JP2017526844A - 作動流体を膨張させるためのタービンおよび方法 - Google Patents

作動流体を膨張させるためのタービンおよび方法 Download PDF

Info

Publication number
JP2017526844A
JP2017526844A JP2016568868A JP2016568868A JP2017526844A JP 2017526844 A JP2017526844 A JP 2017526844A JP 2016568868 A JP2016568868 A JP 2016568868A JP 2016568868 A JP2016568868 A JP 2016568868A JP 2017526844 A JP2017526844 A JP 2017526844A
Authority
JP
Japan
Prior art keywords
turbine
stage
working fluid
support disk
centrifugal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016568868A
Other languages
English (en)
Inventor
ビニ ロベルト
ビニ ロベルト
ガイア マリオ
ガイア マリオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Turboden SpA
Original Assignee
Turboden SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Turboden SpA filed Critical Turboden SpA
Publication of JP2017526844A publication Critical patent/JP2017526844A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/06Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially
    • F01D1/08Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially having inward flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/12Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines with repeated action on same blade ring
    • F01D1/14Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines with repeated action on same blade ring traversed by the working-fluid substantially radially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/048Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/045Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector for radial flow machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/40Flow geometry or direction
    • F05D2210/44Flow geometry or direction bidirectional, i.e. in opposite, alternating directions

Abstract

圧縮可能な作動流体を、例えば気体または蒸気を、少なくとも部分的に遠心方向に膨張させるためのタービンを開示する。作動流体の遠心膨張を行うための少なくとも一つのグループのステージ(以下遠心ステージという)が軸X−Xに関して径方向に延設される。径方向に求心方向に作動流体の第一の膨張を実行するよう、径方向に延設されている少なくとも一つのグループのステージ(以下求心ステージという)を、タービンが、備えることには利点がある。さらに、すべてのアレイ状のロータブレードは、シャフトに、軸受け間の領域ではなくシャフトの端部で一体連結されている、つまり、いわゆる「カンチレバー式」構造であり、特に保守作業を行うのに有用である。提案する方式によって、コンパクトなタービンで高い効率を達成されることができる。作動流体を膨張させるための対応する方法をさらに開示する。

Description

本発明は、流体が求心方向および遠心方向に、そしてある場合には軸方向に、膨張するタービン、およびそのようなタービンにおいて作動流体を特にランキンサイクルにおいて有機流体を膨張させる方法に関する。
すべてのランキンサイクルにおいてそして臨界未満の領域における所定の作動流体に関して、膨張する作動流体が発生可能なタービンにおける膨張によって提供される等エントロピー過程における(等エントロピー的)エンタルピー低下(isentropic enthalpy drop)、つまり質量単位当たりの最大仕事(例えばkJoule/kgで表される)は、ほとんどすべてが、流体特性に依存し、一般的に、流体の蒸発温度と凝結温度との差の関数である。一方、作動流体自体の特性は、エンタルピー低下に大きな影響を与え、その影響は、分子が単純で分子量が低い値の流体ほど大きい。
ランキンサイクルを研究する場合、等エントロピー過程におけるエンタルピー低下の計算はよく知られている。タービン設計者は、作動流体の組成、入力の温度の値(the inlet values of temperature)、流体の流量、圧力およびタイター、さらには排出圧力の値(the value of exhaust pressure)を出発値(starting values)として用いてタービン設計を行う。これらのデータから、等エントロピー過程におけるエンタルピー低下の値を、既知の方法で容易に計算することができる。したがって、このような値を、タービン設計においては特徴的パラメータとして解釈する必要がある。
同データは、タービン自体がランキンサイクルとは異なるパワーサイクル(例えばカリーナ(Kalina)サイクルまたはブレイトンサイクル)において備えられている場合、または、サイクルの一部ではないが異なる性質の熱力学過程に属する場合(天然ガスの膨張器がそのガス自体の分配ダクトの端部に配置されている例が考えられる)にも、タービン設計の一部として採用される。
他の面では、前述のデータから計算可能なものは膨張比であり、どちらの場合でも、入力圧力と排出圧力との間の比として、そして体積膨張比(つまり排気領域における体積流量とタービン入力領域における体積流量との間の比)として、定義されている。
頭字語ORC「有機ランキンサイクル(Organic Rankine cycle)」は、誰でも知っている通り、ランキン・パワーサイクルにおいて用いられる水蒸気の分子量よりはるかに大きい高分子量を好ましくは有する有機作動流体を用いるランキンタイプの熱力学サイクルを意味する。
例えば、ORCプラントは、固形バイオマスから始まる電気的・熱的パワーを複合的に発生させるのに用いられる。あるいは、工業的プロセスの廃熱、原動機からの熱回収または地熱源も用いられる。
例えば、通常、バイオマスが供給されるORCプラントは、
−燃料バイオマスが供給される燃焼室と、
−燃焼煙霧/気体の熱の一部を、中間回路によって送出される伝熱流体(例えば非断熱性油)へと与えるよう配置される熱交換器と、
−中間回路の熱の一部を、蒸発させる作動流体へと与えるよう配置される熱交換器と、
−蒸気状態の作動流体が供給されるタービンと、
−タービンによって作動されて電力を発生する発電機と、
を備える。
燃焼室において、伝熱流体(例えば非断熱性油)は、通常約300℃の温度まで加熱される。伝熱流体は、有機作動流体が蒸発する前述の熱交換器を通る閉ループにおいて循環する。作動流体の蒸気は、タービンにおいて膨張して、機械的パワーを発生し、その後、タービン自体のシャフトに接続された発電機によって電気的パワー(電力)に変換される。タービンにおいて対応する膨張が終了すると、作動流体の蒸気は適切な凝縮器において凝縮して、プラントの下流で熱的キャリアとして約80℃〜90℃で、例えば地域暖房のために、用いられる冷却流体(通常、水)に熱を与える。作動流体は、伝熱流体と交わる熱交換器に供給されて、閉ループにおけるサイクルが完了する。
概して、本発明は、ORCまたは蒸気のタイプと同様にランキンサイクルに、カリーナサイクルに、そして、一般的に、タービンの等エントロピー過程におけるエンタルピー低下がタービン回転速度の自乗に関して高い場合、つまり本願においては低下が、毎分回転数1500で回転する(したがって、50Hzでは四極発電機と直接連結されるよう構成された)タービンに対しては、40kJ/kgより高い場合、毎分回転数3000で回転するタービンに対しては160kJ/kg、等、作動流体の膨張が行われる工業的プロセスに適用される、特に、本発明を、高い作動流体の体積膨張比が特徴である、つまり本願の場合では50を超えるサイクルに用いることができる。
軸動力(シャフトパワー)が約20MWであるタービンの場合には、いわゆる「カンチレバー(片持ち)式」の方式の採用が好ましく、「カンチレバー(片持ち)式」とは、シャフトを支持する複数の軸受け(ベアリング(bearings))が、発生したパワーが取り出されるロータに対して同じ側の部分にあることを意味している。実際、これは、一つの回転シールだけを必要とする観点から実現がより容易な方式であり、コスト効率が高く、複数の軸受けの間に備えられるロータを用いる方式より、保守がより容易である。
