JP2017508914A - 低反応性圧縮着火対向ピストンエンジン - Google Patents

低反応性圧縮着火対向ピストンエンジン Download PDF

Info

Publication number
JP2017508914A
JP2017508914A JP2016551196A JP2016551196A JP2017508914A JP 2017508914 A JP2017508914 A JP 2017508914A JP 2016551196 A JP2016551196 A JP 2016551196A JP 2016551196 A JP2016551196 A JP 2016551196A JP 2017508914 A JP2017508914 A JP 2017508914A
Authority
JP
Japan
Prior art keywords
fuel
engine
low
reactivity
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016551196A
Other languages
English (en)
Other versions
JP6412582B2 (ja
Inventor
ルドン,ファビアン,ジー.
Original Assignee
アカーテース パワー,インク.
アカーテース パワー,インク.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アカーテース パワー,インク., アカーテース パワー,インク. filed Critical アカーテース パワー,インク.
Publication of JP2017508914A publication Critical patent/JP2017508914A/ja
Application granted granted Critical
Publication of JP6412582B2 publication Critical patent/JP6412582B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B7/00Engines characterised by the fuel-air charge being ignited by compression ignition of an additional fuel
    • F02B7/02Engines characterised by the fuel-air charge being ignited by compression ignition of an additional fuel the fuel in the charge being liquid
    • F02B7/04Methods of operating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B7/00Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F01B7/02Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B7/00Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F01B7/02Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons
    • F01B7/14Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons acting on different main shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0624Swirl flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/02Engines characterised by using fresh charge for scavenging cylinders using unidirectional scavenging
    • F02B25/08Engines with oppositely-moving reciprocating working pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B7/00Engines characterised by the fuel-air charge being ignited by compression ignition of an additional fuel
    • F02B7/02Engines characterised by the fuel-air charge being ignited by compression ignition of an additional fuel the fuel in the charge being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F02B75/282Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders the pistons having equal strokes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0613Switch-over from one fuel to another
    • F02D19/0615Switch-over from one fuel to another being initiated by automatic means, e.g. based on engine or vehicle operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

着火媒体として低反応性燃料を使用する圧縮着火対向ピストンエンジンは、エンジンの燃焼室の中に閉じ込められた温度および燃焼残余物ならびにエンジンの燃焼室の中に噴射された燃料を管理し、排気の減少だけでなく燃料消費効率の改善も実現するためにエンジンの圧縮比を制御する。【選択図】図4

