US20170121797A1 - Austenitic stainless steel - Google Patents
Austenitic stainless steel Download PDFInfo
- Publication number
- US20170121797A1 US20170121797A1 US15/129,502 US201515129502A US2017121797A1 US 20170121797 A1 US20170121797 A1 US 20170121797A1 US 201515129502 A US201515129502 A US 201515129502A US 2017121797 A1 US2017121797 A1 US 2017121797A1
- Authority
- US
- United States
- Prior art keywords
- stainless steel
- manganese
- cold
- austenitic
- steel according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910000963 austenitic stainless steel Inorganic materials 0.000 title claims description 20
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 42
- 239000011572 manganese Substances 0.000 claims abstract description 38
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 35
- 239000010935 stainless steel Substances 0.000 claims abstract description 33
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 28
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000011651 chromium Substances 0.000 claims abstract description 18
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 16
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 13
- 239000010949 copper Substances 0.000 claims abstract description 12
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 11
- 229910052802 copper Inorganic materials 0.000 claims abstract description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 10
- 230000007246 mechanism Effects 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 5
- 239000010703 silicon Substances 0.000 claims abstract description 5
- 229910052796 boron Inorganic materials 0.000 claims abstract description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000012535 impurity Substances 0.000 claims abstract description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 12
- 238000005482 strain hardening Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 8
- 238000010276 construction Methods 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 10
- 229910001566 austenite Inorganic materials 0.000 description 7
- 238000005097 cold rolling Methods 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 229910000734 martensite Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910001039 duplex stainless steel Inorganic materials 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
Definitions
- the invention relates to an austenitic high-manganese stainless steel having high strength and high ductility which stainless steel utilizes the TWIP (TWinning Induced Plasticity) mechanism during the deformation process.
- TWIP TWinning Induced Plasticity
- the austenitic stainless steels such as the most versatile and widely used 304 austenitic stainless steel, have a significantly lower strength combined with relatively high residual elongation after cold deformation, such as cold rolling.
- the ferritic austenitic duplex stainless steels such as the 2304 ferritic austenitic duplex stainless steel, offer a high strength, but loose ductility with even a low cold deformation degree.
- the austenitic manganese stainless steels with high carbon content are vulnerable to intergranular corrosion after welding in the weld and heat-affected zone due to chromium depletion in this area. Further, the typical manganese stainless steels are in general vulnerable to form martensitic phase after cold deformation, which could lead to delayed cracking.
- the FR patent application 2071667 relates to an austenitic stainless steel which contains in weight % 0.02-0.3% C, 0.1-3.0% Si, 8.0-17.0% Mn, 12.0-16.0% Cr, 0.05-0.3% N and optionally 0.1-3.0% copper and 0.1-3.0% Mo, the balance being formed of iron as essential ingredients in order to have austenitic phase after annealing.
- the object of the FR patent application 2071667 the object is to have improved softening and better forming properties.
- the manganese (Mn) content should not contain more than 17 weight %, because a higher content produces less austenite phase.
- the U.S. Pat. No. 6,454,879 describes a method for producing a forging piece of paramagnetic austenitic stainless steel containing in weight % up to 0.1 C, 0.21-0.60 Si, 20-30% Mn, 17-24% Cr, up to 2.5% Ni, up to 1.9% Mo, 0.6-1.4% N up to 0.3% Cu, up to 0.002% B, up to 0.8% carbide-forming elements, the balance including iron with the microstructure having substantially no ferrite content. Titanium, zirconium, vanadium and niobium are described as strong carbide and nitride and/or carbon nitride formers the contents of these elements being less than 0.8 weight %.
- the material is hot-formed at a temperature of at least 850° C. to a degree of deformation of at least about 3,5 times and actively cooled.
- the second step it is cold-formed in a deformation of 5-20% below the deposit temperature of nitrides at elevated temperature below 600° C., but greater than 350° C.
- the deformation is in every process step thus carried out in elevated temperature which increases the manufacturing costs of the produced material.
- a twinning in the microstructure of a metal material is in general defined as two separate crystals that share some of the same crystal lattice.
- the TWIP (TWinning Induced Plasticity) stainless steels have austenitic microstructure with face-centered cubic lattice (FCC) along with a relatively low stacking fault energy (SFE) promoting the activation of twinning deformation mechanism, i.e. mechanically induced twinning in the crystal lattice.
- FCC face-centered cubic lattice
- SFE stacking fault energy
- TWIP indicates that twinning often goes along with accomodation plasticity via lattice dislocations.