本願出願人の国際特許出願公開第2010/106569号(WO2010/106569)および2010/106570号(WO2010/106570)には、カンチレバー式の方式が記載されている。
出願人エクセルギー エス.ピー.エー(EXERGY S.P.A.)の欧州特許出願公開第2699767号明細書(EP2699767)には、ORCランキンサイクルにおける径方向遠心タービンの応用が記載されている。
本願出願人の国際特許出願公開第2013/108099号(WO2013/108099)には、本願に最も近い従来技術と考えることができる第三の方式が記載されている。特に国際特許出願公開第2013/108099号には、流体が径方向の遠心ステージおよび軸方向のステージにおいて連続的に膨張する一つのシャフトのみを備えたタービンが記載されている。角のブレード(angular blades)と呼ぶ少なくとも一つのアレイ状のステータまたはロータブレードが、作動流体の向きを変更するために、径方向ステージと軸方向ステージとの間に配置されている。角のブレードを通じて膨張した作動流体のエンタルピー低下は、タービン全体において流体膨張を完了するのに得られる平均エンタルピー低下の少なくとも50%と等しい。構造的観点から、径方向のステージをシャフトに一方の端部に構成することができ、軸方向ステージを略カンチレバー式に延設することができ、これにより、他の既知の方式と比較してタービンが非常に小型化されて、軸受けと減速歯車と発電機とが同じ側に配置されるので、保守作業のためにアクセスしやすくなる(手が届きやすくなる)。熱力学の観点から、この方式により、角のブレードとそれに続く軸方向ブレードとのアッセンブリにおいて生じるエンタルピー低下をより大きくできる。
本発明は、構造的な観点からシンプルであり、そして、最適な数のステージ間にエンタルピー低下を分配するという特徴を有するとともに作動流体の第一の膨張ステージ(first expansion stages)における高い効率(一般的には作動流体の体積流量が最小であるが何とか良好な効率を達成できる)という特徴を有する、サイズが小さいカンチレバー式構造のタービンを提供することを目的とする。
さらに、本発明は、機械的に強靱であり、ロータによってシャフトに印加される軸方向荷重(スラスト)を効果的に抑制できる低コストなタービンを提供することを他の目的とする。
そのために、本発明は、第一面において、請求項1に記載のタービンに関連する。
特に、本発明は、アレイ状のステータブレードおよびアレイ状のロータブレードによって構成される複数のステージを備える、圧縮可能な作動流体を、例えば気体または蒸気を、膨張させるためのタービンに関する。好ましくは、タービンが有する、アレイ状のロータブレードを支持するシャフトは一つだけである。ステータブレードは、タービンの静止部(例えばそのケーシング)によって支持されることは説明するまでもないであろう。
シャフトは、回転軸としての長手方向軸X−Xを有するとともに、少なくとも二つの軸受けによって径方向に支持される。必要に応じて、一以上の軸方向スラスト軸受け(axial thrust bearings)を備えることもできる。作動流体の遠心膨張を行うための少なくとも一つのグループのステージ(以下遠心ステージという)が軸X−Xに対して略径方向の方向に延設される。
タービンが、軸X−Xに対して径方向に延設されている少なくとも一つのグループのステージ(以下求心ステージという)を備えることには利点がある。求心ステージにおいて、作動流体は、求心方向において第一の膨張(first expansion)を受ける。さらに、すべてのアレイ状のロータブレードは、シャフトに、軸受け間ではなくシャフトの端部で一体連結されている、つまり、いわゆる「カンチレバー式」構造であり、特に保守作業を行うのに有用である。
提案する方式によれば、タービン設計を複雑にすることなく、保守を容易にしつつコストを抑えながら製造でき、しかも高い効率を得ることが可能になる。実際に、一般的には作動流体が適度な体積流量とされている遠心ステージの上流側に求心ステージを追加することにより、第一の膨張を外側の径方向位置から、第一の遠心ステージの適度な体積流量をとにかく大きく超えないよう、実行することができ、このため、ブレードの挿入直径(insertion diameter)を適度な値にすることよりブレード高さが比較的大きくなるので、高い効率を維持することが可能になる。したがって、いわゆる二次損失およびブレード端部におけるまたは対応するラビリンスにおける漏れによる損失を許容範囲とすることができる。求心ステージは略径方向に延設されており、軸方向における大きさが最小限となるので、タービンをコンパクトなままとしてしかも強靱とすることができる。タービンにおいて利用可能なエンタルピー低下を可能な限り完全に活用することにより、一ステージ当たりの膨張比が過剰であるかつ/またはブレードの空力的負荷が過剰である既知の方法で確認できるものよりもより効率的にできる。提案する方式によって、エンタルピー低下がより大きな数のステージに分散され、既知の方式に比してほとんど同じ大きさで、効率上の利点が得られる。
これらの利点は回転速度に関して、毎分回転数1500で回転する機械に対して作動流体が40kJ/kgより大きいエンタルピー低下によって特徴付けられる熱力学サイクルにおいてタービンが備えられる場合には、特に顕著となる。
さらに、求心ステージは、外側に、つまりシャフトと軸受けとによって構成されたアッセンブリより大きい直径上に、配置される。これにより、タービンを、部分的に取り外すことができ、例えばシャフトおよび/または軸受けを部分的に取り出して他のロータディスクにアクセスすることができ、これにより、タービン自体完全に取り外す必要なく検査または保守作業を行うことができる。
提案する方式の他の利点は、求心ステージは、シャフトに印加されるスラスト力に対して影響がほとんどない、つまり、求心ステージは他のタービン・ステージが行うものと比較してスラスト力を増加させないことにある。これにより、スラスト軸受の構造をシンプルなままとすることができる。
例えば、求心ステージの数は、タービンのサイズに応じて1〜10の範囲とする。
好ましくは、求心ステージのロータアレイは、回転するようシャフトに一体連結される第一支持ディスク上に構成されるとともに、遠心ステージのロータアレイは第二支持ディスク上に構成される。第二支持ディスクはシャフトの端部に一体連結されるとともに、第一支持ディスクは第二支持ディスクに一体連結されて第二支持ディスクによって支持される。この構成は、単に特にコンパクトなだけではない。前述のカンチレバー式構造を実現できる。実際に、第一支持ディスクは、軸受けが配置されるシャフト部分上で片持ち状に突出することにより、第二支持ディスクに載置される。
好ましい態様において、第二支持ディスクとシャフトと、および第二支持ディスクと第一支持ディスクと、はこれらの構成要素に形成されるヒルト・タイプの自己芯出し歯によって連結されている。
好ましくは、第二支持ディスクは、大径部分(increased section)を有するシャフトの一端に連結されており、第二支持ディスクは当該一端と軸受けとの間にある。
一の態様において、軸を通る平面(meridian section)において略U字状である流路が、求心ステージと遠心ステージとの間で配置される。U字状流路は、第一支持ディスクによって、および部分的にタービン・ケーシングまたは他の静止構成要素によって形成される。U字状流路において、作動流体はそれ自身の膨張方向が反転する。
いくつかの態様のタービンも考えられる。例えば、一の態様では、膨張方向に対して遠心ステージの下流側に、作動流体の軸方向の膨張を行うために軸X−Xに対して軸方向に延設される一以上のステージ(以下軸方向ステージという)が配置される。
他の態様として、またはこれに加えて、膨張方向に対して求心ステージの上流側に、さらなる遠心ステージが、例えば一以上のステージが配置される。この場合、求心ステージ下流側にある遠心ステージのロータアレイを、例えば第二支持ディスクに構成することができる。
軸方向ステージが備えられているある態様では、このようなステージのロータアレイは、第一支持ディスクによって、つまりその遠心ステージのロータ・ブレーディング(rotor blading)が構成されている同じディスクによって、支持される。軸方向ステージの一以上のロータアレイを、大径部分を有するシャフトの一端に一体連結される第三支持ディスクによって支持することもできる。大径部分を有するシャフトの当該一端は、第一支持ディスクとは反対側である。
例えば、求心ステージおよび遠心ステージの間で、作動流体の流量の注入または抽出を行うことができる。同様に、遠心ステージおよび軸方向ステージの間で、作動流体の注入または抽出を行うことができる。
本発明は、異なるタービン・ステージの間で流体のエンタルピー低下の分散を最適化することができ、タービンの構造をコンパクトに維持しつつ保守アクセスを容易にすることができる、タービンにおいて作動流体を膨張させる方法を提供することを他の目的とする。
このため、本発明の第二面において、本発明は、請求項14にかかる、タービンにおいて圧縮可能な作動流体を、例えば気体または蒸気を、膨張させる方法に関連する。
特に、本方法は、
−本発明にかかるタービン、つまり前述の特徴を有するタービンを予め配置する工程と、
−タービンに作動流体を供給し、求心方向において少なくとも一回の第一の膨張(at least one first expansion)を実行し、作動流体の方向を反転させ、遠心方向において第二の膨張(second expansion)を実行する工程と、
を含む。
方法によって得られる利点は、前記タービンに関して記載したものと同じである。
好ましくは、作動流体は有機流体であり、その膨張がランキンサイクルにおいて、またはカリーナサイクルにおいて、または一般的に作動流体の膨張が行われている熱力学サイクルにおいて行われる。あるいは、本方法は、プロセスにおける、例えば天然ガスの液化および/または再気化のプロセス内における、あらゆる流体の膨張に関連することができる。
本発明の種々の態様においてここに記載した方式は、全エンタルピー低下を十二分に利用することに加えて、タービンの非軸方向部分で特徴付けられる閾値を上回ること、つまり以下に記載する「等エントロピー的(isentropic)k」に関係する閾値を上回るものに関しても構成されるべきものである。
一般には、あるステージの「等エントロピー的k」は、以下の比を意味する。
(1)k(is)=Δh(is)/(u2/2)
ここで、Δh(is)はステージに関して利用可能な等エントロピー過程におけるエンタルピー低下であり、(u)は当該ステージのロータアレイの周速であり、当該アレイの平均直径における周速とする。
上記特徴付け閾値に関係して、一方、ここでいう比は、
(2)k'(is)=Δh(is,rad)/(u1 2/2)
である。
ここで、Δh(is,rad)は、タービンの全エンタルピー低下と径方向部分の下流側にある軸方向部分において生じるエンタルピー低下との間の差として計算される、タービンの径方向ステージにおいて生じる全エンタルピー低下であり、u1は第一の軸方向ステージ(first axial stage)の平均直径の周速である。
こうして、式(2)を用いることによって、閾値が7であるとき、提案する方式を十分に有用とすることができる。
記載した条件については、どの点からみても、単一の径方向ステージが考慮されるのではなく、連続して配置することができないような径方向ステージの数の物理的限界がすでに考慮されている径方向ステージの全体的な挙動が考慮される。基準エンタルピー(Reference enthalpies)は、全エンタルピー(overall enthalpies)であって、静的なエンタルピー(static enthalpy)ではない。
提案する方式が既存の径方向・軸方向タービンに後付けとして導入される場合、閾値の計算は、タービンの特定の作動流体、それぞれの作用パラメータ、およびタービンの吸排気条件(それらは測定可能である)を考慮することによって、既知の技術によって行うことができる。一方、軸方向部品の全エンタルピー低下は、軸方向アレイ自体の幾何構造に関する正確な調査から、またはそれぞれのCADファイルから、(径方向から軸方向へのフロー回転に割り当てられたアレイ状の角のブレードがある場合は、それも含めて)計算できる。
本発明の詳細は、以下の添付図面を参照した説明から容易に理解されよう。
本発明にかかるタービンの第一実施形態の部分断面図。 本発明にかかるタービンの第二実施形態の部分断面図。 本発明にかかるタービンの第三実施形態の部分断面図。 本発明にかかるタービンの第四実施形態の部分断面図。 図4に示す細部の斜視図である。 本発明にかかるタービンの第五実施形態の部分断面図。 本発明にかかるタービンの第六実施形態の部分断面図。 本発明にかかるタービンの第七実施形態の部分断面図。 本発明にかかるタービンの第八実施形態の部分断面図。 本発明にかかるタービンの第九実施形態の部分断面図。 本発明にかかるタービンの第十実施形態の部分断面図。
図1は、圧縮可能な作動流体を例えば有機流体をランキンサイクルにおいて膨張させるための本発明にかかるタービン1の、軸方向に対称的な部分における、部分図である。
タービンは、回転の長手方向軸をX−Xで示すシャフト2と、外側ケース3または渦形室(volute)と、複数の膨張ステージと、を備える。
具体的には、タービン1は、作動流体の第一の膨張を軸X−Xに向かう径方向に実行するように設計された一グループの求心ステージ4と、作動流体の第二の膨張をこのとき軸X−Xから離れる径方向に実行するように設計された一グループの遠心ステージ5と、を備える。
求心ステージ4および遠心ステージ5は、アレイ状のステータブレードおよびアレイ状のロータブレードによって構成される。例えば、符号41,42および51,52を用いて、それぞれ二つのステージグループ4,5のステータブレードおよびロータブレードを示す。
求心ステージ4は、軸X−Xに近づくにつれて、それぞれのアレイのブレード高さが、平均して、増加する傾向によって特徴付けられる。こうして、遠心ステージ5に入る前に、一団の移送成分速度の速さが、フローの膨張方向の反転においては制限される。特に、初めには、移送成分は、径方向の求心方向であり、その後反転の中間においては軸方向となり、最後に遠心方向となる。
膨張方向の反転は、流路6において行われる。流路6の直ぐ上流側には、ステータ・ブレーディングを配置することができ、反転の前にフローを直進させる機能を有する。
流路6では、回転しているまたは固定されている適切なアレイにおいて、フロー回転が求心方向から遠心方向へと行われるロータ側またはステータ側反転ブレーディングを配置することもできる。この場合、ロータタイプまたはステータ・タイプのどちらともできるアレイは、圧力の点で、すべての径方向ステージの平均膨張比の10%を上回るような膨張比で特徴付けられ、ここでは、反転アレイを備えて、この膨張によってフローの回転を促進して、損失を低減することが考えられる。
求心ステージ4および遠心ステージ5のロータアレイは、以下に説明するカンチレバー式の構造で、それぞれの支持ディスク8,7上に構成される。
シャフト2は、シャフトの中央部に対して厚くなっている部分を有するシャフトの端部21が軸受け9に対して片持ち状に延設されるよう、少なくとも二つの軸受け9によって支持される。こうして、異なるステージ4,5のすべてのロータアレイ42,52等は、シャフトの端部21によって、支持ディスク7,8を介在させて支持される。
特に、支持ディスク7は、ヒルト・タイプの自己芯出し歯(セルフセンターリング歯(self-centering toothing of Hirth type))によってシャフト2の端部21に連結され、そしてさらに、ディスク8は、ヒルト・タイプの自己芯出し歯によってディスク7に連結される。