Description

優先権
本出願は、本国際出願のために2014年2月12日に出願した米国仮特許出願第61/939,170号に対する優先権を主張するものである。
背景技術
本出願は、2ストロークサイクル対向ピストンエンジンの分野に関する。さらに詳細には、本出願は、低反応性圧縮着火(LRCI)対向ピストンエンジンに関する。
車両用の圧縮着火エンジンは、空気が圧縮されると、空気の中に噴射されて空気と混合された燃料を圧縮空気の熱で着火させる内燃エンジンである。2ストロークサイクルエンジンは、クランクシャフトが一回完全に回転し、クランクシャフトに接続されたピストンが2ストロークしてパワーサイクルを完成させるタイプの圧縮着火エンジンである。対向ピストンエンジンは、反対方向に往復運動するようにシリンダのボア(内腔)に2つのピストンが対向して配置された2ストロークサイクル圧縮着火内燃エンジンである。シリンダは、長手方向に間隔が置かれた吸気ポートと排気ポートとを有し、それらのポートは、シリンダの各端近くに配置されている。対向ピストンのそれぞれが、ポートのうちの一方を制御し、対向ピストンのそれぞれが、下死点(BC)位置に動くと、ポートを開き、対向ピストンのそれぞれが、BCから上死点(TC)位置に動くと、ポートを閉じる。ポートのうちの一方が、ボアから燃焼生成物を出す通路を提供し、他方が、ボアに充填空気(給気)を入れる役割をし、これらはそれぞれ、「排気」ポートおよび「吸気」ポートと呼ばれる。ユニフロー掃気対向ピストンエンジンにおいて、排気ガスがシリンダの排気ポートから流れ出ると、充填空気がシリンダの吸気ポートを通ってシリンダに入るため、ガスは吸気ポートから排気ポートに向かって一方向(ユニフロー)でシリンダを通って流れる。
空気と排気生成物とは空気処理システムを経由してシリンダを通って流れる。燃料は燃料送達システムからの噴射によって送達される。エンジンが循環すると、制御機構が、エンジンの動作条件に応答して、空気処理システムと燃料送達システムとを動作させることによって燃焼を調節する。空気処理システムは、燃焼によって生成される望ましくない化合物を減らすために、排気ガス再循環システムを備えてもよい。
内燃エンジンの排出物と燃料消費とを減らすために継続的に行われていることは、既存の種類のエンジンに対する新たな燃焼計画の調査を推し進めることである。ガソリンなどの低反応性燃料の自着火が、4ストローク内燃エンジンで試された。燃料を添加するためのスパークプラグを用いることなく圧縮着火エンジンで低反応性燃料を利用したときには、ディーゼル燃料などの高反応性燃料を使用する内燃圧縮着火エンジンと比較して、後処理で、NOxの量の減少および、粒子状物質(PM)の減少が実現され得る。
低反応性燃料が2ストロークサイクル圧縮着火対向ピストンエンジンに利用される場合には、排出物がさらにまた減少するだけでなく、燃料消費効率が改善することも実現され得る。対向ピストンエンジンの体積比表面積が有する固有の利点は、費用のかかる後処理を必要とすることなく排出物を減少させながら、燃料消費を少なくすることである。したがって、ガソリンなどの低反応性燃料を用いた動作のために、2ストローク圧縮着火対向ピストンエンジンを備えることが望ましい目的であり、そのエンジンは、点火補助を用いることなく様々なエンジン動作条件において自着火するものである。
自着火低反応性燃料を使用する圧縮着火対向ピストンエンジンは、エンジンの燃焼室内に閉じ込められた温度や燃焼残留物を管理することにより、低負荷での不着火および高負荷での早期着火(ノッキング)を避けるように時間を合わせた燃料着火を確実なものにする。
一部の局面において、低反応性圧縮着火(LRCI)2ストロークサイクル対向ピストンエンジンは、各シリンダに対するマルチポイント燃料噴射を含む。一部の特定の局面において、一対の対向する噴射器が、噴霧の勢いを殺しシリンダボア壁に燃料が衝突するのを減らすように、燃焼室の中に、対向する噴霧パターンの燃料を噴射するように動作させることにより、シリンダボアのコークス化堆積物および残余堆積物を減少させる。
以下に記載される図面は、以下の記載において考察される原理および例を例示することを意図している。それらは必ずしも寸法を合わせていない。
圧縮着火のために構築された従来技術の2ストロークサイクル対向ピストンエンジンの概略図であり、適切に「従来技術」とラベルを付けている。
本開示に従った、圧縮着火対向ピストンエンジンのための空気処理システムの詳細を示す概略図である。
本開示に従った、圧縮着火対向ピストンエンジンのための燃料噴射システムの詳細を示す概略図である。 図3Bは、本開示に従った、圧縮着火対向ピストンエンジンのための代替の燃料噴射システムを示す概略図である。 図3Cは、本開示に従った、一対の対向ピストンの端面間に画定される燃焼室、および燃焼室の中への燃料噴射のパターンを示す概略図である。
本開示に従った、低反応性圧縮着火(LRCI)のために備えた2ストロークサイクル対向ピストンエンジンを例示する概略図である。
本開示において、「燃料」は、対向ピストンエンジンにおいて点火されてもよい物質である。燃料は、比較的に均質な組成物、混合物、燃料の混合物、異なる燃料を別個に噴射するものであってもよい。例えば、燃料は、液体燃料であってもよい。燃料は反応性で分類される。一部の局面において、低反応性燃料は、自着火に対して強い抵抗力を有し、それらは、オクタン価を使用して分類され、オクタン価が高いほど、自着火に対して高い抵抗力を有する。空気と低反応性燃料との混合物は、一般的には、スパークまたはパイロット噴射の助けを用いて燃焼室で点火される。低反応性燃料は、70を超えるオクタン価を有する。これらの燃料の例は、ガソリンおよび天然ガスを含む。高反応性燃料は、低反応性燃料よりも非常に容易に着火し、それらは、セタン価と呼ばれる着火性で分類される。セタン価が高いほど、着火性が良い。この燃料と空気の混合物は、一般的には、その混合物を圧縮することによって着火し、圧縮空気の熱によって燃料を着火するようにして、点火補助を必要としない。高反応性燃料の例は、ディーゼル燃料である。高反応性燃料は35を超えるセタン価を有する。
本開示に従って、低反応性燃料、または低反応性燃料と高反応性燃料との混合物は、ピストンがTC位置またはその近くの位置にあるときに、対向ピストンの端面間に形成される燃焼室の中の圧縮空気の中に噴射される。他の局面において、噴射は、ポートの閉鎖に次いで、圧縮ストローク中に早めに生じてもよい。空気は、外気が好ましいが、排気ガスや他の希釈剤などの他の成分を含んでも良い。このようないかなる場合においても、空気は、「充填空気(給気)」と呼ばれる。
