JP2017224462A - Illumination device - Google Patents

Illumination device Download PDF

Info

Publication number
JP2017224462A
JP2017224462A JP2016118462A JP2016118462A JP2017224462A JP 2017224462 A JP2017224462 A JP 2017224462A JP 2016118462 A JP2016118462 A JP 2016118462A JP 2016118462 A JP2016118462 A JP 2016118462A JP 2017224462 A JP2017224462 A JP 2017224462A
Authority
JP
Japan
Prior art keywords
wide
angle lens
angle
lens
led light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016118462A
Other languages
Japanese (ja)
Other versions
JP6678524B2 (en
Inventor
好文 關口
Yoshifumi Sekiguchi
好文 關口
金子 浩規
Hironori Kaneko
浩規 金子
恵一 藤森
Keiichi Fujimori
恵一 藤森
宏介 住吉
Kosuke Sumiyoshi
宏介 住吉
孝享 丸山
Takayuki Maruyama
孝享 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2016118462A priority Critical patent/JP6678524B2/en
Priority to CN201710085526.8A priority patent/CN107524988A/en
Priority to TW106113129A priority patent/TWI624622B/en
Publication of JP2017224462A publication Critical patent/JP2017224462A/en
Priority to JP2020043647A priority patent/JP6928139B2/en
Application granted granted Critical
Publication of JP6678524B2 publication Critical patent/JP6678524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/04Lighting devices intended for fixed installation intended only for mounting on a ceiling or the like overhead structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape

Abstract

PROBLEM TO BE SOLVED: To provide an illumination device which illuminates a diffusion cover in a uniform manner while suppressing local nonuniformity.SOLUTION: An illumination device comprises: multiple LED light sources which are disposed in annular rows; a substrate on which the LED light sources are mounted; wide-angle lenses covering the LED light sources; and a diffusion cover which covers the LED light sources and the wide-angle lenses and has a curved surface. The wide-angle lenses include: an outer wide-angle lens covering LED light sources in a row that is disposed outsides among the rows of the LED light sources; an inner wide-angle lens covering LED light sources in a row that is disposed insides among the rows of the LED light sources; and a middle wide-angle lens covering LED light sources in a row that is disposed between the row of the LED light sources corresponding to the outer wide-angle lens and the row of the LED light sources corresponding to the inner wide-angle lens among the rows of the LED light sources. Ratios of heights with respect to lateral widths of contours of the wide-angle lens become smaller in the order of the inner wide-angle lens, the middle wide-angle lens and the outer wide-angle lens.SELECTED DRAWING: Figure 1

Description

本発明は、照明装置に関するものである。   The present invention relates to a lighting device.

近年、照明装置の光源として、LED(Light Emmitting Diode、発光ダイオード)の使用が多くなっている。天井に取り付けるタイプの室内照明装置用の光源としても蛍光管に代わってLEDが使われ始めている。LED照明装置は水銀レスであることが特徴であり、環境を配慮した光源である。さらに、LED照明装置として、LEDからの出射光に指向性を付与することがある。特許文献1から特許文献4にLEDからの出射光に指向性を付与した光学系に関して開示されている。   In recent years, LEDs (Light Emitting Diodes) have been increasingly used as light sources for lighting devices. LEDs have begun to be used in place of fluorescent tubes as light sources for ceiling-mounted indoor lighting devices. The LED lighting device is characterized by being mercury-free, and is an environment-friendly light source. Furthermore, as an LED illumination device, directivity may be imparted to light emitted from the LED. Patent Documents 1 to 4 disclose optical systems in which directivity is imparted to light emitted from an LED.

特開2014‐154461号公報JP 2014-154461 A 特開2014‐135233号公報JP 2014-135233 A 特開2011‐204397号公報JP 2011-204397 A 特開2014‐13744号公報JP 2014-13744 A

LEDから出射した光を散乱して広げる拡散カバーが、LEDを覆うように備えられている照明装置において、デザイン性の観点で拡散カバーが均一に光ることが望まれる。従来は、LEDを拡散カバーの下に広範囲に配置し、さらに、LEDからの光をLEDに対応して配置されるレンズで広げることで、拡散カバーを均一に光らせていた。しかしながら、近年ではLEDの効率が向上し、照明装置として必要なLED数が少なくなったことから、隣接LED間の距離が広がり個々のLEDからの光をより広範囲に出射するレンズが必要となった。一方で、広範囲に光を出射するレンズは、拡散カバー上に輝線など局所的に発生する局所ムラを形成することがあり、デザイン性を損なうことがある。本発明は、局所ムラを抑制して拡散カバー全体が均一に光る照明装置を提供することを目的とする。   In a lighting device provided with a diffusion cover that scatters and spreads light emitted from an LED so as to cover the LED, it is desired that the diffusion cover shine uniformly from the viewpoint of design. Conventionally, LEDs are arranged in a wide range under the diffusion cover, and further, the light from the LEDs is spread by a lens arranged corresponding to the LED, so that the diffusion cover is uniformly illuminated. However, in recent years, the efficiency of LEDs has improved, and the number of LEDs required as a lighting device has decreased. Therefore, the distance between adjacent LEDs has increased, and a lens that emits light from individual LEDs in a wider range has become necessary. . On the other hand, a lens that emits light over a wide range may form local unevenness such as bright lines on the diffusion cover, which may impair the design. An object of this invention is to provide the illuminating device which suppresses a local nonuniformity and the whole diffusion cover shines uniformly.

上記課題を解決するために、複数の環状列に配置されたLED光源と、前記LED光源を実装する基板と、前記LED光源を覆う広角レンズと、前記LED光源と前記広角レンズと、を覆い、曲面を有する拡散カバーと、を有し、前記広角レンズは、前記LED光源の列の内、外側に配置された列のLED光源を覆う外広角レンズと、前記LED光源の列の内、内側に配置された列のLED光源を覆う内広角レンズと、前記LED光源の列の内、前記外広角レンズに対応するLED光源の列と前記内広角レンズに対応するLED光源の列の間に配置された列のLED光源を覆う中広角レンズと、を備え、前記広角レンズの外形の横幅に対する高さの比は、前記内広角レンズ、前記中広角レンズ、前記外広角レンズの順に小さくなる。   In order to solve the above problems, the LED light sources arranged in a plurality of annular rows, a substrate on which the LED light sources are mounted, a wide-angle lens covering the LED light sources, the LED light sources and the wide-angle lenses are covered, A diffusion cover having a curved surface, and the wide-angle lens includes an outer wide-angle lens that covers the LED light sources arranged on the outer side of the row of LED light sources, and an inner side of the row of LED light sources. An inner wide-angle lens that covers the LED light sources in the arranged row, and an LED light source row corresponding to the outer wide-angle lens and an LED light source row corresponding to the inner wide-angle lens in the LED light source row. A wide-angle lens covering the LED light sources in a row, and the ratio of the height to the lateral width of the outer shape of the wide-angle lens decreases in the order of the inner wide-angle lens, the middle-wide-angle lens, and the outer wide-angle lens.

本発明によれば、レンズおよびそのレンズ群の構成により、局所的なムラを抑制して拡散カバー全体に光を照射し、デザイン性の良い照明装置を提供するという効果を奏する。   According to the present invention, the configuration of the lens and the lens group has the effect of suppressing local unevenness and irradiating the entire diffusing cover with light to provide a lighting device with good design.

本発明の第1の実施形態に係る照明装置の構成を説明するための正面図The front view for demonstrating the structure of the illuminating device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る照明装置の構成を説明するための断面図Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る照明装置のレンズの放射強度分布を示す図The figure which shows the radiation intensity distribution of the lens of the illuminating device which concerns on the 1st Embodiment of this invention. (a)本発明の第1の実施形態に係る照明装置のレンズの放射強度比を示す図(b)放射強度の比が2以下を拡大した図(a) The figure which shows the radiant intensity ratio of the lens of the illuminating device concerning the 1st Embodiment of this invention (b) The figure which expanded ratio of radiant intensity 2 or less (a)(b)の点線の断面図 (b)内広角レンズ4の正面図(a) Cross section of dotted line in (b) (b) Front view of inner wide-angle lens 4 (a)(b)の点線の断面図 (b)中広角レンズ5の正面図(a) Sectional drawing of the dotted line of (b) (b) Front view of the medium wide-angle lens 5 (a)(b)の点線の断面図 (b)外広角レンズ6の正面図(a) Cross section of dotted line in (b) (b) Front view of outer wide-angle lens 6 (a)拡散カバーを近似的に平面とした場合の光源から極角θに出射した光を示す図(b)拡散カバーを近似的に曲面とした場合の光源から極角θに出射した光を示す図(a) The figure which shows the light radiate | emitted to polar angle (theta) from the light source when a diffusion cover is made into a plane substantially (b) The light radiate | emitted from the light source to polar angle (theta) when a diffusion cover is made into a curved surface approximately Illustration

《第1の実施形態》
図1は、本発明の第1の実施形態に係る照明装置の構成を説明するための正面図であって、LED光源3を実装する基板2を基板2の法線方向から見た図である。本実施形態において、基板2は略環状の板形状の部材である。基板2において、LED光源3が実装されている面を実装面と呼ぶことにする。LED光源3は複数の環状列に配置され、各LED光源3を広角レンズ(内広角レンズ4、中広角レンズ5、外広角レンズ6)が覆う構成である。
<< First Embodiment >>
FIG. 1 is a front view for explaining the configuration of the illumination device according to the first embodiment of the present invention, and is a view of the substrate 2 on which the LED light source 3 is mounted as viewed from the normal direction of the substrate 2. . In the present embodiment, the substrate 2 is a substantially annular plate-shaped member. A surface of the substrate 2 on which the LED light source 3 is mounted is referred to as a mounting surface. The LED light sources 3 are arranged in a plurality of annular rows, and each LED light source 3 is configured to be covered by a wide angle lens (an inner wide angle lens 4, a middle wide angle lens 5, and an outer wide angle lens 6).

LED光源3の環状列の内、外側に配置された列のLED光源3を覆う広角レンズを外広角レンズ6とし、内側に配置された列のLED光源3を覆う広角レンズを内広角レンズ4とし、それら(外広角レンズ6に対応するLED光源3の列と内広角レンズ4に対応するLED光源3の列の)の間に配置された列のLED光源3を覆う広角レンズを中広角レンズ5とする。本実施形態では、外広角レンズ6が最外列のLED光源3を覆い、中広角レンズ5が外側から2列目(内側から3列目)のLED光源3を覆い、内広角レンズ4が最内列とその次に内側にある列(内側から2列目)のLED光源3を覆う構成である。基板2の中心Cから各広角レンズ中心までの距離は、内広角レンズ4、中広角レンズ5、外広角レンズ6の順に大きくなっている。   Among the annular rows of LED light sources 3, the wide-angle lens that covers the LED light sources 3 in the rows arranged outside is the outer wide-angle lens 6, and the wide-angle lens that covers the LED light sources 3 in the rows arranged inside is the inner wide-angle lens 4. A wide-angle lens covering the LED light source 3 in a row disposed between them (a row of LED light sources 3 corresponding to the outer wide-angle lens 6 and a row of LED light sources 3 corresponding to the inner wide-angle lens 4) is a medium-wide-angle lens 5 And In this embodiment, the outer wide-angle lens 6 covers the LED light source 3 in the outermost row, the middle wide-angle lens 5 covers the LED light source 3 in the second row from the outside (third row from the inside), and the inner wide-angle lens 4 is the outermost row. In this configuration, the LED light sources 3 in the inner row and the next inner row (second row from the inner side) are covered. The distance from the center C of the substrate 2 to the center of each wide-angle lens increases in the order of the inner wide-angle lens 4, the middle wide-angle lens 5, and the outer wide-angle lens 6.

図2は、第1の実施形態に係る照明装置の断面図である。当該断面は、LED光源3が実装されている基板2の法線に平行な面における断面図である。図2中に矢印で示すように、照明装置1が主に光を照射する方向を正面方向Zとする。照明装置1が主に光を照射する方向は、例えば天井に設置して室内を照明するタイプの照明装置であれば、天井の法線方向、または天井から床に向かう方向(照明装置1の直下方向)が正面方向Zである。正面方向Zと略垂直な方向を側面方向とする。   FIG. 2 is a cross-sectional view of the illumination device according to the first embodiment. The said cross section is sectional drawing in the surface parallel to the normal line of the board | substrate 2 with which the LED light source 3 is mounted. As indicated by an arrow in FIG. 2, a direction in which the illumination device 1 mainly emits light is a front direction Z. The direction in which the lighting device 1 mainly emits light is, for example, a type of lighting device that is installed on the ceiling and illuminates the interior of the room, or the direction normal to the ceiling or the direction from the ceiling to the floor (directly below the lighting device 1). Direction) is the front direction Z. A direction substantially perpendicular to the front direction Z is defined as a side surface direction.

照明装置1は、筐体としてのフレーム11が有り、フレーム11は例えば鉄製である。フレーム11の一部の平面11Aには基板2がネジ止めなどで取り付けられている。フレーム11は中空部を有し、中空部にはLED光源3を駆動する点灯回路9が設置されている。基板2の端部2E付近でフレーム11は折れ曲がって傾斜し、傾斜部11Bを有する。フレーム11には、拡散カバー8が取り付けられる。図2に示す本実施形態では、フレーム11は、基板2が取り付けられる部材と、拡散カバー8が取り付けられる部材の2部材で構成されているが、この限りではなく1部材でも複数部材でも良い。   The lighting device 1 has a frame 11 as a housing, and the frame 11 is made of, for example, iron. The substrate 2 is attached to a part of the flat surface 11A of the frame 11 by screws or the like. The frame 11 has a hollow portion, and a lighting circuit 9 for driving the LED light source 3 is installed in the hollow portion. The frame 11 is bent and inclined near the end 2E of the substrate 2 and has an inclined portion 11B. A diffusion cover 8 is attached to the frame 11. In the present embodiment shown in FIG. 2, the frame 11 is composed of two members, a member to which the substrate 2 is attached and a member to which the diffusion cover 8 is attached.

照明装置1は、固定具51によって天井50に固定される。固定具51があるために、照明装置1の中心にはLED光源3が置けない。固定具51の正面方向Z側には中心カバー10が設置されており、固定具51が配置されている溝に光が入らないようになっている。当該溝に向かって伝播して来る光は、中心カバー10で正面方向Zに反射散乱される。中心カバー10は反射率が高い部材が好ましい。さらに、基板2や、フレーム11の内側は、白色塗装、白色レジスト、白色シートなどを用いて、白色の物質で覆うので、中心カバー10も白色散乱反射する部材が好ましい。   The lighting device 1 is fixed to the ceiling 50 by a fixture 51. Due to the fixture 51, the LED light source 3 cannot be placed in the center of the lighting device 1. The center cover 10 is installed on the front direction Z side of the fixture 51 so that light does not enter the groove in which the fixture 51 is disposed. The light propagating toward the groove is reflected and scattered in the front direction Z by the center cover 10. The center cover 10 is preferably a member having a high reflectance. Further, since the inside of the substrate 2 and the frame 11 is covered with a white material using white paint, white resist, white sheet, or the like, the center cover 10 is preferably a member that also reflects white.

本実施形態では、内広角レンズ4、中広角レンズ5、外広角レンズ6に対応するLED光源3を、必要な場合には区別して、それぞれLED光源3A、LED光源3B、LED光源3Cと呼ぶことにする。これらLED光源3は、同じ種類や色のLED光源でも、異なる種類や色のLED光源でも良い。LED光源3の例としては、青色発光のLEDと黄色の蛍光体を用いる白色LEDモジュールなどがあげられる。なお、本実施形態では光源をLED光源としたが、LED光源に限定されない。   In the present embodiment, the LED light sources 3 corresponding to the inner wide-angle lens 4, the middle wide-angle lens 5, and the outer wide-angle lens 6 are distinguished as necessary and referred to as LED light source 3A, LED light source 3B, and LED light source 3C, respectively. To. These LED light sources 3 may be LED light sources of the same type or color, or LED light sources of different types or colors. Examples of the LED light source 3 include a white LED module using a blue light emitting LED and a yellow phosphor. In this embodiment, the light source is an LED light source, but is not limited to an LED light source.

内広角レンズ4、中広角レンズ5、外広角レンズ6は、平坦部7にて接続され、レンズカバー12を形成する。本実施の形態では、レンズカバー12は一括成型される。レンズカバー12の材料としては、ポリカーボネート、ポリスチレン、アクリルなどの樹脂を材料としている。   The inner wide-angle lens 4, the middle wide-angle lens 5, and the outer wide-angle lens 6 are connected by a flat portion 7 to form a lens cover 12. In the present embodiment, the lens cover 12 is molded at once. The material of the lens cover 12 is a resin such as polycarbonate, polystyrene, or acrylic.

本実施形態においては、拡散カバー8は全てのLED光源3及びレンズカバー12を覆うような形状であって、LED光源3が発光した光を拡散反射・透過させる。説明のために、拡散カバー8を、拡散カバー8の表面の法線が正面方向Zにおおよそ向いている正面部8Aと、拡散カバー8の表面の法線が側面方向におおよそ向いている側面部8Bに大別する。拡散カバー8は、多くの場合、樹脂であって、樹脂内にシリカなどの拡散材を含有している。拡散カバー8の全光線透過率は、拡散材の種類や濃度で制御できる。拡散カバー8に入射した光は、ある散乱角度分布を持って拡散カバー8から照明装置1の外へ出射する。なお、本発明は、拡散カバー8の形状を限定せず、全てのLED光源3を覆わない形状であってもよく、拡散カバー8の全域に拡散性が付与されて無くても良い。   In the present embodiment, the diffusion cover 8 has a shape that covers all the LED light sources 3 and the lens cover 12, and diffuses and reflects and transmits the light emitted from the LED light sources 3. For the sake of explanation, the diffusion cover 8 is divided into a front part 8A in which the normal line of the surface of the diffusion cover 8 is substantially directed in the front direction Z, and a side part in which the normal line of the surface of the diffusion cover 8 is substantially directed in the lateral direction. Roughly divided into 8B. The diffusion cover 8 is often a resin, and contains a diffusion material such as silica in the resin. The total light transmittance of the diffusion cover 8 can be controlled by the type and concentration of the diffusion material. The light incident on the diffusion cover 8 exits the illumination device 1 from the diffusion cover 8 with a certain scattering angle distribution. In the present invention, the shape of the diffusion cover 8 is not limited and may be a shape that does not cover all the LED light sources 3, and the diffusion cover 8 may not be provided with diffusibility.

次に、広角レンズに関して説明する。一般的には、LED光源3からの発光光の光度分布は、実装面の法線方向を最大とするランバーシアン(法線からの角度θ(極角と呼ぶことにする)と光度(放射強度)I(θ)と法線方向の光度(放射強度)I(0)との関係が、次の関係にある。I(θ)=I(0)cosθ)である。なお、ここで示す光度[cd]とは、LED光源3やレンズから十分に離れた位置で測定した光度を意味する。以下、LED光源3の光度(または、放射強度)をI(θ)と表記する。光度は分光放射強度に視感度を乗じて波長を変数として積分した量であり、本発明においては、何れを用いても誤解が生じないので、同等のものとして取り扱う。例えば、両者は概ね比例関係にあるので、角度θが80度の場合に、光度のピークがあるという場合は、放射強度も同様に80度にピークがあるという意味である。ランバーシアンの場合には、角度θが0度の角度にピークがある。   Next, a wide angle lens will be described. Generally, the luminous intensity distribution of the emitted light from the LED light source 3 is Lambertian (an angle θ from the normal (referred to as a polar angle) and luminous intensity (radiant intensity) that maximize the normal direction of the mounting surface. ) The relationship between I (θ) and the luminous intensity (radiant intensity) I (0) in the normal direction is as follows: I (θ) = I (0) cos θ). Here, the luminous intensity [cd] means a luminous intensity measured at a position sufficiently away from the LED light source 3 and the lens. Hereinafter, the luminous intensity (or radiation intensity) of the LED light source 3 is expressed as I (θ). The luminous intensity is an amount obtained by multiplying the spectral radiant intensity by the visibility and integrating the wavelength as a variable. In the present invention, any of them is not misunderstood, and therefore is treated as equivalent. For example, since the two are generally in a proportional relationship, when the angle θ is 80 degrees, if there is a light intensity peak, it means that the radiation intensity also has a peak at 80 degrees. In the case of Lambertian, the angle θ has a peak at an angle of 0 degrees.

広角レンズは、LED光源3から発光された光が入射してきた際に屈折させ、より広い範囲(角度)となるように出射するレンズである。例えば、広角レンズからの出射光の光度をIL(θ)(または、放射強度)とした場合に、θ=0度におけるLED光源3に対するレンズの光度(または、放射強度)の比R(0)=(IL(0)/I(0))が、ある角度θ(θ>0)における光度(または、放射強度)の比R(θ)=(IL(θ)/I(θ))よりも小さくなるレンズが広角レンズである。本実施形態においては、少なくとも45度よりも大きな角度θで、R(0)<R(θ)を部分的には満たすレンズを広角レンズとする。 The wide-angle lens is a lens that refracts when light emitted from the LED light source 3 enters and emits light so as to be in a wider range (angle). For example, when the luminous intensity of the light emitted from the wide-angle lens is I L (θ) (or radiation intensity), the ratio R I (the luminous intensity (or radiation intensity) of the lens with respect to the LED light source 3 at θ = 0 degree). 0) = (I L (0) / I (0)) is a ratio of luminous intensity (or radiation intensity) at a certain angle θ (θ> 0) R I (θ) = (I L (θ) / I ( A lens that is smaller than θ)) is a wide-angle lens. In this embodiment, a lens that partially satisfies R I (0) <R I (θ) at an angle θ greater than at least 45 degrees is a wide-angle lens.

図3に、本実施形態の内広角レンズ4、中広角レンズ5、外広角レンズ6に関して、シミュレーションで計算した放射強度分布を示す。計算に用いた光学系は、LED光源3を各広角レンズで覆った系であり、各広角レンズからの出射光の放射強度を測定した。図3の縦軸は放射強度[W/sr]、横軸は出射角度θ[deg]を示す。破線、鎖線(一点鎖線、二点鎖線)、実線は、それぞれ、内広角レンズ4、中広角レンズ5、外広角レンズ6の放射強度であり、点線はLED光源3の放射強度である。なお、図1では、中広角レンズ5の正面から見た形状を、等方的に簡略化して描いたが、実際は長円であり、短軸と長軸方向の放射強度(5a、5b)も示した。何れの分布もピークを有し、内広角レンズ4、中広角レンズ短軸5aと長軸5b、外広角レンズ6のピークIpに対応する角度θpは、61.5度、68.5度、69.5度、80.5度であり、レンズの位置が外側になるにつれて角度θpも大きくなる。   FIG. 3 shows radiation intensity distributions calculated by simulation for the inner wide-angle lens 4, the middle wide-angle lens 5, and the outer wide-angle lens 6 of the present embodiment. The optical system used for the calculation was a system in which the LED light source 3 was covered with each wide-angle lens, and the radiation intensity of the emitted light from each wide-angle lens was measured. The vertical axis in FIG. 3 indicates the radiation intensity [W / sr], and the horizontal axis indicates the emission angle θ [deg]. A broken line, a chain line (one-dot chain line, a two-dot chain line), and a solid line are the radiation intensities of the inner wide-angle lens 4, the middle wide-angle lens 5, and the outer wide-angle lens 6, respectively. The dotted line is the radiation intensity of the LED light source 3. In FIG. 1, the shape of the medium-wide-angle lens 5 viewed from the front is drawn isotropically simplified. However, the shape is actually an ellipse, and the radiant intensity (5a, 5b) in the minor axis and major axis directions is also shown. Indicated. Each distribution has a peak. The angles θp corresponding to the peaks Ip of the inner wide-angle lens 4, the medium-wide-angle lens short axis 5 a and the major axis 5 b, and the outer wide-angle lens 6 are 61.5 degrees, 68.5 degrees, and 69, respectively. .5 degrees and 80.5 degrees, and the angle θp also increases as the lens position goes outside.

図4は、放射強度の比R(θ)を示す図であり、図の縦軸は放射強度の比R(θ)、横軸は出射角度θ[deg]を示す。図4(b)は放射強度の比が2以下を拡大した図である。何れのレンズも広角レンズであり、放射強度の比R(θ)がR(0)よりも大きくなる領域が45度以上に必ず存在し、角度θpにおける放射強度の比R(θp)も必ずR(0)よりも大きくなる。 Figure 4 is a diagram showing the ratio R I of the radiation intensity (theta), the ratio R I (theta) of the vertical axis the radiation intensity in the figure, the abscissa indicates the output angle θ [deg]. FIG. 4B is an enlarged view of the ratio of radiant intensity of 2 or less. Each lens is a wide-angle lens, and there is always a region where the radiation intensity ratio R I (θ) is larger than R I (0) at 45 degrees or more, and the radiation intensity ratio R I (θp) at the angle θp. Is always larger than R I (0).

本実施形態の広角レンズの形状と配置は、拡散カバー8が均一に光る構成であり、広角レンズを用いた場合に拡散カバー上に輝線など局所的に発生する恐れのある局所ムラを抑制する構成でもある。それらについて順次説明する。   The shape and arrangement of the wide-angle lens of the present embodiment is a configuration in which the diffusion cover 8 shines uniformly, and a configuration that suppresses local unevenness that may occur locally on the diffusion cover, such as bright lines, when the wide-angle lens is used. But there is. These will be described sequentially.

図2に示すように、拡散カバー8は、中央でLED光源3Aからの距離が最も大きく、照明装置1の端部に向かうにつれてLED光源3Cに近づくような、断面が曲線形状の構成である。本実施形態の例としては、基板2から拡散カバー8までの垂直距離が、中心部のLED光源3付近で約80mm、端部2Eで約60mmである。広角レンズからの出射光が拡散カバー8上に形成する照度分布は、広角レンズと拡散カバー8の距離が大きくなるほど、広くなだらかな分布となる。LED光源3Cは、LED光源3Cの直上は拡散カバー8との距離が小さい上に、LED光源3Cより外側に位置する拡散カバー8を照射する主な光源である。それゆえ、LED光源3Cに対応する外広角レンズ6は直上への出射光を少なくし、できるだけ多くの光を広範囲に出射するレンズである必要がある。したがって、外広角レンズ6は、拡散カバー8との距離が大きく、かつ、光を照射すべき領域が狭い内広角レンズ4よりも光を広げる必要がある。   As shown in FIG. 2, the diffusion cover 8 has a curved cross-sectional configuration such that the distance from the LED light source 3 </ b> A is the largest at the center and approaches the LED light source 3 </ b> C toward the end of the lighting device 1. As an example of this embodiment, the vertical distance from the substrate 2 to the diffusion cover 8 is about 80 mm in the vicinity of the LED light source 3 in the center and about 60 mm at the end 2E. The illuminance distribution formed on the diffusion cover 8 by the light emitted from the wide-angle lens becomes wider and gentler as the distance between the wide-angle lens and the diffusion cover 8 increases. The LED light source 3C is a main light source that irradiates the diffusion cover 8 positioned outside the LED light source 3C in addition to the distance from the diffusion cover 8 being just above the LED light source 3C. Therefore, the outer wide-angle lens 6 corresponding to the LED light source 3C needs to be a lens that reduces the light emitted directly above and emits as much light as possible over a wide range. Therefore, the outer wide-angle lens 6 needs to spread light more than the inner wide-angle lens 4 having a large distance to the diffusion cover 8 and a narrow area to be irradiated with light.

中広角レンズ5は、内広角レンズ4と外広角レンズ6の光度分布が大きく異なる場合に、拡散カバー8上に局所ムラが発生することがあるので、光度分布の変化を緩やかにするために、光を広げる性能を内広角レンズ4と外広角レンズ5の間の性能として、性能変化を緩衝することが望ましい。   In the medium wide-angle lens 5, when the luminous intensity distributions of the inner wide-angle lens 4 and the outer wide-angle lens 6 are greatly different, local unevenness may occur on the diffusion cover 8. Therefore, in order to moderate the change in luminous intensity distribution, It is desirable that the performance of spreading the light be the performance between the inner wide-angle lens 4 and the outer wide-angle lens 5 to buffer the performance change.

また、LED光源3は環状列に配置されており、環状列内におけるLED光源3間の距離に比べて、実装面内において器具中心から外側に向かう動径方向のLED光源3間の距離の方が大きいことが多いので、動径方向の光の広がりが重要であり、以下、動径方向の光の広がりに着目して各広角レンズに関して説明する。   The LED light sources 3 are arranged in an annular row, and the distance between the LED light sources 3 in the radial direction from the center of the instrument toward the outside in the mounting surface is larger than the distance between the LED light sources 3 in the annular row. Therefore, the spread of light in the radial direction is important. Hereinafter, each wide-angle lens will be described with a focus on the spread of light in the radial direction.

図5は、内広角レンズ4を説明するための図で、図5(b)は正面図、図5(a)は図5(b)の点線の断面図を示す。照明装置1において、当該点線に平行となる方向が動径方向である。   5A and 5B are diagrams for explaining the inner wide-angle lens 4. FIG. 5B is a front view, and FIG. 5A is a cross-sectional view taken along a dotted line in FIG. In the illumination device 1, the direction parallel to the dotted line is the radial direction.

本実施形態では外形が3×5mmのLED光源の場合を示す。LED光源3Aに対向するレンズ内面4iは楕円面であり、外側のレンズ外面4oはレンズ内面4iからの光を所定の方向に屈折する面である。内広角レンズ4の形状の寸法を、レンズ内面の高さ4Hiと幅4Wi、レンズ外面の高さ4Hと幅4W、レンズ中心肉厚(4H−4Hi)、レンズ端部肉厚(4W−4Wi)とする。   In this embodiment, the case of an LED light source having an outer shape of 3 × 5 mm is shown. The lens inner surface 4i facing the LED light source 3A is an elliptical surface, and the outer lens outer surface 4o is a surface that refracts light from the lens inner surface 4i in a predetermined direction. The dimensions of the inner wide-angle lens 4 are as follows: the inner surface height 4Hi and width 4Wi, the outer lens surface height 4H and width 4W, the lens center thickness (4H-4Hi), and the lens end thickness (4W-4Wi). And

図6は、中広角レンズ5を説明するための図で、図6(b)は正面図、図6(a)は図6(b)の点線の断面図を示す。照明装置1において、当該点線に平行となる方向が動径方向である。中広角レンズ5は、正面から見た場合に、動径方向が短軸で、動径方向と垂直方向に長軸を持つ長円形状である。長軸の方が短軸より約1mm長い構成である。内広角レンズと同様に、LED光源3Bに対向するレンズ内面5iは楕円面であり、外側のレンズ外面5oはレンズ内面5iからの光を所定の方向に屈折する面である。中広角レンズ5の形状の寸法を、レンズ内面の高さ5Hiと幅5Wi、レンズ外面の高さ5Hと幅5W、レンズ中心肉厚(5H−5Hi)、レンズ端部肉厚(5W−5Wi)とする。   6A and 6B are diagrams for explaining the medium-wide-angle lens 5, FIG. 6B is a front view, and FIG. 6A is a cross-sectional view taken along the dotted line in FIG. 6B. In the illumination device 1, the direction parallel to the dotted line is the radial direction. When viewed from the front, the medium-wide-angle lens 5 has an elliptical shape having a short axis in the radial direction and a long axis in the direction perpendicular to the radial direction. The long axis is longer than the short axis by about 1 mm. Similar to the inner wide-angle lens, the lens inner surface 5i facing the LED light source 3B is an elliptical surface, and the outer lens outer surface 5o is a surface that refracts light from the lens inner surface 5i in a predetermined direction. The dimensions of the medium and wide-angle lens 5 are as follows: the inner surface height 5Hi and width 5Wi, the outer lens surface height 5H and width 5W, the lens center thickness (5H-5Hi), and the lens end thickness (5W-5Wi). And

図7は、外広角レンズ6を説明するための図で、図7(b)は正面図、図7(a)は図7(b)の点線の断面図を示す。照明装置1において、当該点線に平行となる方向が動径方向である。内広角レンズと同様に、LED光源3Cに対向するレンズ内面6iは楕円面であり、外側のレンズ外面6oはレンズ内面6iからの光を所定の方向に屈折する面である。外広角レンズ6の形状の寸法を、レンズ内面の高さ6Hiと幅6Wi、レンズ外面の高さ6Hと幅6W、レンズ中心肉厚(6H−6Hi)、レンズ端部肉厚(6W−6Wi)とする。なお、本実施形態のように、LED光源3の外形が長方形の場合には、LED光源3の短軸方向が動径方向と略平行になるようにすることで、動径方向のレンズからの出射光を広げる効果を奏する。なぜならば、レンズは光源が点光源に近づくほど、本来の性能を発揮するためであり、動径方向の光源の大きさを小さくした方が、動径方向においてレンズの光を広げる性能が得られやすいためである。   7A and 7B are diagrams for explaining the outer wide-angle lens 6. FIG. 7B is a front view, and FIG. 7A is a cross-sectional view taken along the dotted line in FIG. 7B. In the illumination device 1, the direction parallel to the dotted line is the radial direction. Similar to the inner wide-angle lens, the lens inner surface 6i facing the LED light source 3C is an elliptical surface, and the outer lens outer surface 6o is a surface that refracts light from the lens inner surface 6i in a predetermined direction. The dimensions of the outer wide-angle lens 6 are as follows: height 6Hi and width 6Wi of the lens inner surface, height 6H and width 6W of the lens outer surface, lens center thickness (6H-6Hi), lens end thickness (6W-6Wi). And In addition, when the external shape of the LED light source 3 is rectangular as in the present embodiment, the short axis direction of the LED light source 3 is substantially parallel to the radial direction, so This has the effect of spreading the emitted light. This is because the lens exhibits its original performance the closer the light source is to the point light source, the smaller the size of the light source in the radial direction, the greater the ability to spread the lens light in the radial direction. This is because it is easy.

それぞれのレンズの寸法例を下記表に示す。なお、中広角レンズ5に関しては、短軸方向(動径方向)の寸法を示している。中広角レンズ5に関しては動径方向に着目して説明する。なお、本実施形態において、広角レンズ外面の中心は平らな面である。その理由は次の通りである。広角レンズ外面の中心を凹まして、レンズ外面の中心付近からの光も広角に出射させようとすると、LED光源3の中心とレンズの中心とが高精度に一致しない場合、当該中心位置ずれに応じて局所的なムラが発生する。それゆえ、広角レンズが複数あるレンズカバー12の場合には、広角レンズ外面の中心を、当該中心位置ずれに最も強い平らな面とすることで、局所的なムラの発生を抑制するという効果を奏する。   Examples of the dimensions of each lens are shown in the table below. For the medium and wide-angle lens 5, dimensions in the minor axis direction (radial radius direction) are shown. The medium and wide-angle lens 5 will be described by paying attention to the radial direction. In the present embodiment, the center of the outer surface of the wide-angle lens is a flat surface. The reason is as follows. If the center of the outer surface of the wide-angle lens is recessed and light from the vicinity of the center of the outer surface of the lens is emitted at a wide angle, if the center of the LED light source 3 and the center of the lens do not coincide with each other with high accuracy, And local unevenness occurs. Therefore, in the case of the lens cover 12 having a plurality of wide-angle lenses, the center of the outer surface of the wide-angle lens is set to the flat surface that is strongest against the center position deviation, thereby suppressing the occurrence of local unevenness. Play.

Figure 2017224462
Figure 2017224462

何れの広角レンズにおいても、レンズ内面は幅より高さが大きく、断面は基板2の法線方向に長い楕円面となっている。レンズ中心付近のレンズ内面の傾斜は大きい方がより光を広げられる。図6(a)を用いて説明する。ある角度θに出射した光がレンズ内面に到達した際に、レンズ内面の接平面の傾斜が、レンズ内面が球面の場合の接平面の傾斜よりも大きい場合は、レンズ内面で光はレンズの中心から遠ざかる方向に屈折する。   In any of the wide-angle lenses, the inner surface of the lens is larger than the width, and the cross section is an ellipsoid that is long in the normal direction of the substrate 2. The larger the inclination of the inner surface of the lens near the lens center, the more the light can be spread. This will be described with reference to FIG. When light emitted at a certain angle θ reaches the inner surface of the lens, if the inclination of the tangential plane of the lens inner surface is larger than the inclination of the tangential plane when the lens inner surface is spherical, the light on the lens inner surface is centered on the lens. Refracts away from the surface.

レンズ内面が球面の場合には接平面の法線は光線と平行となるが、本実施形態の広角レンズの場合には図のように接平面の法線5Niが光線Ray5aの角度θよりも外側に傾くので、レンズ内の光線の角度も屈折により角度θより大きくなり光が広がる。レンズ内面の高さを幅より大きくすることで光を広げる効果を奏する。なお、この効果はレンズ内面が楕円面に限らず、曲線、折れ線、それらの組み合わせなどでも得られる。また、各レンズのLED光源3に対向するレンズ内面の横幅に対する高さの比は、内広角レンズ4の比よりも外広角レンズ6の比の方が大きい。これは、外広角レンズ6の方が内広角レンズ4よりも光を大幅に広げるためである。   When the lens inner surface is spherical, the normal of the tangential plane is parallel to the light beam. However, in the case of the wide-angle lens of this embodiment, the normal 5Ni of the tangential plane is outside the angle θ of the light ray Ray5a as shown in the figure. Therefore, the angle of the light beam in the lens also becomes larger than the angle θ due to refraction, and the light spreads. By making the height of the inner surface of the lens larger than the width, the effect of spreading light is achieved. This effect is not limited to the elliptical inner surface of the lens, but can also be obtained by using a curve, a broken line, a combination thereof, or the like. Further, the ratio of the height to the lateral width of the lens inner surface facing the LED light source 3 of each lens is larger in the ratio of the outer wide-angle lens 6 than in the ratio of the inner wide-angle lens 4. This is because the outer wide-angle lens 6 significantly spreads light more than the inner wide-angle lens 4.

但し、レンズ内面は、楕円面などの滑らかな曲面であることが望ましい。滑らかさとしては、レンズ内面の断面形状を曲線または折れ線で近似した時に、1階微分が連続(ある点を基準として、正側からの微分値と負側からの微分値が略等しい。)であることが望ましい。なぜならば、広角レンズは中心に置かれた点光源からの光に対して所定の方向に光を出射するが、LED光源3の発光面は3mm程度の大きさがあり完全な点光源ではない。それゆえ、発光面の中心からずれた位置から発光した光は所定の出射方向からずれる。レンズ内面形状(傾斜)がある点で不連続に変わると、当該不連続点の前後の位置にレンズ中心以外から光が入射した場合、入射した光のレンズからの出射方向は入射位置に応じて所定の出射方向とは大きく変化し、当該不連続点の前後を通る光線がレンズから出射後に交差したりするため、当該出射光が拡散カバー8上に局所的なムラを形成することがあるためである。   However, the inner surface of the lens is preferably a smooth curved surface such as an elliptical surface. As smoothness, when the cross-sectional shape of the inner surface of the lens is approximated by a curve or a polygonal line, the first-order differentiation is continuous (the differential value from the positive side is substantially equal to the differential value from the negative side with respect to a certain point). It is desirable to be. This is because the wide-angle lens emits light in a predetermined direction with respect to the light from the point light source placed at the center, but the light emitting surface of the LED light source 3 has a size of about 3 mm and is not a complete point light source. Therefore, light emitted from a position deviated from the center of the light emitting surface deviates from a predetermined emission direction. When the lens inner surface shape (inclination) changes discontinuously at a certain point, when light enters from a position other than the lens center before and after the discontinuous point, the exit direction of the incident light from the lens depends on the incident position. Since the predetermined emission direction changes greatly and the light beams passing before and after the discontinuous point intersect after being emitted from the lens, the emitted light may form local unevenness on the diffusion cover 8. It is.

レンズ外面の幅に対する高さの比(高さ/幅)は、レンズの位置が外側になるにつれて小さくなっている。つまり、内、中、外広角レンズの順に小さくなっている。これは、均一性の観点で、外側のレンズは光を広げる必要があるためと、光を広げるレンズは後述するようにレンズの幅を広げる必要があり全てのレンズを幅が広いレンズとすると、レンズが制約となって必要な数のLED光源3が基板2に実装できない点から、均一性の観点で幅を小さくしても問題の無い内広角レンズ4は小さくし、外広角レンズ6は幅が大きなレンズとしているためである。   The ratio of the height to the width of the lens outer surface (height / width) becomes smaller as the position of the lens becomes the outer side. That is, the inner, middle, and outer wide-angle lenses become smaller in this order. This is because, from the viewpoint of uniformity, the outer lens needs to spread light, and the lens that spreads light needs to widen the lens width as described later, and all the lenses are wide lenses. Since the necessary number of LED light sources 3 cannot be mounted on the substrate 2 due to the restriction of the lens, the inner wide-angle lens 4 which has no problem even if the width is reduced from the viewpoint of uniformity is made smaller, and the outer wide-angle lens 6 is made wider. This is because of the large lens.

中広角レンズ5は、内広角レンズ4と外広角レンズ6の性能差が大きい場合に、その差を緩和するために配置している。例えば、図2において、基板2の中心から端部2Eまでの距離が200mmで、拡散カバーの正面部8Aの中心から端部までの距離が300mmの場合、外広角レンズ6は、拡散カバー8の端部までの約100mmの範囲に光を照射する必要があるので、光度(放射強度)のピークIpに対応する角度θpが75度よりも大きな角度をとる広角レンズとなる。一方で、内広角レンズ4は角度θpが60度程度のレンズとなる。この場合、中広角レンズ5が無いと、内広角レンズ4と外広角レンズ6の境界で、それぞれのレンズが拡散カバー8に形成する照度分布が異なるため、局所的なムラが発生する恐れがある。そのため、両者が拡散カバー8に形成する照度分布の差を緩和するために、中広角レンズ5を実装した方が良い。その際には、中広角レンズ5の角度θpが、内広角レンズ4と外広角レンズ6の角度θpの間にある方が良く、そのためには、レンズ外面の横幅に対する高さの比は、レンズの位置が外側になるにつれて小さくなる、つまり、LED光源3を点灯させた状態で、拡散カバー8にムラが生じることを抑制することができるように、内広角レンズ4、中広角レンズ5、外広角レンズ6の順に小さくなる必要がある。これにより、拡散カバー8にムラが生じることを抑制することができるようになる。 レンズ外面の幅に対する高さの比と光の広がりの関係に関して説明する。図5(a)および図7(b)に示す光線Ray4およびRay6は、LEDの中心から極角θが45度の方向に出射し、広角レンズによって屈折した光線を示している。内広角レンズ4の外面に光線Ray4が入射する入射角度(法線4Noと入射光線の角度)よりも、外広角レンズ6の外面に光線Ray6が入射する入射角度(法線6Noと入射光線の角度)の方が大きい。そのため、内広角レンズ4より外広角レンズ6の方が、レンズ外面6から出射する出射光線の極角が大きくなる。つまり、光をより広い角度に出射する。   The middle wide-angle lens 5 is arranged to reduce the difference when the performance difference between the inner wide-angle lens 4 and the outer wide-angle lens 6 is large. For example, in FIG. 2, when the distance from the center of the substrate 2 to the end 2E is 200 mm and the distance from the center of the front surface 8A of the diffusion cover to the end is 300 mm, the outer wide-angle lens 6 is Since it is necessary to irradiate light in the range of about 100 mm to the end, the angle θp corresponding to the peak Ip of luminous intensity (radiation intensity) becomes a wide-angle lens having an angle larger than 75 degrees. On the other hand, the inner wide-angle lens 4 is a lens having an angle θp of about 60 degrees. In this case, if there is no medium wide-angle lens 5, the illuminance distribution formed by each lens on the diffusion cover 8 is different at the boundary between the inner wide-angle lens 4 and the outer wide-angle lens 6, which may cause local unevenness. . Therefore, in order to reduce the difference in illuminance distribution formed on the diffusion cover 8 by both, it is better to mount the medium-wide angle lens 5. In that case, it is better that the angle θp of the middle wide-angle lens 5 is between the angles θp of the inner wide-angle lens 4 and the outer wide-angle lens 6. For this purpose, the ratio of the height to the lateral width of the lens outer surface is determined by the lens The inner wide-angle lens 4, the middle-wide-angle lens 5, and the outer are reduced so that the unevenness of the diffusion cover 8 can be suppressed when the LED light source 3 is turned on. It is necessary to decrease in order of the wide-angle lens 6. Thereby, it becomes possible to suppress the occurrence of unevenness in the diffusion cover 8. The relationship between the ratio of the height to the width of the lens outer surface and the spread of light will be described. Rays Ray4 and Ray6 shown in FIGS. 5 (a) and 7 (b) indicate rays radiated from the center of the LED in a direction where the polar angle θ is 45 degrees and refracted by the wide-angle lens. The angle of incidence of the ray Ray6 on the outer surface of the outer wide-angle lens 6 (the angle of the normal 6No and the incident ray) than the angle of incidence of the ray Ray4 on the outer surface of the inner wide-angle lens 4 (normal 4No and the angle of the incident ray) ) Is larger. Therefore, the polar angle of the outgoing light beam emitted from the lens outer surface 6 is larger in the outer wide-angle lens 6 than in the inner wide-angle lens 4. That is, light is emitted at a wider angle.

ある極角θに出射した光のレンズ外面への入射角度を大きくすることで、光をより広い範囲に出射できる。外面が球面の場合に比べて光を広げる場合は、ある極角θに出射した光のレンズ外面への入射角度を、球面が外面の場合に比べて大きくすることで、外面が球面の場合よりも光を広げられる。これは、ある極角θに出射した光がレンズ外面に入射する位置の接平面と基板2の法線と垂直な面(実装面)との角度が、外面が球面の場合に比べて、小さいことを意味する。そのため、より広角に光を出射するレンズほど、当該接平面と基板2の実装面との角度が小さくなる。レンズ外面の各位置における接平面と基板2の実装面との角度が、外面が球面の場合に比べて小さいということは、レンズ外面の各面素の横方向の成分が大きくなるので、レンズ外面が球面の場合よりも横方向に長くなる、つまり、幅が長くなるということである。したがって、レンズ外面の幅に対する高さの比(高さ/幅)が小さくなるほど、レンズは光を広げるという効果を奏する。   By increasing the incident angle of the light emitted at a certain polar angle θ to the lens outer surface, the light can be emitted in a wider range. When spreading the light compared to the case where the outer surface is spherical, the incident angle of the light emitted at a certain polar angle θ to the lens outer surface is increased compared to the case where the spherical surface is the outer surface, so that the outer surface is spherical. Can also spread the light. This is because the angle between the tangent plane where light emitted at a certain polar angle θ enters the lens outer surface and the surface (mounting surface) perpendicular to the normal of the substrate 2 is smaller than when the outer surface is a spherical surface. Means that. Therefore, as the lens emits light at a wider angle, the angle between the tangential plane and the mounting surface of the substrate 2 becomes smaller. The fact that the angle between the tangential plane at each position of the lens outer surface and the mounting surface of the substrate 2 is smaller than that when the outer surface is a spherical surface means that the lateral component of each surface element of the lens outer surface becomes larger. Is longer in the lateral direction than in the case of a spherical surface, that is, the width becomes longer. Accordingly, as the ratio of the height to the width of the lens outer surface (height / width) is reduced, the lens has an effect of spreading light.

また、レンズ中心肉厚に対するレンズ端部肉厚の比(レンズ端部肉厚/レンズ中心肉厚)は、レンズの位置が外側になるにつれて大きくなる、つまり、内、中、外広角レンズの順に大きくなる。レンズの光を広げる性能が大きくなるにつれて、レンズの幅が広がることに起因して、レンズ肉厚比も大きくなるためである。   In addition, the ratio of the lens end thickness to the lens center thickness (lens end thickness / lens center thickness) increases as the lens position goes to the outside, that is, in order of the inner, middle, and outer wide-angle lenses. growing. This is because the lens thickness ratio also increases as the lens light spreading performance increases, due to the widening of the lens width.

ピークに対応する角度θpが10度以上異なる2つの広角レンズを用いる場合に、角度θpが2つの広角レンズの角度θpの間に入る中広角レンズ5を有し、レンズ外面の幅に対する高さの比をレンズの位置が外側になるにつれて小さくなるようにすることで、拡散カバー8の全体の照度を均一にし、さらに、局所的なムラを抑制するという効果を奏する。   When two wide-angle lenses having an angle θp corresponding to a peak that differ by 10 degrees or more are used, the angle θp has a medium-wide angle lens 5 that falls between the angles θp of the two wide-angle lenses, and has a height with respect to the width of the lens outer surface. By reducing the ratio as the position of the lens moves outward, the illuminance of the entire diffusion cover 8 can be made uniform, and local unevenness can be suppressed.

また、同様に中広角レンズ5を有し、レンズ中心肉厚に対するレンズ端部肉厚の比を、レンズの位置が外側になるにつれて大きくすることで、拡散カバー8の全体の照度を均一にし、さらに、局所的なムラを抑制するという効果を奏する。   Similarly, it has a medium-wide-angle lens 5, and the ratio of the lens end wall thickness to the lens center wall thickness is increased as the position of the lens is increased, thereby making the entire illuminance of the diffusion cover 8 uniform. Furthermore, there is an effect of suppressing local unevenness.

次に、レンズ単体が拡散カバー8上に形成する局所的なムラの抑制に関して詳細に説明する。LED間隔が広いことにより、LED直上が明るくなり隣接LED間が暗くなるというムラは、レンズからの光を広げることで抑制可能であり、光を広げるレンズ形状に関しては上述した通りであるが、ある一つのLED光源3と対応するレンズに着目した場合に、そのレンズの出射光が拡散カバー8上に局所的なムラを形成する場合がある。とりわけ、明るい線状(曲線状)のムラ(輝線)を発生させることがあり、光度分布にピークを有する広角レンズで発生しやすい。これら輝線を抑制する方法としては、レンズ外面に凹凸形状(所謂、シボ)を付与して光散乱により抑制することが考えられるが、多くの場合、シボを付けるとレンズの光を広げる性能が低下する。さらに、シボで周辺の基板などに向けて散乱反射して光線が損失し、効率を下げるという課題がある。   Next, suppression of local unevenness formed by the single lens on the diffusion cover 8 will be described in detail. The non-uniformity in which the LED interval is wide and the area immediately above the LED becomes bright and the adjacent LED becomes dark can be suppressed by spreading the light from the lens, and the lens shape that spreads the light is as described above. When attention is focused on a lens corresponding to one LED light source 3, the emitted light from the lens may form local unevenness on the diffusion cover 8. In particular, bright linear (curved) unevenness (bright line) may occur, and this is likely to occur with a wide-angle lens having a peak in the luminous intensity distribution. As a method of suppressing these bright lines, it is conceivable to provide a concave / convex shape (so-called “texture”) on the outer surface of the lens to suppress it by light scattering. To do. Furthermore, there is a problem in that light is lost by scattering and reflecting toward the surrounding substrate or the like due to the embossing and the efficiency is lowered.

我々の実験によれば、その様な局所的なムラは、レンズから出射した光が拡散カバー8上に形成する照度分布が、LED光源3の直上から離れるにつれて単調減少すれば抑制できることが分かった。好ましくは、LED光源3の直上を最大値として離れるにつれて滑らかに低下した方が良い。滑らかにとは位置に対する照度分布の1次微分が略連続であれば良い。また、例えば、照度分布がガウス分布など単調減少する曲線でフィッティングできる分布であれば、照度分布の不連続性に依存したムラは発生しない。   According to our experiments, it has been found that such local unevenness can be suppressed if the illuminance distribution formed on the diffusion cover 8 by the light emitted from the lens decreases monotonously as it moves away from directly above the LED light source 3. . Preferably, it should be lowered smoothly with increasing distance from the position directly above the LED light source 3. To be smooth, the first derivative of the illuminance distribution with respect to the position may be substantially continuous. Further, for example, if the illuminance distribution is a distribution that can be fitted with a monotonically decreasing curve such as a Gaussian distribution, unevenness depending on the discontinuity of the illuminance distribution does not occur.

したがって、レンズが広角レンズであっても、レンズ単体が拡散カバー8上に形成する照度分布を、LED光源3の直上から単調減少する構成とし、好ましくは、LED光源3の直上を最大値として連続的に低下させる構成、または、ガウス分布など滑らかな任意の関数でフィッティングできる分布とすることで局所ムラを抑制するという効果を奏する。さらに、レンズ外面に凹凸形状を付与して局所ムラ抑制をしないで済むので、損失を低減するという効果も奏する。   Therefore, even if the lens is a wide-angle lens, the illuminance distribution formed on the diffusion cover 8 by the single lens unit is monotonously reduced from directly above the LED light source 3, and preferably, the maximum value is directly above the LED light source 3. The effect of suppressing local unevenness can be obtained by using a structure that can be reduced or a distribution that can be fitted with a smooth arbitrary function such as a Gaussian distribution. Furthermore, since it is not necessary to give unevenness to the outer surface of the lens to suppress local unevenness, there is also an effect of reducing loss.

特に、外広角レンズ6は、LED光源3を単体で点灯させた状態において、拡散カバー8上の照度がLED光源3から離れるにつれて緩やかに減衰するような形状である。   In particular, the outer wide-angle lens 6 has such a shape that the illuminance on the diffusion cover 8 gradually attenuates as the distance from the LED light source 3 increases when the LED light source 3 is lit alone.

本実施形態のレンズ外面は、二乗平均平方根粗さがLED光源3の主たる波長(例えば450nm)よりも小さく光学的に鏡面であり、光がほとんど散乱されない面である。   The outer surface of the lens of the present embodiment is a surface that has a root mean square roughness smaller than the main wavelength (for example, 450 nm) of the LED light source 3 and is optically specular, and hardly scatters light.

特に、外広角レンズ6は、光度のピークが大きすぎると、図2に示すように拡散カバー8は外側になるほど基板2の方向に近づくように曲がっているため、角度θp方向に出射した光が到達する拡散カバー8の部位付近に輝線を生じることがある。輝線を抑制する放射強度分布は、図3に示す構成であり、外広角レンズ6のピークIpは、内広角レンズ4や中広角レンズ5のいずれのピークIpよりも小さいことが分かる。上述したが、光度分布は放射強度分布とおおよそ比例関係(プロファイルが相似形状)になるので、外広角レンズ6の光度分布のピークも、内広角レンズ4や中広角レンズ5のいずれの光度分布のピークよりも小さくなる。したがって、以下述べる特徴や効果も放射強度だけでなく、光度でも成り立つ。   In particular, when the peak of luminous intensity is too large, the outer wide-angle lens 6 is bent so that the diffusion cover 8 is closer to the direction of the substrate 2 as it goes outward as shown in FIG. Bright lines may occur in the vicinity of the part of the diffusion cover 8 that reaches. The radiation intensity distribution that suppresses the bright line has the configuration shown in FIG. 3, and it can be seen that the peak Ip of the outer wide-angle lens 6 is smaller than any of the peaks Ip of the inner wide-angle lens 4 and the medium-wide-angle lens 5. As described above, since the luminous intensity distribution is approximately proportional to the radiant intensity distribution (the profile is similar), the peak of the luminous intensity distribution of the outer wide-angle lens 6 is the same as the luminous intensity distribution of either the inner wide-angle lens 4 or the middle-wide-angle lens 5. Smaller than the peak. Therefore, the characteristics and effects described below are established not only by the radiant intensity but also by the luminous intensity.

外広角レンズ6は、出射角度80度以上にも光を出射するレンズでありながら、放射強度の出射角度依存性は他の分布に比べて緩やかに増加し、ピークIpは内側に配置されるレンズよりも小さい構成となっている。外広角レンズ6の放射強度分布を、角度θpが他の全てのレンズの分布よりも大きくなるようにし、そのピークIpは他のレンズのピークIpよりも小さくすることで、光を広げ、かつ、局所的なムラを抑制する効果を奏する。さらに、レンズ外面に凹凸形状を付与して局所ムラ抑制をしないで済むので、損失を低減するという効果も奏する。別の観点で言い換えると、特に、凹凸形状をレンズ外面に付与しない鏡面のレンズの場合に、放射強度分布または光度分布において、外広角レンズ6の角度θpが他の全てのレンズの分布よりも大きくなるようにし、そのピークは他のレンズのピークよりも小さくすることで、光を広げ、かつ、局所的なムラを抑制する効果を奏する。鏡面とは、凹凸による散乱の少ない面である。凹凸による散乱の少ない面の目安としては、二乗平均平方根粗さがLED光源3の主たる波長(例えば450nm)よりも小さい面と言え、さらに、二乗平均平方根粗さが200nm未満の場合にはほとんど散乱が発生しないので鏡面と言え、100nm未満の場合には散乱が著しく小さく完全な鏡面と言える。   The outer wide-angle lens 6 is a lens that emits light even at an emission angle of 80 degrees or more, but the emission angle dependency of the radiation intensity increases gently as compared with other distributions, and the peak Ip is a lens arranged on the inner side. It has a smaller configuration. The radiant intensity distribution of the outer wide-angle lens 6 is set such that the angle θp is larger than the distribution of all other lenses, and the peak Ip is smaller than the peak Ip of the other lenses, thereby spreading the light, and There is an effect of suppressing local unevenness. Furthermore, since it is not necessary to give unevenness to the outer surface of the lens to suppress local unevenness, there is also an effect of reducing loss. In other words, particularly in the case of a specular lens that does not impart an uneven shape to the lens outer surface, the angle θp of the outer wide-angle lens 6 is larger than the distribution of all other lenses in the radiation intensity distribution or luminous intensity distribution. Thus, the peak is made smaller than the peaks of the other lenses, so that the effect of spreading light and suppressing local unevenness is obtained. A mirror surface is a surface that is less scattered by unevenness. As a standard for a surface with less scattering due to unevenness, it can be said that the root mean square roughness is a surface smaller than the main wavelength (for example, 450 nm) of the LED light source 3, and when the root mean square roughness is less than 200 nm, it is almost scattered. Therefore, it can be said to be a mirror surface, and when it is less than 100 nm, the scattering is extremely small and it can be said to be a perfect mirror surface.

ここで、光を広げる性能に関して再度説明する。図4に示した放射強度比R(θ)より、角度θpにおいて、LED光源3に対して、外広角レンズ6は十分に大きな放射強度比となっており、角度θpにおける放射強度比は3種の広角レンズの中で最も大きな値となっている。ここで、LED光源の光度IC(θ)、LED光源3を広角レンズで覆ったときの光度ICL(θ)とし、その光度比をRIC(θ)=(ICL(θ)/IC(θ))としたときも、光度比RIC(θ)は、放射強度比と概ね同じ分布となるので、放射強度比と同様のことが言えて、LED光源3に対して、外広角レンズ6は十分に大きな光度比となり、角度θpにおける光度比は3種のレンズの中で最も大きな値となる。つまり、外広角レンズ6の光度分布(放射強度分布)を、角度θpと光度比(放射強度比)のピークが他のレンズの、好ましくは他の全てのレンズの、分布よりも大きくなるようにし、光度分布(放射強度分布)のピークは他のレンズのピークよりも小さくすることで、光を広げ、かつ、局所的なムラを抑制する効果を奏する。さらに、レンズ外面に凹凸形状を付与して局所ムラ抑制をしないで済むので、損失を低減するという効果も奏する。つまり、RIC(θ)=(ICL(θ)/IC(θ))とした場合に、光度比のピークが、内広角レンズ4、中広角レンズ5、外広角レンズ6の順に大きくなることで、上記効果を奏する。さらに、外広角レンズ6の光度のピークが、内広角レンズ4または中広角レンズ5の光度のピークよりも低いことで更なる効果を奏する。この際、外広角レンズ6は光を大きく広げる形状であり、外側の多くのLED光源3を有する環状列に対応する広角レンズなので、特に外広角レンズのレンズ外面6oを鏡面とすることで、損失を低減し、光を広げる性能を向上させるという効果を奏する。 Here, the ability to spread light will be described again. From the radiation intensity ratio R I (θ) shown in FIG. 4, the outer wide-angle lens 6 has a sufficiently large radiation intensity ratio with respect to the LED light source 3 at the angle θp, and the radiation intensity ratio at the angle θp is 3 It is the largest value among all kinds of wide-angle lenses. Here, the luminous intensity I C (θ) of the LED light source, the luminous intensity I CL (θ) when the LED light source 3 is covered with a wide-angle lens, and the luminous intensity ratio is RI C (θ) = (I CL (θ) / I C (θ)), the luminous intensity ratio RI C (θ) has almost the same distribution as the radiant intensity ratio. Therefore, the same can be said for the radiant intensity ratio. The lens 6 has a sufficiently large luminous intensity ratio, and the luminous intensity ratio at the angle θp is the largest value among the three types of lenses. That is, the luminous intensity distribution (radiant intensity distribution) of the outer wide-angle lens 6 is set so that the peak of the angle θp and the luminous intensity ratio (radiant intensity ratio) is larger than the distribution of other lenses, preferably all other lenses. By making the peak of the luminous intensity distribution (radiation intensity distribution) smaller than the peak of other lenses, the effect of spreading the light and suppressing local unevenness is exhibited. Furthermore, since it is not necessary to give unevenness to the outer surface of the lens to suppress local unevenness, there is also an effect of reducing loss. That is, when RI C (θ) = (I CL (θ) / I C (θ)), the peak of the luminous intensity ratio increases in the order of the inner wide-angle lens 4, the middle wide-angle lens 5, and the outer wide-angle lens 6. Thus, the above-described effect is achieved. Further, the light intensity peak of the outer wide-angle lens 6 is lower than the light intensity peak of the inner wide-angle lens 4 or the middle wide-angle lens 5, so that a further effect is achieved. At this time, the outer wide-angle lens 6 has a shape that greatly spreads light, and is a wide-angle lens corresponding to an annular row having many LED light sources 3 on the outer side. Therefore, the lens outer surface 6o of the outer wide-angle lens is used as a mirror surface. And improving the performance of spreading light.

また、放射強度比をRI(θ)=(I(θ)/I(θ))とした場合に、放射強度比のピークが、内広角レンズ4、中広角レンズ5、外広角レンズ6の順に大きくなることで、上記効果を奏する。さらに、外広角レンズ6の放射強度のピークが、内広角レンズ4または中広角レンズ5の放射強度のピークよりも低いことで更なる効果を奏する。この際、外広角レンズ6は光を大きく広げる形状であり、外側の多くのLED光源3を有する環状列に対応する広角レンズなので、特に外広角レンズのレンズ外面6oを鏡面とすることで、損失を低減し、光を広げる性能を向上させるという効果を奏する。 Further, when the radiation intensity ratio is RI (θ) = (I L (θ) / I (θ)), the peak of the radiation intensity ratio is that of the inner wide-angle lens 4, the middle wide-angle lens 5, and the outer wide-angle lens 6. By increasing in order, the above-described effect is achieved. Furthermore, the peak of the radiation intensity of the outer wide-angle lens 6 is lower than the peak of the radiation intensity of the inner wide-angle lens 4 or the medium-wide-angle lens 5, so that a further effect is achieved. At this time, the outer wide-angle lens 6 has a shape that greatly spreads light, and is a wide-angle lens corresponding to an annular row having many LED light sources 3 on the outer side. Therefore, the lens outer surface 6o of the outer wide-angle lens is used as a mirror surface. And improving the performance of spreading light.

なお、このような光度分布を持つレンズが拡散カバー8に形成する照度分布は、基本的には、上述したLED光源の直上から単調減少する分布となる。   Note that the illuminance distribution formed on the diffusion cover 8 by the lens having such a luminous intensity distribution is basically a distribution that monotonously decreases immediately above the LED light source.

また、図3において、極角が0度の放射強度に対する角度θpの放射強度の比(角度θpの放射強度/極角0度の放射強度)は、内広角レンズ4、中広角レンズ5、外広角レンズ6の順に、2.11、4.27、2.80である。中広角レンズの比4.27は、局所ムラが発生しない上限に近い値である。したがって、極角が0度に対する角度θpの放射強度比は4.27未満にすることが望ましい。当該放射強度比を4.27未満にすることで、局所ムラを抑制するという効果を奏する。再度述べるが、光度比と放射強度比は概ね一致するので、光度比を4.27未満とすることで、同様に、局所ムラを抑制するという効果を奏する。   In FIG. 3, the ratio of the radiant intensity at angle θp to the radiant intensity at 0 ° polar angle (radiant intensity at angle θp / radiant intensity at 0 ° polar angle) is as follows. In the order of the wide-angle lens 6, they are 2.11, 4.27, and 2.80. The medium wide-angle lens ratio of 4.27 is close to the upper limit at which local unevenness does not occur. Therefore, it is desirable that the radiation intensity ratio of the angle θp with respect to the polar angle of 0 degree is less than 4.27. By making the said radiation intensity ratio less than 4.27, there exists an effect of suppressing a local nonuniformity. As will be described again, since the luminous intensity ratio and the radiant intensity ratio are substantially the same, by setting the luminous intensity ratio to less than 4.27, the same effect of suppressing local unevenness is obtained.

次に、広角レンズ単体が拡散カバー8に形成する照度分布として好ましいプロファイルを説明する。前述したように、拡散カバー8の照度はLED光源の直上から離れるにつれて単調減少し、望ましくは滑らかに照度が低下することが望ましい。そのような分布として、ガウス分布を用いると、局所ムラを抑制して拡散カバー全体に光を照射することが容易に実現できるという効果を奏する。   Next, a profile preferable as an illuminance distribution formed on the diffusion cover 8 by the single wide-angle lens will be described. As described above, the illuminance of the diffusing cover 8 decreases monotonously with increasing distance from the LED light source, and it is desirable that the illuminance should be smoothly reduced. When a Gaussian distribution is used as such a distribution, there is an effect that it is possible to easily realize irradiation of light to the entire diffusion cover while suppressing local unevenness.

図8(a)を用いて説明する。拡散カバー8を近似的に平面とし、LED光源3Aから拡散カバー8までの距離をtz、内広角レンズ4の中心軸Caxからの距離をρとした場合、拡散カバー8上の照度分布を、距離ρに関するガウス分布(Exp(-1/2*(ρ/σ)2、σは広がりを表す定数)とする場合、光源から極角θに出射した光が、拡散カバー8の到達するべき距離ρは、次式1で与えられる。 This will be described with reference to FIG. When the diffusion cover 8 is approximately flat, the distance from the LED light source 3A to the diffusion cover 8 is tz, and the distance from the central axis Cax of the inner wide-angle lens 4 is ρ, the illuminance distribution on the diffusion cover 8 is expressed as a distance. In the case of Gaussian distribution related to ρ (Exp (−1 / 2 * (ρ / σ) 2 , σ is a constant representing spread)), the distance ρ that the light emitted from the light source to the polar angle θ should reach by the diffusion cover 8 Is given by Equation 1 below.

Figure 2017224462
Figure 2017224462

式1を用い、レンズ内面を任意の形状(本実施形態では、楕円面)に設定すれば、レンズ外面は一義的に決まる。拡散カバー8を平面と仮定して、この方法で作製したレンズであっても、拡散カバー8の曲面の曲率が大きければ、局所ムラは発生しない。したがって、ある平面を仮定し、そこに単一のレンズが形成する照度分布がガウス分布となるとき、局所ムラは抑制される。当該ガウス分布を形成するレンズは、式(1)の関係を満たす。なお、ρとθの関係は必ずしも式(1)で表されなくても、ρとθの関係が決まり、それによりレンズ出射光の光度分布(放射強度分布)が決まり、レンズ内面形状が決まれば、レンズ外面は一義的に決まる。   If the inner surface of the lens is set to an arbitrary shape (in this embodiment, an elliptical surface) using Equation 1, the outer surface of the lens is uniquely determined. Even in a lens manufactured by this method assuming that the diffusion cover 8 is a flat surface, local unevenness does not occur if the curvature of the curved surface of the diffusion cover 8 is large. Therefore, when a certain plane is assumed and the illuminance distribution formed by a single lens is a Gaussian distribution, local unevenness is suppressed. The lens forming the Gaussian distribution satisfies the relationship of the formula (1). Note that even if the relationship between ρ and θ is not necessarily expressed by equation (1), the relationship between ρ and θ is determined, and therefore the luminous intensity distribution (radiation intensity distribution) of the lens emission light is determined, and the lens inner surface shape is determined. The lens outer surface is uniquely determined.

また、平面だけではなく、曲面の場合にも上記考え方は適用可能である。図8(b)を用いて説明する。LED光源3Aから極角θ方向に光が出射し、基板2に平行方向における内広角レンズ4の中心軸Caxからの光線到達位置までの距離をρとし、基板2の法線方向におけるLED光源3Aと光線到達位置との距離をtzとし、基板2の法線とレンズ外面4oからの出射光線の角度をδとした場合に、tzとρは角度δの関数として与えられ、式1に対応する関係式は、曲面形状を反映した極角θと角度δの微分方程式で与えられる。当該関係と、レンズ内面形状を設定すればレンズ外面形状は一義的に決まる。したがって、照度分布を決めれば、レンズの光度分布(距離ρと極角θの関係や角度δと極角θの関係)が決まり、レンズ内面を設定すれば対応するレンズ形状が決まる。つまり、例えば、LED光源の直上を最大値として離れるにつれて滑らかに低下する照度分布を設定した場合、レンズ内面を設定すれば対応するレンズ形状が決まるということである。   Further, the above concept can be applied not only to a plane but also to a curved surface. This will be described with reference to FIG. Light is emitted from the LED light source 3A in the polar angle θ direction, and the distance from the central axis Cax of the inner wide-angle lens 4 to the light beam arrival position in the direction parallel to the substrate 2 is ρ, and the LED light source 3A in the normal direction of the substrate 2 Tz and ρ are given as functions of the angle δ, where tz is the distance between the light beam arrival position and tz, and the angle between the normal of the substrate 2 and the outgoing light beam from the lens outer surface 4o is δ. The relational expression is given by a differential equation of polar angle θ and angle δ reflecting the curved surface shape. If the relationship and the lens inner surface shape are set, the lens outer surface shape is uniquely determined. Accordingly, if the illuminance distribution is determined, the luminous intensity distribution of the lens (the relationship between the distance ρ and the polar angle θ and the relationship between the angle δ and the polar angle θ) is determined, and if the inner surface of the lens is set, the corresponding lens shape is determined. That is, for example, when an illuminance distribution that decreases smoothly as the distance from the LED light source reaches its maximum value is set, the corresponding lens shape is determined by setting the lens inner surface.

図8(a)(b)では、広角レンズ単体が拡散カバー8に形成する照度分布として好ましいプロファイルとそれを実現するレンズの作製方法を、LED光源3Aと、内広角レンズ4と、拡散カバー8およびそれに形成する照度分布との関係で説明したが、LED光源3BやLED光源3Cと、中広角レンズ5や外広角レンズ6と、拡散カバー8およびそれに形成する照度分布との関係からも、同様に対応するレンズ形状を作製することが可能である。   8 (a) and 8 (b), a profile preferable as an illuminance distribution formed by a single wide-angle lens on the diffusion cover 8 and a method of manufacturing a lens that realizes the profile are shown as follows: LED light source 3A, inner wide-angle lens 4, diffusion cover 8; As described above, the relationship between the LED light source 3B and the LED light source 3C, the medium wide-angle lens 5 and the outer wide-angle lens 6, the diffusion cover 8 and the illuminance distribution formed thereon is the same. It is possible to produce a lens shape corresponding to.

上述したが、本実施形態の一部の説明は、本実施形態の広角レンズから出射する光の放射強度[W/sr]を用いて、放射強度の特徴やその特徴による効果を説明したが、それらは本実施形態の広角レンズから出射する光の光度[cd]でも同様に成り立つ。   As described above, a part of the description of the present embodiment has described the characteristics of the radiation intensity and the effects of the characteristics using the radiation intensity [W / sr] of the light emitted from the wide-angle lens of the present embodiment. The same holds true for the luminous intensity [cd] of light emitted from the wide-angle lens of the present embodiment.

また、本発明はLED光源に限定されず、例えば、あるLED光源の環状列が、色や種類の異なるLED光源で構成されていても良い。   Moreover, this invention is not limited to an LED light source, For example, the cyclic | annular row | line | column of a certain LED light source may be comprised with the LED light source from which a color and a kind differ.

1・・・照明装置
2・・・基板
3・・・LED光源
4・・・内広角レンズ
5・・・中広角レンズ
6・・・外広角レンズ
7・・・平坦部
8・・・拡散カバー
9・・・点灯回路
10・・・中心カバー
11・・・フレーム
12・・・レンズカバー
50・・・天井
51・・・固定具
DESCRIPTION OF SYMBOLS 1 ... Illuminating device 2 ... Board | substrate 3 ... LED light source 4 ... Inner wide angle lens 5 ... Medium wide angle lens 6 ... Outer wide angle lens 7 ... Flat part 8 ... Diffusion cover DESCRIPTION OF SYMBOLS 9 ... Lighting circuit 10 ... Center cover 11 ... Frame 12 ... Lens cover 50 ... Ceiling 51 ... Fixing tool

Claims (12)

複数の環状列に配置されたLED光源と、前記LED光源を実装する基板と、前記LED光源を覆う広角レンズと、前記LED光源と前記広角レンズと、を覆い、曲面を有する拡散カバーと、を有し、
前記広角レンズは、
前記LED光源の列の内、外側に配置された列のLED光源を覆う外広角レンズと、前記LED光源の列の内、内側に配置された列のLED光源を覆う内広角レンズと、前記LED光源の列の内、前記外広角レンズに対応するLED光源の列と前記内広角レンズに対応するLED光源の列の間に配置された列のLED光源を覆う中広角レンズと、を備え、
前記広角レンズの外形の横幅に対する高さの比は、前記内広角レンズ、前記中広角レンズ、前記外広角レンズの順に小さくなることを特徴とする照明装置。
An LED light source arranged in a plurality of annular rows, a substrate on which the LED light source is mounted, a wide-angle lens that covers the LED light source, a diffusion cover that covers the LED light source and the wide-angle lens and has a curved surface; Have
The wide-angle lens is
An outer wide-angle lens that covers the LED light sources arranged on the outer side of the LED light source row, an inner wide-angle lens that covers the LED light sources on the inner row of the LED light source rows, and the LED A medium wide-angle lens that covers the LED light sources arranged between the LED light source rows corresponding to the outer wide-angle lens and the LED light source rows corresponding to the inner wide-angle lens, among the light source rows;
The illumination device according to claim 1, wherein a ratio of a height to a lateral width of an outer shape of the wide-angle lens decreases in the order of the inner wide-angle lens, the middle wide-angle lens, and the outer wide-angle lens.
請求項1において、
前記外広角レンズは、前記LED光源を単体で点灯させた状態において、前記拡散カバー上の照度が前記LED光源から離れるにつれて緩やかに減衰するような形状であることを特徴とする照明装置。
In claim 1,
The illuminating device according to claim 1, wherein the outer wide-angle lens is shaped so that the illuminance on the diffusion cover gradually attenuates with distance from the LED light source when the LED light source is lit alone.
請求項1において、
前記広角レンズの前記LED光源に対向する内面の横幅に対する高さの比は、前記内広角レンズの比よりも前記外広角レンズの比の方が大きいことを特徴とする照明装置。
In claim 1,
The lighting device according to claim 1, wherein the ratio of the height of the wide-angle lens to the lateral width of the inner surface facing the LED light source is larger than the ratio of the inner wide-angle lens.
請求項1において、
前記基板の法線からの角度を極角θ、前記LED光源の放射強度I(θ)、前記LED光源を前記広角レンズで覆ったときの放射強度I(θ)とし、その放射強度比をRI(θ)=(I(θ)/I(θ))とした場合に、放射強度比のピークが、前記内広角レンズ、前記中広角レンズ、前記外広角レンズの順に大きくなることを特徴とする照明装置。
In claim 1,
The angle from the normal of the substrate is a polar angle θ, the radiation intensity I (θ) of the LED light source, and the radiation intensity I L (θ) when the LED light source is covered with the wide-angle lens, and the radiation intensity ratio is When RI (θ) = (I L (θ) / I (θ)), the peak of the radiation intensity ratio increases in the order of the inner wide-angle lens, the middle-wide-angle lens, and the outer wide-angle lens. A lighting device.
請求項4において、
前記強度比のピークに対応する角度が、前記内広角レンズ、前記中広角レンズ、前記外広角レンズの順に大きくなることを特徴とする照明装置。
In claim 4,
An illumination device, wherein an angle corresponding to the peak of the intensity ratio increases in the order of the inner wide-angle lens, the medium-wide-angle lens, and the outer wide-angle lens.
請求項1において、
前記広角レンズの中心は平らな面であることを特徴とする照明装置。
In claim 1,
The center of the wide angle lens is a flat surface.
請求項1において、
前記広角レンズにおいて、中心部の肉厚に対する端部の肉厚の比が、前記内広角レンズ、前記中広角レンズ、前記外広角レンズの順に大きくなることを特徴とする照明装置。
In claim 1,
In the wide-angle lens, the ratio of the thickness of the end portion to the thickness of the central portion increases in the order of the inner wide-angle lens, the medium-wide-angle lens, and the outer wide-angle lens.
請求項1において、
前記基板の法線からの角度を極角θ、前記LED光源の光度IC(θ)、前記LED光源を前記広角レンズで覆ったときの光度ICL(θ)とし、その光度比をRIC(θ)=(ICL(θ)/IC(θ))とした場合に、光度比のピークが、前記内広角レンズ、前記中広角レンズ、前記外広角レンズの順に大きくなることを特徴とする照明装置。
In claim 1,
The angle from the normal of the substrate is the polar angle θ, the luminous intensity I C (θ) of the LED light source, the luminous intensity I CL (θ) when the LED light source is covered with the wide-angle lens, and the luminous intensity ratio is RI C When (θ) = (I CL (θ) / I C (θ)), the peak of the luminous intensity ratio increases in the order of the inner wide-angle lens, the middle wide-angle lens, and the outer wide-angle lens. Lighting device.
請求項1および請求項4、8において、
前記外広角レンズの光度のピークが、前記内広角レンズまたは前記中広角レンズの光度のピークよりも低いことを特徴とする照明装置。
In claim 1 and claims 4 and 8,
An illumination device, wherein a peak of luminous intensity of the outer wide-angle lens is lower than a peak of luminous intensity of the inner wide-angle lens or the middle wide-angle lens.
請求項1、4、8において、
前記広角レンズの光度分布において、前記基板の法線からの角度を極角θとし、光度のピークに対応する極角をθpとした場合に、
極角が0度の光度に対する角度θpの光度の比(極角θpの光度/極角0度の光度)が、4.27よりも低いことを特徴とする照明装置。
In claim 1, 4, 8,
In the luminous intensity distribution of the wide-angle lens, when the angle from the normal of the substrate is a polar angle θ, and the polar angle corresponding to the peak of luminous intensity is θp,
A lighting device, wherein a ratio of a luminous intensity at an angle θp to a luminous intensity at a polar angle of 0 degree (luminous intensity at a polar angle θp / luminous intensity at a polar angle of 0 degree) is lower than 4.27.
請求項1において
前記基板の法線からの角度を極角θとし、
前記基板に平行で、前記広角レンズの上に位置する平面において、
前記平面における前記広角レンズの中心直上を原点とし、
前記LED光源から極角θ方向に光線が出射し、
該光線が前記平面に到達した位置と前記原点の距離をρとし、
前記平面における前記広角レンズが形成する照度分布を最大値で規格化した規格化照度分布を次式で表されるガウス分布で、定数σを用いてフィッティングした場合に、
Figure 2017224462
極角θと距離ρが次式の関係を満たす前記広角レンズを有することを特徴とする照明装置。
Figure 2017224462
In claim 1, the angle from the normal of the substrate is a polar angle θ,
In a plane parallel to the substrate and located on the wide-angle lens,
The origin is directly above the center of the wide-angle lens in the plane,
A light beam is emitted in the polar angle θ direction from the LED light source,
The distance between the position where the light beam reaches the plane and the origin is ρ,
When fitting the normalized illuminance distribution obtained by normalizing the illuminance distribution formed by the wide-angle lens in the plane with the maximum value using a constant σ with a Gaussian distribution represented by the following equation:
Figure 2017224462
An illumination apparatus comprising the wide-angle lens in which a polar angle θ and a distance ρ satisfy a relationship of the following formula:
Figure 2017224462
請求項9において、
前記外広角レンズのレンズ外面が、鏡面であることを特徴とする照明装置。
In claim 9,
The illumination device characterized in that the lens outer surface of the outer wide-angle lens is a mirror surface.
JP2016118462A 2016-06-15 2016-06-15 Lighting equipment Active JP6678524B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016118462A JP6678524B2 (en) 2016-06-15 2016-06-15 Lighting equipment
CN201710085526.8A CN107524988A (en) 2016-06-15 2017-02-17 Lighting device
TW106113129A TWI624622B (en) 2016-06-15 2017-04-19 Lighting device
JP2020043647A JP6928139B2 (en) 2016-06-15 2020-03-13 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016118462A JP6678524B2 (en) 2016-06-15 2016-06-15 Lighting equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020043647A Division JP6928139B2 (en) 2016-06-15 2020-03-13 Lighting device

Publications (2)

Publication Number Publication Date
JP2017224462A true JP2017224462A (en) 2017-12-21
JP6678524B2 JP6678524B2 (en) 2020-04-08

Family

ID=60688424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016118462A Active JP6678524B2 (en) 2016-06-15 2016-06-15 Lighting equipment

Country Status (3)

Country Link
JP (1) JP6678524B2 (en)
CN (1) CN107524988A (en)
TW (1) TWI624622B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102310911B1 (en) * 2020-11-12 2021-10-08 유버 주식회사 Led luminescence apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013744A (en) * 2012-06-08 2014-01-23 Hitachi Appliances Inc Illumination apparatus
JP2015149133A (en) * 2014-02-05 2015-08-20 パナソニックIpマネジメント株式会社 Luminaire

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201053625Y (en) * 2007-06-05 2008-04-30 许明舜 Brightening lighting device
JP2011204397A (en) * 2010-03-24 2011-10-13 Sony Corp Lighting system
CN103511935B (en) * 2012-06-08 2016-05-04 日立空调·家用电器株式会社 Lighting device
CN202927627U (en) * 2012-08-21 2013-05-08 昆山万像光电有限公司 Light source projection device for optical image detection device
JP6156791B2 (en) * 2013-01-11 2017-07-05 パナソニックIpマネジメント株式会社 lighting equipment
JP6112395B2 (en) * 2013-02-13 2017-04-12 パナソニックIpマネジメント株式会社 lighting equipment
JP2014197527A (en) * 2013-03-04 2014-10-16 信越化学工業株式会社 Vehicle direction indicator
WO2015005510A1 (en) * 2013-07-11 2015-01-15 주식회사 엔젤럭스 Smart rotating led lighting device
CN105221965A (en) * 2015-10-23 2016-01-06 欧普照明股份有限公司 Light source module and lighting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013744A (en) * 2012-06-08 2014-01-23 Hitachi Appliances Inc Illumination apparatus
JP2015149133A (en) * 2014-02-05 2015-08-20 パナソニックIpマネジメント株式会社 Luminaire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102310911B1 (en) * 2020-11-12 2021-10-08 유버 주식회사 Led luminescence apparatus

Also Published As

Publication number Publication date
TWI624622B (en) 2018-05-21
TW201800697A (en) 2018-01-01
JP6678524B2 (en) 2020-04-08
CN107524988A (en) 2017-12-29

Similar Documents

Publication Publication Date Title
JP5957364B2 (en) Luminous flux control member, light emitting device, surface light source device, and display device
JP2001351424A (en) Plane light-emitting device
US10634296B2 (en) Luminous flux control member, light-emitting device, planar light source device, and display device
JP2017129784A (en) Light flux control member, light emitting device, plane light source device and display device
WO2018194118A1 (en) Light flux control member, light-emitting device, surface light source device and display device
JP6857739B2 (en) Ultra-thin backlight lens
TWI579487B (en) Secondary optical element and light source module
WO2018155676A1 (en) Light-emitting device, planar light source device and display device
JP2012234729A (en) Lighting device
US20140301086A1 (en) Optical sheet and lighting device including the same
JP6470606B2 (en) Light emitting device, surface light source device, and display device
JP6678524B2 (en) Lighting equipment
JP6928139B2 (en) Lighting device
JP6983116B2 (en) Surface light source device and display device
US20140168993A1 (en) Lighting device
KR20210128965A (en) Reflective diffusing lens and light emitting module comprising the same
JP5049375B2 (en) Simulated solar irradiation device
RU2700182C2 (en) Tubular light-emitting device
WO2017061370A1 (en) Light flux control member, light-emitting device, surface light source device and display device
WO2021070343A1 (en) Planar light source device and display device
JP5756382B2 (en) Lighting device
TWI694290B (en) Lens and illumination device
JP2018036407A (en) Luminous flux control member, light emitting device, surface light source device, and display device
WO2024034458A1 (en) Optical member and illumination device
WO2017038758A1 (en) Luminous flux control member, light-emitting device, planar light source device, and display device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160617

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200317

R150 Certificate of patent or registration of utility model

Ref document number: 6678524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150