この構成により、軸受け9からシャフト2を取り出し、ステージ4,5を「開く」ことにより、実用的な方法でタービン1を部分的に分解することができる。
ディスク8には、高圧の流体を閉じ込め、チャンバAを形成するよう、渦形室3の方向にラビリンスシール10が配置される。チャンバAは、タービン1の他の部分またはタービン1が動作するプラント(例えばランキンサイクルにおけるタービンの排気ダクトまたほかに凝縮器)と、ディスク7,8への軸方向スラストの補償をしたがってそれぞれのロータアレイへの軸方向スラストの補償を達成するために適当なより低い圧力で、接続される。
チャンバAの接続は、種々の方式を示すポートHまたはK等の都合の良いポートを通じた、直接タイプのものとすることができる、あるいはまた、補償効果を調整するようにバルブ制御可能な一以上のダクトを通じて行うこともできる(バルブ入力制御は好ましくはタービンの入力圧力および排出圧力、シャフトへのスラストの測定、軸受けへの軸方向荷重の測定、発生電力の現在値とすることができる)。
さらに他の例として、ラビリンスZを省略することもでき、この場合、チャンバAは、ポートSを通じて排気に直接接続されることになる。
図1においては、ラビリンスQ,Rの間にチャンバBがさらにポート接続されるよう備えられており、拡張経路の適当な位置に接続されたポートYを通じて供給を受ける。チャンバBの目的は、機械軸のしたがって軸受けの有効なスラスト補償を得ることにある。
図2は、図1のタービン1と比較して、遠心ステージ5の下流側に配置された軸方向ステージ11をさらに有する第二実施形態を示す。遠心ステージ5と軸方向ステージ11の間には、好ましくは国際特許出願公開第2013/108099に記載されたものと同じブレード12(角のブレードという)が、ステータブレードまたはロータブレードとして配置される。
また、軸方向ステージ11のロータアレイは支持ディスク7上に構成されている。
また、軸方向ステージの下流側にはラビリンス10bisが配置されているとともに、軸方向ステージの下流側にある流路のコースには内側リングWが配置されており、これにより、軸方向アレイの出口にある運動エネルギーの一部を回収する実効拡散が可能となる。チャンバCにおける圧力はポートJを通じておよそ排出圧力に維持される。
図3は、図2のタービン1と比較して、さらにもう一つの軸方向のステージ13を有する変形態様を示す。軸方向ステージ13は、ディスク7に対して反対側にある、ヒルト歯を用いてシャフト2の端部21へ直接的に一体連結される他のディスク14によって支持される。
図4は、図3に示した態様と比較して、求心ロータステージ4の上流側にステータアレイ15をさらに有するさらに他の実施形態を示す。ステータアレイ15は、タービンを通る流体流量に作用するためにブレード間の流路の面積を変更する目的で、既知技術に基づく、ピッチ角度が可変であるノズルを有する。
可変ピッチ角度を有するステータアレイを追加する目的を、例えばタービンに接続されたオルタネーターへの突然の荷重遮断の場合に作動流体の流量を急停止させることとすることもできる。同じ目的のために、可変ピッチ角度を有するブレードアレイを、ロータ・ブレーディングの代わりに、求心ステータ・ブレーディングの上流側に追加することもできる。
この方式により、タービンの上流側にある従来のバルブがフローを遮断する虞がある前に、そしてタービンにおいて既に流れ込んだ流量が膨張を完了する前に、荷重遮断によるタービン軸の回転速度の増加を回避することができる。
図5は、図3において示した態様と比較して、遠心ステージ5の下流側であって角のブレード12の上流側に、注入または抽出ダクト16を通じて、作動流体が注入または抽出される注入または抽出のチャンバPをさらに有する実施形態を示す。
図6は、五つの遠心ステージ5と、角のブレード12と、軸方向ステージ13と、作動流体の径方向排気口と、を(図の例では)備えるタービン1の第六実施形態を示す。この変形態様では、タービンにおいて正面であるつまり軸方向である作動流体の注入に対して反対側で、シャフト2が延設される。
パーティションFは、先の態様で記載したものと同様に軸方向スラストを補償するために、低圧点と連通状態に配置されたチャンバL(図における表示はない)を分離する。
図7は、流体がタービンに軸方向において正面から入り、さらなる遠心ステージ18が求心ステージ4の上流側に配置された第七実施形態を示す。
図8は、求心ステージ4と遠心ステージ18,5と軸方向ステージとが配置された第八実施形態を示す。この変形態様に関する図には、既に考察した接続Pに加えて、符号M,Nで示す通り、中間圧力の流体を抽出するまたは注入するさらなる接続が備えられる。
図9は、第一実施形態とは異なり、ステータ・ブレーディングSiが、渦形室3に一体連結されるよう流路6に配置されており、径方向の求心方向のから径方向の遠心方向に作動流体の膨張の向きを反転させる機能を有している第九実施形態を示す。
図10は、第一実施形態とは異なり、ロータ・ブレーディングRiが、ディスク8に一体連結されるよう流路6に配置されており、径方向の求心方向のから径方向の遠心方向に作動流体の膨張の向きを反転させる機能を有している第十実施形態を示す。

Claims (15)

  1. 圧縮可能な作動流体を、例えば気体または蒸気を、膨張させるためのタービン(1)であって、
    アレイ状のステータブレード(41,51)およびアレイ状のロータブレード(42,52)によって構成される複数のステージ(4,5)と、
    前記アレイ状のロータブレード(42,52)を支持するための支持シャフト(2)と、
    を備え、
    前記シャフト(2)は長手方向の回転軸X−Xを有するとともに、回転するよう、少なくとも二つの軸受けによって支持されており、前記作動流体の遠心膨張を行うための少なくとも一つのグループのステージ(以下遠心ステージという)(5)が前記軸X−Xに対して径方向に延設されているタービンにおいて、
    求心方向において前記作動流体の初期膨張を行うために前記軸X−Xに対して径方向に延設されている少なくとも一つのグループのステージ(以下求心ステージという)(4)
    を備えており、
    前記アレイ状のロータブレード(42,52)のすべては、前記シャフトに、前記軸受け間の領域ではなく前記シャフトの端部で一体連結されているタービン。
  2. 請求項1に記載のタービン(1)において、前記シャフト(2)は単一シャフトであり、備えられる前記求心ステージ(4)の数は1から10の間であるタービン。
  3. 請求項1〜2のいずれか一に記載のタービン(1)において、前記求心ステージ(4)のロータアレイ(42)は第一支持ディスク(8)上で構成されるとともに、前記遠心ステージ(5)のロータアレイ(52)は第二支持ディスク(7)上で構成されており、前記第二支持ディスク(7)は前記シャフト(2)の端部に一体連結されるとともに、前記第一支持ディスク(8)は前記第二支持ディスク(7)に一体連結されて前記第二支持ディスク(7)によって支持されているタービン。
  4. 請求項3に記載のタービン(1)において、前記第二支持ディスクと前記シャフトと、および前記第二支持ディスクと前記第一支持ディスクと、はヒルト・タイプの自己芯出し歯によって連結されているタービン。
  5. 請求項3または4に記載のタービン(1)において、前記第二支持ディスク(7)は、大径部分を有する前記シャフト(2)の一端に連結されており、前記第二支持ディスク(7)は前記一端と前記軸受けとの間にあるタービン。
  6. 請求項3〜5のいずれか一に記載のタービン(1)において、前記第一支持ディスク(8)によっておよび部分的に前記タービン・ケーシング(3)によって形成される、軸を通る平面において略U字状である流路(6)が、前記求心ステージ(4)と前記遠心ステージ(5)との間で配置されており、このような流路に沿って前記作動流体がそれ自身の膨張方向を反転させるタービン。
  7. 請求項6に記載のタービン(1)において、ステータブレード・アッセンブリ(Si)またはロータブレード・アッセンブリ(Ri)が前記流路(6)において配置されるタービン。
  8. 請求項1〜7のいずれか一に記載のタービン(1)において、
    膨張方向に対して前記遠心ステージ(5)の下流側に、前記作動流体の軸方向の膨張を行うために前記軸X−Xに対して軸方向に延設される一以上のステージ(以下軸方向ステージという)が配置される、かつ/または、
    膨張方向に対して前記求心ステージの上流側に、さらなる一以上の遠心ステージが配置されるタービン。
  9. 請求項8に記載のタービン(1)において、前記軸方向ステージのロータアレイは、少なくとも一つの第二支持ディスク(7)によって、そして大径部分を有する前記シャフトの前記第二支持ディスク(7)とは反対側の一端に一体連結される第三支持ディスクがある場合には当該第三支持ディスクによって、支持されるタービン。
  10. 請求項8または9に記載のタービン(1)において、前記求心ステージ下流側にある前記遠心ステージの前記ロータアレイは、前記第二支持ディスクに構成されているタービン。
  11. 先行する請求項1〜10のいずれか一に記載のタービン(1)において、前記求心ステージ(4)および前記遠心ステージ(5)の間で、前記作動流体の流量の注入または抽出が行われるタービン。
  12. 先行する請求項8〜11のいずれか一に記載のタービン(1)において、
    k'(is)は7以上であり、
    ここで、k'(is)=Δh(is,rad)/(u1 2/2)であり、Δh(is,rad)は、前記タービン(1)の全エンタルピー低下と前記径方向のステージ(5)の下流側にある前記軸方向ステージ(11)において生じるエンタルピー低下との間の差として計算される、前記径方向ステージ(4,5)において生じる全エンタルピー低下であり、u1は第一の軸方向ステージの平均直径における周速であるタービン。
  13. 先行する請求項1〜12のいずれか一に記載のタービン(1)において、さらに、第一のステージの上流側に、前記作動流体の流量を調整するための調整ステータアレイを備えており、
    前記調整ステータアレイは、可変ピッチ角度を有し、前記作動流体が前記タービン内へと入るのに利用可能な通路部分を変更する機能を有するブレード(15)を有しており、これにより、ゼロに近い最小値と最大値との間で流量を調整しているタービン。
  14. タービン(1)において圧縮可能な作動流体を、例えば気体または蒸気を、膨張させる方法であって、
    請求項1〜13のいずれか一に記載のタービンを予め配置する工程と、
    前記タービンに作動流体を供給し、求心方向において少なくとも一回の第一の膨張を実行し、前記作動流体の方向を反転させ、遠心方向において第二の膨張を実行する工程と、
    を含む方法。
  15. 請求項14に記載の方法であって、さらに、
    方向反転の領域(6)において作動流体の流量を注入または抽出する工程、
    前記求心膨張の上流側で、前記作動流体の遠心膨張を対応する遠心初期ステージにおいて実行する工程、
    最後の遠心膨張の下流側で、前記作動流体の向きを変更し、軸方向において膨張を実行する工程、
    最後の遠心膨張の下流側で、前記作動流体の向きを変更し、軸方向において膨張を実行し、
    k'(is)≧7であり、
    ここで、k'(is)=Δh(is,rad)/(u1 2/2)であり、Δh(is,rad)は、前記タービン(1)の全エンタルピー低下と前記径方向のステージ(5)の下流側にある前記軸方向ステージ(11)において生じるエンタルピー低下との間の差として計算される、前記径方向ステージ(4,5)において生じる全エンタルピー低下であり、u1は第一の軸方向ステージの平均周速である条件を満たす工程、
    のうちの一つ以上の工程を含む方法。
JP2016568868A 2014-06-12 2015-04-22 作動流体を膨張させるためのタービンおよび方法 Pending JP2017526844A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITBS2014A000110 2014-06-12
ITBS20140110 2014-06-12
PCT/IB2015/052937 WO2015189718A1 (en) 2014-06-12 2015-04-22 Turbine and method for expanding an operating fluid

Publications (1)

Publication Number Publication Date
JP2017526844A true JP2017526844A (ja) 2017-09-14

Family

ID=51265737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016568868A Pending JP2017526844A (ja) 2014-06-12 2015-04-22 作動流体を膨張させるためのタービンおよび方法

Country Status (5)

Country Link
EP (1) EP3155225B1 (ja)
JP (1) JP2017526844A (ja)
CA (1) CA2943477C (ja)
RU (1) RU2657061C1 (ja)
WO (1) WO2015189718A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139121A (zh) * 2018-08-30 2019-01-04 上海理工大学 一种复合式透平

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20163292A1 (it) * 2016-05-10 2017-11-10 Turboden Srl Turbina a flusso misto ottimizzata
IT201800021292A1 (it) * 2018-12-28 2020-06-28 Turboden Spa Turbina assiale a due livelli di alimentazione

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US796721A (en) * 1904-06-18 1905-08-08 Louisa Heilmann Reversing turbine.
FR522996A (fr) * 1919-06-13 1921-08-09 Leon Metais Perfectionnements aux turbines radiales à vapeur ou à fluide sous pression
DE720938C (de) * 1940-06-20 1942-05-20 Siemens Ag Radial beaufschlagte Kreiselmaschine, vorzugsweise Dampf- oder Gasturbine
GB1127660A (en) * 1966-09-17 1968-09-18 Rolls Royce Gas turbine jet propulsion engine
RU2271460C2 (ru) * 2003-11-03 2006-03-10 Юрий Михайлович Агафонов Двухконтурный газотурбинный вентиляторный двигатель
IT1393310B1 (it) 2009-03-18 2012-04-20 Turboden Srl Turbina per espansione di gas/vapore perfezionata
IT1393309B1 (it) 2009-03-18 2012-04-20 Turboden Srl Perfezionamenti ad una turbina per espansione di gas/vapore
ITMI20110684A1 (it) 2011-04-21 2012-10-22 Exergy Orc S R L Impianto e processo per la produzione di energia tramite ciclo rankine organico
ITBS20120008A1 (it) 2012-01-20 2013-07-21 Turboden Srl Metodo e turbina per espandere un fluido di lavoro organico in un ciclo rankine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139121A (zh) * 2018-08-30 2019-01-04 上海理工大学 一种复合式透平

Also Published As

Publication number Publication date
EP3155225A1 (en) 2017-04-19
EP3155225B1 (en) 2018-05-23
CA2943477A1 (en) 2015-12-17
RU2657061C1 (ru) 2018-06-08
CA2943477C (en) 2022-02-22
WO2015189718A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
RU2626923C2 (ru) Система управления температурой обоймы лопастей в газотурбинном двигателе
CN100575671C (zh) 汽轮机和汽轮机运行方法
JP2008248822A (ja) 火力発電所
EP2743463B1 (en) Apparatus and process for generation of energy by organic Rankine cycle
KR20140116121A (ko) 랭킨 사이클에서 유기 작동 유체를 팽창시키는 방법 및 터빈
JP6657250B2 (ja) 好ましくは有機ランキン・サイクルorcプラントのための多段タービン
KR20110126056A (ko) 발전 시스템용 터보 팽창기
JP6483510B2 (ja) ガスタービンの製造方法
JP6671887B2 (ja) モノタイプの低損失軸受および低密度材料を備えるパワートレインアーキテクチャー
JP2016041932A (ja) 低損失潤滑剤軸受および低密度材料を備えるパワートレインアーキテクチャー
US7114915B2 (en) Gas turbine and turbine rotor for a gas turbine
JPH094465A (ja) モジュール部品、タービン及びタービン製造方法
JP2016041930A (ja) ハイブリッドタイプの低損失軸受および低密度材料を備えるパワートレインアーキテクチャー
JP2017526844A (ja) 作動流体を膨張させるためのタービンおよび方法
US20160061060A1 (en) Combined cycle power plant thermal energy conservation
Spadacini et al. Geothermal energy exploitation with the organic radial outflow turbine
JP2019108835A (ja) 蒸気タービンプラント及びその運転方法
JP6929942B2 (ja) 低蒸気温度で作動するように適合される多段軸流タービン
Kern Steam power plant
WO2016005834A1 (en) Turbine and method for expanding an operating fluid with high isentropic enthalpy jump
CN205101042U (zh) 可重新构造的多级orc涡轮机
JP6752219B2 (ja) 冷却フィンを備えたケーシングを有するガスタービンエンジン
WO2024083762A1 (en) Pressure compounded radial flow re-entry turbine
JP2016050580A (ja) 複合サイクル発電プラントの熱エネルギー節減方法