図1は、例えば、車両において使用されるような従来技術の2ストロークサイクル圧縮着火対向ピストンエンジン10を例示する。エンジン10は、少なくとも1つのポートシリンダ50を有する。例えば、エンジンは、1つのポートシリンダ、2つのポートシリンダ、3つのポートシリンダ、または4つもしくはそれを超えるポートシリンダを有してもよい。各ポートシリンダ50は、ボア52を有し、長手方向に間隔を置かれた排気ポート54と吸気ポート56とが、シリンダ壁の各端に形成すなわち機械加工されている。排気ポート54と吸気ポート56とのそれぞれが、開口部の1つまたはそれを超える円周方向のアレイを含み、そのアレイにおいては、隣接する開口部は、硬いブリッジによって分離されている。一部の記載においては、各開口部が「ポート」と呼ばれるが、こうした「ポート」の円周方向のアレイの構造体は、図1に示されたポート構造体とは異ならない。ピストン60および62は、ボア52に滑動可能に配置され、それらの端面61および63が互いに対向している。ピストン60は、排気ポート54を制御し、ピストン62は吸気ポート56を制御する。示された例において、エンジン10はさらに、少なくとも1つのクランクシャフトを含み、好適には、エンジンは、2つのクランクシャフト71および72を含む。示された例において、エンジンの排気ピストン60は、クランクシャフト71に結合され、エンジンの吸気ピストン62は、クランクシャフト72に結合される。
ピストン60と62とがTCの近くに来ると、燃焼室が、ピストンの端面61と63との間でボア52内に画定される。燃焼のタイミングは、圧縮サイクルにおいて燃焼室の容積が最も小さくなる時点を頻繁に参照し、この時点は、「最小容積」と呼ばれる。燃料は、端面61と63との間に位置決めされたシリンダの空間に直接噴射される。一部の例において、噴射は、最小容積またはその付近で生じ、他の例においては、噴射は最小容積の前に生じてもよい。燃料は、シリンダ50の側壁を貫通した各開口部に配置された燃料噴射ノズル68および70を通って噴射される。好適には、燃料噴射ノズル68および70は、ボア52の直径に沿って対向する方向で燃料の各噴霧を噴射するように配置される。燃料は、吸気ポート56を通ってボア52の中に入れられた充填空気と混合する。空気−燃料の混合物が端面61と63との間で圧縮されると、圧縮空気は、燃料を着火させる温度に到達する。続いて燃焼が生じる。
さらに図1を参照すると、エンジン10は、空気処理システム80を含み、空気処理システム80は、エンジン10に提供される給気(充填空気)およびエンジン10によって生成される排気ガスの輸送を管理する。各空気処理システム構造体は、給気サブシステムと排気サブシステムとを含む。空気処理システム80において、給気源は、新鮮な空気を受取り、その新鮮な空気を充填空気に加工する。給気サブシステムは、充填空気を受取り、その充填空気をエンジンの少なくとも1つの吸気ポートに輸送する。排気サブシステムは、他の排気構成要素に送達するためにエンジンの排気ポートから排気生成物を輸送する。
空気処理システム80は、タービン121とコンプレッサ122とを有するターボチャージャ120を含み、タービン121とコンプレッサ122とは共通のシャフト123で回転する。タービン121は、排気サブシステムに結合され、コンプレッサ122は、給気サブシステムに結合される。ターボチャージャ120は、排気ガスからエネルギーを抽出し、その排気ガスは、排気ポート54から出て、直接的に排気ポート54から、または排気ポート54を通って出された排気ガスを収集する排気マニホルド組立体125から排気チャネル124の中に流れるものである。これに関して、タービン121は、タービン121を通過して排気口128に入る排気ガスによって回転させられる。これにより、コンプレッサ122を回転させ、コンプレッサ122が新鮮な空気を圧縮することによって充填空気を発生させる。給気サブシステムは、スーパーチャージャ110と吸気マニホルド130とを含む。給気サブシステムはさらに、エンジンの吸気ポートに送達する前に、充填空気を受取り、かつ、冷却するように結合された少なくとも1つの空気冷却器を含む。コンプレッサ122によって出される充填空気は、給気チャネル126を通って冷却器127に流れ、そこから充填空気はスーパーチャージャ110によって吸気ポートにポンプで送られる。スーパーチャージャ110によって圧縮された充填空気は、吸気マニホルド130に出力される。吸気ポート56は、吸気マニホルド130を通ってスーパーチャージャ110によってポンプで送られた充填空気を受取る。好適には、マルチシリンダ対向ピストンエンジンにおいて、吸気マニフホルド130は、全シリンダ50の吸気ポート56と連通する吸気プレナムで構成される。第2の冷却器129は、スーパーチャージャ110の出力部と吸気マニホルド130への入力部との間に提供される。
一部の局面において、空気処理システム80は、エンジンのポートシリンダを通過して排気ガスを再循環させることによって、燃焼によって生成されるNOx排出物を減少させるように構成されてもよい。再循環させられる排気ガスは、ピーク燃焼温度を下げるために充填空気と混合され、それにより、NOxの生成を減少させる。このプロセスは、排気再循環(「EGR」)と呼ばれる。示されたEGR構造体は、掃気の間にポート54から流れる排気ガスの一部を取得し、給気サブシステムの中に入って来る新鮮な吸気空気の流れの中にシリンダの外側にあるEGRチャネル131を経由して排気ガスを輸送する。再循環させられる排気ガスは、弁138(この弁もまた「EGR弁」と呼ばれてもよい)の制御の下で、EGRチャネル131を通って流れる。
基本として図1のエンジンを使用して、図2は、空気処理システム80が本明細書に従って低反応性燃焼動作を行うように構成されてもよい改変および追加を示す。これに関して、給気サブシステムは、空気フィルタ150を経由してコンプレッサ122に吸気空気を提供する。コンプレッサを回転すると、圧縮された吸気空気が、スーパーチャージャ110の吸気口151の中に冷却器127を通って流れる。スーパーチャージャ110によってポンプで送られた空気は、吸気マニホルド130の中にスーパーチャージャの排気口152を通って流れる。加圧された充填空気は、エンジンブロック160において支持されているシリンダ50の吸気ポートに吸気マニホルド130から送達される。一部の例において、必ずというわけではないが、第2の冷却器129が、スーパーチャージャ110の出力部と吸気マニホルド130との間に直列で給気サブシステムに提供される。他の例において、給気サブシステムに第2の冷却器129が存在しなくてもよい。
シリンダ50の排気ポートからの排気ガスは、タービン121の吸気口の中に排気マニホルド組立体125から流れ、および、排気口チャネル128の中にタービンの排気口から流れる。一部の例において、1つまたはそれを超える後処理デバイス162が、排気チャネル128に提供される。高圧EGRチャネル131を経由して排気を循環してもよく、高圧EGRチャネル131は、排気マニホルド125とタービン121への入力部との間の場所でチャネル124から排気を獲得し、コンプレッサ122の出力部とスーパーチャージャの入力部151との間の場所で新鮮な充填空気と混合するために排気を送達する。代替的に(または追加的に)、低圧EGRチャネル131LPを経由して排気を循環してもよく、その低圧EGRチャネル131LPは、排気口128とタービン121の出力部との間の場所で排気を取得し、コンプレッサ122に対する入力部の上流で新鮮な充填空気と混合するように排気を送達する。空気処理システムが高圧EGRチャネルを含むと仮定すると、マニホルド125から流れ出る排気の一部は、EGR弁138の制御の下でEGRチャネル131を通って再循環させられる。EGRチャネル131は、EGR混合器163を経由して給気サブシステムに結合される。一部の例において、必ずしも必要なわけではないが、EGR冷却器164が、EGR弁138とEGR混合器163との間に直列でEGRチャネル131に提供される。他の例においては、EGRチャネル131に冷却器が存在しなくてもよい。図2のように、低圧EGRチャネルは同様に構築されてもよい。