- the object of the present invention is to eliminate some drawbacks of the prior art and to achieve an improved austenitic high-manganese stainless steel which utilizes the TWIP (TWinning Induced Plasticity) mechanism in the cold deformation in order to have a high work-hardening rate and good corrosion resistance with low vulnerability for intergranular corrosion after welding and for delayed cracking and stress corrosion cracking.
- TWIP TWinning Induced Plasticity
- the austenitic high-manganese stainless steel consists of in weight % 0.03-0.1% carbon, 0.08-1.0% silicon, 14-26% manganese. 10.5-18% chromium, less than 0.8% nickel, 0.05-0.6% copper, 0.1-0.8% nitrogen and 0.0008-0.005% boron, the rest being iron and inevitable impurities occurred in stainless steels.
- the austenitic stainless steel of the invention further contains optionally 0.001-0.02% titanium and optionally less than 0.04% aluminium.
- the austenitic stainless steel of the invention has a superior ductility and high strength after plastic deformation utilizing in the cold deformation the TWIP (TWinning Induced Plasticity) mechanism.
- the austenitic stainless steel of the invention combines thus a high strength in the initial annealed state and a high work hardening rate with a high elongation after the cold deformation, such as cold rolling, in connection with a low nickel content.
- the ranges for the yield strength R p0.2 and the tensile strength R m as well as the elongation to fracture A 80 at the annealed state the austenitic high-manganese stainless steel in accordance with the invention are 470-600 MPa for R p0.2 , 800-930 MPa for R m and 40-60% for A 80 after annealed at the temperature range of 1000-1150° C.
- the austenitic high-manganese stainless steel of the invention has a high work-hardening rate of at least 20% with the deformation degree 10% and at least 40% with the deformation degree 20% for the yield strength R p0.2 . Further, the elongation to fracture A 80 is 25-35% with the deformation degree 10% and 10-20% with the deformation degree 20% showing the good ductility.
- Carbon (C) is a valuable austenite forming and stabilizing element, which enables reduced use of expensive elements nickel and copper.
- the upper limit for carbon alloying (less than 0.1%) is set by the risk of carbide precipitation, which deteriorates the corrosion resistance of the stainless steel.
- the carbon content is low enough to maintain good corrosion resistance. The reduction of the carbon content to low levels by the decarburization process is non-economical, and therefore, the carbon content shall not be less than 0.03%.
- Silicon (Si) is added to stainless steels for deoxidizing purposes during melting and should not be below 0.08%. Because silicon is a ferrite forming element, its content must be limited below 1%.
- Manganese (Mn) is a key element of the austenitic stainless steel of the invention, ensuring the stable austenitic crystal structure and enabling the twinning mechanism and, further, the reduction of the use of more expensive nickel. Manganese also increases the solubility of nitrogen to the stainless steel. Plastic deformation accompanied with twinning deformation easily occurs in the case of an amount of manganese of 14% or more without deformed structure, i.e. the strain-induced martensite. A high manganese content makes the decarburization process of the steel more difficult, impairs the surface quality and reduces the corrosion resistance of the steel. Therefore the manganese content shall be less than 26%. Preferably, the manganese content is at the range of 17.5-26.0%, more preferably at the range of 19-23%.
- Chromium (Cr) is responsible of ensuring corrosion resistance of a stainless steel. Therefore, the chromium content in this stainless steel shall be at the minimum 10.5%. Chromium is important in terms of avoiding the delayed cracking phenomenon. By increasing the content from this level the corrosion resistance of the steel can be improved. However, because chromium is a ferrite forming element, the increasing of the chromium content increases the need for expensive austenite formers, such as nickel and manganese or necessitates impractically high carbon and nitrogen contents. Therefore, the chromium content shall be lower than 18%. Chromium also increases the solubility of nitrogen. Preferably, the chromium content is at the range of 12-16.0%, more preferably at the range of 12.5-14%.
- Nickel (Ni) is a strong austenite former and stabilizer, but nickel is an expensive element. However, very low nickel contents would necessitate impractically high alloying with the other austenite forming and stabilizing elements. Therefore, the nickel content shall be preferably lower than 0.8% but preferably less than 0.5%.
- Copper (Cu) is present as a residual of 0.05-0.6%, preferably at the range 0.3-0.6%. Copper is a weak stabilizer of the austenite phase but, however, has a strong effect on the resistance to martensite formation. Copper also has a positive effect on ductility and forming properties.
- Nitrogen (N) is a strong austenite former and stabilizer. Therefore, nitrogen alloying improves the cost efficiency of the steel by enabling lower use of nickel and copper.
- nitrogen content shall be at least 0.1%. High nitrogen contents increase the strength of the steel and thus make forming operations more difficult. Furthermore, risk of nitride precipitation increases with increasing nitrogen content. For these reasons, the nitrogen content shall not exceed 0.8%, preferably the nitrogen content shall be lower than 0.6%.
- Nitrogen increases the stacking fault energy (SFE), which is used for the prediction of the TWIP-effect, and thus enables for and facilitates the TWIP-effect.
- SFE stacking fault energy
- the austenitic stainless steel according to the invention does not form during cold rolling any deformation martensite at the room temperature or above. Therefore, the stainless steel of the invention has a high ductility.
- the austenitic stainless steel according to the invention is also free of stress corrosion cracking and delayed cracking, just even after aging process in air and also in 5 sodium chloride (NaCl) environment.
- the austenitic stainless steel in accordance with invention was melted in the production scale and then cast into a slab form with the chemical composition in weight %
- the slabs were further hot rolled into the thickness of 4.0 mm and then annealed at the temperature 1080° C.
- the austenitic stainless steel of the invention was further cold rolled with the rolling degree of 50% to the thickness of 2.0 mm and annealed at the temperature 1080° C.
- the annealed strip product was then tested by determining the yield strength R p0.2 and the tensile strength R m as well as the elongation to fracture A 80 .
- the stainless steel strip was cold deformed with the reduction degree of 10% and then determined the yield strength R p0.2 and the tensile strength R m as well as the elongation to fracture A 80 .
- the respective actions were also made for the cold deformed strip having the reduction degree of 20%. The results for those test results are described in the following table:
- the austenitic stainless steel in accordance with the invention has high work-hardening rate for the yield strength R p0.2 . Further, the elongation to fracture A 80 is 28% with the deformation degree 10% and 14% with the deformation degree 20% shows still a good ductility at high strength after cold rolling.
- the austenitic stainless steel of the invention can be manufactured as slabs, blooms, billets and flat products such as coils, strips, plates, sheets, and long products such as bars, rods, wires, profiles and shapes, and tubular products such as pipes, tubes and can be applied for instance in automotive construction, in tanks, in crash relevant parts, in construction and in rail vehicles.
- the high-manganese austenitic stainless steel in accordance with the invention can be cold deformed in the state of as a strip annealed after hot working, such as hot rolling, as a strip annealed after cold working, such as cold rolling, or as a strip annealed after hot working and cold working and then cold deformed, such as cold rolled, in order to utilize the TWIP effect for higher yield and tensile strength values with still high ductility.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Catalysts (AREA)
Abstract
Description
- The invention relates to an austenitic high-manganese stainless steel having high strength and high ductility which stainless steel utilizes the TWIP (TWinning Induced Plasticity) mechanism during the deformation process.
- The austenitic stainless steels, such as the most versatile and widely used 304 austenitic stainless steel, have a significantly lower strength combined with relatively high residual elongation after cold deformation, such as cold rolling. The ferritic austenitic duplex stainless steels, such as the 2304 ferritic austenitic duplex stainless steel, offer a high strength, but loose ductility with even a low cold deformation degree.
- The austenitic manganese stainless steels with high carbon content are vulnerable to intergranular corrosion after welding in the weld and heat-affected zone due to chromium depletion in this area. Further, the typical manganese stainless steels are in general vulnerable to form martensitic phase after cold deformation, which could lead to delayed cracking.
- The FR patent application 2071667 relates to an austenitic stainless steel which contains in weight % 0.02-0.3% C, 0.1-3.0% Si, 8.0-17.0% Mn, 12.0-16.0% Cr, 0.05-0.3% N and optionally 0.1-3.0% copper and 0.1-3.0% Mo, the balance being formed of iron as essential ingredients in order to have austenitic phase after annealing. The object of the FR patent application 2071667 the object is to have improved softening and better forming properties. However, on the chemical composition of the FR patent application 2071667 the manganese (Mn) content should not contain more than 17 weight %, because a higher content produces less austenite phase.
- The U.S. Pat. No. 6,454,879 describes a method for producing a forging piece of paramagnetic austenitic stainless steel containing in weight % up to 0.1 C, 0.21-0.60 Si, 20-30% Mn, 17-24% Cr, up to 2.5% Ni, up to 1.9% Mo, 0.6-1.4% N up to 0.3% Cu, up to 0.002% B, up to 0.8% carbide-forming elements, the balance including iron with the microstructure having substantially no ferrite content. Titanium, zirconium, vanadium and niobium are described as strong carbide and nitride and/or carbon nitride formers the contents of these elements being less than 0.8 weight %. According to the method, the material is hot-formed at a temperature of at least 850° C. to a degree of deformation of at least about 3,5 times and actively cooled. In the second step it is cold-formed in a deformation of 5-20% below the deposit temperature of nitrides at elevated temperature below 600° C., but greater than 350° C. In order to avoid the martensite formation the deformation is in every process step thus carried out in elevated temperature which increases the manufacturing costs of the produced material.
- A twinning in the microstructure of a metal material is in general defined as two separate crystals that share some of the same crystal lattice. The TWIP (TWinning Induced Plasticity) stainless steels have austenitic microstructure with face-centered cubic lattice (FCC) along with a relatively low stacking fault energy (SFE) promoting the activation of twinning deformation mechanism, i.e. mechanically induced twinning in the crystal lattice. The term TWIP indicates that twinning often goes along with accomodation plasticity via lattice dislocations.
- The object of the present invention is to eliminate some drawbacks of the prior art and to achieve an improved austenitic high-manganese stainless steel which utilizes the TWIP (TWinning Induced Plasticity) mechanism in the cold deformation in order to have a high work-hardening rate and good corrosion resistance with low vulnerability for intergranular corrosion after welding and for delayed cracking and stress corrosion cracking. The essential features of the austenitic stainless steel are enlisted in the appended claims.
- According to the invention the austenitic high-manganese stainless steel consists of in weight % 0.03-0.1% carbon, 0.08-1.0% silicon, 14-26% manganese. 10.5-18% chromium, less than 0.8% nickel, 0.05-0.6% copper, 0.1-0.8% nitrogen and 0.0008-0.005% boron, the rest being iron and inevitable impurities occurred in stainless steels. The austenitic stainless steel of the invention further contains optionally 0.001-0.02% titanium and optionally less than 0.04% aluminium. The austenitic stainless steel of the invention has a superior ductility and high strength after plastic deformation utilizing in the cold deformation the TWIP (TWinning Induced Plasticity) mechanism. The austenitic stainless steel of the invention combines thus a high strength in the initial annealed state and a high work hardening rate with a high elongation after the cold deformation, such as cold rolling, in connection with a low nickel content.
- The ranges for the yield strength Rp0.2 and the tensile strength Rm as well as the elongation to fracture A80 at the annealed state the austenitic high-manganese stainless steel in accordance with the invention are 470-600 MPa for Rp0.2, 800-930 MPa for Rm and 40-60% for A80 after annealed at the temperature range of 1000-1150° C. When the austenitic stainless steel in accordance with the invention was further cold deformed, such as cold rolled, the effect of TWIP (TWinning Induced Plasticity) mechanism can be shown by means of the respective ranges for the yield strength Rp0.2 and the tensile strength Rm as well as the elongation to fracture A80 enlisted in the following table 1 after the cold rolling with the reduction degrees of 10% and 20%:
-
TABLE 1 Deformation degree Rp0,2 (MPa) Rm (MPa) A80 (%) 10% 800-900 900-1030 25-35 20% 1000-1100 1100-1250 10-20 - The austenitic high-manganese stainless steel of the invention has a high work-hardening rate of at least 20% with the deformation degree 10% and at least 40% with the deformation degree 20% for the yield strength Rp0.2. Further, the elongation to fracture A80 is 25-35% with the deformation degree 10% and 10-20% with the deformation degree 20% showing the good ductility.
- The effects of the main elements in the chemical composition of the austenitic high-manganese stainless steel according to the invention are described, the ranges being in weight %, if not otherwise mentioned.
- Carbon (C) is a valuable austenite forming and stabilizing element, which enables reduced use of expensive elements nickel and copper. The upper limit for carbon alloying (less than 0.1%) is set by the risk of carbide precipitation, which deteriorates the corrosion resistance of the stainless steel. The carbon content is low enough to maintain good corrosion resistance. The reduction of the carbon content to low levels by the decarburization process is non-economical, and therefore, the carbon content shall not be less than 0.03%.
- Silicon (Si) is added to stainless steels for deoxidizing purposes during melting and should not be below 0.08%. Because silicon is a ferrite forming element, its content must be limited below 1%.
- Manganese (Mn) is a key element of the austenitic stainless steel of the invention, ensuring the stable austenitic crystal structure and enabling the twinning mechanism and, further, the reduction of the use of more expensive nickel. Manganese also increases the solubility of nitrogen to the stainless steel. Plastic deformation accompanied with twinning deformation easily occurs in the case of an amount of manganese of 14% or more without deformed structure, i.e. the strain-induced martensite. A high manganese content makes the decarburization process of the steel more difficult, impairs the surface quality and reduces the corrosion resistance of the steel. Therefore the manganese content shall be less than 26%. Preferably, the manganese content is at the range of 17.5-26.0%, more preferably at the range of 19-23%.
- Chromium (Cr) is responsible of ensuring corrosion resistance of a stainless steel. Therefore, the chromium content in this stainless steel shall be at the minimum 10.5%. Chromium is important in terms of avoiding the delayed cracking phenomenon. By increasing the content from this level the corrosion resistance of the steel can be improved. However, because chromium is a ferrite forming element, the increasing of the chromium content increases the need for expensive austenite formers, such as nickel and manganese or necessitates impractically high carbon and nitrogen contents. Therefore, the chromium content shall be lower than 18%. Chromium also increases the solubility of nitrogen. Preferably, the chromium content is at the range of 12-16.0%, more preferably at the range of 12.5-14%.
- Nickel (Ni) is a strong austenite former and stabilizer, but nickel is an expensive element. However, very low nickel contents would necessitate impractically high alloying with the other austenite forming and stabilizing elements. Therefore, the nickel content shall be preferably lower than 0.8% but preferably less than 0.5%.
- Copper (Cu) is present as a residual of 0.05-0.6%, preferably at the range 0.3-0.6%. Copper is a weak stabilizer of the austenite phase but, however, has a strong effect on the resistance to martensite formation. Copper also has a positive effect on ductility and forming properties.
- Nitrogen (N) is a strong austenite former and stabilizer. Therefore, nitrogen alloying improves the cost efficiency of the steel by enabling lower use of nickel and copper. In order to ensure reasonably low use of the above-mentioned alloying elements, nitrogen content shall be at least 0.1%. High nitrogen contents increase the strength of the steel and thus make forming operations more difficult. Furthermore, risk of nitride precipitation increases with increasing nitrogen content. For these reasons, the nitrogen content shall not exceed 0.8%, preferably the nitrogen content shall be lower than 0.6%. Nitrogen increases the stacking fault energy (SFE), which is used for the prediction of the TWIP-effect, and thus enables for and facilitates the TWIP-effect.
- The austenitic stainless steel according to the invention does not form during cold rolling any deformation martensite at the room temperature or above. Therefore, the stainless steel of the invention has a high ductility. The austenitic stainless steel according to the invention is also free of stress corrosion cracking and delayed cracking, just even after aging process in air and also in 5 sodium chloride (NaCl) environment.
- The austenitic stainless steel in accordance with invention was melted in the production scale and then cast into a slab form with the chemical composition in weight %
-
TABLE 2 C Si Mn Cr Mo Ni Ti Cu Al N B 0.08 0.5 20 13 0.02 0.2 0.003 0.5 0.01 0.43 0.0023 - The slabs were further hot rolled into the thickness of 4.0 mm and then annealed at the temperature 1080° C. The austenitic stainless steel of the invention was further cold rolled with the rolling degree of 50% to the thickness of 2.0 mm and annealed at the temperature 1080° C. The annealed strip product was then tested by determining the yield strength Rp0.2 and the tensile strength Rm as well as the elongation to fracture A80.
- In order to utilize the TWIP effect in the austenitic stainless steel of the invention the stainless steel strip was cold deformed with the reduction degree of 10% and then determined the yield strength Rp0.2 and the tensile strength Rm as well as the elongation to fracture A80. The respective actions were also made for the cold deformed strip having the reduction degree of 20%. The results for those test results are described in the following table:
-
TABLE 3 Reduction degree Rp0,2 (MPa) Rm (MPa) A80 (%) 0% 500 830 48 10% 800 950 28 20% 1020 1180 14 - The results show that the austenitic stainless steel in accordance with the invention has high work-hardening rate for the yield strength Rp0.2. Further, the elongation to fracture A80 is 28% with the deformation degree 10% and 14% with the deformation degree 20% shows still a good ductility at high strength after cold rolling.
- The austenitic stainless steel of the invention can be manufactured as slabs, blooms, billets and flat products such as coils, strips, plates, sheets, and long products such as bars, rods, wires, profiles and shapes, and tubular products such as pipes, tubes and can be applied for instance in automotive construction, in tanks, in crash relevant parts, in construction and in rail vehicles.
- The high-manganese austenitic stainless steel in accordance with the invention can be cold deformed in the state of as a strip annealed after hot working, such as hot rolling, as a strip annealed after cold working, such as cold rolling, or as a strip annealed after hot working and cold working and then cold deformed, such as cold rolled, in order to utilize the TWIP effect for higher yield and tensile strength values with still high ductility.
Claims (14)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP14162191.2 | 2014-03-28 | ||
| EP14162191.2A EP2924131B1 (en) | 2014-03-28 | 2014-03-28 | Austenitic high-manganese stainless steel |
| PCT/EP2015/056749 WO2015144896A2 (en) | 2014-03-28 | 2015-03-27 | Austenitic stainless steel |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170121797A1 true US20170121797A1 (en) | 2017-05-04 |
Family
ID=50389900
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/129,502 Abandoned US20170121797A1 (en) | 2014-03-28 | 2015-03-27 | Austenitic stainless steel |
Country Status (18)
| Country | Link |
|---|---|
| US (1) | US20170121797A1 (en) |
| EP (1) | EP2924131B1 (en) |
| JP (1) | JP2017512906A (en) |
| KR (1) | KR101830563B1 (en) |
| CN (1) | CN106133177B (en) |
| DK (1) | DK2924131T3 (en) |
| ES (1) | ES2749234T3 (en) |
| HR (1) | HRP20191717T1 (en) |
| HU (1) | HUE046585T2 (en) |
| LT (1) | LT2924131T (en) |
| MX (1) | MX2016012672A (en) |
| PL (1) | PL2924131T3 (en) |
| PT (1) | PT2924131T (en) |
| RS (1) | RS59347B1 (en) |
| SI (1) | SI2924131T1 (en) |
| TW (1) | TW201540850A (en) |
| WO (1) | WO2015144896A2 (en) |
| ZA (1) | ZA201606617B (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020153732A1 (en) * | 2019-01-25 | 2020-07-30 | 엘지이노텍 주식회사 | Substrate for display |
| CN113383092A (en) * | 2019-01-22 | 2021-09-10 | 艾普伦 | Iron-manganese alloy with improved weldability |
| US11352678B2 (en) | 2016-09-29 | 2022-06-07 | Outokumpu Oyj | Method for cold deformation of an austenitic steel |
| CN118326138A (en) * | 2023-01-12 | 2024-07-12 | 香港城市大学 | Method for forming highly plastic metastable nano-twin structures in austenitic steel alloys |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3173504A1 (en) * | 2015-11-09 | 2017-05-31 | Outokumpu Oyj | Method for manufacturing an austenitic steel component and use of the component |
| ES2824461T3 (en) * | 2017-02-10 | 2021-05-12 | Outokumpu Oy | Steel component manufactured by hot forming, method of manufacture and component use |
| KR102020507B1 (en) * | 2017-12-20 | 2019-09-10 | 주식회사 포스코 | Non-magnetic austenitic stainless steel improved in strength and surface conductivity |
| CN108103404A (en) * | 2017-12-28 | 2018-06-01 | 长沙无道工业设计有限公司 | A kind of high-strength stainless steel alloy material and preparation method thereof |
| CN110607479B (en) * | 2019-04-24 | 2021-11-05 | 上海大学 | Stainless steel for valve spring and preparation method thereof |
| CN110103530B (en) * | 2019-06-04 | 2023-03-31 | 河北工业大学 | High-performance corrosion-resistant TWIP/stainless steel multilayer composite material and preparation method thereof |
| CN111500942B (en) * | 2020-05-11 | 2021-08-10 | 湖南恒基粉末科技有限责任公司 | High-nitrogen-content non-magnetic stainless steel powder and preparation method thereof |
| CN113046534B (en) * | 2021-03-15 | 2023-02-03 | 长春工业大学 | A preparation method of high nitrogen nickel-free austenitic stainless steel with high twin density |
| CN113913693A (en) * | 2021-10-08 | 2022-01-11 | 赵洪运 | High-strength corrosion-resistant ocean engineering stainless steel and preparation method thereof |
| CN114686784A (en) * | 2022-04-02 | 2022-07-01 | 四川罡宸不锈钢有限责任公司 | Nickel-saving austenitic stainless steel material and preparation method thereof |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3112195A (en) * | 1959-06-04 | 1963-11-26 | Schoeller Bleckmann Stahlwerke | Drill stems for deep-well drill rods from non-magnetizable austenitic manganese-chromium alloy steels |
| JPS62270721A (en) * | 1986-05-19 | 1987-11-25 | Kobe Steel Ltd | Production of high-mn austenitic stainless steel for cryogenic service |
| JPH0536481A (en) * | 1991-07-31 | 1993-02-12 | Toshiba Lighting & Technol Corp | Discharge lamp lighting device |
| US6454879B1 (en) * | 1999-07-15 | 2002-09-24 | Schoeller-Bleckman Oilfield Technology Gmbh & Co. Kg | Process for producing a paramagnetic, corrosion-resistant material and like materials with high yield strength, strength, and ductility |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE728159C (en) * | 1936-10-09 | 1942-11-21 | Boehler & Co Ag Geb | Chrome-manganese-nitrogen steel |
| BE754614A (en) * | 1969-12-27 | 1971-01-18 | Nisshin Steel Co Ltd | AUSTENITIC STAINLESS STEELS |
| US3904401A (en) * | 1974-03-21 | 1975-09-09 | Carpenter Technology Corp | Corrosion resistant austenitic stainless steel |
| JP2978427B2 (en) * | 1995-05-22 | 1999-11-15 | 株式会社神戸製鋼所 | High Mn nonmagnetic steel for cryogenic use and manufacturing method |
| JPH11209823A (en) * | 1998-01-23 | 1999-08-03 | Kobe Steel Ltd | Manufacture of high strength steel sheet excellent in press formability |
| JP5057055B2 (en) * | 2007-07-30 | 2012-10-24 | 大同特殊鋼株式会社 | Non-magnetic stainless steel forged product, drill collar using the forged product, and method for producing the forged product |
| DE102008005803A1 (en) | 2008-01-17 | 2009-07-23 | Technische Universität Bergakademie Freiberg | Component used for armoring vehicles and in installations and components for transporting and recovering gases at low temperature is made from a high carbon-containing austenitic cryogenic steel cast mold |
| CN101250674A (en) * | 2008-04-11 | 2008-08-27 | 江苏大学 | A medium nitrogen high manganese austenitic stainless steel |
| JP5444561B2 (en) * | 2009-02-27 | 2014-03-19 | 日本冶金工業株式会社 | High Mn austenitic stainless steel and metal parts for clothing |
| DE102009003598A1 (en) * | 2009-03-10 | 2010-09-16 | Max-Planck-Institut Für Eisenforschung GmbH | Corrosion-resistant austenitic steel |
| DE102010026808B4 (en) * | 2010-07-10 | 2013-02-07 | Technische Universität Bergakademie Freiberg | Corrosion-resistant austenitic phosphorous-alloyed steel casting with TRIP or TWIP properties and its use |
| US20120156085A1 (en) * | 2010-12-14 | 2012-06-21 | Thompson Peter T | Blast Resistant, Non-Magnetic, Stainless Steel Armor |
| CN102002642A (en) * | 2010-12-31 | 2011-04-06 | 上海加宁新技术研究所 | Superhigh strength non-magnetic stainless steel |
| CN102560259B (en) * | 2012-01-16 | 2013-06-19 | 西南石油大学 | Preparation method for twinning induced plasticity (TWIP) steel for low-cost large-expansibility expansion pipe and steel pipe |
-
2014
- 2014-03-28 DK DK14162191.2T patent/DK2924131T3/en active
- 2014-03-28 PT PT141621912T patent/PT2924131T/en unknown
- 2014-03-28 RS RSP20191231 patent/RS59347B1/en unknown
- 2014-03-28 PL PL14162191T patent/PL2924131T3/en unknown
- 2014-03-28 HU HUE14162191A patent/HUE046585T2/en unknown
- 2014-03-28 LT LTEP14162191.2T patent/LT2924131T/en unknown
- 2014-03-28 EP EP14162191.2A patent/EP2924131B1/en active Active
- 2014-03-28 ES ES14162191T patent/ES2749234T3/en active Active
- 2014-03-28 SI SI201431382T patent/SI2924131T1/en unknown
-
2015
- 2015-03-27 WO PCT/EP2015/056749 patent/WO2015144896A2/en active Application Filing
- 2015-03-27 TW TW104109969A patent/TW201540850A/en unknown
- 2015-03-27 MX MX2016012672A patent/MX2016012672A/en unknown
- 2015-03-27 US US15/129,502 patent/US20170121797A1/en not_active Abandoned
- 2015-03-27 CN CN201580016940.2A patent/CN106133177B/en active Active
- 2015-03-27 JP JP2016559607A patent/JP2017512906A/en active Pending
- 2015-03-27 KR KR1020167030176A patent/KR101830563B1/en not_active Expired - Fee Related
-
2016
- 2016-09-23 ZA ZA2016/06617A patent/ZA201606617B/en unknown
-
2019
- 2019-09-20 HR HRP20191717 patent/HRP20191717T1/en unknown
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3112195A (en) * | 1959-06-04 | 1963-11-26 | Schoeller Bleckmann Stahlwerke | Drill stems for deep-well drill rods from non-magnetizable austenitic manganese-chromium alloy steels |
| JPS62270721A (en) * | 1986-05-19 | 1987-11-25 | Kobe Steel Ltd | Production of high-mn austenitic stainless steel for cryogenic service |
| JPH0536481A (en) * | 1991-07-31 | 1993-02-12 | Toshiba Lighting & Technol Corp | Discharge lamp lighting device |
| US6454879B1 (en) * | 1999-07-15 | 2002-09-24 | Schoeller-Bleckman Oilfield Technology Gmbh & Co. Kg | Process for producing a paramagnetic, corrosion-resistant material and like materials with high yield strength, strength, and ductility |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11352678B2 (en) | 2016-09-29 | 2022-06-07 | Outokumpu Oyj | Method for cold deformation of an austenitic steel |
| CN113383092A (en) * | 2019-01-22 | 2021-09-10 | 艾普伦 | Iron-manganese alloy with improved weldability |
| WO2020153732A1 (en) * | 2019-01-25 | 2020-07-30 | 엘지이노텍 주식회사 | Substrate for display |
| US12175895B2 (en) | 2019-01-25 | 2024-12-24 | Lg Innotek Co., Ltd. | Substrate for display |
| CN118326138A (en) * | 2023-01-12 | 2024-07-12 | 香港城市大学 | Method for forming highly plastic metastable nano-twin structures in austenitic steel alloys |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20160140828A (en) | 2016-12-07 |
| ES2749234T3 (en) | 2020-03-19 |
| PT2924131T (en) | 2019-10-30 |
| KR101830563B1 (en) | 2018-02-20 |
| HUE046585T2 (en) | 2020-03-30 |
| PL2924131T3 (en) | 2020-02-28 |
| TW201540850A (en) | 2015-11-01 |
| SI2924131T1 (en) | 2019-12-31 |
| JP2017512906A (en) | 2017-05-25 |
| CN106133177B (en) | 2018-04-27 |
| DK2924131T3 (en) | 2019-10-14 |
| EP2924131A1 (en) | 2015-09-30 |
| HRP20191717T1 (en) | 2019-12-13 |
| CN106133177A (en) | 2016-11-16 |
| WO2015144896A2 (en) | 2015-10-01 |
| WO2015144896A3 (en) | 2016-03-17 |
| RS59347B1 (en) | 2019-10-31 |
| MX2016012672A (en) | 2016-12-14 |
| LT2924131T (en) | 2019-09-25 |
| EP2924131B1 (en) | 2019-08-21 |
| ZA201606617B (en) | 2018-05-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2924131B1 (en) | Austenitic high-manganese stainless steel | |
| CN110678569B (en) | High-strength steel sheet and method for producing the same | |
| EP2157203B1 (en) | High-strength steel sheet superior in formability | |
| EP2508639B1 (en) | Fine grained austenitic stainless steel sheet exhibiting excellent stress corrosion cracking resistance and processability | |
| JP5598157B2 (en) | Steel sheet for hot press excellent in delayed fracture resistance and collision safety and method for producing the same | |
| EP2576848B1 (en) | Method for producing a hot-rolled steel product, and a hot-rolled steel | |
| EP2589674A1 (en) | Ultrahigh-strength cold-rolled steel sheet with excellent ductility and delayed-fracture resistance, and process for producing same | |
| KR102784490B1 (en) | Steel sheet and its manufacturing method | |
| US20160168672A1 (en) | High-strength steel material for oil well and oil well pipes | |
| KR20100112601A (en) | Hollow member and method for manufacturing same | |
| US12123081B2 (en) | Hot rolled steel and a method of manufacturing thereof | |
| US20180216207A1 (en) | Formable lightweight steel having improved mechanical properties and method for producing semi-finished products from said steel | |
| US11313006B2 (en) | Process of producing an austenitic stainless steel tube | |
| EP3822384B1 (en) | Austenitic stainless steel having improved strength | |
| KR20170128575A (en) | Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe | |
| JP4495064B2 (en) | Steel sheet for hot press | |
| JP6179609B2 (en) | Manufacturing method of thick high-strength steel sheet with excellent cold workability | |
| JP2010242211A (en) | Thick steel plate with excellent fatigue crack propagation characteristics in the thickness direction and method for producing the same | |
| US20230287549A1 (en) | Austenitic stainless steel with improved deep drawing | |
| JP2014034695A (en) | Thick high-strength steel plate having excellent cold workability and production method thereof | |
| KR20130125822A (en) | Thick steel sheet having superior fatigue resistance properties in direction of sheet thickness, method for producing same, and fillet welded joint using said thick steel sheet | |
| JP2011246774A (en) | High-strength steel sheet and method of manufacturing the same | |
| JP4660363B2 (en) | Manufacturing method of thick steel plate with excellent toughness | |
| KR20250004286A (en) | Hot rolled steel and its manufacturing method | |
| RU2432413C1 (en) | Austenite corrosion-resistant steel and item manufactured of it |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING |
|
| AS | Assignment |
Owner name: OUTOKUMPU OYJ, FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BREUER, ARNO;BRUECKNER, GABRIELE;MOSECKER, LINDA;AND OTHERS;SIGNING DATES FROM 20170831 TO 20171028;REEL/FRAME:044159/0234 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- INCOMPLETE APPLICATION (PRE-EXAMINATION) |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |