匀的紧凑型蒸汽发生器
JP4125683B2 (ja) 湿分分離加熱器
CN205939216U (zh) 一种生物质锅炉空气预热器
RU2775748C1 (ru) Пароперегреватель турбоустановки
RU24748U1 (ru) Ядерная энергетическая установка
Yaurov et al. Computational and experimental justification for increasing the performance of the regenerative heat exchanger in the steam generator blowdown system of the AES-2006 project (RU V-392M)
JP2017040200A (ja) 蒸気タービンプラント
Silin et al. The thermal circuit of a nuclear power station’s unit built around a supercritical-pressure water-cooled reactor
CN112652414A (zh) 反应堆蒸汽发生器c型管束
CN117760238A (zh) 一种超(超)临界孔道式换热器设计方法
Kettle Experience with the commissioning of helically coiled advanced gas cooled reactor boilers
JPH08233212A (ja) 熱交換器
Griffiths IMPROVEMENTS IN OR RELATING TO STEAM GENERATORS
JP2007182862A (ja) 蒸気タービンプラント
Ishida et al. The Concept of Passive Cooling Systems for Inherently Safe BWRs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191127

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200717

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200918

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201013

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201127

R150 Certificate of patent or registration of utility model

Ref document number: 6802801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250