さらに図2を参照すると、空気処理システム80は、給気サブシステムおよび排気サブシステムにおける別々の制御場所にガス流の制御のために備えられている。給気サブシステムにおいて、給気流と給気圧とがスーパーチャージャの入力部151にスーパーチャージャの出力部152を結合する再循環経路165の動作によって制御される。再循環経路165は、弁(「再循環弁」)166を含み、弁166は、吸気マニホルド130の中に入る充填空気の流れを調節し、したがって吸気マニホルド130の圧力を調節する。排気口128における弁(「背圧弁」)170は、排気サブシステムから出る排気の流れを調節し、したがって排気サブシステムの背圧を調節する。図2のように、背圧弁は、タービン121の出力部と後処理デバイス162との間で排気口128に配置される。
一部の例において、ガス流(および圧力)の追加的な制御は、可変速度スーパーチャージャおよび/または可変形状タービンによって提供される。このようにして、一部の局面において、スーパーチャージャ110は、クランクシャフトまたはエンジンの他の回転要素に駆動機構(図示せず)によって結合されることによって駆動される。駆動機構は、段階的変速デバイスまたは連続可変変速機(CVT)を備えることができ、この場合、駆動機構に提供される速度制御信号に応答して、スーパーチャージャ110の速度を変えることによって、給気流と給気圧とが変えられてもよい。他の例において、スーパーチャージャは、単一速度デバイスであってもよい。他の局面において、タービン121は、エンジンの速度および負荷を変化させることに応答して変えられてもよい効果的なアスペクト比を有する可変形状デバイスであってもよい。
図3Aは、燃焼室の中に所定の充填量の低反応性燃料を噴射することによって本明細書に従った低反応性燃焼動作を行うように構成されてもよい燃料噴射システムを示す。燃料噴射システム180は、シリンダの中への噴射によって各シリンダ50に低反応性燃料を送達する。好適には、各シリンダ50には、ピストンの端面間のシリンダの空間の中に直接噴射するように設置された複数の燃料噴射器が提供される。例えば、各シリンダ50は、2つの燃料噴射器68および70を有する。好適には、燃料が燃料ポンプ183によってポンプで送られるレール/アキュムレータ機構を含む低反応性燃料源182から燃料噴射器68および70に燃料が供給される。燃料返送マニホルド184は、燃料がポンプで送り出される容器に戻すために、燃料噴射器68および70ならびに燃料源182から燃料を収集する。図3Aは、180°未満の角度で配置された、各シリンダの燃料噴射器68および70を示すが、これは単に概略的な表示であり、噴射器の場所または噴射器が噴射する噴霧の方向に関して限定することを意図していない。図3Cにおいて最も良く見られる一好適な構成において、噴射器ノズル68および70は、噴射軸に沿って直径方向で対向する方向で燃料噴霧を噴射するように配置される。好適には、各燃料噴霧器68および70は、噴霧器を動作させる電動式アクチュエータ(例えば、ソレノイド)を含むか、またはそれに接続されている。好適には、アクチュエータは、電子マルチチャンネル噴射器ドライバ186によって生成される各駆動信号によって制御される。
図3Bは、燃料噴射システムの代替の実施形態を示し、その燃料噴射システムは、燃焼室に所定の充填量の低反応性燃料と高反応性燃料とを噴射することによって本明細書に従った低反応性燃焼動作を行うように構成されてもよい。燃料噴射システム180は、噴射器68を通って各シリンダ50の中に噴射することによって、レールアキュムレータ182dを経由してシリンダに低反応性燃料(「燃料1」)を送達する。燃料噴射システム180は、噴射器70を通って各シリンダ50に噴射することによって、レールアキュムレータ182hを経由してシリンダに高反応性燃料(「燃料2」)を送達する。この構造体に関して、各シリンダ50は、2つの燃料噴射器68および70を有し、それらは、エンジンの動作条件に応答して成分の量を調節することによって、送達される燃料の反応性を動的に変える能力をECU200に与える。
図3Cを参照すると、一対の対向ピストンが、それらそれぞれのTC位置を通って動くと、隣接する端面が、燃焼室202を形成し、燃焼室202は、燃焼室において1つまたはそれを超えるタンブル流の空気を発生させるように、加圧された充填空気の旋回流とスキッシュ流とを適切に相互作用させる形状を有する。好適には、燃焼室202は、噴射軸203を基準にした細長い相互に対称的な形状と、噴射軸203に位置決めされた一対の噴射ポート205とを有する。対向するパターンの燃料208、209が、軸203に沿って直径方向で対向する噴射器68および70を経由して燃焼室202の中にシリンダ50の噴射ポートを通って噴射される。燃料の噴霧パターン208、209は、軸203に沿って対向する方向に移動し、燃焼室の中心部分211で出会い、そこで、燃料の噴霧パターン208、209は、旋回する充填空気の概ね球状の流動場と混合する。タンブル流は、米国特許出願第13/066,589号、米国特許出願第13/843,686号、および米国特許出願第14/117,831号に記載されるように、旋回流とスキッシュ流との相互作用からもたらされるものである。タンブル流は、噴射軸203の周りを循環し、球状の流動場を作り出すように燃焼室の中心部分211において旋回流と共に作用する。噴射を続けると、空気と燃料とが旋回している混合物が、燃焼室においてさらに圧縮される。混合物が着火温度に到達したときに、燃料は燃焼室で着火する。一部の例において、燃料噴霧パターン208、209の両方が、低反応性燃料で構成される。他の例において、噴霧パターンのうちの一方が、低反応性燃料で構成され、他方が、高反応性燃料で構成される。
図4に見られるように、ECU200は、弁138、166、および170(ならびに可能であれば他の弁)を自動的に制御することによって、多速度すなわち可変速度デバイスが使用される場合には、スーパーチャージャ110を自動的に制御することによって、可変形状デバイスが使用される場合には、ターボチャージャ121を自動的に制御することによって、特定のエンジン動作条件に応答して、2ストロークサイクル対向ピストンエンジンで低反応性圧縮着火を制御するように構成されてもよい。当然、EGRに使用される弁および関連要素の動作は、電気式作動動作と、空気式作動動作と、機械式作動動作と、液圧式作動動作とのうちのいずれか1つまたはそれを超える作動動作を含むことができる。迅速で正確な自動動作のために、弁は、連続的に変更可能な設定を有する高速コンピュータ制御デバイスであることが好ましい。各弁は、ガスが弁を通って流れることができるように(ECU200によって制御される何らかの設定に対して)、弁が開いている状態と、ガスが流れることを防ぐように、弁が閉じている状態とを有する。一部の局面において、ECU200は、関連する米国特許出願第14/039,856号の開示に基づいた方法で空気処理システムを制御し、かつ、動作するように構成されてもよい。
