JP2017512906A - Austenitic stainless steel - Google Patents

Austenitic stainless steel Download PDF

Info

Publication number
JP2017512906A
JP2017512906A JP2016559607A JP2016559607A JP2017512906A JP 2017512906 A JP2017512906 A JP 2017512906A JP 2016559607 A JP2016559607 A JP 2016559607A JP 2016559607 A JP2016559607 A JP 2016559607A JP 2017512906 A JP2017512906 A JP 2017512906A
Authority
JP
Japan
Prior art keywords
stainless steel
austenitic
manganese
cold
high manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016559607A
Other languages
Japanese (ja)
Inventor
アルノ ブロイアー、
アルノ ブロイアー、
ガブリエレ ブリュクナー、
ガブリエレ ブリュクナー、
リンダ モセッカー、
リンダ モセッカー、
ボルフガング ブレック、
ボルフガング ブレック、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Outokumpu Oyj
Original Assignee
Outokumpu Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outokumpu Oyj filed Critical Outokumpu Oyj
Publication of JP2017512906A publication Critical patent/JP2017512906A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Catalysts (AREA)

Abstract

本発明は、高い強度および延性を有するオーステナイト系高マンガンステンレス鋼に関する。ステンレス鋼は、重量%で、0.03〜0.1%の炭素、0.08〜1.0%のケイ素、14〜26%のマンガン、10.5〜18%のクロム、0.8%未満のニッケル、0.05〜0.6%の銅、0.1〜0.8%の窒素および0.0008〜0.005%のホウ素からなり、残部は鉄、およびステンレス鋼に生じる不可避的不純物であり、TWIP(双晶誘起塑性)機構を利用した可冷間変形性である。The present invention relates to an austenitic high manganese stainless steel having high strength and ductility. Stainless steel is 0.03% -0.1% carbon, 0.08-1.0% silicon, 14-26% manganese, 10.5-18% chromium, less than 0.8% nickel, 0.05-0.6% copper, 0.1% by weight It consists of ˜0.8% nitrogen and 0.0008-0.005% boron, the balance being unavoidable impurities in iron and stainless steel, and cold deformability utilizing the TWIP (twinning induced plasticity) mechanism.

Description

詳細な説明Detailed description

本発明は、高強度および高延性を備えるオーステナイト系高マンガンステンレス鋼に関するものであり、本ステンレス鋼は変形工程時に双晶誘起塑性(TWIP)機構を利用する。   The present invention relates to an austenitic high manganese stainless steel having high strength and high ductility, and the stainless steel utilizes a twinning induced plasticity (TWIP) mechanism during the deformation process.

例えば、最も汎用性が高く広く使用されている304型オーステナイト系ステンレス鋼のようなオーステナイト系ステンレス鋼は、冷間圧延などの冷間変形を行うと、非常に低い強度と比較的高い残留伸度を併せ持つようになる。例えば2304型フェライトオーステナイト二相ステンレス鋼など、フェライト−オーステナイト系の二相ステンレス鋼は高い強度を示すものの、冷間変形の度合いが低い場合であっても、延性が低い。   For example, the most versatile and widely used austenitic stainless steel, such as type 304 austenitic stainless steel, has a very low strength and a relatively high residual elongation when subjected to cold deformation such as cold rolling. Will come together. For example, ferrite-austenitic duplex stainless steels such as 2304 type ferritic austenitic duplex stainless steel exhibit high strength but have low ductility even when the degree of cold deformation is low.

炭素含有量の高いオーステナイト系マンガンステンレス鋼は、溶接後、熱影響を受けた溶接部ではその領域のクロムが減少するため、溶接後は粒間腐食が起こりやすくなる。さらに、標準的なマンガンステンレス鋼は、概して、冷間変形後にマルテンサイト相を形成しやすいため、置き割れを招く。   Austenitic manganese stainless steel with a high carbon content is susceptible to intergranular corrosion after welding because chromium in that region is reduced in welds that are thermally affected after welding. Furthermore, standard manganese stainless steels generally tend to form a martensite phase after cold deformation, leading to set cracks.

フランス特許出願第2071667号はオーステナイト系ステンレス鋼に関するものであり、当該ステンレス鋼は、重量%で、炭素0.02〜0.3%、ケイ素0.1〜3.0%、マンガン8.0〜17.0%、クロム12.0〜16.0%、窒素0.05〜0.3%、ならびに任意で銅0.1〜3.0%およびモリブデン0.1〜3.0%を含有し、残部は焼鈍後にオーステナイト相を備えるための必須成分として鉄の形態をなす。フランス特許出願第2071667号は、軟化特性が向上し、より優れた成形特性をもたらすことを目的とする。しかし、フランス特許出願第2071667号の化学組成では、マンガン(Mn)含有量が高いとオーステナイト相が減少するため、マンガン含有量は17重量%を超えてはならない。   French patent application No. 2071667 relates to austenitic stainless steels, which are in weight percent carbon 0.02-0.3%, silicon 0.1-3.0%, manganese 8.0-17.0%, chromium 12.0-16.0%, nitrogen It contains 0.05 to 0.3%, and optionally 0.1 to 3.0% copper and 0.1 to 3.0% molybdenum, the balance being in the form of iron as an essential component for providing an austenitic phase after annealing. French patent application No. 2071667 aims to improve the softening properties and to provide better molding properties. However, in the chemical composition of French patent application No. 2071667, the manganese content should not exceed 17% by weight because the austenite phase decreases when the manganese (Mn) content is high.

米国特許第6,454,879号は常磁性のオーステナイト系ステンレス鋼の鍛造片を製造する方法を記載し、当該ステンレス鋼は、重量%で、0.1%の炭素、0.21〜0.60%のケイ素、20〜30%のマンガン、17〜24%のクロム、最大2.5%のニッケル、最大1.9%のモリブデン、0.6〜1.4%の窒素、最大0.3%の銅、最大0.002%のホウ素、最大0.8%の炭化物形成元素を含有し、残部には実質的にフェライトを含有しない微細構造の鉄が含まれる。チタン、ジルコニア、バナジウムおよびニオブは、強炭化物および強窒化物、ならびに/または窒化炭素の形成物として記載され、これら元素の含有量は、0.8重量%未満である。当該方法によると、原材料を少なくとも850℃の温度で少なくとも約3.5倍の変形度まで熱間成形した後、能動的に冷却する。第2の工程にて、窒化物の析出温度より低い600℃未満の高温で、ただし350℃よりも高い温度で、原材料を5〜20%の変形率で冷間成形する。マルテンサイトの形成を抑制するために、変形処理は各処理工程において高温下で行われることから、生産品の製造費用が高くなる。   US Pat. No. 6,454,879 describes a method for producing a forged piece of paramagnetic austenitic stainless steel, the stainless steel being 0.1% carbon, 0.21 to 0.60% silicon, 20 to 30% by weight. Contains manganese, 17-24% chromium, up to 2.5% nickel, up to 1.9% molybdenum, 0.6-1.4% nitrogen, up to 0.3% copper, up to 0.002% boron, up to 0.8% carbide-forming elements The balance contains finely structured iron that does not substantially contain ferrite. Titanium, zirconia, vanadium and niobium are described as strong carbides and strong nitrides and / or carbon nitride formations, the content of these elements being less than 0.8% by weight. According to the method, the raw material is hot formed to a degree of deformation of at least about 3.5 times at a temperature of at least 850 ° C. and then actively cooled. In the second step, the raw material is cold-formed at a deformation rate of 5 to 20% at a high temperature below 600 ° C., which is lower than the precipitation temperature of the nitride, but higher than 350 ° C. In order to suppress the formation of martensite, the deformation process is performed at a high temperature in each processing step, which increases the manufacturing cost of the product.

金属材料の微細構造の双晶化は、一般に、同一の結晶格子の一部を分かち合う2つの独立した結晶として定義される。TWIP(双晶誘起塑性)ステンレス鋼は、面心立方格子(FCC)のオーステナイト微細構造を有するとともに、双晶変形機構、すなわち結晶格子に機械的に誘起される双晶化の活性化を促す比較的低い積層欠陥エネルギー(SFE)を備えている。用語「TWIP」とは、格子転位を経て双晶化がしばしば適合塑性とともに起こることを指している。   Twinning of the microstructure of a metallic material is generally defined as two independent crystals that share part of the same crystal lattice. TWIP (twinning induced plasticity) stainless steel has an austenite microstructure with a face-centered cubic lattice (FCC) and a twin deformation mechanism, a comparison that promotes activation of mechanically induced twinning in the crystal lattice Low stacking fault energy (SFE). The term “TWIP” refers to the fact that twinning often occurs with conformal plasticity via lattice dislocations.

本発明は、従来技術におけるいくつかの問題点を解消し、改良されたオーステナイト系高マンガンステンレス鋼を実現することを目的とし、本ステンレス鋼は、冷間変形においてTWIP(双晶誘起塑性)機構を利用することで、高い加工硬化率および優れた耐食性を備えるとともに、溶接後の粒間腐食、ならびに置き割れおよび応力腐食割れが起こりにくくなる。本オーステナイト系ステンレス鋼の基本的な特徴を本願特許請求の範囲に規定する。   The present invention aims to solve some problems in the prior art and to realize an improved austenitic high manganese stainless steel, which has a TWIP (twinning induced plasticity) mechanism in cold deformation. By using, high work hardening rate and excellent corrosion resistance are provided, and intergranular corrosion after welding, as well as setting crack and stress corrosion cracking are less likely to occur. The basic features of the present austenitic stainless steel are defined in the claims of this application.

本発明によるオーステナイト系高マンガンステンレス鋼は、重量%で、0.03〜0.1%の炭素、0.08〜1.0%のケイ素、14〜26%のマンガン、10.5〜18%のクロム、0.8%未満のニッケル、0.05〜0.6%の銅、0.1〜0.8%の窒素および0.0008〜0.005%のホウ素からなり、残部は鉄、およびステンレス鋼中に生じる不可避的不純物である。本発明のオーステナイト系ステンレス鋼はさらに、任意で0.001〜0.02%のチタンと、任意で0.04%未満のアルミニウムを含有する。よって、本発明のオーステナイト系ステンレス鋼は、冷間変形処理においてTWIP(双晶誘起塑性)機構を利用した塑性変形後に、優れた延性および高い強度を有する。本発明のオーステナイト系ステンレス鋼は、ニッケルの低含有量に関連して、当初の焼鈍状態における高い強度と、冷間圧延などの冷間変形処理後に高い伸びの高加工硬化率を併せ持つ。   The austenitic high manganese stainless steel according to the present invention is, by weight, 0.03-0.1% carbon, 0.08-1.0% silicon, 14-26% manganese, 10.5-18% chromium, less than 0.8% nickel, 0.05 It consists of ~ 0.6% copper, 0.1-0.8% nitrogen and 0.0008-0.005% boron, the balance being inevitable impurities occurring in iron and stainless steel. The austenitic stainless steel of the present invention further optionally contains 0.001 to 0.02% titanium and optionally less than 0.04% aluminum. Therefore, the austenitic stainless steel of the present invention has excellent ductility and high strength after plastic deformation using a TWIP (twinning induced plasticity) mechanism in the cold deformation treatment. The austenitic stainless steel of the present invention has both high strength in the initial annealing state and high work hardening rate with high elongation after cold deformation treatment such as cold rolling in relation to the low nickel content.

本発明に係るオーステナイト系高マンガンステンレス鋼の焼きなまし状態における降伏強さRp0.2および引張り強度Rmならびに破断伸びA80の範囲は、温度1000〜1150℃で焼鈍後、Rp0.2が470〜600MPa、Rmが800〜930MPa、A80が40〜60%である。本発明に係るオーステナイト系ステンレス鋼にさらに冷間圧延などの冷間変形を施した際のTWIP(双晶誘起塑性)機構の効果は、還元度10%および20%で冷間圧延を施した後では、降伏強さRp0.2および引張り強度Rmならびに破断伸びA80の各範囲で以下の表1に示すように表すことができる。 The range of the yield strength R p0.2 and the tensile strength R m and the elongation at break A 80 in the annealed state of the austenitic high manganese stainless steel according to the present invention is as follows: R p0.2 is 470 after annealing at a temperature of 1000 to 1150 ° C. ˜600 MPa, R m is 800 to 930 MPa, A 80 is 40 to 60%. The effect of the TWIP (twinning induced plasticity) mechanism when the austenitic stainless steel according to the present invention is further subjected to cold deformation such as cold rolling is obtained after cold rolling at a reduction degree of 10% and 20%. in, can be expressed as shown in Table 1 below in the range of yield strength R p0.2 and tensile strength R m and elongation at break a 80.

Figure 2017512906
Figure 2017512906

本発明に係るオーステナイト系高マンガンステンレス鋼は、変形度10%で少なくとも20%の高い加工硬化率を有し、変形度20%では降伏強さRp0.2に対し少なくとも40%の硬化率を有する。また、破断伸びA80は、変形度10%で25〜35%、変形度20%では10〜20%と、良好な延性を示す。 The austenitic high manganese stainless steel according to the present invention has a high work hardening rate of at least 20% at a deformation degree of 10%, and at a deformation degree of 20%, it has a hardening rate of at least 40% with respect to the yield strength Rp0.2. Have. Also, elongation at break A 80 is 25% to 35% in degree of deformation of 10%, a deformation degree of 20% at 10-20%, show good ductility.

本発明に係るオーステナイト系高マンガンステンレス鋼の化学組成における主要元素の効果について、とくに規定しない限り、その範囲は重量%とする。   Unless otherwise specified, the range of the austenitic high-manganese stainless steel according to the present invention in the chemical composition is in the range of weight%.

炭素(C)は、オーステナイトの形成および安定に有用な元素であり、高価な元素であるニッケルおよび銅の使用量を低減できる。炭素の合金化の上限(0.1%未満)は、ステンレス鋼の耐食性を低下させる炭化物が析出する危険性に基づいて設定される。良好な耐食性を維持するために、炭素含有量をできる限り少なくする。脱炭処理を行って炭素含有量を低レベルまで減少させることは非経済的であるため、炭素含有量は0.03%未満にしてはならない。   Carbon (C) is an element useful for the formation and stability of austenite, and the amount of expensive elements nickel and copper used can be reduced. The upper limit of carbon alloying (less than 0.1%) is set based on the risk of precipitation of carbides that reduce the corrosion resistance of stainless steel. In order to maintain good corrosion resistance, the carbon content should be as low as possible. The carbon content should not be less than 0.03% because it is uneconomical to decarburize and reduce the carbon content to a low level.

ケイ素(Si)は、溶解処理時に脱酸素処理を行うためにステンレス鋼に添加されるものであり、含有量は0.08%を下回らないようにする。ケイ素はフェライトを形成する元素であるため、含有量は1%未満に抑えるべきである。   Silicon (Si) is added to stainless steel in order to perform deoxygenation at the time of dissolution treatment, and its content should not be less than 0.08%. Since silicon is an element that forms ferrite, the content should be kept below 1%.

マンガン(Mn)は、本発明のオーステナイト系ステンレス鋼において重要な元素であり、オーステナイト結晶構造を確実に安定させ、双晶機構の形成を可能にし、さらには、より高価なニッケルの使用量を削減できる。また、マンガンは窒素のステンレス鋼への溶解性を高める。マンガンの量が14%以上の場合、変形構造、すなわち歪み誘起マルテンサイトを有することなく、双晶変形に伴う塑性変形が簡単に発生する。マンガンの含有量が高いと、鋼の脱炭処理がより困難になり、鋼の表面品質が損なわれるうえに、耐食性が低下する。したがって、マンガン含有量は26%未満とする。好適には、マンガン含有量は17.5〜26.0%の範囲とし、より好適には19〜23%の範囲とする。   Manganese (Mn) is an important element in the austenitic stainless steel of the present invention, which ensures stable austenite crystal structure, enables the formation of twin mechanisms, and reduces the amount of more expensive nickel used it can. Manganese also increases the solubility of nitrogen in stainless steel. When the amount of manganese is 14% or more, plastic deformation accompanying twin deformation easily occurs without having a deformation structure, that is, strain-induced martensite. If the content of manganese is high, the decarburization process of the steel becomes more difficult, the surface quality of the steel is impaired, and the corrosion resistance decreases. Therefore, the manganese content is less than 26%. Preferably, the manganese content is in the range of 17.5-26.0%, more preferably in the range of 19-23%.

クロム(Cr)は、ステンレス鋼の耐食性を確保する役割を果たす。したがって、本ステンレス鋼におけるクロム含有量は最低でも10.5%とすべきである。クロムは置き割れ現象の防止において重要な元素である。上述の水準よりも含有量を増加させることにより、鋼の耐食性を向上させることができる。しかし、クロムはフェライト形成元素であるため、クロム含有量を増やすと、ニッケルやマンガンなどの高価なオーステナイト形成元素の必要量が高くなるか、あるいは炭素および窒素の含有量を非実用的なほど高くしなければならない。したがって、クロム含有量は18%未満にすべきである。また、クロムは窒素の溶解性を高める。クロム含有量は、好適には12〜16.0%の範囲とし、より好適には12.5〜14%の範囲とする。   Chromium (Cr) plays a role of ensuring the corrosion resistance of stainless steel. Therefore, the chromium content in this stainless steel should be at least 10.5%. Chromium is an important element in preventing cracking. By increasing the content from the above level, the corrosion resistance of the steel can be improved. However, since chromium is a ferrite-forming element, increasing the chromium content increases the need for expensive austenite-forming elements such as nickel and manganese, or increases the carbon and nitrogen content to an impractical level. Must. Therefore, the chromium content should be less than 18%. Chromium also increases the solubility of nitrogen. The chromium content is preferably in the range of 12 to 16.0%, more preferably in the range of 12.5 to 14%.

ニッケル(Ni)は、強力なオーステナイト形成剤および安定剤であるが、高価な元素である。しかし、ニッケル含有量が非常に低いと、他のオーステナイト形成安定元素を使用して非現実的なほど高い率で合金化を行わなければならなくなる。したがって、ニッケルの含有量は0.8%未満とするのが望ましく、好適には0.5%未満とすべきである。   Nickel (Ni) is a powerful austenite former and stabilizer, but is an expensive element. However, if the nickel content is very low, alloying must be performed at an unrealistically high rate using other austenite-forming stable elements. Therefore, the nickel content is desirably less than 0.8%, and preferably less than 0.5%.

銅(Cu)は、残りの元素として0.05〜0.6%、好適には0.3〜0.6%存在する。銅はオーステナイト相の安定剤としては働きが弱いものの、マルテンサイト形成に対する抵抗に大きな効果を発揮する。また、銅は、延性および成形性特性に好影響をもたらす。   Copper (Cu) is present as the remaining element in an amount of 0.05 to 0.6%, preferably 0.3 to 0.6%. Although copper is weak as an austenite phase stabilizer, it has a great effect on resistance to martensite formation. Copper also has a positive effect on ductility and formability characteristics.

窒素(N)は、強力なオーステナイトの形成剤および安定剤である。そのため、窒素合金化によって、ニッケルおよび銅の使用を少なくでき、鋼の費用対効果が向上する。上記の合金元素の使用を確実に相当量少なくするために、窒素含有量は少なくとも0.1%とすべきである。窒素含有量が高いと鋼の強度が高くなるため、成形作業がより困難になる。また、窒素含有量が増えるにつれ、窒化物の析出の危険性が高まる。こういった理由から、窒素含有量は0.8%を超えるべきでなく、好適には窒素含有量を0.6%未満にすべきである。窒素はTWIP効果の予測に使用される積層欠陥エネルギー(SFE)を増大させるため、TWIPが効果的になり、また、TWIP効果が促進される。   Nitrogen (N) is a strong austenite former and stabilizer. Therefore, nitrogen alloying can reduce the use of nickel and copper, improving the cost effectiveness of steel. The nitrogen content should be at least 0.1% to ensure that the use of the above alloying elements is considerably reduced. If the nitrogen content is high, the strength of the steel increases and the forming operation becomes more difficult. Also, as the nitrogen content increases, the risk of nitride precipitation increases. For these reasons, the nitrogen content should not exceed 0.8% and preferably the nitrogen content should be less than 0.6%. Nitrogen increases the stacking fault energy (SFE) used to predict the TWIP effect, which makes TWIP effective and promotes the TWIP effect.

本発明に係るオーステナイト系ステンレス鋼は、常温以上では、冷間圧延時に変形マルテンサイトを形成しない。そのため、本発明に係るオーステナイト系ステンレス鋼は高い延性を備える。また、本発明に係るオーステナイト系ステンレス鋼では、空気中で、および5%の濃度の塩化ナトリウム(NaCl)環境下でも、時効処理後でさえ応力腐食割れおよび置き割れが生じない。   The austenitic stainless steel according to the present invention does not form deformed martensite during cold rolling at room temperature or higher. Therefore, the austenitic stainless steel according to the present invention has high ductility. In addition, the austenitic stainless steel according to the present invention does not cause stress corrosion cracking and setting crack even after aging treatment even in the air and in a 5% concentration sodium chloride (NaCl) environment.

[実施例]
本発明に係るオーステナイト系ステンレス鋼を生産規模で溶解させた後、以下の重量%で表す化学組成で平板形状に鋳造した。
[Example]
The austenitic stainless steel according to the present invention was melted on a production scale and then cast into a flat plate shape with a chemical composition represented by the following weight%.

Figure 2017512906
Figure 2017512906

平板をさらに熱間圧延して4.0mmの厚さにし、温度1080℃で焼鈍した。また、本発明に係るオーステナイト系ステンレス鋼を圧延度50%で冷間圧延して2.0mmの厚さにし、温度1080℃で焼鈍した。次に、焼鈍した鋼帯生産品について、降伏強さRp0.2および引張り強度Rmならびに破断伸びA80を測定することで試験した。 The flat plate was further hot-rolled to a thickness of 4.0 mm and annealed at a temperature of 1080 ° C. The austenitic stainless steel according to the present invention was cold-rolled at a rolling degree of 50% to a thickness of 2.0 mm and annealed at a temperature of 1080 ° C. Were then tested by measuring the annealed steel strip production products, the yield strength R p0.2 and tensile strength R m and elongation at break A 80.

本発明に係るオーステナイト系ステンレス鋼のTWIP効果を利用するために、ステンレス鋼帯を還元度10%で冷間変形させ、降伏強さRp0.2および引張り強度Rmならびに破断伸びA80を測定した。また、還元度20%で冷間変形させた鋼帯に対しても、各作業を行った。これらの試験の結果を以下の表に示す。 In order to utilize the TWIP effect of the austenitic stainless steel according to the present invention, the stainless steel strip is cold deformed at a reduction degree of 10%, and the yield strength R p0.2, the tensile strength R m and the breaking elongation A 80 are measured. did. Each operation was also performed on a steel strip that was cold deformed at a reduction degree of 20%. The results of these tests are shown in the following table.

Figure 2017512906
Figure 2017512906

上記の結果は、本発明に係るオーステナイト系ステンレス鋼が降伏強さRp0.2に対して高い加工硬化率を備えていることを示している。また、破断伸びA80は、10%の変形度では28%であり、20%の変形度では14%と、冷間圧延後でも依然として高い強度で良好な延性を示している。 The above results show that the austenitic stainless steel according to the present invention has a high work hardening rate with respect to the yield strength R p0.2 . Also, elongation at break A 80 is 28% at 10% degree of deformation, the 20% degree of deformation indicates a 14%, a good ductility at still high strength even after cold rolling.

本発明に係るオーステナイト系ステンレス鋼は、平板、ブルーム、ビレット、ならびにコイル、鋼帯、厚板、薄板などの平型製品、ならびに条鋼、棒鋼、ワイヤ、異形鋼、形鋼などの長尺製品、ならびにパイプ、チューブなどの管状製品として製造可能であり、例えば、自動車構体、タンク、破砕関連部品、建造物および鉄道車両に適用できる。   The austenitic stainless steel according to the present invention includes flat products such as flat plates, blooms, billets, and coils, steel strips, thick plates, thin plates, and long products such as bar steel, bar steel, wire, deformed steel, and shaped steel, In addition, it can be manufactured as a tubular product such as a pipe and a tube, and can be applied to, for example, automobile structures, tanks, crushing related parts, buildings, and railway vehicles.

本発明に係る高マンガンオーステナイト系ステンレス鋼は、熱間圧延などの熱間加工後に焼鈍した鋼帯、冷間圧延などの冷間加工後に焼鈍した鋼帯、または熱間加工および冷間加工を行い、さらに冷間変形させた後に焼鈍した鋼帯の状態で冷間変形でき、TWIP効果を利用して高い延性を維持したまま、より高い降伏強さおよび引張り強度の値を得ることができる。   The high manganese austenitic stainless steel according to the present invention performs steel strip annealed after hot working such as hot rolling, steel strip annealed after cold working such as cold rolling, or hot working and cold working. Further, it can be cold deformed in the state of a steel strip annealed after further cold deformation, and higher yield strength and tensile strength values can be obtained while maintaining high ductility using the TWIP effect.

Claims (15)

高い強度および延性を有するオーステナイト系高マンガンステンレス鋼において、該ステンレス鋼は、重量%で、0.03〜0.1%の炭素、0.08〜1.0%のケイ素、14〜26%のマンガン、10.5〜18%のクロム、0.8%未満のニッケル、0.05〜0.6%の銅、0.1〜0.8%の窒素および0.0008〜0.005%のホウ素からなり、残部は鉄、およびステンレス鋼に生じる不可避的不純物であり、TWIP(双晶誘起塑性)機構を利用した可冷間変形性であることを特徴とするオーステナイト系高マンガンステンレス鋼。   In austenitic high manganese stainless steel with high strength and ductility, the stainless steel is 0.03-0.1% carbon, 0.08-1.0% silicon, 14-26% manganese, 10.5-18% chromium by weight. , Less than 0.8% nickel, 0.05-0.6% copper, 0.1-0.8% nitrogen and 0.0008-0.005% boron, the balance is unavoidable impurities in iron and stainless steel, TWIP (twinning induced An austenitic high-manganese stainless steel characterized by cold deformability using a (plastic) mechanism. 請求項1に記載のステンレス鋼において、オーステナイト系マンガン鉄ステンレス鋼の焼きなまし状態における降伏強さRp0.2および引張り強度Rmならびに破断伸びA80の範囲は、Rp0.2が470〜600MPa、Rmが800〜930MPa、A80が40〜60%であることを特徴とするオーステナイト系高マンガンステンレス鋼。 In the stainless steel according to claim 1, the range of yield strength R p0.2 and tensile strength R m and elongation at break A 80 in the annealed state of austenitic manganese iron stainless steel is as follows: R p0.2 is 470 to 600 MPa, An austenitic high manganese stainless steel characterized in that R m is 800 to 930 MPa and A 80 is 40 to 60%. 請求項1または2に記載のステンレス鋼において、前記降伏強さRp0.2に対する冷間変形度10%での前記冷間変形に基づく加工硬化率は少なくとも20%であることを特徴とするオーステナイト系高マンガンステンレス鋼。 The stainless steel according to claim 1 or 2, wherein the work hardening rate based on the cold deformation at a cold deformation degree of 10% with respect to the yield strength Rp0.2 is at least 20%. High manganese stainless steel. 請求項1、2または3に記載のステンレス鋼において、前記降伏強さRp0.2に対する冷間変形度20%での前記冷間変形に基づく前記加工硬化率は少なくとも40%であることを特徴とするオーステナイト系高マンガンステンレス鋼。 The stainless steel according to claim 1, 2, or 3, wherein the work hardening rate based on the cold deformation at a cold deformation degree of 20% with respect to the yield strength Rp0.2 is at least 40%. Austenitic high manganese stainless steel. 前記請求項のいずれかに記載のステンレス鋼において、冷間変形度10%での前記破断伸びA80は25〜35%であることを特徴とするオーステナイト系高マンガンステンレス鋼。 Wherein the stainless steel according to any one of claims austenitic high manganese stainless steel, wherein the breaking elongation A 80 of at cold deformation of 10% is 25% to 35%. 前記請求項のいずれかに記載のステンレス鋼において、冷間変形度20%での前記破断伸びA80は10〜20%であることを特徴とするオーステナイト系高マンガンステンレス鋼。 Wherein the stainless steel according to any one of claims austenitic high manganese stainless steel, wherein the breaking elongation A 80 of at cold deformation of 20% is 10-20%. 前記請求項のいずれかに記載のステンレス鋼において、マンガン含有量は、17.5〜26.0%の範囲であり、より好適には19〜23%の範囲であることを特徴とするオーステナイト系高マンガンステンレス鋼。   The austenitic high-manganese stainless steel according to any one of the preceding claims, wherein the manganese content is in the range of 17.5 to 26.0%, more preferably in the range of 19 to 23%. . 前記請求項のいずれかに記載のステンレス鋼において、クロム含有量は、12〜16.0%の範囲であり、より好適には12.5〜14%の範囲であることを特徴とするオーステナイト系高マンガンステンレス鋼。   The stainless steel according to any one of the preceding claims, wherein the chromium content is in the range of 12 to 16.0%, more preferably in the range of 12.5 to 14%. . 前記請求項のいずれかに記載のステンレス鋼において、銅含有量は0.3〜0.6%の範囲であることを特徴とするオーステナイト系高マンガンステンレス鋼。   The stainless steel according to any one of the preceding claims, wherein the copper content is in the range of 0.3 to 0.6%. 前記請求項のいずれかに記載のステンレス鋼において、該ステンレス鋼は、任意で0.001〜0.02%のチタンおよび任意で0.04%未満のアルミニウムを含有することを特徴とするオーステナイト系高マンガンステンレス鋼。   Austenitic high manganese stainless steel according to any of the preceding claims, characterized in that the stainless steel optionally contains 0.001-0.02% titanium and optionally less than 0.04% aluminum. 前記請求項のいずれかに記載のステンレス鋼において、該ステンレス鋼は、熱間加工後に焼鈍された鋼帯の状態にてTWIP効果について可冷間変形性であることを特徴とするオーステナイト系高マンガンステンレス鋼。   Austenitic high manganese according to any of the preceding claims, wherein the stainless steel is cold deformable with respect to the TWIP effect in the state of a steel strip annealed after hot working Stainless steel. 請求項1ないし10のいずれかに記載のステンレス鋼において、該ステンレス鋼は、冷間加工後に焼鈍された鋼帯の状態にて前記TWIP効果について可冷間変形性であることを特徴とするオーステナイト系高マンガンステンレス鋼。   11. The stainless steel according to claim 1, wherein the stainless steel is cold deformable with respect to the TWIP effect in the state of a steel strip annealed after cold working. High manganese stainless steel. 請求項1ないし10のいずれかに記載のステンレス鋼において、該ステンレス鋼は、前記熱間加工および前記冷間加工を施して、さらに前記冷間変形を行った後に焼鈍された鋼帯の状態にて、前記TWIP効果について可冷間変形性であることを特徴とするオーステナイト系高マンガンステンレス鋼。   The stainless steel according to any one of claims 1 to 10, wherein the stainless steel is subjected to the hot working and the cold working and further into the state of a steel strip annealed after the cold deformation. An austenitic high manganese stainless steel characterized by being cold deformable with respect to the TWIP effect. 前記請求項のいずれかに記載のステンレス鋼において、該オーステナイト系ステンレス鋼は、平板、ブルーム、ビレット、ならびにコイル、鋼帯、厚板、薄板などの平型製品、ならびに条鋼、棒鋼、ワイヤ、異形鋼、形鋼などの長尺製品、ならびにパイプ、チューブなどの管状製品として製造されることを特徴とするオーステナイト系高マンガンステンレス鋼。   The austenitic stainless steel according to any one of the preceding claims, wherein the austenitic stainless steel is a flat product such as a flat plate, a bloom, a billet, a coil, a steel strip, a thick plate, a thin plate, and a bar, a steel bar, a wire, and a deformed shape. Austenitic high manganese stainless steel manufactured as long products such as steel and shaped steel, and tubular products such as pipes and tubes. 前記請求項のいずれかに記載のステンレス鋼において、該オーステナイト系ステンレス鋼は、自動車構体、タンク、破砕関連部品、建造物および鉄道車両に適用されることを特徴とするオーステナイト系高マンガンステンレス鋼。   The austenitic high-manganese stainless steel according to any one of the preceding claims, wherein the austenitic stainless steel is applied to automobile structures, tanks, crushing related parts, buildings, and railway vehicles.
JP2016559607A 2014-03-28 2015-03-27 Austenitic stainless steel Pending JP2017512906A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14162191.2 2014-03-28
EP14162191.2A EP2924131B1 (en) 2014-03-28 2014-03-28 Austenitic high-manganese stainless steel
PCT/EP2015/056749 WO2015144896A2 (en) 2014-03-28 2015-03-27 Austenitic stainless steel

Publications (1)

Publication Number Publication Date
JP2017512906A true JP2017512906A (en) 2017-05-25

Family

ID=50389900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016559607A Pending JP2017512906A (en) 2014-03-28 2015-03-27 Austenitic stainless steel

Country Status (18)

Country Link
US (1) US20170121797A1 (en)
EP (1) EP2924131B1 (en)
JP (1) JP2017512906A (en)
KR (1) KR101830563B1 (en)
CN (1) CN106133177B (en)
DK (1) DK2924131T3 (en)
ES (1) ES2749234T3 (en)
HR (1) HRP20191717T1 (en)
HU (1) HUE046585T2 (en)
LT (1) LT2924131T (en)
MX (1) MX2016012672A (en)
PL (1) PL2924131T3 (en)
PT (1) PT2924131T (en)
RS (1) RS59347B1 (en)
SI (1) SI2924131T1 (en)
TW (1) TW201540850A (en)
WO (1) WO2015144896A2 (en)
ZA (1) ZA201606617B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021507103A (en) * 2017-12-20 2021-02-22 ポスコPosco Austenitic stainless steel

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3173504A1 (en) * 2015-11-09 2017-05-31 Outokumpu Oyj Method for manufacturing an austenitic steel component and use of the component
ES2903435T3 (en) * 2016-09-29 2022-04-01 Outokumpu Oy Method for cold deformation of an austenitic steel
ES2824461T3 (en) * 2017-02-10 2021-05-12 Outokumpu Oy Steel component manufactured by hot forming, method of manufacture and component use
CN108103404A (en) * 2017-12-28 2018-06-01 长沙无道工业设计有限公司 A kind of high-strength stainless steel alloy material and preparation method thereof
MX2021008766A (en) * 2019-01-22 2021-08-24 Aperam Iron-manganese alloy having improved weldability.
KR102665422B1 (en) * 2019-01-25 2024-05-10 엘지이노텍 주식회사 Substrate for display
CN110607479B (en) * 2019-04-24 2021-11-05 上海大学 Stainless steel for valve spring and preparation method of steel wire of stainless steel
CN110103530B (en) * 2019-06-04 2023-03-31 河北工业大学 High-performance corrosion-resistant TWIP/stainless steel multilayer composite material and preparation method thereof
CN111500942B (en) * 2020-05-11 2021-08-10 湖南恒基粉末科技有限责任公司 High-nitrogen-content non-magnetic stainless steel powder and preparation method thereof
CN113046534B (en) * 2021-03-15 2023-02-03 长春工业大学 Preparation method of high-nitrogen nickel-free austenitic stainless steel with high twin crystal density
CN113913693A (en) * 2021-10-08 2022-01-11 赵洪运 High-strength corrosion-resistant ocean engineering stainless steel and preparation method thereof
CN114686784A (en) * 2022-04-02 2022-07-01 四川罡宸不锈钢有限责任公司 Nickel-saving austenitic stainless steel material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904401A (en) * 1974-03-21 1975-09-09 Carpenter Technology Corp Corrosion resistant austenitic stainless steel
JPH0941087A (en) * 1995-05-22 1997-02-10 Kobe Steel Ltd High manganese non-magnetic steel for cryogenic use and its production
JPH11209823A (en) * 1998-01-23 1999-08-03 Kobe Steel Ltd Manufacture of high strength steel sheet excellent in press formability
JP2009030139A (en) * 2007-07-30 2009-02-12 Daido Steel Co Ltd Forged product of non-magnetic stainless steel, drill collar using the forged product, and method for manufacturing the forged product
JP2010196142A (en) * 2009-02-27 2010-09-09 Nippon Yakin Kogyo Co Ltd HIGH-Mn AUSTENITIC STAINLESS STEEL AND METAL PART FOR CLOTHING
JP2012519780A (en) * 2009-03-10 2012-08-30 マックス−プランク−インスティトゥート フュア アイゼンフォルシュング ゲー エム ベー ハー High corrosion resistance austenitic steel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE728159C (en) * 1936-10-09 1942-11-21 Boehler & Co Ag Geb Chrome-manganese-nitrogen steel
AT214466B (en) * 1959-06-04 1961-04-10 Schoeller Bleckmann Stahlwerke Steel alloys for the manufacture of drill collars for deep drill rods
BE754614A (en) * 1969-12-27 1971-01-18 Nisshin Steel Co Ltd AUSTENITIC STAINLESS STEELS
JPH0619110B2 (en) * 1986-05-19 1994-03-16 株式会社神戸製鋼所 Method for producing high Mn austenitic stainless steel for cryogenic use
JPH0536481A (en) * 1991-07-31 1993-02-12 Toshiba Lighting & Technol Corp Discharge lamp lighting apparatus
AT407882B (en) * 1999-07-15 2001-07-25 Schoeller Bleckmann Oilfield T METHOD FOR PRODUCING A PARAMAGNETIC, CORROSION-RESISTANT MATERIAL AND THE LIKE MATERIALS WITH A HIGH STRETCH LIMIT, STRENGTH AND TENSITY
DE102008005803A1 (en) 2008-01-17 2009-07-23 Technische Universität Bergakademie Freiberg Component used for armoring vehicles and in installations and components for transporting and recovering gases at low temperature is made from a high carbon-containing austenitic cryogenic steel cast mold
CN101250674A (en) * 2008-04-11 2008-08-27 江苏大学 Mid nitrogen high manganese austenitic stainless steel
DE102010026808B4 (en) * 2010-07-10 2013-02-07 Technische Universität Bergakademie Freiberg Corrosion-resistant austenitic phosphorous-alloyed steel casting with TRIP or TWIP properties and its use
US20120156085A1 (en) * 2010-12-14 2012-06-21 Thompson Peter T Blast Resistant, Non-Magnetic, Stainless Steel Armor
CN102002642A (en) * 2010-12-31 2011-04-06 上海加宁新技术研究所 Superhigh strength non-magnetic stainless steel
CN102560259B (en) * 2012-01-16 2013-06-19 西南石油大学 Preparation method for twinning induced plasticity (TWIP) steel for low-cost large-expansibility expansion pipe and steel pipe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904401A (en) * 1974-03-21 1975-09-09 Carpenter Technology Corp Corrosion resistant austenitic stainless steel
JPH0941087A (en) * 1995-05-22 1997-02-10 Kobe Steel Ltd High manganese non-magnetic steel for cryogenic use and its production
JPH11209823A (en) * 1998-01-23 1999-08-03 Kobe Steel Ltd Manufacture of high strength steel sheet excellent in press formability
JP2009030139A (en) * 2007-07-30 2009-02-12 Daido Steel Co Ltd Forged product of non-magnetic stainless steel, drill collar using the forged product, and method for manufacturing the forged product
JP2010196142A (en) * 2009-02-27 2010-09-09 Nippon Yakin Kogyo Co Ltd HIGH-Mn AUSTENITIC STAINLESS STEEL AND METAL PART FOR CLOTHING
JP2012519780A (en) * 2009-03-10 2012-08-30 マックス−プランク−インスティトゥート フュア アイゼンフォルシュング ゲー エム ベー ハー High corrosion resistance austenitic steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021507103A (en) * 2017-12-20 2021-02-22 ポスコPosco Austenitic stainless steel

Also Published As

Publication number Publication date
LT2924131T (en) 2019-09-25
PL2924131T3 (en) 2020-02-28
PT2924131T (en) 2019-10-30
CN106133177A (en) 2016-11-16
EP2924131B1 (en) 2019-08-21
HRP20191717T1 (en) 2019-12-13
TW201540850A (en) 2015-11-01
MX2016012672A (en) 2016-12-14
RS59347B1 (en) 2019-10-31
KR20160140828A (en) 2016-12-07
WO2015144896A2 (en) 2015-10-01
CN106133177B (en) 2018-04-27
WO2015144896A3 (en) 2016-03-17
DK2924131T3 (en) 2019-10-14
SI2924131T1 (en) 2019-12-31
US20170121797A1 (en) 2017-05-04
EP2924131A1 (en) 2015-09-30
ZA201606617B (en) 2018-05-30
KR101830563B1 (en) 2018-02-20
HUE046585T2 (en) 2020-03-30
ES2749234T3 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
JP2017512906A (en) Austenitic stainless steel
US10597760B2 (en) High-strength steel material for oil well and oil well pipes
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
JP2010059452A (en) Cold-rolled steel sheet and producing method therefor
US20160010192A1 (en) Thick, tough, high tensile strength steel plate and production method therefor
JP2020500262A (en) Medium manganese steel for low temperature and its manufacturing method
JP5376927B2 (en) Manufacturing method of high proportional limit steel plate with excellent bending workability
KR101539520B1 (en) Duplex stainless steel sheet
US20220074029A1 (en) Hot rolled steel and a method of manufacturing thereof
JP6021094B2 (en) High-strength non-heat treated steel material excellent in strength, ductility and toughness and method for producing the same
AU2019200246A1 (en) Steel material and expandable oil country tubular goods
JP5618044B2 (en) Thick steel plate with excellent fatigue crack propagation characteristics in the thickness direction and method for producing the same
KR102268906B1 (en) Austenitic stainless steel with imporoved strength and method for manufacturing the same
WO2014203472A1 (en) Method for producing hot-rolled martensitic stainless steel strip for welded steel pipe for line pipe
JP6179609B2 (en) Manufacturing method of thick high-strength steel sheet with excellent cold workability
JP4660363B2 (en) Manufacturing method of thick steel plate with excellent toughness
JP2019081929A (en) Nickel-containing steel plate and method for manufacturing the same
JP2014034695A (en) Thick high-strength steel plate having excellent cold workability and production method thereof
JP2011246774A (en) High-strength steel sheet and method of manufacturing the same
KR101668533B1 (en) Ferritic stainless steel with high surface quality
US20230287549A1 (en) Austenitic stainless steel with improved deep drawing
KR101443446B1 (en) Non-heated type hot-rolled steel sheet and method of manufacturing the same
KR101377909B1 (en) Steel sheet and method of manufacturing the same
KR20140017112A (en) Non-heated type high strength hot-rolled steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180123

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190226