ECU200はさらに、燃焼室に閉じ込められ、加圧された充填空気および排気生成物の量を調節することによって燃焼を制御するように、空気処理システムおよびそのEGR構成要素を動作するように構成されてもよい。2ストロークサイクル圧縮着火対向ピストンエンジンのための空気処理および/または燃焼制御の例は、米国特許第8,549,854号、米国特許出願第13/782,802号(米国特許出願公開第2013/0174548号として公開)、米国特許出願第13/926,360号、米国特許出願第13/974,883号、および米国特許出願第13/974,935号に記載されている。これらの制御法の機能のうちの1つは、シリンダ内に閉じ込められた集合体の温度を決定し、かつ、調節することである。
図3A、図3B、および図4のように、ECU200は、エンジンのセンサから取得された測定したパラメータの値に応答して燃料噴射制御計画に従って燃料噴射機構を制御するように構成されてもよい。これらの制御計画は、1つまたはそれを超える燃料容器、1つまたはそれを超える燃料ポンプ、および噴射ドライバと結び付けられる出力制御信号を生成させるものである。制御信号に応答して、噴射ドライバ186は、燃料噴射器を動作させるように、別々の専用チャンネルで駆動信号を生成する。一部の局面において、ECU200は、関連する米国特許出願第13/654,340号の開示に基づいた方法で燃料噴射システムを制御し、かつ、動作させるように構成されてもよい。
図4のように、エンジンはまた、動作条件に応答してエンジンの圧縮比を変えるために可変圧縮比(VCR)機構225を備えてもよい。必ず必要なわけではないが、好適には、機構225は、ECU200によって生成された信号に応答してクランクシャフト71と72との間の位相整合を変えることによって動作する。好適には、VCR機構225は、少なくとも1つのクランクシャフトのクランク角を変えることによってクランクシャフトの位相整合を制御し、この場合、クランク角は、ピストンの滑動可能な動きの特定の場所でクランクシャフトに接続されたピストンを置く角度に対するクランクシャフトの回転角度である。例えば、特定の場所は、ピストンの上死点(TC)位置であることができる。こうした機構は、米国特許出願第13/858,943号に開示されている。
各噴射器68、70は、エンジン動作の各サイクルにおいて合計の全負荷燃料流の要件を満たすことに寄与するので、各噴射器を噴射される全燃料の半分を提供するようなサイズにしてもよい。この構成は、噴射器が、1つの噴射器だけが全燃料負荷を供給しなければならない場合に必要とされる噴射流と比較して、少ない噴射量を制御することができる。各噴射器を別々に制御することによって、各噴射間の滞留時間は、一方の噴射器を参照して他方の噴射器を循環させることによって減らすことができる。2つの噴射器はまた、いかなる1つのサイクルにおいても多量の燃料を供給することができる多数の少量の噴射が、その噴射に大きな勢いをつけることなく行われることができることにより、燃焼室が、燃焼室のパラメータの範囲内で燃料と空気との混合物を含み、シリンダボアの壁に燃料が衝突することを回避することができる。
可変燃焼戦略を管理するように動作するイネーブラ(enablers)をエンジンに提供するために、EGR制御を含む給気制御によって、シリンダ内に閉じ込められた燃料/空気の構成、燃料システムの融通性、および温度制御に対して可変クランク位相整合が加えられてもよい。可変クランク位相整合は、排気物の放出(掃気)のタイミングおよび持続時間、圧縮比の拡大だけでなく、圧縮比自体の動的制御も提供する。動的に圧縮比を増加させることが、低負荷および低速度での着火および良好な燃焼の安定性を確実にするための重要な方法を提供する。高負荷において、圧縮比は、エンジンにおいて激しいノッキングを生成し得る早期着火を回避するために下げられてもよい。クランク位相整合はまた、圧縮比と相乗的な方法で掃気プロセスを変更する。
図2の給気管理システムを有する2サイクル対向ピストン圧縮着火エンジンにおいて、低反応性燃料を使用することによって、非常に効率的で清潔な稼働動作において、閉じ込められた温度、閉じ込められた圧力、およびEGRの内容を制御する可能性がもたらされる。低負荷において、スーパーチャージャ再循環ループが、閉じ込められた充填空気温度を増加させるように内部残留物の量を最大にするように、エンジンを通って流れる給気流の量を最小にするように動作されることが、正確で最も効率的な時に燃料が着火することを助ける。負荷が増加すると、ターボチャージャに運ばれるエネルギーの量が増加し、したがって加圧された吸気空気に対する与圧が増加する。EGR速度は、再循環する冷却されたEGRの量を制御することによって、閉じ込められた温度から個々に制御されることができる。可変形状ターボチャージャ(VGT)もまた、所望の組み合わせの吸気マニホルドに対する加圧された空気の与圧と背圧とを得るよう、両者を変更するために使用することができる。3つの空気制御システム、EGR速度、与圧、および空気流が、ECUの指示の下で3つのアクチュエータ(EGR弁、スーパーチャージャ再循環弁、およびVGT)によって制御される。
ディーゼル燃料だけの圧縮着火を上回る改良が可能である。例えば、低反応性燃料の使用は、2ストロークサイクル圧縮着火対向ピストンエンジンにおいて低排気レベルを維持するために必要な後処理デバイス162の数を減らすことが可能であり得る。これに関して、低反応性燃料の使用は、ディーゼル粒子の濾過および/または選択的触媒還元デバイスを不要にはしないが、単純なものにすることができる。
図2に示された空気処理システムが好ましいが、この構造体の様々な変化形が考えられることが理解されるべきである。
本出願は、2ストロークサイクル圧縮着火対向ピストンエンジンのための燃料の選択として低反応性ガソリンを含むための特定のパラメータを記載したが、低反応性燃料を使用するための他のパラメータを含むことができるので、本出願は以下の特許請求の範囲によってのみ限定されることが理解されるべきである。
動作時の例:排気物を少なくするために構成されたマルチシリンダLRCI対向ピストンエンジンの例は、低反応性液体燃料噴射のために1つのシリンダに2つの対向する噴射器を含み、さらに、一定の速度比、複数の速度比、または完全可変速度比を有するスーパーチャージャと、可変形状ターボチャージャと、可変クランク位相整合と、高速EGRチャンネル(外部EGR)と、保持された燃料質量割合(「内部EGR」)とを含む。LRCI条件を達成するための例として、エンジンの設定は以下の通りに調節されることができる。低負荷排気サイクルの負荷点に典型的な速度と負荷とに対応する3バールのBMEPを有する1300RPMのエンジン速度に対して、主要なエンジン噴射システム動作パラメータは以下の通りに設定されてもよい。

1つのシリンダ当たりに噴射される燃料の質量:13mg/回転/シリンダ
燃料噴射圧:500バール
噴射1:85度において4mgの毎分換気量(BMinVol)
噴射2:55度において5mgの毎分換気量(BMinVol)
噴射1:15度において4mgの毎分換気量(BMinVol)

この負荷点において燃焼を達成するための空気システム設定点は、

給気圧:1.15バール
充填温度:330K
掃気速度:0.7
内部EGR:35%
外部EGR:30%
燃焼したガスの割合:65%。
閉じ込められた充填の温度:415K
閉じ込められた空気燃料比:30
に設定されてもよい。
これらの条件が、最小容積の2段階後に燃焼質量割合50に到達するような低反応性燃料の添加を可能にし、低速度の圧力上昇を維持し、0.2g/kWh未満のNOxレベルを達成しながら、8段階未満の燃焼持続時間を可能にし、煤の排気をわずかなものにすることを可能にする。
これは、必要な温度および必要な充填組成物を達成するために大きな融通性を有する内部EGRを管理する能力だけでなく、低負荷において、点火補助を用いることなく低反応性燃料を混合し、効率的かつ清潔に燃焼させる能力をも示す。
対向ピストンエンジンの低反応性圧縮着火動作の原理が、現在好適な実施形態を参照して記載されてきたが、記載された原理の趣旨を逸脱することなく様々な改変を行うことができることが理解されるべきである。したがって、これらの原理に合致する特許の保護は、以下の特許請求の範囲によってのみ限定される。

Claims (10)

  1. 長手方向に分離された排気ポート(54)及び吸気ポート(56)を有する少なくとも1つのシリンダ(50)と、前記シリンダのボア(52)に互いに対向して配置された一対のピストン(60、62)と、前記ピストンの端面間で前記ボアの中に燃料を噴射するための燃料噴射システムとを備える2ストロークサイクル圧縮着火対向ピストンエンジンであって、
    前記燃料噴射システムは、前記ボアの中に燃料を噴射するために前記シリンダに設置された少なくとも2つの燃料噴射器(68、70)を備え、
    前記エンジンは、エンジンの条件に応答して所定の充填量の低反応性燃料と高反応性燃料とを噴射させることによって、燃料の反応性を変えることができるエンジン制御ユニットを備えることを特徴とする、エンジン。
  2. 前記ピストンが前記ボアの各下死点位置から動くと、前記吸気ポートを通って前記ボアの中に充填空気を入れるステップと、
    前記充填空気が前記ボアに入れられると、前記充填空気を旋回させるステップと、
    前記ピストンが前記ボアの上死点位置に近づくと、前記ピストンの端面(61、63)間に燃焼室(202)を形成するステップと、
    前記燃焼室の中に低反応性燃料の1つまたはそれを超える噴霧パターン(208、209)を噴射するステップと、
    によって請求項1に記載の2ストロークサイクル圧縮着火対向ピストンエンジンを動作させる方法。
  3. 前記低反応性燃料はガソリンである、請求項2に記載の方法。
  4. 前記1以上の噴霧パターンを噴射するステップは、前記燃焼室の噴射軸(203)に沿って対向する方向で低反応性燃料の対向する噴霧パターン(208、209)を噴射することを包含する、請求項2に記載の方法。
  5. 前記低反応性燃料はガソリンである、請求項4に記載の方法。
  6. 前記1以上の噴霧パターンを噴射するステップは、前記燃料室の噴射軸(203)に沿って対向する方向で燃料の第1および第2の噴霧パターン(208、209)を噴射することを包含し、前記第1の噴霧パターンは、低反応性燃料を含み、前記第2の噴霧パターンは、高反応性燃料を含む、請求項2に記載の方法。
  7. 前記低反応性燃料は、ガソリンであり、前記高反応性燃料は、ディーゼル燃料である、請求項6に記載の方法。
  8. 前記燃焼室において旋回する充填空気内にタンブルを生成させることをさらに包含する、請求項2〜請求項7のいずれか一項に記載の方法。
  9. 前記エンジンは、可変圧力比機構(225)をさらに備え、前記方法は、エンジン速度に応答して前記エンジンの圧縮比を変えることをさらに包含する、請求項2〜請求項7のいずれか一項に記載の方法。
  10. 前記エンジンの前記圧縮比は、前記エンジンのクランクシャフト間の位相整合を変えることによって変えられる、請求項9に記載の方法。
JP2016551196A 2014-02-12 2015-02-11 低反応性圧縮着火対向ピストンエンジン Expired - Fee Related JP6412582B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461939170P 2014-02-12 2014-02-12
US61/939,170 2014-02-12
PCT/US2015/015365 WO2015123262A1 (en) 2014-02-12 2015-02-11 A low reactivity, compression-ignition, opposed-piston engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017011930A Division JP6767271B2 (ja) 2014-02-12 2017-01-26 低反応性圧縮着火対向ピストンエンジン

Publications (2)

Publication Number Publication Date
JP2017508914A true JP2017508914A (ja) 2017-03-30
JP6412582B2 JP6412582B2 (ja) 2018-10-24

Family

ID=52574455

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016551196A Expired - Fee Related JP6412582B2 (ja) 2014-02-12 2015-02-11 低反応性圧縮着火対向ピストンエンジン
JP2017011930A Active JP6767271B2 (ja) 2014-02-12 2017-01-26 低反応性圧縮着火対向ピストンエンジン

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017011930A Active JP6767271B2 (ja) 2014-02-12 2017-01-26 低反応性圧縮着火対向ピストンエンジン

Country Status (5)

Country Link
US (2) US9995201B2 (ja)
EP (2) EP3105430B1 (ja)
JP (2) JP6412582B2 (ja)
CN (2) CN106762098B (ja)
WO (1) WO2015123262A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7442779B2 (ja) 2019-08-07 2024-03-05 国立大学法人広島大学 対向ピストンエンジン

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449492B1 (en) * 1999-12-02 2002-09-10 Qualcomm Incorporated Apparatus and method for preventing inadvertant operation of a manual input device
US9982617B2 (en) 2014-12-04 2018-05-29 Achates Power, Inc. On-board diagnostics for an opposed-piston engine equipped with a supercharger
EP3359790B1 (en) 2015-12-07 2020-06-24 Achates Power, Inc. Air handling in a heavy-duty opposed-piston engine
BR112018077401B1 (pt) * 2016-06-28 2023-01-24 Deltahawk Engines, Inc Motor a diesel de dois ciclos configurado para operação com superfícies de câmara de combustão de alta temperatura
US10598104B2 (en) * 2017-02-03 2020-03-24 Achates Power, Inc. Mass airflow sensor monitoring using supercharger airflow characteristics in an opposed-piston engine
US10962350B2 (en) * 2017-12-14 2021-03-30 Cummins Inc. Systems and methods for measurement of piston-to-piston clearances in multi-cylinder opposed piston engines
US11598259B2 (en) 2019-08-29 2023-03-07 Achates Power, Inc. Hybrid drive system with an opposed-piston, internal combustion engine
JP7266545B2 (ja) * 2020-03-19 2023-04-28 三菱重工業株式会社 燃料噴射制御装置
CN112664333B (zh) * 2020-04-01 2022-09-27 长城汽车股份有限公司 可变压缩比发动机压缩比控制方法
US11408332B2 (en) * 2020-10-23 2022-08-09 Garrett Transportation I, Inc. Engine and emissions control system
US11898448B2 (en) 2021-07-22 2024-02-13 Achates Power, Inc. Hydrogen-powered opposed-piston engine
US11773769B2 (en) 2021-07-30 2023-10-03 Achates Power, Inc. Piston for an opposed-piston engine
US11933215B2 (en) 2022-02-21 2024-03-19 Achates Power, Inc. Hydrogen opposed-piston engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2767691A (en) * 1955-02-07 1956-10-23 Phillips Petroleum Co Dual-fuel engines and processes of operating same
JPH10238374A (ja) * 1997-02-21 1998-09-08 Daihatsu Motor Co Ltd 予混合着火内燃機関とその着火時期制御方法
JP2006183480A (ja) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd ユニフロー2ストローク内燃機関
JP2013534295A (ja) * 2010-08-16 2013-09-02 アカーテース パワー,インク. 対向ピストンエンジン用の燃料噴射噴霧パターン
JP2013217334A (ja) * 2012-04-11 2013-10-24 Mitsubishi Heavy Ind Ltd 2サイクルガスエンジン

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB816325A (en) * 1955-07-27 1959-07-08 Angus Humphrey Cuddon Fletcher Improvements in or relating to two-stroke internal combustion engines
US2180898A (en) * 1937-08-25 1939-11-21 James S Frazer Internal combustion engine
US3084678A (en) * 1960-04-15 1963-04-09 Maurice E Lindsay Internal combustion engine with shifting cylinders
US4215660A (en) 1978-04-28 1980-08-05 Finley Donald G Internal combustion engine
US4635590A (en) * 1983-04-28 1987-01-13 Anthony Gerace Internal combustion engine and operating cycle therefor
US5058537A (en) * 1989-04-21 1991-10-22 Paul Marius A Optimized high pressure internal combustion engines
JPH06207526A (ja) * 1992-02-05 1994-07-26 Tetsunori Hamaura 圧縮比可変型エンジン
US6230683B1 (en) * 1997-08-22 2001-05-15 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
DE69740148D1 (de) * 1996-08-23 2011-04-21 Cummins Inc Verbrennungskraftmaschine mit Kompressionszündung und Kraftstoff-Luft Vormischung mit optimaler Verbrennungsregelung
AU5744498A (en) * 1998-01-27 1999-08-09 Francois T. Dornez Internal combustion engine
US7469662B2 (en) * 1999-03-23 2008-12-30 Thomas Engine Company, Llc Homogeneous charge compression ignition engine with combustion phasing
CN101592077A (zh) * 2002-03-15 2009-12-02 先进动力科技公司 内燃机
US7360511B2 (en) * 2004-06-10 2008-04-22 Achates Power, Inc. Opposed piston engine
US7121254B2 (en) * 2005-02-17 2006-10-17 General Motors Corporation Compression-ignited IC engine and method of operation
US7270108B2 (en) * 2005-03-31 2007-09-18 Achates Power Llc Opposed piston, homogeneous charge pilot ignition engine
US7621262B2 (en) * 2007-05-10 2009-11-24 Ford Global Technologies, Llc Hybrid thermal energy conversion for HCCI heated intake charge system
EP2009265B1 (en) 2007-06-05 2018-10-03 Delphi International Operations Luxembourg S.à r.l. Compression-ignition internal combustion engine system
AU2008323992B2 (en) 2007-11-08 2012-07-26 Two Heads Llc Monoblock valveless opposing piston internal combustion engine
EP2063092A1 (en) * 2007-11-20 2009-05-27 Ford Global Technologies, LLC An internal combustion engine system, and a method in such an engine system
FR2928694A1 (fr) * 2008-03-17 2009-09-18 Antar Daouk Moteur pourvu d'une chambre a volume variable
US20120090298A1 (en) * 2010-10-08 2012-04-19 Cleeves James M Engine combustion condition and emission controls
US8544445B2 (en) 2010-03-09 2013-10-01 Pinnacle Engines, Inc. Over-compressed engine
WO2012158756A1 (en) 2011-05-18 2012-11-22 Achates Power, Inc. Combustion chamber construction for opposed-piston engines
US10180115B2 (en) 2010-04-27 2019-01-15 Achates Power, Inc. Piston crown bowls defining combustion chamber constructions in opposed-piston engines
WO2011139332A2 (en) 2010-04-27 2011-11-10 Achates Power, Inc. Combustion chamber constructions for opposed-piston engines
US9512779B2 (en) 2010-04-27 2016-12-06 Achates Power, Inc. Swirl-conserving combustion chamber construction for opposed-piston engines
US8677974B2 (en) 2010-05-04 2014-03-25 Southwest Research Institute Piston bowl with flat bottom
US8549854B2 (en) 2010-05-18 2013-10-08 Achates Power, Inc. EGR constructions for opposed-piston engines
EP2572089B1 (en) * 2010-05-18 2015-03-18 Achates Power, Inc. Egr construction for opposed-piston engines
EP2625404B1 (en) 2010-10-08 2017-01-04 Pinnacle Engines, Inc. Variable compression ratio systems for opposed-piston and other internal combustion engines, and related methods of manufacture and use
US8616162B2 (en) * 2010-11-04 2013-12-31 GM Global Technology Operations LLC Opposed free piston linear alternator
US8746190B2 (en) * 2010-11-15 2014-06-10 Achates Power, Inc. Two stroke opposed-piston engines with compression release for engine braking
US8662029B2 (en) * 2010-11-23 2014-03-04 Etagen, Inc. High-efficiency linear combustion engine
US20130174548A1 (en) 2011-05-16 2013-07-11 Achates Power, Inc. EGR for a Two-Stroke Cycle Engine without a Supercharger
US20130104848A1 (en) * 2011-10-27 2013-05-02 Achates Power, Inc. Fuel Injection Strategies in Opposed-Piston Engines with Multiple Fuel Injectors
US10190492B2 (en) 2013-04-08 2019-01-29 Achates Power, Inc. Dual crankshaft, opposed-piston engines with variable crank phasing
CN105121825B (zh) 2013-04-16 2018-10-26 德尔福技术有限公司 用于汽油直喷压燃(gdci)的活塞和碗状物
US20150114372A1 (en) * 2013-05-02 2015-04-30 Matthew Cobb Structures, functions, and methods regarding internal combustion engines
US9512790B2 (en) 2013-06-25 2016-12-06 Achates Power, Inc. System and method for air handling control in opposed-piston engines with uniflow scavenging
US9206751B2 (en) 2013-06-25 2015-12-08 Achates Power, Inc. Air handling control for opposed-piston engines with uniflow scavenging
US9284884B2 (en) 2013-06-25 2016-03-15 Achates Power, Inc. Trapped burned gas fraction control for opposed-piston engines with uniflow scavenging
US9211797B2 (en) 2013-11-07 2015-12-15 Achates Power, Inc. Combustion chamber construction with dual mixing regions for opposed-piston engines
US9032927B1 (en) 2013-11-08 2015-05-19 Achates Power, Inc. Cold-start strategies for opposed-piston engines
US20160017839A1 (en) * 2014-07-21 2016-01-21 Avl Powertrain Engineering, Inc. Piston Engine with Non-Circular Combustion Chamber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2767691A (en) * 1955-02-07 1956-10-23 Phillips Petroleum Co Dual-fuel engines and processes of operating same
JPH10238374A (ja) * 1997-02-21 1998-09-08 Daihatsu Motor Co Ltd 予混合着火内燃機関とその着火時期制御方法
JP2006183480A (ja) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd ユニフロー2ストローク内燃機関
JP2013534295A (ja) * 2010-08-16 2013-09-02 アカーテース パワー,インク. 対向ピストンエンジン用の燃料噴射噴霧パターン
JP2013217334A (ja) * 2012-04-11 2013-10-24 Mitsubishi Heavy Ind Ltd 2サイクルガスエンジン

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7442779B2 (ja) 2019-08-07 2024-03-05 国立大学法人広島大学 対向ピストンエンジン

Also Published As

Publication number Publication date
EP3105430A1 (en) 2016-12-21
US9957880B2 (en) 2018-05-01
JP2017101679A (ja) 2017-06-08
CN106062336B (zh) 2019-02-19
US9995201B2 (en) 2018-06-12
JP6767271B2 (ja) 2020-10-14
JP6412582B2 (ja) 2018-10-24
US20160341104A1 (en) 2016-11-24
EP3176401A1 (en) 2017-06-07
US20160369686A1 (en) 2016-12-22
CN106762098B (zh) 2020-06-12
WO2015123262A1 (en) 2015-08-20
CN106062336A (zh) 2016-10-26
CN106762098A (zh) 2017-05-31
EP3105430B1 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP6412582B2 (ja) 低反応性圧縮着火対向ピストンエンジン
US9932883B2 (en) Spark-ignition direct-injection engine
US7270108B2 (en) Opposed piston, homogeneous charge pilot ignition engine
Manente et al. Effects of different type of gasoline fuels on heavy duty partially premixed combustion
CA2898105C (en) Internally cooled internal combustion engine and method thereof
CN107882645B (zh) 用于控制专用egr发动机的技术
EP1048833B1 (en) Internal combustion engine with exhaust gas recirculation
CN105683541B (zh) 压缩点火式发动机的控制装置
CN105683537A (zh) 压缩点火式发动机的控制装置
JP2014047629A (ja) 火花点火式直噴エンジン
US9062598B2 (en) Internal combustion engine operable in homogeneous-charge compression mode
Yun et al. Development of premixed low-temperature diesel combustion in a HSDI diesel engine
Dimitrakopoulos et al. PPC operation with low ron gasoline fuel. A study on load range on a euro 6 light duty diesel engine
CN102734031B (zh) 用于稳健的自燃和火焰传播的hcci燃料喷射器
May et al. Reduction of methane slip using premixed micro pilot combustion in a heavy-duty natural gas-diesel engine
JP2013007353A (ja) 過給機付リーンバーンエンジン
Canova et al. Experimental characterization of mixed-mode HCCI/DI combustion on a common rail diesel engine
US20140373530A1 (en) Multi-fuel engine
WO2023105860A1 (ja) ディーゼルエンジン
CN108266282B (zh) 基于fce模式变冲程重整高辛烷值燃料的控制方法
US9322339B2 (en) Internal combustion engine operating on different reactivity fuels
JP2021055662A (ja) 燃料改質エンジン
Lee et al. Emission Characteristics for a HCCI Diesel Engine with EGR Using Split Injection Methodology
JP2022076373A (ja) 6ストローク内燃機関
Suo et al. Study of diesel micro-pilot ignition for gasoline compression combustion on a light duty engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180928

R150 Certificate of patent or registration of utility model

Ref document number: 6412582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees