WO2017038758A1 - Luminous flux control member, light-emitting device, planar light source device, and display device - Google Patents

Luminous flux control member, light-emitting device, planar light source device, and display device Download PDF

Info

Publication number
WO2017038758A1
WO2017038758A1 PCT/JP2016/075177 JP2016075177W WO2017038758A1 WO 2017038758 A1 WO2017038758 A1 WO 2017038758A1 JP 2016075177 W JP2016075177 W JP 2016075177W WO 2017038758 A1 WO2017038758 A1 WO 2017038758A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
incident
central axis
controlling member
Prior art date
Application number
PCT/JP2016/075177
Other languages
French (fr)
Japanese (ja)
Inventor
俊彦 持田
洋 ▲高▼鳥
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015199459A external-priority patent/JP6682229B2/en
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to CN201680051184.1A priority Critical patent/CN107923997B/en
Priority to US15/757,454 priority patent/US10634296B2/en
Publication of WO2017038758A1 publication Critical patent/WO2017038758A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a light flux controlling member that controls light distribution of light emitted from a light emitting element, a light emitting device having the light flux controlling member, a surface light source device, and a display device.
  • a direct type surface light source device may be used as a backlight.
  • direct type surface light source devices having a plurality of light emitting elements as light sources have come to be used.
  • a direct type surface light source device includes a substrate, a plurality of light emitting elements, a plurality of light flux controlling members (lenses), and a light diffusing member.
  • the light emitting element is a light emitting diode (LED) such as a white light emitting diode.
  • the plurality of light emitting elements are arranged in a matrix on the substrate.
  • a light flux controlling member that spreads light emitted from each light emitting element in the surface direction of the substrate is disposed on each light emitting element. The light emitted from the light flux controlling member is diffused by the light diffusing member and illuminates the irradiated member (for example, a liquid crystal panel) in a planar shape.
  • FIGS. 1A to 1C are diagrams showing the configuration of a conventional light flux controlling member.
  • 1A is a perspective view seen from the back side
  • FIG. 1B is a cross-sectional perspective view seen from the back side
  • FIG. 1C is a cross-sectional view.
  • positioned at the back side is abbreviate
  • the conventional light flux controlling member 20 has an entrance surface 22 and an exit surface 24.
  • the incident surface 22 is an inner surface of the first concave portion formed on the back surface disposed to face the light emitting element, and makes the light emitted from the light emitting element incident.
  • the exit surface 24 is disposed on the opposite side of the entrance surface 22 and emits the light incident on the entrance surface 22 to the outside.
  • FIGS. 2A and 2B are optical path diagrams of the light flux controlling member 20.
  • FIG. FIG. 2A is an optical path diagram of a light beam emitted from the center of the light emitting surface of the light emitting element 10 at an emission angle of 30 °
  • FIG. 2B shows light emitted from the center of the light emitting surface of the light emitting element 10 at an emission angle of 40 °.
  • It is an optical path figure of a light ray.
  • the “emission angle” means an angle of the emitted light with respect to the optical axis OA of the light emitting element 10 ( ⁇ in FIG. 2A).
  • the legs arranged on the back side are omitted.
  • the light emitted from the light emitting element 10 enters the light flux controlling member 20 through the incident surface 22.
  • the light that has entered the light flux controlling member 20 reaches the emission surface 24.
  • Most of the light reaching the emission surface 24 is emitted from the emission surface 24 to the outside (solid arrow).
  • the light emitted from the emission surface 24 is refracted and emitted from the emission surface 24, and its traveling direction is controlled.
  • another part of the light is reflected by the exit surface 24 (Fresnel reflection) and reaches the back surface 26 (broken arrow).
  • Patent Document 1 proposes a light flux controlling member that can solve such a problem.
  • FIGS. 3A to 3C are diagrams showing the configuration of the light flux controlling member 30 described in Patent Document 1.
  • FIG. 3A is a perspective view seen from the back side
  • FIG. 3B is a cross-sectional perspective view seen from the back side
  • FIG. 3C is a cross-sectional view.
  • positioned at the back side is abbreviate
  • the inclined surface 32 is disposed on the outer side
  • the inclined surface 32 is rotationally symmetric (circularly symmetric) with respect to the central axis CA of the light flux controlling member 30 and is inclined at a predetermined angle (for example, 45 °) with respect to a virtual line orthogonal to the central axis CA. .
  • FIGS. 4A and 4B are optical path diagrams of the light flux controlling member 30.
  • FIG. 4A is an optical path diagram of a light beam emitted from the center of the light emitting surface of the light emitting element 10 at an emission angle of 30 °
  • FIG. 4B is a light beam emitted from the center of the light emitting surface of the light emitting device 10 at an emission angle of 40 °.
  • FIG. 4A and 4B the legs arranged on the back side are omitted.
  • the light internally reflected by the emission surface 24 reaches a predetermined region on the back surface 26.
  • the inclined surface 32 By forming the inclined surface 32 in the predetermined region, at least a part of the light reaching the inclined surface 32 can be reflected in the lateral direction.
  • COB chip-on-board
  • the inner surface on which light incident from the vicinity of the outer edge of the first recess forms the second recess by refraction. 34 may be reached.
  • An object of the present invention is to use light that propagates in the light flux controlling member at a large angle with respect to the optical axis when used in combination with a light emitting element that emits a large amount of light in the lateral direction, such as a COB type LED. To provide a light flux control member that is less likely to cause uneven brightness in light emitted from the light flux control member even when a concave portion is formed at a position that can be easily reached.
  • Another object of the present invention is to provide a light emitting device, a surface light source device, and a display device having the light flux controlling member.
  • the light flux controlling member of the present invention is a light flux controlling member for controlling the light distribution of the light emitted from the light emitting element, and is provided on the inner surface of the first recess disposed on the back side so as to intersect the central axis of the light flux controlling member.
  • a second concave portion disposed on the back side so as to surround the first incident surface, the outer surface of the first incident surface, and the first concave portion.
  • a cross section including the central axis, and an intersection of the first incident surface and the second incident surface is an intersection of the first concave portion. It is arranged on the central axis side from the opening edge, and the cross section
  • the inclination angle of the tangent at the end of the second incident surface on the first incident surface side with respect to the first imaginary straight line orthogonal to the central axis is at the end of the first incident surface on the second incident surface side. It is smaller than the inclination angle of the tangent to the first virtual straight line, and satisfies the following formula (1).
  • h1 is the distance between the second imaginary straight line passing through the opening edge of the first recess and the top of the second recess in the cross section perpendicular to the central axis.
  • H2 is an interval between an incident position of arbitrary light emitted from the light emitting element and incident on the second incident surface in the cross section, and the second imaginary straight line
  • d is the cross section.
  • ⁇ 1 is the refraction angle of the arbitrary light incident at the incident position in the cross section
  • ⁇ 2 Is an inclination angle of the tangent of the incident position with respect to the second imaginary straight line in the cross section.
  • the light-emitting device of the present invention includes a light-emitting element and the light flux controlling member of the present invention, and the light flux controlling member is arranged so that the central axis coincides with the optical axis of the light emitting element.
  • the surface light source device of the present invention is disposed substantially parallel to the substrate, the plurality of light emitting devices according to the present invention disposed on the substrate at regular intervals, and on the plurality of light emitting devices.
  • a light diffusing plate that diffuses and transmits light from the light emitting device, and the light emitting device has an angle range from a direction along the optical axis to a direction in which light having the highest luminous intensity is emitted from the light emitting device.
  • the luminous intensity of the light from the beam gradually increases as the angle with respect to the optical axis increases, and satisfies the following equations (2), (3), and (4).
  • P is the distance between the centers of the plurality of light emitting devices
  • H is the distance between the upper surface of the substrate and the lower surface of the light diffusion plate.
  • L is the distance from the intersection of the optical axis and the lower surface of the light diffusing plate to the point where the light with the highest luminous intensity reaches the lower surface of the light diffusing plate
  • I 0 is the light emission Is a luminous intensity of light emitted from the apparatus in the direction of the optical axis
  • I 1/2 is a distance P / 2 from the intersection of the optical axis and the lower surface of the light diffusing plate on the lower surface of the light diffusing plate. It is the luminous intensity of the light emitted from the light emitting device toward the point.
  • the light flux controlling member of the present invention hardly causes uneven brightness in the emitted light even when combined with a light emitting element that emits a lot of light in the lateral direction, such as a COB type LED.
  • the light emitting device, the surface light source device, and the display device of the present invention include the light flux controlling member that does not easily cause the luminance unevenness, it is difficult to cause the luminance unevenness in the emitted light.
  • FIGS. 1A to 1C are diagrams showing a configuration of a conventional light flux controlling member.
  • 2A and 2B are optical path diagrams of a conventional light flux controlling member.
  • 3A to 3C are diagrams showing the configuration of the light flux controlling member described in Patent Document 1.
  • FIG. 4A and 4B are optical path diagrams of the light flux controlling member described in Patent Document 1.
  • FIG. 5 is another optical path diagram of the light flux controlling member described in Patent Document 1.
  • 6A and 6B are diagrams showing a configuration of the surface light source device according to Embodiment 1.
  • FIG. 7A and 7B are cross-sectional views illustrating the configuration of the surface light source device according to Embodiment 1.
  • FIG. 8 is a partially enlarged cross-sectional view of the surface light source device according to Embodiment 1.
  • FIGS. 9A and 9B are perspective views of the light flux controlling member according to Embodiment 1 as viewed from the back side.
  • 10A to 10C are diagrams showing the configuration of the light flux controlling member according to the first embodiment.
  • FIGS. 11A and 11B are partially enlarged cross-sectional views of the light flux controlling member according to Embodiment 1 for explaining the expression (1).
  • FIG. 12 is an optical path diagram of the light-emitting device according to Embodiment 1.
  • FIG. 13 is a partial enlarged cross-sectional view of the surface light source device according to Embodiment 1 for explaining the equations (2), (3), (4), and (5).
  • 14A and 14B are graphs showing the light distribution characteristics of four types of light emitting devices.
  • FIG. 15 is a graph showing the luminance distribution in the light emitting device.
  • FIG. 16 is a graph showing H / P and L / P values for four types of surface light source devices.
  • FIG. 17A is a graph showing values of I 1/2 / I 0 for four types of surface light source devices.
  • FIG. 17B is a graph showing values of I 1/4 / I 0 for four types of surface light source devices.
  • 18A and 18B are graphs showing the luminance distribution of the light emitting surface when only one light emitting device is turned on in the four types of surface light source devices.
  • FIG. 19A is a diagram illustrating a luminance distribution of a light emitting surface of a surface light source device that does not have a light flux controlling member.
  • FIG. 19A is a diagram illustrating a luminance distribution of a light emitting surface of a surface light source device that does not have a light flux controlling member.
  • 19B shows a surface light source device according to an embodiment of the present invention (H / P ⁇ 0.2, L / P> 1, I 1/2 / I 0 > 6, I 1/4 / I 0 ⁇ 2. It is a figure which shows the luminance distribution of the light emission surface of 4).
  • 19C to 19E show the surface light source device of the reference example (H / P ⁇ 0.2, L / P ⁇ 1, I 1/2 / I 0 ⁇ 6, I 1/4 / I 0 ⁇ 2.4). It is a figure which shows the luminance distribution of a light emission surface.
  • FIG. 20 shows optical paths in the surface light source device of the reference example (H / P ⁇ 0.2, L / P ⁇ 1, I 1/2 / I 0 > 6, I 1/4 / I 0 ⁇ 2.4). It is sectional drawing shown.
  • FIG. 21A is a graph showing the light distribution characteristics of the light emitting devices (I 1/2 / I 0 ⁇ 6, I 1/4 / I 0 ⁇ 2.4) used in the surface light source devices of the present invention and the reference example. is there.
  • FIG. 21B shows a surface light source device of the present invention and a reference example (H / P ⁇ 0.2, L / P> 1, I 1/2 / I 0 ⁇ 6, I 1/4 / I 0 ⁇ 2.4).
  • FIG. 5 is a graph showing the luminance distribution of the light emitting surface when only one light emitting device is turned on.
  • FIG. 22 shows a light emitting surface of a surface light source device (H / P ⁇ 0.2, L / P> 1, I 1/2 / I 0 ⁇ 6, I 1/4 / I 0 ⁇ 2.4) of a reference example. It is a figure which shows the luminance distribution.
  • 23A and 23B are graphs showing the luminance distribution of the light emitting surface when only one light emitting device is turned on in a surface light source device having light emitting devices with different values of I 1/4 / I 0 .
  • FIG. 24 is a graph showing the relationship between I 1/4 / I 0 and the luminance in the area near the light emitting device.
  • 25A and 25B are perspective views of the light flux controlling member according to Embodiment 2 as seen from the back side.
  • 26A and 26B are diagrams for explaining the shape of the incident surface according to the modification.
  • a surface light source device suitable for a backlight of a liquid crystal display device will be described as a representative example of the surface light source device of the present invention.
  • These surface light source devices can be used as a display device by combining with an irradiated member (for example, a liquid crystal panel) irradiated with light from the surface light source device.
  • FIG. 1 (Configuration of surface light source device and light emitting device) 6 to 8 are diagrams showing the configuration of the surface light source device 100 according to the first embodiment.
  • 6A is a plan view of surface light source device 100 according to Embodiment 1
  • FIG. 6B is a front view.
  • 7A is a cross-sectional view taken along the line AA shown in FIG. 6B
  • FIG. 7B is a cross-sectional view taken along the line BB shown in FIG. 6A.
  • FIG. 8 is a partially enlarged cross-sectional view of the surface light source device 100.
  • the center-to-center distance (pitch) of the light emitting device 200 is P (mm), and the distance (height) between the upper surface of the substrate 210 and the lower surface of the light diffusion plate 120 is H (mm) (see FIG. 13).
  • the surface light source device 100 according to the present embodiment satisfies, for example, the following formula (2).
  • the plurality of light emitting devices 200 are arranged on the substrate 210 at regular intervals. Each of the plurality of substrates 210 is fixed at a predetermined position on the bottom plate 112 of the housing 110. As shown in FIG. 8, the plurality of light emitting devices 200 each include a light emitting element 220 and a light flux controlling member 300.
  • the light emitting element 220 is a light source of the surface light source device 100 and is mounted on the substrate 210.
  • the light emitting element 220 is a light emitting diode (LED) such as a white light emitting diode.
  • the light emitting element 220 is preferably a chip-on-board (COB) type LED from the viewpoint of easy mounting and high luminous efficiency.
  • COB type LEDs are known to emit more light in the lateral direction than conventional LEDs. Since the light emitting element 220 such as a COB type LED emits a lot of light in the lateral direction, it is necessary to make more light emitted in the side surface direction of the light emitting element 220 enter the light flux controlling member 300. Therefore, it is preferable that the upper surface of the light emitting element 220 is arranged vertically above the lower end (opening edge) of the first recess 310 described later.
  • the light flux controlling member 300 is a lens and is fixed on the substrate 210.
  • the light flux controlling member 300 controls the light distribution of the light emitted from the light emitting element 220 and expands the traveling direction of the light in the surface direction of the substrate.
  • the light flux controlling member 300 is disposed on the light emitting element 220 so that the central axis CA coincides with the optical axis OA of the light emitting element 220 (see FIG. 8).
  • an entrance surface 320 and an exit surface 330 of the light flux controlling member 300 described later are both rotationally symmetric (circularly symmetric), and their rotational axes coincide.
  • the rotation axes of the entrance surface 320 and the exit surface 330 are referred to as “center axis CA of the light flux controlling member”.
  • the “optical axis OA of the light emitting element” means a light beam at the center of the three-dimensional outgoing light beam from the light emitting element 220.
  • the light flux controlling member 300 can be formed by integral molding.
  • the light flux controlling member 300 may be made of any material that can transmit light having a desired wavelength.
  • the material of the light flux controlling member 300 is light transmissive resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), epoxy resin (EP), silicone resin, or glass.
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • EP epoxy resin
  • silicone resin or glass.
  • the surface light source device 100 according to the present embodiment has a main feature in the configuration of the light flux controlling member 300. Therefore, the light flux controlling member 300 will be described in detail separately.
  • the light diffusing plate 120 is a plate-like member having light diffusibility, and transmits the light emitted from the light emitting device 200 while diffusing it.
  • the light diffusion plate 120 is disposed on the plurality of light emitting devices 200 substantially in parallel with the substrate 210.
  • the light diffusing plate 120 is approximately the same size as an irradiated member such as a liquid crystal panel.
  • the light diffusion plate 120 is formed of a light-transmitting resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), polystyrene (PS), styrene / methyl methacrylate copolymer resin (MS).
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • PS polystyrene
  • MS styrene / methyl methacrylate copolymer resin
  • fine irregularities are formed on the surface of the light diffusion plate 120, or light diffusers such as beads are dispersed inside the light diffusion plate 120.
  • the surface light source device 100 In the surface light source device 100 according to the present invention, the light emitted from each light emitting element 220 is expanded by the light flux control member 300 so as to illuminate a wide area of the light diffusion plate 120. The light emitted from each light flux controlling member 300 is further diffused by the light diffusion plate 120. As a result, the surface light source device 100 according to the present invention can uniformly illuminate a planar irradiated member (for example, a liquid crystal panel).
  • a planar irradiated member for example, a liquid crystal panel
  • FIGS. 9A and 9B and FIGS. 10A to 10C are diagrams showing a configuration of light flux controlling member 300 according to Embodiment 1.
  • FIG. 9A and 9B are perspective views of the light flux controlling member 300 as seen from the back side (substrate 210 side).
  • 10A is a plan view of the light flux controlling member 300
  • FIG. 10B is a bottom view
  • FIG. 10C is a cross-sectional view taken along line AA shown in FIG. 10A.
  • the light flux controlling member 300 has an incident surface 320 that is the inner surface of the first recess 310, an exit surface 330, and a second recess 340.
  • light flux controlling member 300 has a flange 350 for facilitating handling of light flux controlling member 300.
  • the light flux controlling member 300 forms a gap for releasing heat generated from the light emitting element 220 to the outside, and has leg portions (not shown) for positioning and fixing the light flux controlling member 300 on the substrate 210. You may do it.
  • the first recess 310 is disposed at the center of the back surface 305 so as to intersect the central axis CA of the light flux controlling member 300.
  • the first recess 310 is disposed so as to intersect with the optical axis OA of the light emitting element 220 (the central axis CA of the light flux controlling member 300).
  • the inner surface of the first recess 310 functions as the incident surface 320. That is, the incident surface 320 is disposed so as to intersect the central axis CA.
  • the incident surface 320 controls most of the light emitted from the light emitting element 220 to enter the light flux controlling member 300 while controlling the traveling direction of the light.
  • the first incident surface 322 is disposed on the bottom side of the first recess 310 so as to intersect the central axis CA.
  • the first incident surface 322 allows light having a small emission angle (mainly light emitted from the upper surface of the light emitting element 220) out of the light emitted from the light emitting element 220 to enter the light flux controlling member 300.
  • the 1st entrance plane 322 may be constituted by one side, and may be constituted by a plurality of sides.
  • the first incident surface 322 is composed of one surface.
  • the first incident surface 322 is rotationally symmetric (circularly symmetric) with the central axis CA as a rotation axis. In the cross section including the central axis CA, the first incident surface 322 is formed so as to approach the back surface 305 as the distance from the central axis CA increases. More specifically, the first incident surface 322 is formed in a bell shape.
  • the second incident surface 324 is disposed on the opening side of the first concave portion 310 so as to connect the outer edge portion of the first incident surface 322 and the opening edge portion of the first concave portion 310.
  • the second incident surface 324 causes light having a larger emission angle than the light incident on the first incident surface 322 (mainly light emitted from the side surface of the light emitting element 220) to enter the light flux controlling member 300.
  • the intersection of the first incident surface 322 and the second incident surface 324 is disposed closer to the central axis CA than the opening edge of the first recess 310.
  • the inclination angle of the second incident surface 324 with respect to the first imaginary line orthogonal to the central axis CA of the tangent at the end on the first incident surface 322 side is the second incident surface of the first incident surface 322. It is smaller than the inclination angle of the tangent at the end on the surface 324 side with respect to the first virtual straight line.
  • “inclination angle” refers to a small angle among the angles formed by two straight lines.
  • “the inclination angle with respect to the first imaginary line orthogonal to the central axis CA of the tangent line at the end of the second incident surface 324 on the first incident surface 322 side” is the first angle of the second incident surface 324.
  • the inclination angle of the tangent at the end of the first incident surface 322 on the second incident surface 324 side with respect to the first imaginary straight line is the tangent at the end of the first incident surface 322 on the second incident surface 324 side.
  • the second incident surface 324 is rotationally symmetric (circularly symmetric) with the central axis CA as the rotational axis.
  • the shape of the second incident surface 324 in the cross section including the central axis CA may be a straight line or a curved line.
  • the shape of the second incident surface 324 in the cross section including the central axis CA is a straight line. That is, the inclination angle of the tangent line of the second incident surface 324 with respect to the first imaginary straight line is constant from the outer edge portion of the first incident surface 322 toward the opening edge portion of the first recess 310.
  • the second incident surface 324 is formed so as to be closer to the back surface 305 as it moves away from the central axis CA.
  • the light incident on the second incident surface 324 is refracted toward the emission surface 330 side. .
  • the light incident on the second incident surface 324 is prevented from reaching the second recess 340 directly. This point will be described in detail separately.
  • the back surface 305 is a flat surface that is located on the back side of the light flux controlling member 300 and extends in the radial direction from the opening edge of the first recess 310.
  • the emission surface 330 is disposed on the front side (light diffusion plate 120 side) of the light flux controlling member 300 so as to protrude from the flange portion 350.
  • the exit surface 330 emits the light incident in the light flux controlling member 300 to the outside while controlling the traveling direction.
  • the exit surface 330 intersects with the central axis CA and is rotationally symmetric (circularly symmetric) with the central axis CA as a rotation axis.
  • the emission surface 330 includes a first emission surface 330a located in a predetermined range centered on the central axis CA, a second emission surface 330b formed continuously around the first emission surface 330a, and a second emission surface 330b. And a third emission surface 330c that connects the flange 350 (see FIG. 10C).
  • the first emission surface 330a is a curved surface convex on the back side.
  • the second emission surface 330b is a smooth curved surface that is located on the front side and is located around the first emission surface 330a.
  • the shape of the second emission surface 330b is an annular convex shape.
  • the third emission surface 330c is a curved surface located around the second emission surface 330b. As shown in FIG. 10C, in the cross section including the central axis CA, the cross section of the third emission surface 330c may be linear or curved.
  • the second recess 340 is arranged on the back surface 305 so as to surround the first recess 310 (incident surface 320) with respect to the optical axis OA.
  • the second recess 340 is a part of the light incident on the incident surface 320, is internally reflected by the output surface 330, and reflects light toward the back surface 305 in the lateral direction (radially outward with respect to the central axis CA).
  • the second recess 340 is substantially V-shaped.
  • the second recess 340 includes an inner inclined surface 342 disposed on the optical axis OA (center axis CA) side and an outer inclined surface 344 disposed outside the inner inclined surface 342.
  • the inner inclined surface 342 is disposed on the central axis CA side.
  • the inner inclined surface 342 is disposed along the central axis CA.
  • the inner inclined surface 342 is formed in a cylindrical shape with the central axis CA as a rotation axis.
  • the outer inclined surface 344 is arranged farther from the central axis CA than the inner inclined surface 342. In the cross section including the central axis CA, the outer inclined surface 344 is inclined so as to approach the back surface 305 as the distance from the central axis CA increases.
  • the shape of the outer inclined surface 344 in the cross section including the central axis CA is not particularly limited.
  • the shape of the outer inclined surface 344 in the cross section including the central axis CA may be a straight line or a curved line. In the present embodiment, the shape of outer inclined surface 344 in the cross section including central axis CA is a straight line.
  • the inner inclined surface 342 and the outer inclined surface 344 may be arranged continuously or may be arranged apart from each other. When the inner inclined surface 342 and the outer inclined surface 344 are arranged apart from each other, another surface is arranged between the inner inclined surface 342 and the outer inclined surface 344.
  • the position of the second recess 340 is not particularly limited, but is preferably formed in a region where a lot of light reflected by the emission surface 330 reaches. Since the arrival position of the light reflected by the emission surface 330 varies depending on various factors such as the shape of the emission surface 330, it is appropriately set according to the light flux controlling member 300.
  • the second recess 340 is arranged at a position away from the second incident surface 324 from the central axis CA (outside the second incident surface 324). Therefore, the relationship between the second incident surface 324 and the second concave portion 340 is important for controlling the light incident on the second incident surface 324 so as not to reach the second concave portion 340 directly. Therefore, in light flux controlling member 300 according to the present embodiment, second incident surface 324 is formed so as to satisfy the following expression (1) indicating the relationship between second incident surface 324 and second recess 340. ing.
  • FIGS. 11A and 11B are partial enlarged cross-sectional views of the light flux controlling member for explaining the expression (1).
  • the second virtual straight line VL2 orthogonal to the central axis CA and passing through the opening edge of the first concave portion 310 and the top of the second concave portion 340
  • a distance in a direction perpendicular to the central axis CA between the incident position of arbitrary light incident on the second incident surface 324 and the top of the second recess 340 is defined as d.
  • the refraction angle of arbitrary light incident at the incident position of the arbitrary light incident on the second incident surface 324 is ⁇ 1
  • the second incident surface 324 in the cross section including the central axis CA is used.
  • the inclination angle ⁇ 2 with respect to the second virtual straight line VL2 of the tangent of the incident position of the arbitrary light incident in step S2 is set.
  • the inclination angle of the tangent of the incident position of arbitrary light incident on the second incident surface 324 with respect to the second virtual line VL2 is the tangent of the incident position of arbitrary light incident on the second incident surface 324.
  • the angles formed by the second virtual straight line it means a small angle.
  • H be the distance between the second virtual straight line VL2 and the arbitrary light L at the position of the top of the second recess 340 when the light flux controlling member 300 is viewed in plan.
  • H can be represented by the following formula (1A).
  • any light in the direction along the central axis CA is obtained.
  • L needs to travel on the front side of the top of the second recess 340.
  • H needs to be larger than h1. That is, the second incident surface 324 and the second recess 340 need to satisfy the following formula (1).
  • the second incident surface 324 and the second recess 340 are designed to satisfy the above-described formula (1), so that the light L emitted from the light emitting element 220 and incident on the second incident surface 324 is directly second. Without reaching the recess 340 (inner inclined surface 342), the front side of the second recess 340 advances from the top.
  • the idea up to the above-described formula (1) is that the light flux controlling member 300 is designed so that the light L emitted from the light emitting element 220 and incident on the second incident surface 324 does not directly reach the collar portion 350. Can also be applied. Specifically, in the direction orthogonal to the central axis CA, an incident position where an arbitrary light L emitted from the light emitting element 220 and incident on the second incident surface 324 is incident with an inner end portion of the flange portion 350. Let the distance be d2. Moreover, the height of the collar part 350 is set to h3 in the direction along the central axis CA. ⁇ 1 and ⁇ 2 are as described above. In this case, h3 can be expressed by the following formula (1B).
  • the light L emitted from the light emitting element 220 and incident on the second incident surface 324 does not directly reach the flange 350
  • the light L is closer to the front side than the flange 350 in the direction along the central axis CA. Need to progress.
  • H needs to be larger than h3. That is, the flange 350 and the second incident surface need to satisfy the following formula (1C).
  • the second incident surface 324 and the flange portion 350 are designed to satisfy the above-described equation (1C), the light L emitted from the light emitting element 220 and incident on the second incident surface 324 is directly applied to the flange portion 350. Without going to the front, the front side of the collar 350 is advanced.
  • the light utilization efficiency can be further increased by designing the light flux controlling member 300 so as to satisfy the above-described formulas (1) and (1C).
  • H is defined by the arbitrary light L.
  • the arbitrary light L is identified as light parallel to the second imaginary straight line VL2, and this light is the opening edge portion (second second) of the first recess 310.
  • the minimum value of the inclination angle ⁇ 2 of the outer edge of the second incident surface can be specified.
  • FIG. 12 is an optical path diagram in the light emitting device 200. In FIG. 12, hatching to the light emitting element 220 and the light flux controlling member 300 is omitted to show the optical path.
  • the light emitted from the upper light emitting surface enters the light flux controlling member 300 at the first incident surface 322.
  • the first incident surface 322 most of the light is emitted from the emission surface 330 to the outside of the light flux controlling member 300 while being refracted by the emission surface 330 to control the traveling direction.
  • some of the light is internally reflected by the exit surface 330 and reaches the second recess 340 (outer inclined surface 344).
  • Most of the light reaching the second recess 340 is reflected toward the side by the outer inclined surface 344.
  • the light reflected by the outer inclined surface 344 is emitted from the flange 350, for example.
  • the light emitted from the light emitting element 220 enters the light flux controlling member 300 at the second incident surface 324.
  • the light emitted from the light emitting element 220 is refracted toward the emission surface 330 side at the second incident surface 324.
  • the light incident on the second incident surface 324 is emitted from the light exit surface 330 to the outside of the light flux controlling member 300 while its traveling direction is controlled by being refracted by the light exit surface 330.
  • FIG. 13 is a partial enlarged cross-sectional view of the surface light source device 100 according to the present embodiment.
  • the housing 110 is omitted.
  • energy saving by further reducing the number of light emitting elements 220 in the surface light source device 100 and further thinning of the surface light source device 100 are required. Therefore, in the surface light source device 100 having the light flux controlling member 300 described above, the following equation (2) can be given as a condition for realizing energy saving, thinning, and reduction in luminance unevenness.
  • P is the distance (pitch) between the centers of the plurality of light emitting devices 200.
  • H is the distance (height) between the upper surface of the substrate 120 and the lower surface of the light diffusion plate 120.
  • the surface light source device 100 preferably satisfies the following formula (3) in order to prevent the occurrence of luminance unevenness on the light emitting surface while satisfying the above formula (2). That is, the shapes of the entrance surface 320 and the exit surface 330 of the light flux controlling member 300 are adjusted so as to satisfy the following formula (3) in addition to the above formula (1).
  • Equation (3) means that light (l) emitted from a certain light emitting device 200 at a peak emission angle reaches farther than the adjacent light emitting devices 200. Thereby, it can suppress that a bright part (area
  • the emission angle of light having the highest luminous intensity (peak emission angle) Is greater than 78.7 °.
  • P is the distance (pitch) between the centers of the plurality of light emitting devices 200.
  • L is the distance from the intersection of the optical axis OA of the light emitting device 200 and the lower surface of the light diffusing plate 120 to the point where the light emitted from the light emitting device 200 at the peak emission angle reaches the lower surface of the light diffusing plate 120. . ]
  • the surface light source device 100 preferably satisfies the following formula (4) in order to prevent the occurrence of luminance unevenness on the light emitting surface while satisfying the above formula (3). That is, the shapes of the entrance surface 320 and the exit surface 330 of the light flux controlling member 300 are further adjusted to satisfy the following expression (4). As shown in FIG. 13, the equation (4) indicates that the light intensity (I 1/2 ) of the light toward the middle point of the two light emitting devices 200 on the lower surface of the light diffusing plate 120 is directed directly above the light emitting device 200. It means that it is more than 6 times higher than the luminous intensity (I 0 ).
  • I 0 is the luminous intensity of the light emitted from the light emitting device 200 in the direction of the optical axis OA.
  • I 1/2 is the luminous intensity of the light emitted from the light emitting device 200 toward the point at a distance of P / 2 from the intersection of the optical axis OA and the lower surface of the light diffusing plate 120 on the lower surface of the light diffusing plate 120. is there.
  • I 0 is the luminous intensity of the light emitted from the light emitting device 200 in the direction of the optical axis OA.
  • I 1/2 is the luminous intensity of the light emitted from the light emitting device 200 toward the point at a distance of P / 2 from the intersection of the optical axis OA and the lower surface of the light diffusing plate 120 on the lower surface of the light diffusing plate 120. is there.
  • the surface light source device 100 also satisfy
  • I 0 is the luminous intensity of light emitted from the light emitting device 200 in the direction of the optical axis OA (I 0 ⁇ 0).
  • I 1/4 is the luminous intensity of the light emitted from the light emitting device 200 toward the point at a distance of P / 4 from the intersection of the optical axis OA and the lower surface of the light diffusing plate 120 on the lower surface of the light diffusing plate 120. is there.
  • Light distribution characteristics of light-emitting device The light distribution characteristics of the light emitting device 200 used in the surface light source device 100 according to the present embodiment were measured. For reference, light distribution characteristics were also measured for a light emitting device having a light flux controlling member with a different exit surface shape (hereinafter also referred to as “light emitting device according to Reference Examples 1 to 3”). Table 1 shows characteristics of the light-emitting device 200 according to the present embodiment and the light-emitting devices according to the three types of Reference Examples 1 to 3.
  • FIG. 14A and 14B are graphs showing the light distribution characteristics of the four types of light emitting devices (P110, P60, P75, and P90) shown in Table 1.
  • the horizontal axis represents the angle (°) when the center of the light emitting surface of the light emitting element is the origin and the optical axis OA of the light emitting device is 0 °.
  • the vertical axis in FIG. 14A indicates the luminous intensity (cd) at each angle
  • the vertical axis in FIG. 14B indicates the relative luminous intensity.
  • FIG. 14B shows the relative luminous intensity when the luminous intensity at 0 ° is set to 1 for each light emitting device.
  • the result of the light emitting device 200 (P110) according to the present embodiment is indicated by a thick solid line.
  • the measurement results of the light emitting devices (P60, P75, and P90) according to Reference Examples 1 to 3 are indicated by thin broken lines, thin solid lines, or thin dashed lines.
  • the light emitting device 200 (P110) according to the present embodiment has a peak emission angle of 78.7 ° or more, and the light emitting devices according to Reference Examples 1 to 3 (P60, P75). It can be seen that more light traveling far away can be generated compared to P90).
  • the luminance distribution of the light emitting device 200 according to this embodiment was measured.
  • the light emitting element 220 and the light emitting device 200 satisfying the above-described formula (1) were used.
  • substrate 210 and an air layer was measured.
  • the luminance on the virtual plane in the light emitting device (hereinafter also referred to as “light emitting device according to comparative example 1”) using the light flux controlling member 30 that does not have the second incident surface 324 shown in FIG. was also measured.
  • the optical axis OA of the light emitting element and the central axis CA of the light flux controlling member 300 are arranged so as to coincide with each other.
  • FIG. 15 is a graph showing a simulation result of the luminance distribution on the virtual plane arranged through the light emitting device 200 and the air layer in the cross section including the optical axis OA.
  • the horizontal axis in FIG. 15 indicates the distance (mm) from the optical axis OA in the virtual plane, and the vertical axis indicates the luminance (cd / m 2 ).
  • the solid line in FIG. 15 shows the result of the light emitting device 200 (P110) according to the present embodiment, and the broken line shows the result of the light emitting device according to Comparative Example 1.
  • a ring-shaped bright portion is suppressed immediately above the light-emitting device 200, and the brightness in the region outside the light-emitting device 200 is slightly increased (see the solid arrow in FIG. 15). ).
  • the light flux controlling member 300 satisfies the formula (1), so that the light incident on the second incident surface 324 does not reach the second concave portion 340 (inner inclined surface 342), and the emission surface 330 (third This was thought to be due to light emitted from the emission surface 330c).
  • the luminance distribution was measured for the surface light source device 100 having the light emitting device 200 (P110) including the light flux controlling member 300 satisfying the expression (1) according to the present embodiment.
  • the luminance distribution was also measured for the surface light source devices having the light emitting devices (P60, P75, and P90) of Reference Examples 1 to 3 above.
  • Each light emitting device (P110, P60, P75, and P90) was arranged at an optimum pitch (see Table 1) inside a surface light source device having a height H of 19 mm.
  • FIG. 16 is a graph showing the values of H / P and L / P for each surface light source device.
  • H / P is 0.2 or less and L / P is more than 1. That is, the surface light source device 100 according to the present embodiment satisfies the above expressions (2) and (3).
  • H / P is more than 0.2 and L / P is 1 or less. That is, these surface light source devices do not satisfy the above formulas (2) and (3).
  • FIG. 17A is a graph showing the value of I 1/2 / I 0 for each surface light source device
  • FIG. 17B is a graph showing the value of I 1/4 / I 0 for each surface light source device.
  • I 1/2 / I 0 is greater than 6 and I 1/4 / I 0 is 2.4 or less. is there. That is, the surface light source device 100 according to the present embodiment satisfies the above expressions (4) and (5).
  • FIG. 18A and FIG. 18B are graphs showing the luminance distribution of the light emitting surface when only one light emitting device is turned on in each surface light source device.
  • the horizontal axis indicates the distance from the optical axis OA of the light emitting device.
  • the vertical axis represents the luminance (FIG. 18A) or relative luminance (FIG. 18B) at each point.
  • FIG. 18B shows the relative luminance when the luminance on the optical axis OA is set to 1 for each surface light source device.
  • the result of the surface light source device having the light emitting device 200 (P110) according to the present embodiment is indicated by a thick solid line.
  • the measurement results of the surface light source devices having the light emitting devices (P60, P75, and P90) of Reference Examples 1 to 3 are indicated by thin broken lines, thin solid lines, or thin dashed lines.
  • FIG. 19 shows the luminance distribution of the light emitting surface when 16 light emitting devices are turned on in each surface light source device.
  • 19A shows the luminance distribution of the light emitting surface when the light flux controlling member is removed
  • FIG. 19B shows the luminance distribution of the light emitting surface of the surface light source device 100 according to the present embodiment
  • FIG. 19C shows Reference Example 1.
  • FIG. 19D shows the luminance distribution of the light emitting surface of the surface light source device having the light emitting device (P75) of Reference Example 2
  • FIG. 19E shows the luminance distribution of the light emitting surface of the surface light source device having the light emitting device (P60) of FIG.
  • FIG. 1 It is a luminance distribution of the light emission surface of the surface light source device which has the light-emitting device (P90) of the reference example 3.
  • FIG. Each light emitting device is arranged at a pitch of 110 mm inside a surface light source device having a height H of 19 mm, and H / P is 0.17 in any surface light source device.
  • the surface light source devices H / P ⁇ 0.2, L / P ⁇ 1, I 1/2 / I 0 ⁇ 6, I In 1/4 / I 0 ⁇ 2.4
  • the luminance unevenness was large.
  • the surface light source device 100 according to the present embodiment H / P ⁇ 0.2, L / P> 1, I 1/2 / I 0 > 6, I 1/4 / I 0 ⁇ 2.4.
  • the luminance unevenness was small even though H / P was 0.2 or less.
  • “the luminance unevenness is small” means that the ratio of the minimum luminance to the maximum luminance in the region between the light emitting devices on the light emitting surface is 95% or more.
  • the surface light source device 100 can emit uniform light from the light emitting surface.
  • the surface light source device does not satisfy the above formula (3), the light emitted from the light emitting device at the peak emission angle (for example, 63 °) reaches the region between the light emitting devices on the lower surface of the light diffusion plate. .
  • the surface light source device 100 ′ that does not satisfy only the expression (2) (H / P ⁇ 0.2, L / P ⁇ 1, I 1/2 / I 0 > 6, I 1/4 / I 0 ⁇ In 2.4), as shown in FIG. 20, most of the light emitted from the light emitting device 40 reaches a region in the vicinity of the light emitting device 40 on the light emitting surface (region where the light emitted at the peak emission angle reaches).
  • the light distribution characteristics of the light emitting device are as indicated by broken lines in FIG. 21A.
  • the solid line is a curve showing the light distribution characteristics of the light emitting device 200 (P110) according to the present embodiment.
  • FIG. 21B is a graph showing the luminance distribution of the light emitting surface when only one light emitting device is turned on in the surface light source device having the light emitting device.
  • the broken line indicates a surface light source device that does not satisfy only the above formula (4) (H / P ⁇ 0.2, L / P> 1, I 1/2 / I 0 ⁇ 6, I 1/4 / I.
  • ⁇ 2.4 is a curve showing the luminance distribution of the light emitting surface, and the solid line is the surface light source device 100 (H / P ⁇ 0.2, L / P> 1, I 1/2 according to the present embodiment).
  • / I 0> 6 a curve showing the intensity distribution of the light-emitting surface of the I 1/4 / I 0 ⁇ 2.4) .
  • FIG. 22 shows a surface light source device (H / P ⁇ 0.2, L / P> 1, I 1/2 / I 0 ⁇ 6, I 1/4 / I 0 that does not satisfy only the equation (4).
  • ⁇ 2.4) is the luminance distribution of the light emitting surface when 16 light emitting devices are turned on. From these results, it is understood that when the surface light source device does not satisfy the above formula (4), the region between the light emitting devices 40 on the light emitting surface becomes relatively dark, resulting in luminance unevenness.
  • FIG. 23A and FIG. 23B are graphs showing the luminance distribution of the light emitting surface when only one light emitting device is turned on in a surface light source device having light emitting devices with different values of I 1/4 / I 0 .
  • FIG. 23B shows an enlarged peak portion of the graph of FIG. 23A.
  • a thick solid line indicates a surface light source device (H / P ⁇ 0.2, L / P> 1, I 1/2 / I 0 > 6, I 1/4 having the light emitting device 200 (P110) according to the present embodiment.
  • / I 0 1.6) is a curve showing the luminance distribution on the light emitting surface.
  • the surface light source device having the light emitting device 200 (P110) according to the present embodiment differs from the surface light source device having another light emitting device only in the value of I 1/4 / I 0 . From these results, it can be seen that when the value of I 1/4 / I 0 changes, the luminance of the region near the light emitting device 40 on the light emitting surface changes. From the viewpoint of making the luminance distribution on the light emitting surface more uniform, the luminance in the region near the light emitting device 40 is preferably lower than the luminance directly above the light emitting device 40.
  • FIG. 24 is a graph showing the relationship between I 1/4 / I 0 and the luminance in the area near the light emitting device 40.
  • the vertical axis represents the luminance at a point 18 mm from the optical axis OA of the light emitting device 40 on the light emitting surface (a point having a peak in the graph of FIG. 23A) when the luminance of the point immediately above the light emitting device 40 on the light emitting surface is 1. Relative values are shown. From this graph, it can be seen that when I 1/4 / I 0 is 2.4 or less, the luminance in the vicinity of the light emitting device 40 is lower than the luminance directly above the light emitting device 40. Therefore, from the viewpoint of making the luminance distribution on the light emitting surface more uniform, I 1/4 / I 0 is preferably 2.4 or less.
  • the light flux controlling member 300 and the surface light source device 100 according to the present embodiment allow the light emitted mainly from the side surface of the light emitting element 220 to enter and refract the light toward the exit surface 330. 324. Therefore, in light flux controlling member 300 and surface light source device 100 according to the present embodiment, a ring-shaped bright portion does not occur on top of light emitting device 200, and luminance unevenness can be suppressed.
  • the display device according to the second embodiment is different from the display device according to the first embodiment in the configuration of the light flux controlling member 600. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • FIGS. 25A and 25B are perspective views of the light flux controlling member 600 according to Embodiment 2 as viewed from the back side.
  • the light flux controlling member 600 in the display device according to Embodiment 2 has an incident surface 320, an exit surface 330, and a second recess 640.
  • light flux controlling member 600 according to the present embodiment has a collar portion 350. Further, the light flux controlling member 600 may have leg portions (not shown).
  • the second recess 640 in the light flux controlling member 600 according to Embodiment 2 has an inner inclined surface 342 and an outer inclined surface 644.
  • a plurality of ridges 344 d are arranged on the outer inclined surface 644.
  • Each of the plurality of ridges 344d has a substantially triangular cross section and is rotationally symmetric with respect to the central axis CA (n-fold symmetry when the number of ridges 344d is n).
  • Each ridge 344d has a planar first inclined surface 344a, a planar second inclined surface 344b, and a ridge line 344c that is an intersection of the first inclined surface 344a and the second inclined surface 344b. It functions like a total reflection prism. As shown in FIG.
  • each ridge 344d is inclined in a direction (for example, 60 °) toward the back side as the ridge line 344c is away from the central axis CA.
  • the light distribution characteristics of the light emitting device including the light flux controlling member 600 according to the present embodiment were measured. Although not particularly illustrated, the light emitting device including the light flux controlling member 600 according to the second embodiment can generate more light traveling farther than the light emitting device according to the first embodiment. Further, in the light emitting device including the light flux controlling member 600 according to the second embodiment, a ring-shaped bright portion is suppressed immediately above the light emitting device, similarly to the light emitting device 200 according to the first embodiment. Further, in the surface light source device according to Embodiment 2 that satisfies the above-described formulas (2) to (5), the luminance unevenness was small.
  • light flux controlling member 600 has the same effect as that of the first embodiment or the effects of the first embodiment or more.
  • the plurality of ridges 344d function like total reflection prisms, the light internally reflected by the emission surface 330 is further reflected by the substrate 210 and is absorbed by the substrate 210. It was possible to further suppress the light loss due to.
  • the inclination angle of the tangent line of the second incident surface 324 with respect to the first virtual line is constant, but the inclination angle of the tangent line of the second incident surface 324 with respect to the first virtual line is If it can satisfy
  • the inclination angle of the tangent line of the second incident surface 324 'with respect to the first imaginary straight line may be formed so as to be gradually reduced as shown in FIG. 26A.
  • the inclination angle of the tangent line of the second incident surface 324 ′′ with respect to the first imaginary straight line may be formed so that the inclination of the tangent line gradually increases as shown in FIG. 26B.
  • the light incident on the second incident surfaces 324 ′ and 324 ′′ does not reach the second recesses 340 and 640 directly.
  • the light flux controlling member, light emitting device, and surface light source device of the present invention can be applied to, for example, a backlight of a liquid crystal display device or general illumination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Planar Illumination Modules (AREA)

Abstract

This luminous flux control member has: a plane of incidence having a first incidence plane and a second incidence plane inside a first concavity; an emission plane; and a second concavity. The intersection of the first incidence plane and the second incidence plane is disposed on the center axis side from an aperture edge portion of the first concavity. The angle of the tangent line to the first-incidence-plane-side end of the second incidence plane in relation to a first imaginary line orthogonal to the center axis is less than the angle of the tangent line to the second-incidence-plane-side end of the first incidence plane in relation to the first virtual line. The luminous flux control member satisfies the expression h1 < h2 + d × cot(θ1 + θ2), where h1 is the space between the apex of the second concavity and a second imaginary line orthogonal to the center axis and that passes through the aperture edge portion, h2 is the space between the second imaginary line and the incidence position of light on the second incidence plane, d is the distance between the incidence position and the apex in the direction orthogonal to the center axis, θ1 is the angle of refraction of light in the incidence position, and θ2 is the angle of the tangent line at the incidence position in relation to the second imaginary line.

Description

光束制御部材、発光装置、面光源装置および表示装置Luminous flux control member, light emitting device, surface light source device, and display device
 本発明は、発光素子から出射された光の配光を制御する光束制御部材、当該光束制御部材を有する発光装置、面光源装置および表示装置に関する。 The present invention relates to a light flux controlling member that controls light distribution of light emitted from a light emitting element, a light emitting device having the light flux controlling member, a surface light source device, and a display device.
 液晶表示装置などの透過型画像表示装置では、バックライトとして直下型の面光源装置を使用することがある。近年、光源として複数の発光素子を有する、直下型の面光源装置が使用されるようになってきている。 In a transmissive image display device such as a liquid crystal display device, a direct type surface light source device may be used as a backlight. In recent years, direct type surface light source devices having a plurality of light emitting elements as light sources have come to be used.
 たとえば、直下型の面光源装置は、基板と、複数の発光素子と、複数の光束制御部材(レンズ)と、光拡散部材とを有する。発光素子は、例えば白色発光ダイオードなどの発光ダイオード(LED)である。複数の発光素子は、基板上にマトリックス状に配置されている。各発光素子の上には、各発光素子から出射された光を基板の面方向に拡げる光束制御部材が配置されている。光束制御部材から出射された光は、光拡散部材により拡散され、被照射部材(例えば液晶パネル)を面状に照らす。 For example, a direct type surface light source device includes a substrate, a plurality of light emitting elements, a plurality of light flux controlling members (lenses), and a light diffusing member. The light emitting element is a light emitting diode (LED) such as a white light emitting diode. The plurality of light emitting elements are arranged in a matrix on the substrate. A light flux controlling member that spreads light emitted from each light emitting element in the surface direction of the substrate is disposed on each light emitting element. The light emitted from the light flux controlling member is diffused by the light diffusing member and illuminates the irradiated member (for example, a liquid crystal panel) in a planar shape.
 図1A、B、Cは、従来の光束制御部材の構成を示す図である。図1Aは、裏側から見た斜視図であり、図1Bは、裏側から見た断面斜視図であり、図1Cは、断面図である。なお、図1A、Bでは、裏側に配置された脚部を省略している。図1A~Cに示されるように、従来の光束制御部材20は、入射面22と、出射面24とを有する。入射面22は、発光素子と対向して配置された裏面に形成された第1凹部の内面であって、発光素子から出射された光を入射させる。出射面24は、入射面22の反対側に配置されており、入射面22で入射した光を外部に出射させる。 1A, 1B, and 1C are diagrams showing the configuration of a conventional light flux controlling member. 1A is a perspective view seen from the back side, FIG. 1B is a cross-sectional perspective view seen from the back side, and FIG. 1C is a cross-sectional view. In addition, in FIG. 1A and B, the leg part arrange | positioned at the back side is abbreviate | omitted. As shown in FIGS. 1A to 1C, the conventional light flux controlling member 20 has an entrance surface 22 and an exit surface 24. The incident surface 22 is an inner surface of the first concave portion formed on the back surface disposed to face the light emitting element, and makes the light emitted from the light emitting element incident. The exit surface 24 is disposed on the opposite side of the entrance surface 22 and emits the light incident on the entrance surface 22 to the outside.
 図2A、Bは、光束制御部材20の光路図である。図2Aは、出射角30°で発光素子10の発光面の中心から出射された光線の光路図であり、図2Bは、出射角40°で発光素子10の発光面の中心から出射された光光線の光路図である。ここで「出射角」とは、発光素子10の光軸OAに対する、出射された光線の角度(図2Aのθ)を意味する。なお、図2A、Bでも、裏側に配置された脚部を省略している。 2A and 2B are optical path diagrams of the light flux controlling member 20. FIG. FIG. 2A is an optical path diagram of a light beam emitted from the center of the light emitting surface of the light emitting element 10 at an emission angle of 30 °, and FIG. 2B shows light emitted from the center of the light emitting surface of the light emitting element 10 at an emission angle of 40 °. It is an optical path figure of a light ray. Here, the “emission angle” means an angle of the emitted light with respect to the optical axis OA of the light emitting element 10 (θ in FIG. 2A). In FIGS. 2A and 2B, the legs arranged on the back side are omitted.
 図2A、Bに示されるように、発光素子10から出射された光は、入射面22で光束制御部材20の内部に入射する。光束制御部材20の内部に入射した光は、出射面24に到達する。出射面24に到達した光のうち、大部分の光は、出射面24から外部に出射される(実線の矢印)。このとき、出射面24から出射される光は、出射面24で屈折して出射され、その進行方向が制御される。一方、出射面24に到達した光のうち、他の一部の光は、出射面24で反射し(フレネル反射)、裏面26に到達する(破線の矢印)。裏面26に到達した光のうち、一部の光が裏面26で内部反射した場合、光束制御部材20の直上に向かう光量が過剰になってしまうため、発光装置から照射される光の輝度に不均一な分布(輝度ムラ)が生じてしまう。また、裏面26に到達した光が裏面26から出射された場合、出射された光が基板に吸収されてしまうため、光の利用効率が低下してしまう。そこで、特許文献1では、このような問題を解決できる光束制御部材が提案されている。 2A and 2B, the light emitted from the light emitting element 10 enters the light flux controlling member 20 through the incident surface 22. The light that has entered the light flux controlling member 20 reaches the emission surface 24. Most of the light reaching the emission surface 24 is emitted from the emission surface 24 to the outside (solid arrow). At this time, the light emitted from the emission surface 24 is refracted and emitted from the emission surface 24, and its traveling direction is controlled. On the other hand, of the light reaching the exit surface 24, another part of the light is reflected by the exit surface 24 (Fresnel reflection) and reaches the back surface 26 (broken arrow). When a part of the light reaching the back surface 26 is internally reflected by the back surface 26, the amount of light directed directly above the light flux controlling member 20 becomes excessive. A uniform distribution (brightness unevenness) occurs. Further, when the light that has reached the back surface 26 is emitted from the back surface 26, the emitted light is absorbed by the substrate, so that the light use efficiency is lowered. Therefore, Patent Document 1 proposes a light flux controlling member that can solve such a problem.
 図3A~Cは、特許文献1に記載の光束制御部材30の構成を示す図である。図3Aは、裏側から見た斜視図であり、図3Bは、裏側から見た断面斜視図であり、図3Cは、断面図である。なお、図3A、Bでは、裏側に配置された脚部を省略している。図3A~Cに示されるように、特許文献1に記載の光束制御部材30では、傾斜面32が外側に配置され、中心軸CAと略平行な面34を内側に有する第2凹部が裏面26に形成されている。傾斜面32は、光束制御部材30の中心軸CAに対して回転対称(円対称)であり、かつ中心軸CAに直交する仮想線に対して所定の角度(例えば45°)で傾斜している。 3A to 3C are diagrams showing the configuration of the light flux controlling member 30 described in Patent Document 1. FIG. 3A is a perspective view seen from the back side, FIG. 3B is a cross-sectional perspective view seen from the back side, and FIG. 3C is a cross-sectional view. In addition, in FIG. 3A and B, the leg part arrange | positioned at the back side is abbreviate | omitted. As shown in FIGS. 3A to 3C, in the light flux controlling member 30 described in Patent Document 1, the inclined surface 32 is disposed on the outer side, and the second recess having the surface 34 substantially parallel to the central axis CA on the inner side is the rear surface 26. Is formed. The inclined surface 32 is rotationally symmetric (circularly symmetric) with respect to the central axis CA of the light flux controlling member 30 and is inclined at a predetermined angle (for example, 45 °) with respect to a virtual line orthogonal to the central axis CA. .
 図4A、Bは、光束制御部材30の光路図である。図4Aは、出射角30°で発光素子10の発光面の中心から出射された光線の光路図であり、図4Bは、出射角40°で発光素子10の発光面の中心から出射された光線の光路図である。なお、図4A、Bでも、裏側に配置された脚部を省略している。図4A、Bに示されるように、出射面24で内部反射した光は、裏面26上の所定の領域に到達する。上記所定の領域に傾斜面32を形成することで、傾斜面32に到達した光のうち、少なくとも一部の光を側方方向に向けて反射させることができる。 4A and 4B are optical path diagrams of the light flux controlling member 30. FIG. 4A is an optical path diagram of a light beam emitted from the center of the light emitting surface of the light emitting element 10 at an emission angle of 30 °, and FIG. 4B is a light beam emitted from the center of the light emitting surface of the light emitting device 10 at an emission angle of 40 °. FIG. In FIGS. 4A and 4B, the legs arranged on the back side are omitted. As shown in FIGS. 4A and 4B, the light internally reflected by the emission surface 24 reaches a predetermined region on the back surface 26. By forming the inclined surface 32 in the predetermined region, at least a part of the light reaching the inclined surface 32 can be reflected in the lateral direction.
 このように、特許文献1に記載の光束制御部材30では、出射面24で内部反射した光は、光束制御部材30の直上に向かいにくくなるとともに、基板に吸収されにくくなる。したがって、特許文献1に記載の光束制御部材30を有する発光装置は、従来の光束制御部材20を有する発光装置に比べて、均一にかつ効率よく光を照射することができる。 As described above, in the light flux controlling member 30 described in Patent Document 1, the light internally reflected by the emission surface 24 is less likely to go directly above the light flux controlling member 30 and is less likely to be absorbed by the substrate. Therefore, the light emitting device having the light flux controlling member 30 described in Patent Document 1 can irradiate light more uniformly and efficiently than the light emitting device having the conventional light flux controlling member 20.
 また、近年、照明用の光源として、チップ・オン・ボード(COB)型のLEDが、実装の容易さおよび発光効率の高さから用いられている。COB型のLEDは、上方方向への光の出射に加えて、従来のLEDよりも多くの光を側方方向へも出射することが知られている。 In recent years, a chip-on-board (COB) type LED has been used as a light source for illumination because of its ease of mounting and high luminous efficiency. It is known that a COB type LED emits more light in a lateral direction than a conventional LED in addition to emitting light upward.
特開2011-23204号公報JP 2011-23204 A
 特許文献1に記載の面光源装置の発光素子としてCOB型のLEDを用いる場合、LEDの側方方向に出射される光を入射面22から光束制御部材の内部へ多く入射させる観点から、光束制御部材は、光束制御部材の裏面が発光素子の上面よりも低くなるように配置されることがある。このとき、発光素子の側方方向に出射され、入射面22の下部で光束制御部材の内部に入射した光は、光束制御部材の内部を伝播し、前記第2凹部を形成する内側の面34に到達する。この光は、前記内側の面34を透過するとともに、面34の表面状態によっては散乱する。さらに、面34を透過した光の大部分は、傾斜面32で屈折して、光束制御部材の上部近傍に向かって進行する(図5参照)。このように、特許文献1に記載の面光源装置にCOB型のLEDを用いた場合、この内側の面34での散乱および傾斜面32での屈折により、発光装置の上部近傍に向かう光が過剰になってしまうため、光束制御部材の上部近傍に円環状に輝度の高い領域ができて、輝度ムラが生じてしまう。また、光束制御部材の裏面が発光素子の上面より高くなるように配置される場合であっても、前記第1凹部の外縁付近から入射した光が屈折によって前記第2凹部を形成する内側の面34に到達する場合がある。 When a COB type LED is used as the light emitting element of the surface light source device described in Patent Document 1, light flux control is performed from the viewpoint of causing a large amount of light emitted in the lateral direction of the LED to enter the light flux control member from the incident surface 22. The member may be disposed such that the back surface of the light flux controlling member is lower than the top surface of the light emitting element. At this time, the light emitted in the lateral direction of the light emitting element and incident on the inside of the light flux controlling member at the lower part of the incident surface 22 propagates inside the light flux controlling member and forms the inner surface 34 forming the second recess. To reach. The light passes through the inner surface 34 and is scattered depending on the surface state of the surface 34. Further, most of the light transmitted through the surface 34 is refracted by the inclined surface 32 and travels toward the vicinity of the upper portion of the light flux controlling member (see FIG. 5). As described above, when a COB type LED is used in the surface light source device described in Patent Document 1, the light directed toward the upper part of the light emitting device is excessive due to scattering on the inner surface 34 and refraction on the inclined surface 32. Therefore, a region with high luminance is formed in an annular shape near the upper portion of the light flux controlling member, and luminance unevenness occurs. Further, even when the rear surface of the light flux controlling member is arranged so as to be higher than the upper surface of the light emitting element, the inner surface on which light incident from the vicinity of the outer edge of the first recess forms the second recess by refraction. 34 may be reached.
 本発明の目的は、COB型のLEDなどの、側方方向に光を多く出射する発光素子と組みあわせて用いた場合や、光軸に対して大きな角度で光束制御部材内を伝播する光が到達し易い位置に凹部が形成される場合でも、光束制御部材から出射される光に輝度ムラを生じさせにくい光束制御部材を提供することである。 An object of the present invention is to use light that propagates in the light flux controlling member at a large angle with respect to the optical axis when used in combination with a light emitting element that emits a large amount of light in the lateral direction, such as a COB type LED. To provide a light flux control member that is less likely to cause uneven brightness in light emitted from the light flux control member even when a concave portion is formed at a position that can be easily reached.
 また、本発明の別の目的は、当該光束制御部材を有する発光装置、面光源装置および表示装置を提供することでもある。 Another object of the present invention is to provide a light emitting device, a surface light source device, and a display device having the light flux controlling member.
 本発明の光束制御部材は、発光素子から出射された光の配光を制御する光束制御部材であって、前記光束制御部材の中心軸と交わるように裏側に配置された第1凹部の内面であって、前記発光素子から出射された光を入射させる入射面と、前記中心軸と交わるように表側に配置され、前記入射面で入射した光を外部に出射させる出射面と、前記入射面を取り囲むように裏側に配置された第2凹部と、を含み、前記入射面は、前記中心軸と交わるように配置された第1入射面と、前記第1入射面の外縁部と前記第1凹部の開口縁部を接続するように配置された第2入射面と、を有し、前記中心軸を含む断面において、前記第1入射面および前記第2入射面の交点は、前記第1凹部の開口縁部より前記中心軸側に配置されており、前記断面において、前記第2入射面の前記第1入射面側の端部における接線の前記中心軸に直交する第1仮想直線に対する傾斜角度は、前記第1入射面の前記第2入射面側の端部における接線の前記第1仮想直線に対する傾斜角度より小さく、以下の式(1)を満たす。
Figure JPOXMLDOC01-appb-M000005
 [上記式(1)において、h1は、前記断面における、前記中心軸に直交し、かつ前記第1凹部の開口縁部を通る第2仮想直線と、前記第2凹部の頂部との間隔であり、h2は、前記断面における、前記発光素子から出射され、かつ前記第2入射面で入射した任意の光の入射位置と、前記第2仮想直線との間隔であり、dは、前記断面における、前記入射位置と、前記第2凹部の頂部との前記中心軸に直交する方向についての距離であり、θ1は、前記断面における、前記入射位置で入射した前記任意の光の屈折角であり、θ2は、前記断面における、前記入射位置の接線の前記第2仮想直線に対する傾斜角度である。]
The light flux controlling member of the present invention is a light flux controlling member for controlling the light distribution of the light emitted from the light emitting element, and is provided on the inner surface of the first recess disposed on the back side so as to intersect the central axis of the light flux controlling member. An incident surface on which light emitted from the light emitting element is incident, an emission surface that is arranged on the front side so as to intersect the central axis, and that emits light incident on the incident surface to the outside; and the incident surface. A second concave portion disposed on the back side so as to surround the first incident surface, the outer surface of the first incident surface, and the first concave portion. A cross section including the central axis, and an intersection of the first incident surface and the second incident surface is an intersection of the first concave portion. It is arranged on the central axis side from the opening edge, and the cross section The inclination angle of the tangent at the end of the second incident surface on the first incident surface side with respect to the first imaginary straight line orthogonal to the central axis is at the end of the first incident surface on the second incident surface side. It is smaller than the inclination angle of the tangent to the first virtual straight line, and satisfies the following formula (1).
Figure JPOXMLDOC01-appb-M000005
[In the above formula (1), h1 is the distance between the second imaginary straight line passing through the opening edge of the first recess and the top of the second recess in the cross section perpendicular to the central axis. , H2 is an interval between an incident position of arbitrary light emitted from the light emitting element and incident on the second incident surface in the cross section, and the second imaginary straight line, and d is the cross section, The distance between the incident position and the top of the second recess in the direction perpendicular to the central axis, θ1 is the refraction angle of the arbitrary light incident at the incident position in the cross section, and θ2 Is an inclination angle of the tangent of the incident position with respect to the second imaginary straight line in the cross section. ]
 本発明の発光装置は、発光素子と、本発明の光束制御部材とを有し、前記光束制御部材は、前記中心軸が前記発光素子の光軸と合致するように配置されている。 The light-emitting device of the present invention includes a light-emitting element and the light flux controlling member of the present invention, and the light flux controlling member is arranged so that the central axis coincides with the optical axis of the light emitting element.
 本発明の面光源装置は、基板と、前記基板上に一定の間隔で配置された、本発明に記載の複数の発光装置と、前記複数の発光装置の上に前記基板と略平行に配置され、前記発光装置からの光を拡散させつつ透過させる光拡散板とを有し、前記光軸に沿う方向から前記発光装置から最も高い光度の光が出射する方向までの角度範囲において、前記発光装置からの光の光度は、前記光軸に対する角度が大きくなるにつれて漸増し、かつ以下の式(2)、式(3)および式(4)を満たす。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 [上記式(2)、式(3)および式(4)において、Pは、前記複数の発光装置の中心間距離であり、Hは、前記基板の上面と前記光拡散板の下面との間隔であり、Lは、前記光軸と前記光拡散板の下面との交点から、前記最も高い光度の光が前記光拡散板の下面に到達した点までの距離であり、Iは、前記発光装置から前記光軸方向に出射された光の光度であり、I1/2は、前記光拡散板の下面における、前記光軸と前記光拡散板の下面との交点からP/2の距離の点に向かって、前記発光装置から出射された光の光度である。]
The surface light source device of the present invention is disposed substantially parallel to the substrate, the plurality of light emitting devices according to the present invention disposed on the substrate at regular intervals, and on the plurality of light emitting devices. A light diffusing plate that diffuses and transmits light from the light emitting device, and the light emitting device has an angle range from a direction along the optical axis to a direction in which light having the highest luminous intensity is emitted from the light emitting device. The luminous intensity of the light from the beam gradually increases as the angle with respect to the optical axis increases, and satisfies the following equations (2), (3), and (4).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
[In the above formulas (2), (3), and (4), P is the distance between the centers of the plurality of light emitting devices, and H is the distance between the upper surface of the substrate and the lower surface of the light diffusion plate. L is the distance from the intersection of the optical axis and the lower surface of the light diffusing plate to the point where the light with the highest luminous intensity reaches the lower surface of the light diffusing plate, and I 0 is the light emission Is a luminous intensity of light emitted from the apparatus in the direction of the optical axis, and I 1/2 is a distance P / 2 from the intersection of the optical axis and the lower surface of the light diffusing plate on the lower surface of the light diffusing plate. It is the luminous intensity of the light emitted from the light emitting device toward the point. ]
 本発明の表示装置は、本発明の面光源装置と、前記面光源装置から出射された光を照射される被照射部材とを有する。 The display device of the present invention includes the surface light source device of the present invention and an irradiated member that is irradiated with light emitted from the surface light source device.
 本発明の光束制御部材は、COB型のLEDなどの、側方方向に光を多く出射する発光素子と組み合わせた場合でも、出射される光に輝度ムラを生じさせにくい。 The light flux controlling member of the present invention hardly causes uneven brightness in the emitted light even when combined with a light emitting element that emits a lot of light in the lateral direction, such as a COB type LED.
 また、本発明の発光装置、面光源装置および表示装置は、上記輝度ムラを生じさせにくい光束制御部材を含むため、出射される光に輝度ムラを生じさせにくい。 In addition, since the light emitting device, the surface light source device, and the display device of the present invention include the light flux controlling member that does not easily cause the luminance unevenness, it is difficult to cause the luminance unevenness in the emitted light.
図1A~Cは、従来の光束制御部材の構成を示す図である。1A to 1C are diagrams showing a configuration of a conventional light flux controlling member. 図2A、Bは、従来の光束制御部材の光路図である。2A and 2B are optical path diagrams of a conventional light flux controlling member. 図3A~Cは、特許文献1に記載の光束制御部材の構成を示す図である。3A to 3C are diagrams showing the configuration of the light flux controlling member described in Patent Document 1. FIG. 図4A、Bは、特許文献1に記載の光束制御部材の光路図である。4A and 4B are optical path diagrams of the light flux controlling member described in Patent Document 1. FIG. 図5は、特許文献1に記載の光束制御部材の別の光路図である。FIG. 5 is another optical path diagram of the light flux controlling member described in Patent Document 1. 図6A、Bは、実施の形態1に係る面光源装置の構成を示す図である。6A and 6B are diagrams showing a configuration of the surface light source device according to Embodiment 1. FIG. 図7A、Bは、実施の形態1に係る面光源装置の構成を示す断面図である。7A and 7B are cross-sectional views illustrating the configuration of the surface light source device according to Embodiment 1. 図8は、実施の形態1に係る面光源装置の部分拡大断面図である。FIG. 8 is a partially enlarged cross-sectional view of the surface light source device according to Embodiment 1. 図9A、Bは、実施の形態1に係る光束制御部材を裏側から見た斜視図である。9A and 9B are perspective views of the light flux controlling member according to Embodiment 1 as viewed from the back side. 図10A~Cは、実施の形態1に係る光束制御部材の構成を示す図である。10A to 10C are diagrams showing the configuration of the light flux controlling member according to the first embodiment. 図11A、Bは、式(1)を説明するための、実施の形態1に係る光束制御部材の部分拡大断面図である。FIGS. 11A and 11B are partially enlarged cross-sectional views of the light flux controlling member according to Embodiment 1 for explaining the expression (1). 図12は、実施の形態1に係る発光装置における光路図である。FIG. 12 is an optical path diagram of the light-emitting device according to Embodiment 1. 図13は、式(2)、式(3)、式(4)および式(5)を説明するための、実施の形態1に係る面光源装置の部分拡大断面図である。FIG. 13 is a partial enlarged cross-sectional view of the surface light source device according to Embodiment 1 for explaining the equations (2), (3), (4), and (5). 図14A、Bは、4種類の発光装置の配光特性を示すグラフである。14A and 14B are graphs showing the light distribution characteristics of four types of light emitting devices. 図15は、発光装置における輝度分布を示すグラフである。FIG. 15 is a graph showing the luminance distribution in the light emitting device. 図16は、4種類の面光源装置についてのH/PおよびL/Pの値を示すグラフである。FIG. 16 is a graph showing H / P and L / P values for four types of surface light source devices. 図17Aは、4種類の面光源装置についてのI1/2/Iの値を示すグラフである。図17Bは、4種類の面光源装置についてのI1/4/Iの値を示すグラフである。FIG. 17A is a graph showing values of I 1/2 / I 0 for four types of surface light source devices. FIG. 17B is a graph showing values of I 1/4 / I 0 for four types of surface light source devices. 図18A、Bは、4種類の面光源装置において発光装置を1つのみ点灯した場合の発光面の輝度分布を示すグラフである。18A and 18B are graphs showing the luminance distribution of the light emitting surface when only one light emitting device is turned on in the four types of surface light source devices. 図19Aは、光束制御部材を有しない面光源装置の発光面の輝度分布を示す図である。図19Bは、本発明の実施の形態に係る面光源装置(H/P≦0.2、L/P>1、I1/2/I>6、I1/4/I≦2.4)の発光面の輝度分布を示す図である。図19C~Eは、参考例の面光源装置(H/P≦0.2、L/P≦1、I1/2/I≦6、I1/4/I≦2.4)の発光面の輝度分布を示す図である。FIG. 19A is a diagram illustrating a luminance distribution of a light emitting surface of a surface light source device that does not have a light flux controlling member. FIG. 19B shows a surface light source device according to an embodiment of the present invention (H / P ≦ 0.2, L / P> 1, I 1/2 / I 0 > 6, I 1/4 / I 0 ≦ 2. It is a figure which shows the luminance distribution of the light emission surface of 4). 19C to 19E show the surface light source device of the reference example (H / P ≦ 0.2, L / P ≦ 1, I 1/2 / I 0 ≦ 6, I 1/4 / I 0 ≦ 2.4). It is a figure which shows the luminance distribution of a light emission surface. 図20は、参考例の面光源装置(H/P≦0.2、L/P≦1、I1/2/I>6、I1/4/I≦2.4)における光路を示す断面図である。FIG. 20 shows optical paths in the surface light source device of the reference example (H / P ≦ 0.2, L / P ≦ 1, I 1/2 / I 0 > 6, I 1/4 / I 0 ≦ 2.4). It is sectional drawing shown. 図21Aは、本発明および参考例の面光源装置で使用される発光装置(I1/2/I≦6、I1/4/I≦2.4)の配光特性を示すグラフである。図21Bは、本発明および参考例の面光源装置(H/P≦0.2、L/P>1、I1/2/I≦6、I1/4/I≦2.4)において発光装置をそれぞれ1つのみ点灯した場合の発光面の輝度分布を示すグラフである。FIG. 21A is a graph showing the light distribution characteristics of the light emitting devices (I 1/2 / I 0 ≦ 6, I 1/4 / I 0 ≦ 2.4) used in the surface light source devices of the present invention and the reference example. is there. FIG. 21B shows a surface light source device of the present invention and a reference example (H / P ≦ 0.2, L / P> 1, I 1/2 / I 0 ≦ 6, I 1/4 / I 0 ≦ 2.4). 5 is a graph showing the luminance distribution of the light emitting surface when only one light emitting device is turned on. 図22は、参考例の面光源装置(H/P≦0.2、L/P>1、I1/2/I≦6、I1/4/I≦2.4)の発光面の輝度分布を示す図である。FIG. 22 shows a light emitting surface of a surface light source device (H / P ≦ 0.2, L / P> 1, I 1/2 / I 0 ≦ 6, I 1/4 / I 0 ≦ 2.4) of a reference example. It is a figure which shows the luminance distribution. 図23A、Bは、I1/4/Iの値がそれぞれ異なる発光装置を有する面光源装置において発光装置を1つだけ点灯した場合の発光面の輝度分布を示すグラフである。23A and 23B are graphs showing the luminance distribution of the light emitting surface when only one light emitting device is turned on in a surface light source device having light emitting devices with different values of I 1/4 / I 0 . 図24は、I1/4/Iと発光装置近傍の領域の輝度との関係を示すグラフである。FIG. 24 is a graph showing the relationship between I 1/4 / I 0 and the luminance in the area near the light emitting device. 図25A、Bは、実施の形態2に係る光束制御部材を裏側から見た斜視図である。25A and 25B are perspective views of the light flux controlling member according to Embodiment 2 as seen from the back side. 図26A、Bは、変形例に係る入射面の形状を説明するための図である。26A and 26B are diagrams for explaining the shape of the incident surface according to the modification.
 以下、本発明の光束制御部材、発光装置、面光源装置および表示装置について、図面を参照して詳細に説明する。以下の説明では、本発明の面光源装置の代表例として、液晶表示装置のバックライトなどに適する面光源装置について説明する。これらの面光源装置は、面光源装置からの光を照射される被照射部材(例えば液晶パネル)と組み合わせることで、表示装置として使用されうる。 Hereinafter, the light flux controlling member, the light emitting device, the surface light source device, and the display device of the present invention will be described in detail with reference to the drawings. In the following description, a surface light source device suitable for a backlight of a liquid crystal display device will be described as a representative example of the surface light source device of the present invention. These surface light source devices can be used as a display device by combining with an irradiated member (for example, a liquid crystal panel) irradiated with light from the surface light source device.
 [実施の形態1]
 (面光源装置および発光装置の構成)
 図6~図8は、実施の形態1に係る面光源装置100の構成を示す図である。図6Aは、実施の形態1に係る面光源装置100の平面図であり、図6Bは、正面図である。図7Aは、図6Bに示されるA-A線の断面図であり、図7Bは、図6Aに示されるB-B線の断面図である。図8は、面光源装置100の部分拡大断面図である。
[Embodiment 1]
(Configuration of surface light source device and light emitting device)
6 to 8 are diagrams showing the configuration of the surface light source device 100 according to the first embodiment. 6A is a plan view of surface light source device 100 according to Embodiment 1, and FIG. 6B is a front view. 7A is a cross-sectional view taken along the line AA shown in FIG. 6B, and FIG. 7B is a cross-sectional view taken along the line BB shown in FIG. 6A. FIG. 8 is a partially enlarged cross-sectional view of the surface light source device 100.
 図6A、Bおよび図7A、Bに示されるように、面光源装置100は、筐体110と、複数の発光装置200と、光拡散板120とを有する。複数の発光装置200は、筐体110の底板112上の基板210にマトリックス状に配置されている。底板112の内面は、拡散反射面として機能する。また、筐体110の天板114には、開口部が設けられている。光拡散板120は、この開口部を塞ぐように配置されており、発光面として機能する。発光面の大きさは、例えば約400mm×約700mmとすることができる。発光装置200の中心間距離(ピッチ)はP(mm)であり、基板210の上面と光拡散板120の下面との間隔(高さ)はH(mm)である(図13参照)。本実施の形態に係る面光源装置100は、例えば以下の式(2)を満たす。
Figure JPOXMLDOC01-appb-M000009
6A and 6B and FIGS. 7A and 7B, the surface light source device 100 includes a housing 110, a plurality of light emitting devices 200, and a light diffusion plate 120. The plurality of light emitting devices 200 are arranged in a matrix on the substrate 210 on the bottom plate 112 of the housing 110. The inner surface of the bottom plate 112 functions as a diffuse reflection surface. Further, the top plate 114 of the housing 110 is provided with an opening. The light diffusing plate 120 is disposed so as to close the opening and functions as a light emitting surface. The size of the light emitting surface can be, for example, about 400 mm × about 700 mm. The center-to-center distance (pitch) of the light emitting device 200 is P (mm), and the distance (height) between the upper surface of the substrate 210 and the lower surface of the light diffusion plate 120 is H (mm) (see FIG. 13). The surface light source device 100 according to the present embodiment satisfies, for example, the following formula (2).
Figure JPOXMLDOC01-appb-M000009
 複数の発光装置200は、それぞれ基板210上に一定の間隔で配置されている。複数の基板210は、それぞれ筐体110の底板112上の所定の位置に固定されている。図8に示されるように、複数の発光装置200は、それぞれ発光素子220および光束制御部材300を有する。 The plurality of light emitting devices 200 are arranged on the substrate 210 at regular intervals. Each of the plurality of substrates 210 is fixed at a predetermined position on the bottom plate 112 of the housing 110. As shown in FIG. 8, the plurality of light emitting devices 200 each include a light emitting element 220 and a light flux controlling member 300.
 発光素子220は、面光源装置100の光源であり、基板210上に実装されている。発光素子220は、例えば白色発光ダイオードなどの発光ダイオード(LED)である。本実施の形態では、発光素子220は、実装が容易であり、かつ、発光効率が高い観点から、チップ・オン・ボード(COB)型のLEDであることが好ましい。 The light emitting element 220 is a light source of the surface light source device 100 and is mounted on the substrate 210. The light emitting element 220 is a light emitting diode (LED) such as a white light emitting diode. In the present embodiment, the light emitting element 220 is preferably a chip-on-board (COB) type LED from the viewpoint of easy mounting and high luminous efficiency.
 COB型のLEDは、従来のLEDよりも多くの光を側方方向に出射することが知られている。COB型のLEDなどの発光素子220では、側方方向に多くの光を出射するため、発光素子220の側面方向に出射する光をより多く光束制御部材300に入射させる必要がある。よって、発光素子220は、その上面が後述の第1凹部310の下端(開口縁部)よりも鉛直方向上方に配置されることが好ましい。 COB type LEDs are known to emit more light in the lateral direction than conventional LEDs. Since the light emitting element 220 such as a COB type LED emits a lot of light in the lateral direction, it is necessary to make more light emitted in the side surface direction of the light emitting element 220 enter the light flux controlling member 300. Therefore, it is preferable that the upper surface of the light emitting element 220 is arranged vertically above the lower end (opening edge) of the first recess 310 described later.
 光束制御部材300は、レンズであり、基板210上に固定されている。光束制御部材300は、発光素子220から出射された光の配光を制御し、当該光の進行方向を基板の面方向に拡げる。光束制御部材300は、その中心軸CAが発光素子220の光軸OAに一致するように、発光素子220の上に配置されている(図8参照)。なお、後述する光束制御部材300の入射面320および出射面330はいずれも回転対称(円対称)であり、かつこれらの回転軸は一致する。この入射面320および出射面330の回転軸を「光束制御部材の中心軸CA」という。また、「発光素子の光軸OA」とは、発光素子220からの立体的な出射光束の中心の光線を意味する。 The light flux controlling member 300 is a lens and is fixed on the substrate 210. The light flux controlling member 300 controls the light distribution of the light emitted from the light emitting element 220 and expands the traveling direction of the light in the surface direction of the substrate. The light flux controlling member 300 is disposed on the light emitting element 220 so that the central axis CA coincides with the optical axis OA of the light emitting element 220 (see FIG. 8). Note that an entrance surface 320 and an exit surface 330 of the light flux controlling member 300 described later are both rotationally symmetric (circularly symmetric), and their rotational axes coincide. The rotation axes of the entrance surface 320 and the exit surface 330 are referred to as “center axis CA of the light flux controlling member”. The “optical axis OA of the light emitting element” means a light beam at the center of the three-dimensional outgoing light beam from the light emitting element 220.
 光束制御部材300は、一体成形により形成することができる。光束制御部材300の材料は、所望の波長の光を通過させ得る材料であればよい。たとえば、光束制御部材300の材料は、ポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)、エポキシ樹脂(EP)、シリコーン樹脂などの光透過性樹脂、またはガラスである。本実施の形態に係る面光源装置100は、光束制御部材300の構成に主たる特徴を有する。そこで、光束制御部材300については、別途詳細に説明する。 The light flux controlling member 300 can be formed by integral molding. The light flux controlling member 300 may be made of any material that can transmit light having a desired wavelength. For example, the material of the light flux controlling member 300 is light transmissive resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), epoxy resin (EP), silicone resin, or glass. The surface light source device 100 according to the present embodiment has a main feature in the configuration of the light flux controlling member 300. Therefore, the light flux controlling member 300 will be described in detail separately.
 光拡散板120は、光拡散性を有する板状の部材であり、発光装置200からの出射光を拡散させつつ透過させる。光拡散板120は、複数の発光装置200の上に基板210と略平行に配置されている。通常、光拡散板120は、液晶パネルなどの被照射部材とほぼ同じ大きさである。たとえば、光拡散板120は、ポリメタクリル酸メチル(PMMA)、ポリカーボネート(PC)、ポリスチレン(PS)、スチレン・メチルメタクリレート共重合樹脂(MS)などの光透過性樹脂により形成される。光拡散性を付与するため、光拡散板120の表面に微細な凹凸が形成されているか、または光拡散板120の内部にビーズなどの光拡散子が分散している。 The light diffusing plate 120 is a plate-like member having light diffusibility, and transmits the light emitted from the light emitting device 200 while diffusing it. The light diffusion plate 120 is disposed on the plurality of light emitting devices 200 substantially in parallel with the substrate 210. Usually, the light diffusing plate 120 is approximately the same size as an irradiated member such as a liquid crystal panel. For example, the light diffusion plate 120 is formed of a light-transmitting resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), polystyrene (PS), styrene / methyl methacrylate copolymer resin (MS). In order to impart light diffusibility, fine irregularities are formed on the surface of the light diffusion plate 120, or light diffusers such as beads are dispersed inside the light diffusion plate 120.
 本発明に係る面光源装置100では、各発光素子220から出射された光は、光束制御部材300により光拡散板120の広範囲を照らすように拡げられる。各光束制御部材300から出射された光は、さらに光拡散板120により拡散される。その結果、本発明に係る面光源装置100は、面状の被照射部材(例えば液晶パネル)を均一に照らすことができる。 In the surface light source device 100 according to the present invention, the light emitted from each light emitting element 220 is expanded by the light flux control member 300 so as to illuminate a wide area of the light diffusion plate 120. The light emitted from each light flux controlling member 300 is further diffused by the light diffusion plate 120. As a result, the surface light source device 100 according to the present invention can uniformly illuminate a planar irradiated member (for example, a liquid crystal panel).
 (光束制御部材の構成)
 図9A、Bおよび図10A~Cは、実施の形態1に係る光束制御部材300の構成を示す図である。図9A、Bは、光束制御部材300を裏側(基板210側)から見た斜視図である。図10Aは、光束制御部材300の平面図であり、図10Bは、底面図であり、図10Cは、図10Aに示されるA-A線の断面図である。
(Configuration of luminous flux control member)
FIGS. 9A and 9B and FIGS. 10A to 10C are diagrams showing a configuration of light flux controlling member 300 according to Embodiment 1. FIG. 9A and 9B are perspective views of the light flux controlling member 300 as seen from the back side (substrate 210 side). 10A is a plan view of the light flux controlling member 300, FIG. 10B is a bottom view, and FIG. 10C is a cross-sectional view taken along line AA shown in FIG. 10A.
 図9A、Bおよび図10A~Cに示されるように、光束制御部材300は、第1凹部310の内面である入射面320と、出射面330と、第2凹部340とを有する。また、本実施の形態では、光束制御部材300は、光束制御部材300の取り扱いを容易にするための鍔部350を有している。さらに、光束制御部材300は、発光素子220から発せられる熱を外部に逃がすための間隙を形成するとともに、光束制御部材300を基板210に位置決めして固定するための脚部(図示省略)を有していてもよい。 As shown in FIGS. 9A and 9B and FIGS. 10A to 10C, the light flux controlling member 300 has an incident surface 320 that is the inner surface of the first recess 310, an exit surface 330, and a second recess 340. In the present embodiment, light flux controlling member 300 has a flange 350 for facilitating handling of light flux controlling member 300. Further, the light flux controlling member 300 forms a gap for releasing heat generated from the light emitting element 220 to the outside, and has leg portions (not shown) for positioning and fixing the light flux controlling member 300 on the substrate 210. You may do it.
 第1凹部310は、光束制御部材300の中心軸CAと交わるように裏面305の中央部に配置されている。第1凹部310は、発光素子220の光軸OA(光束制御部材300の中心軸CA)と交わるように配置されている。第1凹部310の内面は、入射面320として機能する。すなわち、入射面320は、中心軸CAと交わるように配置されている。入射面320は、発光素子220から出射された光のうち、大部分の光を、その光の進行方向を制御するとともに、光束制御部材300の内部に入射させる。入射面320は、光束制御部材300の中心軸CAと交わり、中心軸CAを回転軸とした回転対称(円対称)である。入射面320は、第1入射面322と、第2入射面324とを有する。 The first recess 310 is disposed at the center of the back surface 305 so as to intersect the central axis CA of the light flux controlling member 300. The first recess 310 is disposed so as to intersect with the optical axis OA of the light emitting element 220 (the central axis CA of the light flux controlling member 300). The inner surface of the first recess 310 functions as the incident surface 320. That is, the incident surface 320 is disposed so as to intersect the central axis CA. The incident surface 320 controls most of the light emitted from the light emitting element 220 to enter the light flux controlling member 300 while controlling the traveling direction of the light. The incident surface 320 intersects with the central axis CA of the light flux controlling member 300 and has rotational symmetry (circular symmetry) with the central axis CA as a rotation axis. The incident surface 320 includes a first incident surface 322 and a second incident surface 324.
 第1入射面322は、中心軸CAと交わるように、第1凹部310の底側に配置されている。第1入射面322は、発光素子220から出射された光のうち、出射角の小さい光(主として発光素子220の上面から出射された光)を光束制御部材300の内部に入射させる。第1入射面322は、1つの面で構成されていてもよいし、複数の面で構成されていてもよい。本実施の形態では、第1入射面322は、1つの面で構成されている。また、第1入射面322は、中心軸CAを回転軸とした回転対称(円対称)である。中心軸CAを含む断面において、第1入射面322は、中心軸CAから離れるにつれて、裏面305に近づくように形成されている。より具体的には、第1入射面322は、釣り鐘型に形成されている。 The first incident surface 322 is disposed on the bottom side of the first recess 310 so as to intersect the central axis CA. The first incident surface 322 allows light having a small emission angle (mainly light emitted from the upper surface of the light emitting element 220) out of the light emitted from the light emitting element 220 to enter the light flux controlling member 300. The 1st entrance plane 322 may be constituted by one side, and may be constituted by a plurality of sides. In the present embodiment, the first incident surface 322 is composed of one surface. The first incident surface 322 is rotationally symmetric (circularly symmetric) with the central axis CA as a rotation axis. In the cross section including the central axis CA, the first incident surface 322 is formed so as to approach the back surface 305 as the distance from the central axis CA increases. More specifically, the first incident surface 322 is formed in a bell shape.
 第2入射面324は、第1入射面322の外縁部と第1凹部310の開口縁部とを接続するように、第1凹部310の開口部側に配置されている。第2入射面324は、第1入射面322で入射する光より、出射角の大きな光(主として発光素子220の側面から出射された光)を光束制御部材300の内部に入射させる。中心軸CAを含む断面において、第1入射面322および第2入射面324の交点は、第1凹部310の開口縁部より中心軸CA側に配置されている。 The second incident surface 324 is disposed on the opening side of the first concave portion 310 so as to connect the outer edge portion of the first incident surface 322 and the opening edge portion of the first concave portion 310. The second incident surface 324 causes light having a larger emission angle than the light incident on the first incident surface 322 (mainly light emitted from the side surface of the light emitting element 220) to enter the light flux controlling member 300. In the cross section including the central axis CA, the intersection of the first incident surface 322 and the second incident surface 324 is disposed closer to the central axis CA than the opening edge of the first recess 310.
 中心軸CAを含む断面において、第2入射面324の第1入射面322側の端部における接線の中心軸CAに直交する第1仮想直線に対する傾斜角度は、第1入射面322の第2入射面324側の端部における接線の第1仮想直線に対する傾斜角度より小さい。ここで、「傾斜角度」とは、2直線がなす角度のうち、小さい角度をいう。本実施の形態では、「第2入射面324の第1入射面322側の端部における接線の中心軸CAに直交する第1仮想直線に対する傾斜角度」とは、第2入射面324の第1入射面322側の端部における接線と、中心軸CAに直交する第1仮想直線とのなす角度のうち、小さい角度をいう。また、「第1入射面322の第2入射面324側の端部における接線の第1仮想直線に対する傾斜角度」とは、第1入射面322の第2入射面324側の端部における接線と、中心軸CAに直交する第1仮想直線とのなす角度のうち、小さい角度をいう。 In the cross section including the central axis CA, the inclination angle of the second incident surface 324 with respect to the first imaginary line orthogonal to the central axis CA of the tangent at the end on the first incident surface 322 side is the second incident surface of the first incident surface 322. It is smaller than the inclination angle of the tangent at the end on the surface 324 side with respect to the first virtual straight line. Here, “inclination angle” refers to a small angle among the angles formed by two straight lines. In the present embodiment, “the inclination angle with respect to the first imaginary line orthogonal to the central axis CA of the tangent line at the end of the second incident surface 324 on the first incident surface 322 side” is the first angle of the second incident surface 324. Of the angles formed by the tangent line at the end on the incident surface 322 side and the first imaginary straight line orthogonal to the central axis CA, this is the smaller angle. Further, “the inclination angle of the tangent at the end of the first incident surface 322 on the second incident surface 324 side with respect to the first imaginary straight line” is the tangent at the end of the first incident surface 322 on the second incident surface 324 side. Of the angles formed with the first virtual straight line orthogonal to the central axis CA, this is the smaller angle.
 さらに、第2入射面324は、中心軸CAを回転軸とした回転対称(円対称)である。中心軸CAを含む断面における第2入射面324の形状は、直線であってもよいし、曲線であってもよい。本実施の形態では、中心軸CAを含む断面における第2入射面324の形状は、直線である。すなわち、第2入射面324の接線の第1仮想直線に対する傾斜角度は、第1入射面322の外縁部から第1凹部310の開口縁部に向かうにつれて一定である。このように、第2入射面324が中心軸CAから離れるにつれて、裏面305に近づくように形成されているため、第2入射面324で入射した光は、出射面330側に向けて屈折される。これにより、本実施の形態では、第2入射面324で入射した光が第2凹部340に直接到達しないようにしている。この点については、別途詳細に説明する。 Furthermore, the second incident surface 324 is rotationally symmetric (circularly symmetric) with the central axis CA as the rotational axis. The shape of the second incident surface 324 in the cross section including the central axis CA may be a straight line or a curved line. In the present embodiment, the shape of the second incident surface 324 in the cross section including the central axis CA is a straight line. That is, the inclination angle of the tangent line of the second incident surface 324 with respect to the first imaginary straight line is constant from the outer edge portion of the first incident surface 322 toward the opening edge portion of the first recess 310. As described above, the second incident surface 324 is formed so as to be closer to the back surface 305 as it moves away from the central axis CA. Therefore, the light incident on the second incident surface 324 is refracted toward the emission surface 330 side. . Thereby, in the present embodiment, the light incident on the second incident surface 324 is prevented from reaching the second recess 340 directly. This point will be described in detail separately.
 裏面305は、光束制御部材300の裏側に位置し、第1凹部310の開口縁部から径方向に延在する平面である。 The back surface 305 is a flat surface that is located on the back side of the light flux controlling member 300 and extends in the radial direction from the opening edge of the first recess 310.
 出射面330は、光束制御部材300の表側(光拡散板120側)に、鍔部350から突出するように配置されている。出射面330は、光束制御部材300内に入射した光を、進行方向を制御しつつ外部に出射させる。出射面330は、中心軸CAと交わり、中心軸CAを回転軸とした回転対称(円対称)である。 The emission surface 330 is disposed on the front side (light diffusion plate 120 side) of the light flux controlling member 300 so as to protrude from the flange portion 350. The exit surface 330 emits the light incident in the light flux controlling member 300 to the outside while controlling the traveling direction. The exit surface 330 intersects with the central axis CA and is rotationally symmetric (circularly symmetric) with the central axis CA as a rotation axis.
 出射面330は、中心軸CAを中心とする所定範囲に位置する第1出射面330aと、第1出射面330aの周囲に連続して形成される第2出射面330bと、第2出射面330bと鍔部350とを接続する第3出射面330cとを有する(図10C参照)。第1出射面330aは、裏側に凸の曲面である。第2出射面330bは、第1出射面330aの周囲に位置する、表側に凸の滑らかな曲面である。第2出射面330bの形状は、円環状の凸形状である。第3出射面330cは、第2出射面330bの周囲に位置する曲面である。図10Cに示されるように、中心軸CAを含む断面において、第3出射面330cの断面は、直線状であってもよいし、曲線状であってもよい。 The emission surface 330 includes a first emission surface 330a located in a predetermined range centered on the central axis CA, a second emission surface 330b formed continuously around the first emission surface 330a, and a second emission surface 330b. And a third emission surface 330c that connects the flange 350 (see FIG. 10C). The first emission surface 330a is a curved surface convex on the back side. The second emission surface 330b is a smooth curved surface that is located on the front side and is located around the first emission surface 330a. The shape of the second emission surface 330b is an annular convex shape. The third emission surface 330c is a curved surface located around the second emission surface 330b. As shown in FIG. 10C, in the cross section including the central axis CA, the cross section of the third emission surface 330c may be linear or curved.
 第2凹部340は、裏面305において、光軸OAに対し、第1凹部310(入射面320)を取り囲むように配置されている。第2凹部340は、入射面320で入射した光の一部であって、出射面330で内部反射し、裏面305に向かう光を側方方向(中心軸CAに対して径方向外側)に反射させる。中心軸CAを含む断面において、第2凹部340は、略V字状である。第2凹部340は、光軸OA(中心軸CA)側に配置された内側傾斜面342と、内側傾斜面342より外側に配置された外側傾斜面344とを有する。 The second recess 340 is arranged on the back surface 305 so as to surround the first recess 310 (incident surface 320) with respect to the optical axis OA. The second recess 340 is a part of the light incident on the incident surface 320, is internally reflected by the output surface 330, and reflects light toward the back surface 305 in the lateral direction (radially outward with respect to the central axis CA). Let In the cross section including the central axis CA, the second recess 340 is substantially V-shaped. The second recess 340 includes an inner inclined surface 342 disposed on the optical axis OA (center axis CA) side and an outer inclined surface 344 disposed outside the inner inclined surface 342.
 内側傾斜面342は、中心軸CA側に配置されている。内側傾斜面342は、中心軸CAに沿って配置されている。内側傾斜面342は、中心軸CAを回転軸として円筒状に形成されている。 The inner inclined surface 342 is disposed on the central axis CA side. The inner inclined surface 342 is disposed along the central axis CA. The inner inclined surface 342 is formed in a cylindrical shape with the central axis CA as a rotation axis.
 外側傾斜面344は、内側傾斜面342より中心軸CAから離れて配置されている。外側傾斜面344は、中心軸CAを含む断面において、中心軸CAから離れるにつれて、裏面305に近づくように傾斜している。中心軸CAを含む断面における外側傾斜面344の形状は、特に限定されない。中心軸CAを含む断面における外側傾斜面344の形状は、直線であってもよいし、曲線であってもよい。本実施の形態では、中心軸CAを含む断面における外側傾斜面344の形状は、直線である。 The outer inclined surface 344 is arranged farther from the central axis CA than the inner inclined surface 342. In the cross section including the central axis CA, the outer inclined surface 344 is inclined so as to approach the back surface 305 as the distance from the central axis CA increases. The shape of the outer inclined surface 344 in the cross section including the central axis CA is not particularly limited. The shape of the outer inclined surface 344 in the cross section including the central axis CA may be a straight line or a curved line. In the present embodiment, the shape of outer inclined surface 344 in the cross section including central axis CA is a straight line.
 内側傾斜面342および外側傾斜面344は、連続して配置されてもよいし、離間して配置されていてもよい。内側傾斜面342および外側傾斜面344が離間して配置されている場合、内側傾斜面342および外側傾斜面344の間に他の面が配置される。 The inner inclined surface 342 and the outer inclined surface 344 may be arranged continuously or may be arranged apart from each other. When the inner inclined surface 342 and the outer inclined surface 344 are arranged apart from each other, another surface is arranged between the inner inclined surface 342 and the outer inclined surface 344.
 第2凹部340の位置は特に限定されないが、出射面330で反射した光が多く到達する領域に形成されていることが好ましい。出射面330で反射した光の到達位置は、出射面330の形状など様々な要因により変化するため、光束制御部材300に応じて適宜設定される。 The position of the second recess 340 is not particularly limited, but is preferably formed in a region where a lot of light reflected by the emission surface 330 reaches. Since the arrival position of the light reflected by the emission surface 330 varies depending on various factors such as the shape of the emission surface 330, it is appropriately set according to the light flux controlling member 300.
 前述したとおり、中心軸CAから第2入射面324より離れた位置(第2入射面324より外側)には、第2凹部340が配置されている。したがって、第2入射面324と、第2凹部340との関係は、第2入射面324で入射した光が直接第2凹部340に到達しないように制御するために重要である。このため、本実施の形態に係る光束制御部材300では、第2入射面324と、第2凹部340との関係を示す以下の式(1)を満たすように、第2入射面324が形成されている。
Figure JPOXMLDOC01-appb-M000010
As described above, the second recess 340 is arranged at a position away from the second incident surface 324 from the central axis CA (outside the second incident surface 324). Therefore, the relationship between the second incident surface 324 and the second concave portion 340 is important for controlling the light incident on the second incident surface 324 so as not to reach the second concave portion 340 directly. Therefore, in light flux controlling member 300 according to the present embodiment, second incident surface 324 is formed so as to satisfy the following expression (1) indicating the relationship between second incident surface 324 and second recess 340. ing.
Figure JPOXMLDOC01-appb-M000010
 図11A、Bは、式(1)を説明するための、光束制御部材の部分拡大断面図である。図11A、Bに示されるように、中心軸CAを含む断面における、中心軸CAに直交し、かつ第1凹部310の開口縁部を通る第2仮想直線VL2と第2凹部340の頂部との間隔をh1とし、中心軸CAを含む断面における、発光素子220から出射され、かつ第2入射面324で入射した任意の光の入射位置と、第2仮想直線VL2との間隔をh2とする。また、中心軸CAを含む断面における、第2入射面324で入射した任意の光の入射位置と、第2凹部340の頂部との中心軸CAに直交する方向についての距離をdとする。さらに、中心軸CAを含む断面における、第2入射面324で入射した任意の光の入射位置で入射した任意の光の屈折角をθ1とし、中心軸CAを含む断面における、第2入射面324で入射した任意の光の入射位置の接線の第2仮想直線VL2に対する傾斜角度θ2とする。ここで、「第2入射面324で入射した任意の光の入射位置の接線の第2仮想直線VL2に対する傾斜角度」とは、第2入射面324で入射した任意の光の入射位置の接線と、第2仮想直線とのなす角度のうち、小さな角度をいう。 11A and 11B are partial enlarged cross-sectional views of the light flux controlling member for explaining the expression (1). As shown in FIGS. 11A and 11B, in a cross section including the central axis CA, the second virtual straight line VL2 orthogonal to the central axis CA and passing through the opening edge of the first concave portion 310 and the top of the second concave portion 340 Let h1 be the interval, and let h2 be the interval between the incident position of any light emitted from the light emitting element 220 and incident on the second incident surface 324 in the cross section including the central axis CA, and the second virtual line VL2. Further, in a cross section including the central axis CA, a distance in a direction perpendicular to the central axis CA between the incident position of arbitrary light incident on the second incident surface 324 and the top of the second recess 340 is defined as d. Further, in the cross section including the central axis CA, the refraction angle of arbitrary light incident at the incident position of the arbitrary light incident on the second incident surface 324 is θ1, and the second incident surface 324 in the cross section including the central axis CA is used. The inclination angle θ2 with respect to the second virtual straight line VL2 of the tangent of the incident position of the arbitrary light incident in step S2 is set. Here, “the inclination angle of the tangent of the incident position of arbitrary light incident on the second incident surface 324 with respect to the second virtual line VL2” is the tangent of the incident position of arbitrary light incident on the second incident surface 324. Among the angles formed by the second virtual straight line, it means a small angle.
 光束制御部材300を平面視したときの第2凹部340の頂部の位置において、第2仮想直線VL2と任意の光Lとの距離をHとする。Hは、以下の式(1A)で表すことができる。
Figure JPOXMLDOC01-appb-M000011
Let H be the distance between the second virtual straight line VL2 and the arbitrary light L at the position of the top of the second recess 340 when the light flux controlling member 300 is viewed in plan. H can be represented by the following formula (1A).
Figure JPOXMLDOC01-appb-M000011
 ここで、発光素子220から出射され、第2入射面324で入射した光Lが直接第2凹部340(内側傾斜面342)に到達しないためには、中心軸CAに沿う方向において、任意の光Lが第2凹部340の頂部よりも表側を進行する必要がある。具体的には、Hがh1より大きい必要がある。すなわち、第2入射面324および第2凹部340は、下記式(1)を満たす必要がある。
Figure JPOXMLDOC01-appb-M000012
Here, in order that the light L emitted from the light emitting element 220 and incident on the second incident surface 324 does not directly reach the second concave portion 340 (inner inclined surface 342), any light in the direction along the central axis CA is obtained. L needs to travel on the front side of the top of the second recess 340. Specifically, H needs to be larger than h1. That is, the second incident surface 324 and the second recess 340 need to satisfy the following formula (1).
Figure JPOXMLDOC01-appb-M000012
 第2入射面324と第2凹部340とが、前述の式(1)を満たすように設計されることで、発光素子220から出射され、第2入射面324で入射した光Lが直接第2凹部340(内側傾斜面342)に到達せずに、第2凹部340の頂部よりも表側を進行する。 The second incident surface 324 and the second recess 340 are designed to satisfy the above-described formula (1), so that the light L emitted from the light emitting element 220 and incident on the second incident surface 324 is directly second. Without reaching the recess 340 (inner inclined surface 342), the front side of the second recess 340 advances from the top.
 また、前述の式(1)に至るまでの考え方は、発光素子220から出射され、第2入射面324で入射した光Lが、直接鍔部350に到達しないように光束制御部材300を設計することにも適用できる。具体的には、中心軸CAに直交する方向において、発光素子220から出射され、かつ第2入射面324で入射した任意の光Lの入射した入射位置と、鍔部350の内側端部との距離をd2とする。また、中心軸CAに沿う方向において、鍔部350の高さをh3とする。θ1およびθ2は、前述の通りである。この場合、h3は、以下の式(1B)で表すことができる。
Figure JPOXMLDOC01-appb-M000013
The idea up to the above-described formula (1) is that the light flux controlling member 300 is designed so that the light L emitted from the light emitting element 220 and incident on the second incident surface 324 does not directly reach the collar portion 350. Can also be applied. Specifically, in the direction orthogonal to the central axis CA, an incident position where an arbitrary light L emitted from the light emitting element 220 and incident on the second incident surface 324 is incident with an inner end portion of the flange portion 350. Let the distance be d2. Moreover, the height of the collar part 350 is set to h3 in the direction along the central axis CA. θ1 and θ2 are as described above. In this case, h3 can be expressed by the following formula (1B).
Figure JPOXMLDOC01-appb-M000013
 ここで、発光素子220から出射され、第2入射面324で入射した光Lが直接鍔部350に到達しないためには、中心軸CAに沿う方向において、光Lが鍔部350よりも表側を進行する必要がある。具体的には、Hがh3より大きい必要がある。すなわち、鍔部350および第2入射面は、下記式(1C)を満たす必要がある。
Figure JPOXMLDOC01-appb-M000014
Here, in order that the light L emitted from the light emitting element 220 and incident on the second incident surface 324 does not directly reach the flange 350, the light L is closer to the front side than the flange 350 in the direction along the central axis CA. Need to progress. Specifically, H needs to be larger than h3. That is, the flange 350 and the second incident surface need to satisfy the following formula (1C).
Figure JPOXMLDOC01-appb-M000014
 第2入射面324と鍔部350とが、前述の式(1C)を満たすように設計されることで、発光素子220から出射され、第2入射面324で入射した光Lが直接鍔部350に到達せずに、鍔部350よりも表側を進行する。 By designing the second incident surface 324 and the flange portion 350 to satisfy the above-described equation (1C), the light L emitted from the light emitting element 220 and incident on the second incident surface 324 is directly applied to the flange portion 350. Without going to the front, the front side of the collar 350 is advanced.
 また、前述した式(1)および式(1C)を満たすように、光束制御部材300を設計することで、光の利用効率をさらに高くすることができる。式(1A)において、任意の光LによってHを規定したが、この任意の光Lを第2仮想直線VL2と平行な光と特定し、この光が第1凹部310の開口縁部(第2入射面324の最外縁)で屈折して光束制御部材300内へ入射した場合(すなわちh2=0)に求められるHがh1より大きくなるように(H>h1)規定することで、深さh1の第2凹部が形成された場合における第2入射面外縁の傾斜角θ2の最小値を特定することができる。 Further, the light utilization efficiency can be further increased by designing the light flux controlling member 300 so as to satisfy the above-described formulas (1) and (1C). In the formula (1A), H is defined by the arbitrary light L. However, the arbitrary light L is identified as light parallel to the second imaginary straight line VL2, and this light is the opening edge portion (second second) of the first recess 310. The depth h1 is defined by defining H to be greater than h1 (H> h1) when refracted at the outermost edge of the incident surface 324 and entering the light flux controlling member 300 (that is, h2 = 0). When the second concave portion is formed, the minimum value of the inclination angle θ2 of the outer edge of the second incident surface can be specified.
 図12は、発光装置200における光路図である。なお、図12では、光路を示すため発光素子220よび光束制御部材300へのハッチングを省略している。 FIG. 12 is an optical path diagram in the light emitting device 200. In FIG. 12, hatching to the light emitting element 220 and the light flux controlling member 300 is omitted to show the optical path.
 図12に示されるように、発光素子220から出射された光のうち、上部の発光面から出射された光は、第1入射面322で光束制御部材300の内部に入射する。第1入射面322で入射した光のうち、大部分の光は、出射面330で屈折することにより進行方向を制御されながら、出射面330から光束制御部材300の外部に出射される。第1入射面322で入射した光のうち、一部の光は、出射面330で内部反射して第2凹部340(外側傾斜面344)に到達する。第2凹部340に到達した光のうち、大部分の光は、外側傾斜面344で側方に向かって反射される。外側傾斜面344で反射した光は、例えば鍔部350から出射される。 As shown in FIG. 12, out of the light emitted from the light emitting element 220, the light emitted from the upper light emitting surface enters the light flux controlling member 300 at the first incident surface 322. Of the light incident on the first incident surface 322, most of the light is emitted from the emission surface 330 to the outside of the light flux controlling member 300 while being refracted by the emission surface 330 to control the traveling direction. Among the light incident on the first incident surface 322, some of the light is internally reflected by the exit surface 330 and reaches the second recess 340 (outer inclined surface 344). Most of the light reaching the second recess 340 is reflected toward the side by the outer inclined surface 344. The light reflected by the outer inclined surface 344 is emitted from the flange 350, for example.
 一方、発光素子220から出射された光のうち、側部の発光面から出射された光は、第2入射面324で光束制御部材300の内部に入射する。このとき、発光素子220から出射された光は、第2入射面324で出射面330側に向かって屈折する。第2入射面324で入射した光は、出射面330で屈折することにより進行方向を制御されながら、出射面330から光束制御部材300の外部に出射される。 On the other hand, of the light emitted from the light emitting element 220, the light emitted from the side light emitting surface enters the light flux controlling member 300 at the second incident surface 324. At this time, the light emitted from the light emitting element 220 is refracted toward the emission surface 330 side at the second incident surface 324. The light incident on the second incident surface 324 is emitted from the light exit surface 330 to the outside of the light flux controlling member 300 while its traveling direction is controlled by being refracted by the light exit surface 330.
 (面光源装置の配光特性)
 図13は、本実施の形態に係る面光源装置100の部分拡大断面図である。この図では、筐体110を省略している。近年、面光源装置100における発光素子220数の更なる低減による省エネルギー化および面光源装置100の更なる薄型化が要求されている。そこで、前述した光束制御部材300を有する面光源装置100において、省エネルギー化および薄型化し、かつ輝度ムラを低減することを実現するための条件として、以下の式(2)があげられる。
Figure JPOXMLDOC01-appb-M000015
 [式(2)において、Pは、複数の発光装置200の中心間距離(ピッチ)である。Hは、基板120の上面と光拡散板120の下面との間隔(高さ)である。]
(Light distribution characteristics of surface light source device)
FIG. 13 is a partial enlarged cross-sectional view of the surface light source device 100 according to the present embodiment. In this figure, the housing 110 is omitted. In recent years, energy saving by further reducing the number of light emitting elements 220 in the surface light source device 100 and further thinning of the surface light source device 100 are required. Therefore, in the surface light source device 100 having the light flux controlling member 300 described above, the following equation (2) can be given as a condition for realizing energy saving, thinning, and reduction in luminance unevenness.
Figure JPOXMLDOC01-appb-M000015
[In Formula (2), P is the distance (pitch) between the centers of the plurality of light emitting devices 200. H is the distance (height) between the upper surface of the substrate 120 and the lower surface of the light diffusion plate 120. ]
 また、面光源装置100は、上記式(2)を満たしつつ発光面の輝度ムラの発生を防ぐために、以下の式(3)を満たすことが好ましい。すなわち、光束制御部材300の入射面320および出射面330の形状は、前述の式(1)に加えて、以下の式(3)を満たすように調整されている。図13に示されるように、式(3)は、ある発光装置200からピーク出射角で出射された光(l)が、隣接する発光装置200よりも遠くまで到達することを意味する。これにより、発光面の発光装置200間の領域に明部(相対的に輝度が高い領域)が発生することを抑制することができる。式(3)を満たすため、発光装置200から出射される光の出射角(光軸方向が0°、基板面方向が90°)のうち、最も光度が高い光の出射角(ピーク出射角)は、78.7°を超える。
Figure JPOXMLDOC01-appb-M000016
 [式(3)において、Pは、複数の発光装置200の中心間距離(ピッチ)である。Lは、発光装置200の光軸OAと光拡散板120の下面との交点から、発光装置200からピーク出射角で出射された光が光拡散板120の下面に到達した点までの距離である。]
The surface light source device 100 preferably satisfies the following formula (3) in order to prevent the occurrence of luminance unevenness on the light emitting surface while satisfying the above formula (2). That is, the shapes of the entrance surface 320 and the exit surface 330 of the light flux controlling member 300 are adjusted so as to satisfy the following formula (3) in addition to the above formula (1). As shown in FIG. 13, Equation (3) means that light (l) emitted from a certain light emitting device 200 at a peak emission angle reaches farther than the adjacent light emitting devices 200. Thereby, it can suppress that a bright part (area | region with a comparatively high brightness | luminance) generate | occur | produces in the area | region between the light-emitting devices 200 of a light emission surface. In order to satisfy the expression (3), among the emission angles of light emitted from the light emitting device 200 (optical axis direction is 0 °, substrate surface direction is 90 °), the emission angle of light having the highest luminous intensity (peak emission angle) Is greater than 78.7 °.
Figure JPOXMLDOC01-appb-M000016
[In Formula (3), P is the distance (pitch) between the centers of the plurality of light emitting devices 200. L is the distance from the intersection of the optical axis OA of the light emitting device 200 and the lower surface of the light diffusing plate 120 to the point where the light emitted from the light emitting device 200 at the peak emission angle reaches the lower surface of the light diffusing plate 120. . ]
 また、面光源装置100は、上記式(3)を満たしつつ発光面の輝度ムラの発生を防ぐために、以下の式(4)も満たすことが好ましい。すなわち、光束制御部材300の入射面320および出射面330の形状は、さらに以下の式(4)を満たすように調整されている。図13に示されるように、式(4)は、光拡散板120の下面における2つの発光装置200の中点に向かう光の光度(I1/2)が、発光装置200の直上に向かう光の光度(I)よりも6倍を超えて高いことを意味する。これにより、発光面の発光装置200間の領域に暗部(相対的に輝度が低い領域)が発生することを抑制することができる。
Figure JPOXMLDOC01-appb-M000017
 [式(4)において、Iは、発光装置200から光軸OA方向に出射された光の光度である。I1/2は、光拡散板120の下面における、光軸OAと光拡散板120の下面との交点からP/2の距離の点に向かって、発光装置200から出射された光の光度である。]
In addition, the surface light source device 100 preferably satisfies the following formula (4) in order to prevent the occurrence of luminance unevenness on the light emitting surface while satisfying the above formula (3). That is, the shapes of the entrance surface 320 and the exit surface 330 of the light flux controlling member 300 are further adjusted to satisfy the following expression (4). As shown in FIG. 13, the equation (4) indicates that the light intensity (I 1/2 ) of the light toward the middle point of the two light emitting devices 200 on the lower surface of the light diffusing plate 120 is directed directly above the light emitting device 200. It means that it is more than 6 times higher than the luminous intensity (I 0 ). Thereby, it can suppress that a dark part (area | region with a comparatively low brightness | luminance) generate | occur | produces in the area | region between the light-emitting devices 200 of a light emission surface.
Figure JPOXMLDOC01-appb-M000017
[In Formula (4), I 0 is the luminous intensity of the light emitted from the light emitting device 200 in the direction of the optical axis OA. I 1/2 is the luminous intensity of the light emitted from the light emitting device 200 toward the point at a distance of P / 2 from the intersection of the optical axis OA and the lower surface of the light diffusing plate 120 on the lower surface of the light diffusing plate 120. is there. ]
 また、面光源装置100は、以下の式(5)も満たすことが好ましい。すなわち、光束制御部材300の入射面320および出射面330の形状は、さらに以下の式(5)を満たすように調整されていることが好ましい。図13に示されるように、式(5)は、光拡散板120の下面における2つの発光装置200の中点と一方の発光装置200との間の中点(P/4の点)に向かう光の光度(I1/4)が、当該発光装置200の直上に向かう光の光度(I)の2.4倍以下であることを意味する。これにより、発光面の発光装置200の近傍の領域に明部(相対的に輝度が高い領域)が発生することを抑制することができ、発光面における輝度分布をより均一にすることができる。
Figure JPOXMLDOC01-appb-M000018
 [式(5)において、Iは、発光装置200から光軸OA方向に出射された光の光度である(I≠0)。I1/4は、光拡散板120の下面における、光軸OAと光拡散板120の下面との交点からP/4の距離の点に向かって、発光装置200から出射された光の光度である。]
Moreover, it is preferable that the surface light source device 100 also satisfy | fills the following formula | equation (5). That is, it is preferable that the shapes of the entrance surface 320 and the exit surface 330 of the light flux controlling member 300 are further adjusted to satisfy the following formula (5). As shown in FIG. 13, Equation (5) goes to the midpoint (point of P / 4) between the midpoint between the two light emitting devices 200 and the one light emitting device 200 on the lower surface of the light diffusing plate 120. It means that the luminous intensity (I 1/4 ) of the light is 2.4 times or less of the luminous intensity (I 0 ) of the light traveling directly above the light emitting device 200. Thereby, it can suppress that a bright part (area | region with a comparatively high brightness | luminance) generate | occur | produces in the area | region of the light emission surface vicinity of the light-emitting device 200, and can make luminance distribution more uniform in a light emission surface.
Figure JPOXMLDOC01-appb-M000018
[In Expression (5), I 0 is the luminous intensity of light emitted from the light emitting device 200 in the direction of the optical axis OA (I 0 ≠ 0). I 1/4 is the luminous intensity of the light emitted from the light emitting device 200 toward the point at a distance of P / 4 from the intersection of the optical axis OA and the lower surface of the light diffusing plate 120 on the lower surface of the light diffusing plate 120. is there. ]
 (発光装置の配光特性)
 本実施の形態に係る面光源装置100で使用される発光装置200について、配光特性を測定した。また、参考のため、出射面の形状が異なる光束制御部材を有する発光装置(以下、「参考例1~3に係る発光装置」ともいう)についても配光特性を測定した。本実施の形態に係る発光装置200と、3種類の参考例1~3に係る発光装置の特性を表1に示す。
(Light distribution characteristics of light-emitting device)
The light distribution characteristics of the light emitting device 200 used in the surface light source device 100 according to the present embodiment were measured. For reference, light distribution characteristics were also measured for a light emitting device having a light flux controlling member with a different exit surface shape (hereinafter also referred to as “light emitting device according to Reference Examples 1 to 3”). Table 1 shows characteristics of the light-emitting device 200 according to the present embodiment and the light-emitting devices according to the three types of Reference Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 図14Aおよび図14Bは、表1に示される4種類の発光装置(P110、P60、P75およびP90)の配光特性を示すグラフである。横軸は、発光素子の発光面の中心を原点とし、発光装置の光軸OAを0°としたときの角度(°)を示している。図14Aの縦軸は各角度における光度(cd)を示しており、図14Bの縦軸は、相対光度を示している。図14Bでは、各発光装置について、0°の光度を1としたときの相対光度を示している。本実施の形態に係る発光装置200(P110)の結果を太い実線で示す。一方、参考例1~3に係る発光装置(P60、P75およびP90)の測定結果は、細い破線、細い実線または細い一点鎖線で示す。 14A and 14B are graphs showing the light distribution characteristics of the four types of light emitting devices (P110, P60, P75, and P90) shown in Table 1. The horizontal axis represents the angle (°) when the center of the light emitting surface of the light emitting element is the origin and the optical axis OA of the light emitting device is 0 °. The vertical axis in FIG. 14A indicates the luminous intensity (cd) at each angle, and the vertical axis in FIG. 14B indicates the relative luminous intensity. FIG. 14B shows the relative luminous intensity when the luminous intensity at 0 ° is set to 1 for each light emitting device. The result of the light emitting device 200 (P110) according to the present embodiment is indicated by a thick solid line. On the other hand, the measurement results of the light emitting devices (P60, P75, and P90) according to Reference Examples 1 to 3 are indicated by thin broken lines, thin solid lines, or thin dashed lines.
 図14Aおよび図14Bに示されるように、本実施の形態に係る発光装置200(P110)は、ピーク出射角が78.7°以上であり、参考例1~3に係る発光装置(P60、P75およびP90)に比べて遠方に向かう光をより多く生成できることがわかる。 As shown in FIGS. 14A and 14B, the light emitting device 200 (P110) according to the present embodiment has a peak emission angle of 78.7 ° or more, and the light emitting devices according to Reference Examples 1 to 3 (P60, P75). It can be seen that more light traveling far away can be generated compared to P90).
 (発光装置の輝度分布および面光源装置の輝度分布)
 次いで、本実施の形態に係る発光装置200の輝度分布を測定した。本測定では、発光素子220と、前述の式(1)を満たす発光装置200を使用した。そして、基板210に固定された発光装置200と空気層を介して配置された仮想面上の輝度分布を測定した。また、比較のため、図3に示される第2入射面324を有さない光束制御部材30を用いた発光装置(以下、「比較例1に係る発光装置」ともいう)における仮想面上の輝度についても測定した。なお、本実施の形態に係る発光装置200および比較例1に係る発光装置において、発光素子の光軸OAと、光束制御部材300の中心軸CAとは、一致するように配置されている。
(Luminance distribution of light emitting device and luminance distribution of surface light source device)
Next, the luminance distribution of the light emitting device 200 according to this embodiment was measured. In this measurement, the light emitting element 220 and the light emitting device 200 satisfying the above-described formula (1) were used. And the luminance distribution on the virtual surface arrange | positioned through the light-emitting device 200 fixed to the board | substrate 210 and an air layer was measured. For comparison, the luminance on the virtual plane in the light emitting device (hereinafter also referred to as “light emitting device according to comparative example 1”) using the light flux controlling member 30 that does not have the second incident surface 324 shown in FIG. Was also measured. In the light emitting device 200 according to the present embodiment and the light emitting device according to Comparative Example 1, the optical axis OA of the light emitting element and the central axis CA of the light flux controlling member 300 are arranged so as to coincide with each other.
 図15は、光軸OAを含む断面において、発光装置200と空気層を介して配置された仮想面上の輝度分布のシミュレーション結果を示すグラフである。図15の横軸は、仮想面における光軸OAからの距離(mm)を示しており、縦軸は、輝度(cd/m)を示している。図15における実線は、本実施の形態に係る発光装置200(P110)の結果を示しており、破線は、比較例1に係る発光装置の結果を示している。 FIG. 15 is a graph showing a simulation result of the luminance distribution on the virtual plane arranged through the light emitting device 200 and the air layer in the cross section including the optical axis OA. The horizontal axis in FIG. 15 indicates the distance (mm) from the optical axis OA in the virtual plane, and the vertical axis indicates the luminance (cd / m 2 ). The solid line in FIG. 15 shows the result of the light emitting device 200 (P110) according to the present embodiment, and the broken line shows the result of the light emitting device according to Comparative Example 1.
 図15に示されるように、比較例1に係る発光装置では、発光装置の直上部にリング状の明部が生じていることが分かる(図15の破線矢印参照)。これは、光束制御部材が式(1)を満たしていないため、第2入射面324で入射した光が、第2凹部340(内側傾斜面342)に到達した後、出射面330(第3出射面330c)から出射された光によるものだと考えられた。一方、本実施の形態に係る発光装置200では、発光装置200の直上部にリング状の明部が抑制され、発光装置200より外側の領域における輝度が僅かに上昇した(図15の実線矢印参照)。これは、光束制御部材300が式(1)を満たしているため、第2入射面324で入射した光が、第2凹部340(内側傾斜面342)に到達することなく出射面330(第3出射面330c)から出射された光によるものだと考えられた。 As shown in FIG. 15, it can be seen that in the light emitting device according to Comparative Example 1, a ring-shaped bright portion is formed immediately above the light emitting device (see the broken line arrow in FIG. 15). This is because the light flux controlling member does not satisfy the formula (1), so that the light incident on the second incident surface 324 reaches the second concave portion 340 (inner inclined surface 342), and then the output surface 330 (third output surface). It was thought to be due to light emitted from the surface 330c). On the other hand, in the light-emitting device 200 according to the present embodiment, a ring-shaped bright portion is suppressed immediately above the light-emitting device 200, and the brightness in the region outside the light-emitting device 200 is slightly increased (see the solid arrow in FIG. 15). ). This is because the light flux controlling member 300 satisfies the formula (1), so that the light incident on the second incident surface 324 does not reach the second concave portion 340 (inner inclined surface 342), and the emission surface 330 (third This was thought to be due to light emitted from the emission surface 330c).
 次に、本実施の形態に係る、式(1)を満たす光束制御部材300を含む発光装置200(P110)を有する面光源装置100について、輝度分布を測定した。また、参考のため、上記参考例1~3の発光装置(P60、P75およびP90)を有する面光源装置についても、輝度分布を測定した。各発光装置(P110、P60、P75およびP90)は、高さHが19mmの面光源装置の内部に、それぞれの最適なピッチ(表1参照)で配置した。 Next, the luminance distribution was measured for the surface light source device 100 having the light emitting device 200 (P110) including the light flux controlling member 300 satisfying the expression (1) according to the present embodiment. For reference, the luminance distribution was also measured for the surface light source devices having the light emitting devices (P60, P75, and P90) of Reference Examples 1 to 3 above. Each light emitting device (P110, P60, P75, and P90) was arranged at an optimum pitch (see Table 1) inside a surface light source device having a height H of 19 mm.
 図16は、各面光源装置についてのH/PおよびL/Pの値を示すグラフである。このグラフに示されるように、本実施の形態に係る面光源装置100では、H/Pが0.2以下であり、かつL/Pが1超である。すなわち、本実施の形態に係る面光源装置100は、上記式(2)および式(3)を満たしている。一方、参考例1~3の発光装置(P60、P75およびP90)を有する面光源装置では、H/Pが0.2超であり、かつL/Pが1以下である。すなわち、これらの面光源装置は、上記式(2)および式(3)をいずれも満たしていない。 FIG. 16 is a graph showing the values of H / P and L / P for each surface light source device. As shown in this graph, in the surface light source device 100 according to the present embodiment, H / P is 0.2 or less and L / P is more than 1. That is, the surface light source device 100 according to the present embodiment satisfies the above expressions (2) and (3). On the other hand, in the surface light source devices having the light emitting devices (P60, P75, and P90) of Reference Examples 1 to 3, H / P is more than 0.2 and L / P is 1 or less. That is, these surface light source devices do not satisfy the above formulas (2) and (3).
 図17Aは、各面光源装置についてのI1/2/Iの値を示すグラフであり、図17Bは、各面光源装置についてのI1/4/Iの値を示すグラフである。図17Aおよび図17Bに示されるように、本実施の形態に係る面光源装置100では、I1/2/Iが6超であり、かつI1/4/Iが2.4以下である。すなわち、本実施の形態に係る面光源装置100は、上記式(4)および式(5)を満たしている。一方、参考例1~3の発光装置(P60、P75およびP90)を有する面光源装置では、I1/4/Iが2.4以下であるが、I1/2/Iが6以下である。すなわち、これらの面光源装置は、上記式(5)を満たしているが、上記式(4)を満たしていない。 FIG. 17A is a graph showing the value of I 1/2 / I 0 for each surface light source device, and FIG. 17B is a graph showing the value of I 1/4 / I 0 for each surface light source device. As shown in FIGS. 17A and 17B, in surface light source device 100 according to the present embodiment, I 1/2 / I 0 is greater than 6 and I 1/4 / I 0 is 2.4 or less. is there. That is, the surface light source device 100 according to the present embodiment satisfies the above expressions (4) and (5). On the other hand, in the surface light source devices having the light emitting devices (P60, P75 and P90) of Reference Examples 1 to 3, I 1/4 / I 0 is 2.4 or less, but I 1/2 / I 0 is 6 or less. It is. That is, these surface light source devices satisfy the above formula (5) but do not satisfy the above formula (4).
 図18Aおよび図18Bは、各面光源装置において発光装置を1つだけ点灯した場合の発光面の輝度分布を示すグラフである。横軸は、発光装置の光軸OAからの距離を示している。縦軸は、各点における輝度(図18A)または相対輝度(図18B)を示している。図18Bでは、各面光源装置について、光軸OA上の輝度を1としたときの相対輝度を示している。本実施の形態に係る発光装置200(P110)を有する面光源装置の結果を太い実線で示す。一方、参考例1~3の発光装置(P60、P75およびP90)を有する面光源装置の測定結果は、細い破線、細い実線または細い一点鎖線で示す。 FIG. 18A and FIG. 18B are graphs showing the luminance distribution of the light emitting surface when only one light emitting device is turned on in each surface light source device. The horizontal axis indicates the distance from the optical axis OA of the light emitting device. The vertical axis represents the luminance (FIG. 18A) or relative luminance (FIG. 18B) at each point. FIG. 18B shows the relative luminance when the luminance on the optical axis OA is set to 1 for each surface light source device. The result of the surface light source device having the light emitting device 200 (P110) according to the present embodiment is indicated by a thick solid line. On the other hand, the measurement results of the surface light source devices having the light emitting devices (P60, P75, and P90) of Reference Examples 1 to 3 are indicated by thin broken lines, thin solid lines, or thin dashed lines.
 図18Bに示されるように、式(1)を満たす光束制御部材300を含む発光装置200(P110)を110mmピッチ(H/P=0.17)で配置した場合には、発光面における発光装置200の中間位置(±55mm)において十分な明るさを得られるが、参考例1、2の発光装置(P60およびP75)を110mmピッチ(H/P=0.17)で配置した場合には、中間位置(±55mm)において明るさが不足することがわかる。また、発光装置を110mmピッチ(H/P=0.17)でマトリックス状に配置した場合には、対角線方向における発光装置の中心間距離は、約155mmとなる。参考例3の発光装置(P90)を110mmピッチ(H/P=0.17)で配置した場合には、発光面における対角線方向の中間位置(±77.5mm)において明るさが不足する。これに対し、本実施の形態に係る発光装置200では、発光面における輝度分布の裾野部分においても十分な輝度を得られることがわかる。 As shown in FIG. 18B, when the light emitting device 200 (P110) including the light flux controlling member 300 satisfying the expression (1) is arranged at a 110 mm pitch (H / P = 0.17), the light emitting device on the light emitting surface. Although sufficient brightness can be obtained at an intermediate position of 200 (± 55 mm), when the light emitting devices (P60 and P75) of Reference Examples 1 and 2 are arranged at a 110 mm pitch (H / P = 0.17), It can be seen that the brightness is insufficient at the intermediate position (± 55 mm). When the light emitting devices are arranged in a matrix with a 110 mm pitch (H / P = 0.17), the distance between the centers of the light emitting devices in the diagonal direction is about 155 mm. When the light emitting device (P90) of Reference Example 3 is arranged at a pitch of 110 mm (H / P = 0.17), the brightness is insufficient at the diagonal intermediate position (± 77.5 mm) on the light emitting surface. On the other hand, in the light emitting device 200 according to the present embodiment, it can be seen that sufficient luminance can be obtained even at the base of the luminance distribution on the light emitting surface.
 図19は、各面光源装置において発光装置を16個点灯した場合の発光面の輝度分布である。図19Aは、光束制御部材を外した場合の発光面の輝度分布であり、図19Bは、本実施の形態に係る面光源装置100の発光面の輝度分布であり、図19Cは、参考例1の発光装置(P60)を有する面光源装置の発光面の輝度分布であり、図19Dは、参考例2の発光装置(P75)を有する面光源装置の発光面の輝度分布であり、図19Eは、参考例3の発光装置(P90)を有する面光源装置の発光面の輝度分布である。各発光装置は、高さHが19mmの面光源装置の内部にピッチ110mmで配置されており、いずれの面光源装置においても、H/Pは0.17である。 FIG. 19 shows the luminance distribution of the light emitting surface when 16 light emitting devices are turned on in each surface light source device. 19A shows the luminance distribution of the light emitting surface when the light flux controlling member is removed, FIG. 19B shows the luminance distribution of the light emitting surface of the surface light source device 100 according to the present embodiment, and FIG. 19C shows Reference Example 1. FIG. 19D shows the luminance distribution of the light emitting surface of the surface light source device having the light emitting device (P75) of Reference Example 2, and FIG. 19E shows the luminance distribution of the light emitting surface of the surface light source device having the light emitting device (P60) of FIG. It is a luminance distribution of the light emission surface of the surface light source device which has the light-emitting device (P90) of the reference example 3. FIG. Each light emitting device is arranged at a pitch of 110 mm inside a surface light source device having a height H of 19 mm, and H / P is 0.17 in any surface light source device.
 図19C~Eに示されるように、参考例1~3の光束制御部材を有する面光源装置(H/P≦0.2、L/P≦1、I1/2/I≦6、I1/4/I≦2.4)では、輝度ムラが大きかった。これに対し、本実施の形態に係る面光源装置100(H/P≦0.2、L/P>1、I1/2/I>6、I1/4/I≦2.4)では、図17Bに示されるように、H/Pが0.2以下であるにもかかわらず、輝度ムラが小さかった。ここで「輝度ムラが小さい」とは、発光面の発光装置間の領域における最大輝度に対する最小輝度の割合が95%以上であることを意味する。 As shown in FIGS. 19C to 19E, the surface light source devices (H / P ≦ 0.2, L / P ≦ 1, I 1/2 / I 0 ≦ 6, I In 1/4 / I 0 ≦ 2.4), the luminance unevenness was large. On the other hand, the surface light source device 100 according to the present embodiment (H / P ≦ 0.2, L / P> 1, I 1/2 / I 0 > 6, I 1/4 / I 0 ≦ 2.4. ), As shown in FIG. 17B, the luminance unevenness was small even though H / P was 0.2 or less. Here, “the luminance unevenness is small” means that the ratio of the minimum luminance to the maximum luminance in the region between the light emitting devices on the light emitting surface is 95% or more.
 以上のように、本実施の形態に係る面光源装置100は、発光面から均一な光を出射することができる。 As described above, the surface light source device 100 according to the present embodiment can emit uniform light from the light emitting surface.
 なお、面光源装置が上記式(3)を満たさない場合は、発光装置からピーク出射角(例えば63°)で出射された光は、光拡散板の下面のうち発光装置間の領域に到達する。このため、上記式(2)のみを満たさない面光源装置100’(H/P≦0.2、L/P≦1、I1/2/I>6、I1/4/I≦2.4)では、図20に示されるように、発光装置40からの出射光のほとんどが発光面の発光装置40近傍の領域(ピーク出射角で出射された光が到達する領域)に到達することにより、発光面において発光装置40間に光量不足の領域が生じてしまう。その結果、発光面において発光装置40近傍の領域に相対的に明るい明部Bが形成され、輝度ムラが生じてしまう。 When the surface light source device does not satisfy the above formula (3), the light emitted from the light emitting device at the peak emission angle (for example, 63 °) reaches the region between the light emitting devices on the lower surface of the light diffusion plate. . For this reason, the surface light source device 100 ′ that does not satisfy only the expression (2) (H / P ≦ 0.2, L / P ≦ 1, I 1/2 / I 0 > 6, I 1/4 / I 0 ≦ In 2.4), as shown in FIG. 20, most of the light emitted from the light emitting device 40 reaches a region in the vicinity of the light emitting device 40 on the light emitting surface (region where the light emitted at the peak emission angle reaches). As a result, a region where the light amount is insufficient is generated between the light emitting devices 40 on the light emitting surface. As a result, a relatively bright bright portion B is formed in a region near the light emitting device 40 on the light emitting surface, and luminance unevenness occurs.
 また、面光源装置が上記式(4)を満たさない場合は、発光装置の配光特性は、図21Aにおいて破線で示すようになる。図21Aにおいて、実線は、本実施の形態に係る発光装置200(P110)の配光特性を示す曲線である。図21Bは、この発光装置を有する面光源装置において発光装置を1つだけ点灯した場合の発光面の輝度分布を示すグラフである。図21Bにおいて、破線は、上記式(4)のみを満たさない面光源装置(H/P≦0.2、L/P>1、I1/2/I≦6、I1/4/I≦2.4)の発光面の輝度分布を示す曲線であり、実線は、本実施の形態に係る面光源装置100(H/P≦0.2、L/P>1、I1/2/I>6、I1/4/I≦2.4)の発光面の輝度分布を示す曲線である。また、図22は、上記式(4)のみを満たさない面光源装置(H/P≦0.2、L/P>1、I1/2/I≦6、I1/4/I≦2.4)において発光装置を16個点灯した場合の発光面の輝度分布である。これらの結果から、面光源装置が上記式(4)を満たさない場合は、発光面のうち発光装置40間の領域が相対的に暗くなり、輝度ムラが生じてしまうことがわかる。 When the surface light source device does not satisfy the above formula (4), the light distribution characteristics of the light emitting device are as indicated by broken lines in FIG. 21A. In FIG. 21A, the solid line is a curve showing the light distribution characteristics of the light emitting device 200 (P110) according to the present embodiment. FIG. 21B is a graph showing the luminance distribution of the light emitting surface when only one light emitting device is turned on in the surface light source device having the light emitting device. In FIG. 21B, the broken line indicates a surface light source device that does not satisfy only the above formula (4) (H / P ≦ 0.2, L / P> 1, I 1/2 / I 0 ≦ 6, I 1/4 / I. 0 ≦ 2.4) is a curve showing the luminance distribution of the light emitting surface, and the solid line is the surface light source device 100 (H / P ≦ 0.2, L / P> 1, I 1/2 according to the present embodiment). / I 0> 6, a curve showing the intensity distribution of the light-emitting surface of the I 1/4 / I 0 ≦ 2.4) . FIG. 22 shows a surface light source device (H / P ≦ 0.2, L / P> 1, I 1/2 / I 0 ≦ 6, I 1/4 / I 0 that does not satisfy only the equation (4). ≦ 2.4) is the luminance distribution of the light emitting surface when 16 light emitting devices are turned on. From these results, it is understood that when the surface light source device does not satisfy the above formula (4), the region between the light emitting devices 40 on the light emitting surface becomes relatively dark, resulting in luminance unevenness.
 また、面光源装置が上記式(5)を満たさない場合であっても、上記式(2)~式(4)を満たしていれば輝度ムラが十分に抑制されるが、面光源装置が上記式(5)も満たす場合は、発光面における輝度分布がより均一になる。図23Aおよび図23Bは、I1/4/Iの値がそれぞれ異なる発光装置を有する面光源装置において発光装置を1つだけ点灯した場合の発光面の輝度分布を示すグラフである。図23Bでは、図23Aのグラフのピーク部分を拡大して示している。太い実線は、本実施の形態に係る発光装置200(P110)を有する面光源装置(H/P≦0.2、L/P>1、I1/2/I>6、I1/4/I=1.6)の発光面の輝度分布を示す曲線である。細い破線、細い実線、細い一点鎖線および細い二点鎖線は、他の発光装置を有する面光源装置(H/P≦0.2、L/P>1、I1/2/I>6、I1/4/I=2.0,2.1,2.2,2.3,2.4,2.5)の発光面の輝度分布を示す曲線である。本実施の形態に係る発光装置200(P110)を有する面光源装置と他の発光装置を有する面光源装置とでは、I1/4/Iの値のみが異なる。これらの結果から、I1/4/Iの値が変わると、発光面のうち発光装置40近傍の領域の輝度が変わることがわかる。発光面における輝度分布がより均一にする観点からは、発光装置40近傍の領域の輝度は、発光装置40直上の輝度よりも低いことが好ましい。 Even if the surface light source device does not satisfy the above formula (5), luminance unevenness can be sufficiently suppressed if the above formulas (2) to (4) are satisfied. When Expression (5) is also satisfied, the luminance distribution on the light emitting surface becomes more uniform. FIG. 23A and FIG. 23B are graphs showing the luminance distribution of the light emitting surface when only one light emitting device is turned on in a surface light source device having light emitting devices with different values of I 1/4 / I 0 . FIG. 23B shows an enlarged peak portion of the graph of FIG. 23A. A thick solid line indicates a surface light source device (H / P ≦ 0.2, L / P> 1, I 1/2 / I 0 > 6, I 1/4 having the light emitting device 200 (P110) according to the present embodiment. / I 0 = 1.6) is a curve showing the luminance distribution on the light emitting surface. A thin broken line, a thin solid line, a thin one-dot chain line, and a thin two-dot chain line indicate a surface light source device having another light-emitting device (H / P ≦ 0.2, L / P> 1, I 1/2 / I 0 > 6, I 1/4 / I 0 = 2.0, 2.1, 2.2, 2.3, 2.4, and 2.5). The surface light source device having the light emitting device 200 (P110) according to the present embodiment differs from the surface light source device having another light emitting device only in the value of I 1/4 / I 0 . From these results, it can be seen that when the value of I 1/4 / I 0 changes, the luminance of the region near the light emitting device 40 on the light emitting surface changes. From the viewpoint of making the luminance distribution on the light emitting surface more uniform, the luminance in the region near the light emitting device 40 is preferably lower than the luminance directly above the light emitting device 40.
 図24は、I1/4/Iと発光装置40近傍の領域の輝度との関係を示すグラフである。縦軸は、発光面において発光装置40直上の点の輝度を1としたときの、発光面において発光装置40の光軸OAから18mmの点(図23Aのグラフにおいてピークがある点)の輝度の相対値を示している。このグラフから、I1/4/Iが2.4以下の場合は、発光装置40近傍の領域の輝度が、発光装置40直上の輝度よりも低くなることがわかる。したがって、発光面における輝度分布をより均一にする観点からは、I1/4/Iが2.4以下であることが好ましい。 FIG. 24 is a graph showing the relationship between I 1/4 / I 0 and the luminance in the area near the light emitting device 40. The vertical axis represents the luminance at a point 18 mm from the optical axis OA of the light emitting device 40 on the light emitting surface (a point having a peak in the graph of FIG. 23A) when the luminance of the point immediately above the light emitting device 40 on the light emitting surface is 1. Relative values are shown. From this graph, it can be seen that when I 1/4 / I 0 is 2.4 or less, the luminance in the vicinity of the light emitting device 40 is lower than the luminance directly above the light emitting device 40. Therefore, from the viewpoint of making the luminance distribution on the light emitting surface more uniform, I 1/4 / I 0 is preferably 2.4 or less.
 (効果)
 以上のように、本実施の形態に係る光束制御部材300および面光源装置100は、主に発光素子220の側面から出射した光を入射させるとともに、出射面330へ向けて屈折させる第2入射面324を有している。よって、本実施の形態に係る光束制御部材300および面光源装置100では、発光装置200の上部にリング状の明部が生じることがなく、輝度ムラを抑制できる。
(effect)
As described above, the light flux controlling member 300 and the surface light source device 100 according to the present embodiment allow the light emitted mainly from the side surface of the light emitting element 220 to enter and refract the light toward the exit surface 330. 324. Therefore, in light flux controlling member 300 and surface light source device 100 according to the present embodiment, a ring-shaped bright portion does not occur on top of light emitting device 200, and luminance unevenness can be suppressed.
 また、このような光束制御部材300を有する面光源装置100および表示装置では、前述の式(2)~(5)を満たすため、同様に輝度ムラを抑制できる。 Further, in the surface light source device 100 and the display device having such a light flux controlling member 300, since the above formulas (2) to (5) are satisfied, luminance unevenness can be similarly suppressed.
 [実施の形態2]
 実施の形態2に係る表示装置は、光束制御部材600の構成が実施の形態1に係る表示装置と異なる。そこで、実施の形態1と同様の構成については、同一の符号を付してその説明を省略する。
[Embodiment 2]
The display device according to the second embodiment is different from the display device according to the first embodiment in the configuration of the light flux controlling member 600. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
(光束制御部材の構成)
 図25A、Bは、実施の形態2に係る光束制御部材600を裏側から見た斜視図である。図25A、Bに示されるように、実施の形態2に係る表示装置における光束制御部材600は、入射面320と、出射面330と、第2凹部640とを有する。また、本実施の形態に係る光束制御部材600は、鍔部350を有している。さらに、光束制御部材600は、脚部(図示省略)を有していてもよい。
(Configuration of luminous flux control member)
25A and 25B are perspective views of the light flux controlling member 600 according to Embodiment 2 as viewed from the back side. As shown in FIGS. 25A and 25B, the light flux controlling member 600 in the display device according to Embodiment 2 has an incident surface 320, an exit surface 330, and a second recess 640. In addition, light flux controlling member 600 according to the present embodiment has a collar portion 350. Further, the light flux controlling member 600 may have leg portions (not shown).
 実施の形態2に係る光束制御部材600における第2凹部640は、内側傾斜面342と、外側傾斜面644とを有する。外側傾斜面644には、複数の凸条344dが配置されている。 The second recess 640 in the light flux controlling member 600 according to Embodiment 2 has an inner inclined surface 342 and an outer inclined surface 644. A plurality of ridges 344 d are arranged on the outer inclined surface 644.
 複数の凸条344dは、それぞれ断面が略三角形状であり、かつ中心軸CAに対して回転対称(凸条344dの数をnとしたときn回対称)となるように形成されている。各凸条344dは、平面状の第1傾斜面344aと、平面状の第2傾斜面344bと、第1傾斜面344aと第2傾斜面344bとの交線である稜線344cとを有しており、全反射プリズムのように機能する。図25に示されるように、光軸OAおよび稜線344cを含む光束制御部材600の断面において、光軸OAと、稜線344cを含む第3仮想直線VL3とは、光軸方向について、裏面305に対して外側傾斜面644よりも遠い位置で交わる。すなわち、各凸条344dは、稜線344cは、中心軸CAから離れるにつれて、裏面側に向かう方向(例えば60°)に傾斜している。 Each of the plurality of ridges 344d has a substantially triangular cross section and is rotationally symmetric with respect to the central axis CA (n-fold symmetry when the number of ridges 344d is n). Each ridge 344d has a planar first inclined surface 344a, a planar second inclined surface 344b, and a ridge line 344c that is an intersection of the first inclined surface 344a and the second inclined surface 344b. It functions like a total reflection prism. As shown in FIG. 25, in the cross section of the light flux controlling member 600 including the optical axis OA and the ridge line 344c, the optical axis OA and the third virtual straight line VL3 including the ridge line 344c are relative to the back surface 305 in the optical axis direction. And intersect at a position farther than the outer inclined surface 644. That is, each ridge 344d is inclined in a direction (for example, 60 °) toward the back side as the ridge line 344c is away from the central axis CA.
 (発光装置および面光源装置の配光特性)
 本実施の形態に係る光束制御部材600を含む発光装置について、配光特性を測定した。特に図示しないが、実施の形態2に係る光束制御部材600を含む発光装置では、実施の形態1に係る発光装に比べて遠方に向かう光をより多く生成できた。また、実施の形態2に係る光束制御部材600を含む発光装置では、実施の形態1に係る発光装置200と同様に、発光装置の直上部にリング状の明部が抑制された。さらに、前述の式(2)~式(5)を満たす実施の形態2に係る面光源装置では、輝度ムラが小さかった。これは、外側傾斜面644に複数の凸条344dが配置されているため、出射面330で内部反射した光が、基板210でさらに反射することによる輝度ムラの発生や、基板210に吸収されることによる光の損失をさらに抑制することができたものと考えられた。
(Light distribution characteristics of light emitting device and surface light source device)
The light distribution characteristics of the light emitting device including the light flux controlling member 600 according to the present embodiment were measured. Although not particularly illustrated, the light emitting device including the light flux controlling member 600 according to the second embodiment can generate more light traveling farther than the light emitting device according to the first embodiment. Further, in the light emitting device including the light flux controlling member 600 according to the second embodiment, a ring-shaped bright portion is suppressed immediately above the light emitting device, similarly to the light emitting device 200 according to the first embodiment. Further, in the surface light source device according to Embodiment 2 that satisfies the above-described formulas (2) to (5), the luminance unevenness was small. This is because a plurality of protrusions 344 d are arranged on the outer inclined surface 644, so that the light internally reflected by the exit surface 330 is further reflected by the substrate 210 and absorbed by the substrate 210. It was thought that the loss of light due to this could be further suppressed.
 (効果)
 以上のように、本実施の形態に係る光束制御部材600は、実施の形態1と同様、または実施の形態1以上の効果を有する。また、複数の凸条344dは、全反射プリズムのように機能するため、出射面330で内部反射した光が、基板210でさらに反射することによる輝度ムラの発生や、基板210に吸収されることによる光の損失をさらに抑制することができた。
(effect)
As described above, light flux controlling member 600 according to the present embodiment has the same effect as that of the first embodiment or the effects of the first embodiment or more. In addition, since the plurality of ridges 344d function like total reflection prisms, the light internally reflected by the emission surface 330 is further reflected by the substrate 210 and is absorbed by the substrate 210. It was possible to further suppress the light loss due to.
 なお、前述した実施の形態1、2では、第2入射面324の接線の第1仮想直線に対する傾斜角度は一定であったが、第2入射面324の接線の第1仮想直線に対する傾斜角度は、式(1)を満たすことができれば特に限定されない。たとえば、第2入射面324’の接線の第1仮想直線に対する傾斜角度は、図26Aに示されるように、徐々に小さくなるように形成されていてもよい。また、第2入射面324”の接線の第1仮想直線に対する傾斜角度は、図26Bに示されるように、接線の傾斜が徐々に大きくなるように形成されていてもよい。これらの場合であっても、第2入射面324’、324”で入射した光は、第2凹部340、640に直接到達することがない。 In the first and second embodiments described above, the inclination angle of the tangent line of the second incident surface 324 with respect to the first virtual line is constant, but the inclination angle of the tangent line of the second incident surface 324 with respect to the first virtual line is If it can satisfy | fill Formula (1), it will not specifically limit. For example, the inclination angle of the tangent line of the second incident surface 324 'with respect to the first imaginary straight line may be formed so as to be gradually reduced as shown in FIG. 26A. Further, the inclination angle of the tangent line of the second incident surface 324 ″ with respect to the first imaginary straight line may be formed so that the inclination of the tangent line gradually increases as shown in FIG. 26B. However, the light incident on the second incident surfaces 324 ′ and 324 ″ does not reach the second recesses 340 and 640 directly.
 本出願は、2015年9月3日出願の特願2015-174013および2015年10月7日出願の特願2015-199459に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2015-174013 filed on September 3, 2015 and Japanese Patent Application No. 2015-199459 filed on October 7, 2015. The contents described in the application specification and the drawings are all incorporated herein.
 本発明の光束制御部材、発光装置および面光源装置は、例えば、液晶表示装置のバックライトや一般照明などに適用することができる。 The light flux controlling member, light emitting device, and surface light source device of the present invention can be applied to, for example, a backlight of a liquid crystal display device or general illumination.
 10 発光素子
 20、30 光束制御部材
 22 入射面
 24 出射面
 26 裏面
 32 傾斜面
 34 中心軸に対して略平行な面
 40 発光装置
 100 面光源装置
 100’ 面光源装置
 110 筐体
 112 底板
 114 天板
 120 光拡散板
 200 発光装置
 210 基板
 220 発光素子
 300、600 光束制御部材
 305 裏面
 310 第1凹部
 320 入射面
 322 第1入射面
 324、324’、324” 第2入射面
 330 出射面
 330a 第1出射面
 330b 第2出射面
 330c 第3出射面
 340、640 第2凹部
 342 内側傾斜面
 344、644 外側傾斜面
 344a 第1傾斜面
 344b 第2傾斜面
 344c 稜線
 344d 凸条
 350 鍔部
 CA 光束制御部材の中心軸
 VL2 第2仮想直線
 VL3 第3仮想直線
 OA 発光素子の光軸
DESCRIPTION OF SYMBOLS 10 Light emitting element 20, 30 Light flux control member 22 Incident surface 24 Outgoing surface 26 Back surface 32 Inclined surface 34 Surface substantially parallel to the central axis 40 Light emitting device 100 Surface light source device 100 'Surface light source device 110 Case 112 Bottom plate 114 Top plate DESCRIPTION OF SYMBOLS 120 Light diffusing plate 200 Light-emitting device 210 Board | substrate 220 Light-emitting element 300, 600 Light flux control member 305 Back surface 310 1st recessed part 320 Incident surface 322 1st incident surface 324, 324 ', 324 "2nd incident surface 330 Output surface 330a 1st output Surface 330b Second exit surface 330c Third exit surface 340, 640 Second recess 342 Inner inclined surface 344, 644 Outer inclined surface 344a First inclined surface 344b Second inclined surface 344c Ridge 344d Convex 350 Hump CA Beam control member Center axis VL2 Second virtual straight line VL3 Third virtual straight line OA Optical axis of light emitting element

Claims (8)

  1.  発光素子から出射された光の配光を制御する光束制御部材であって、
     前記光束制御部材の中心軸と交わるように裏側に配置された第1凹部の内面であって、前記発光素子から出射された光を入射させる入射面と、
     前記中心軸と交わるように表側に配置され、前記入射面で入射した光を外部に出射させる出射面と、
     前記入射面を取り囲むように裏側に配置された第2凹部と、
     を含み、
     前記入射面は、
     前記中心軸と交わるように配置された第1入射面と、
     前記第1入射面の外縁部と前記第1凹部の開口縁部を接続するように配置された第2入射面と、
     を有し、
     前記中心軸を含む断面において、前記第1入射面および前記第2入射面の交点は、前記第1凹部の開口縁部より前記中心軸側に配置されており、
     前記断面において、前記第2入射面の前記第1入射面側の端部における接線の前記中心軸に直交する第1仮想直線に対する傾斜角度は、前記第1入射面の前記第2入射面側の端部における接線の前記第1仮想直線に対する傾斜角度より小さく、
     以下の式(1)を満たす、
     光束制御部材。
    Figure JPOXMLDOC01-appb-M000001
     [上記式(1)において、
     h1は、前記断面における、前記中心軸に直交し、かつ前記第1凹部の開口縁部を通る第2仮想直線と、前記第2凹部の頂部との間隔であり、
     h2は、前記断面における、前記発光素子から出射され、かつ前記第2入射面で入射した任意の光の入射位置と、前記第2仮想直線との間隔であり、
     dは、前記断面における、前記入射位置と、前記第2凹部の頂部との前記中心軸に直交する方向についての距離であり、
     θ1は、前記断面における、前記入射位置で入射した前記任意の光の屈折角であり、
     θ2は、前記断面における、前記入射位置における接線の前記第2仮想直線に対する傾斜角度である。]
    A light flux controlling member for controlling the light distribution of the light emitted from the light emitting element,
    An inner surface of a first recess disposed on the back side so as to intersect with the central axis of the light flux controlling member, an incident surface on which light emitted from the light emitting element is incident;
    An emission surface that is arranged on the front side so as to intersect the central axis, and emits light incident on the incidence surface to the outside;
    A second recess disposed on the back side so as to surround the incident surface;
    Including
    The incident surface is
    A first incident surface arranged to intersect the central axis;
    A second incident surface arranged to connect an outer edge portion of the first incident surface and an opening edge portion of the first recess;
    Have
    In the cross section including the central axis, the intersection of the first incident surface and the second incident surface is disposed on the central axis side from the opening edge of the first recess,
    In the cross section, an inclination angle of a tangent line at an end of the second incident surface on the first incident surface side with respect to a first imaginary straight line orthogonal to the central axis is on the second incident surface side of the first incident surface. Smaller than the inclination angle of the tangent at the end with respect to the first virtual straight line,
    The following formula (1) is satisfied.
    Luminous flux control member.
    Figure JPOXMLDOC01-appb-M000001
    [In the above formula (1),
    h1 is a distance between a second imaginary straight line perpendicular to the central axis and passing through the opening edge of the first recess and the top of the second recess in the cross section;
    h2 is an interval between an incident position of arbitrary light emitted from the light emitting element and incident on the second incident surface and the second imaginary straight line in the cross section;
    d is a distance in a direction perpendicular to the central axis between the incident position and the top of the second recess in the cross section;
    θ1 is a refraction angle of the arbitrary light incident at the incident position in the cross section,
    θ2 is an inclination angle of the tangent at the incident position with respect to the second imaginary straight line in the cross section. ]
  2.  前記断面において、前記第2入射面の接線の前記第1仮想直線に対する傾斜角度は、前記第1入射面の外縁部から前記第1凹部の開口縁部に向かうにつれて、徐々に小さくなるか、徐々に大きくなるか、または一定である、請求項1に記載の光束制御部材。 In the cross section, the inclination angle of the tangent line of the second incident surface with respect to the first imaginary straight line gradually decreases or gradually decreases from the outer edge portion of the first incident surface toward the opening edge portion of the first recess. The light flux controlling member according to claim 1, wherein the light flux controlling member is large or constant.
  3.  前記第2凹部は、
     前記中心軸側に配置された内側傾斜面と、
     前記内側傾斜面より前記中心軸から離れて配置された外側傾斜面と、
     を有し、
     前記断面において、前記外側傾斜面は、前記中心軸から離れるにつれて、裏面側に向かう方向に傾斜している、
     請求項1または請求項2に記載の光束制御部材。
    The second recess is
    An inner inclined surface disposed on the central axis side;
    An outer inclined surface disposed away from the central axis than the inner inclined surface;
    Have
    In the cross section, the outer inclined surface is inclined in a direction toward the back side as it is away from the central axis.
    The light flux controlling member according to claim 1 or 2.
  4.  前記外側傾斜面には、前記中心軸に垂直な断面形状が略三角形状の複数の凸条が配置されており、
     前記複数の凸条は、それぞれ、第1傾斜面と、第2傾斜面と、前記第1傾斜面および前記第2傾斜面との交線である稜線とを有しており、
     前記複数の凸条は、前記中心軸に対して回転対称となるように配置されており、
     前記稜線は、前記中心軸から離れるにつれて、裏面側に向かう方向に傾斜している、
     請求項3に記載の光束制御部材。
    A plurality of ridges having a substantially triangular cross section perpendicular to the central axis are arranged on the outer inclined surface,
    Each of the plurality of ridges has a first inclined surface, a second inclined surface, and a ridge line that is an intersection line of the first inclined surface and the second inclined surface,
    The plurality of ridges are arranged to be rotationally symmetric with respect to the central axis,
    The ridge line is inclined in the direction toward the back side as it is away from the central axis.
    The light flux controlling member according to claim 3.
  5.  発光素子と、
     請求項1~4のいずれか1項に記載の光束制御部材とを有し、
     前記光束制御部材は、前記中心軸が前記発光素子の光軸と合致する位置に配置されている、
     発光装置。
    A light emitting element;
    The light flux controlling member according to any one of claims 1 to 4,
    The light flux controlling member is disposed at a position where the central axis coincides with the optical axis of the light emitting element.
    Light emitting device.
  6.  前記発光素子は、チップ・オン・ボード型(COB)の発光ダイオード(LED)である、請求項5に記載の発光装置。 The light-emitting device according to claim 5, wherein the light-emitting element is a chip-on-board (COB) light-emitting diode (LED).
  7.  基板と、
     前記基板上に一定の間隔で配置された、請求項5または請求項6に記載の複数の発光装置と、
     前記複数の発光装置の上に前記基板と略平行に配置され、前記発光装置からの光を拡散させつつ透過させる光拡散板とを有し、
     前記光軸に沿う方向から前記発光装置から最も高い光度の光が出射する方向までの角度範囲において、前記発光装置からの光の光度は、前記光軸に対する角度が大きくなるにつれて漸増し、かつ以下の式(2)、式(3)および式(4)を満たす、
     面光源装置。
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
     [上記式(2)、式(3)および式(4)において、
     Pは、前記複数の発光装置の中心間距離であり、
     Hは、前記基板の上面と前記光拡散板の下面との間隔であり、
     Lは、前記光軸と前記光拡散板の下面との交点から、前記最も高い光度の光が前記光拡散板の下面に到達した点までの距離であり、
     Iは、前記発光装置から前記光軸方向に出射された光の光度であり、
     I1/2は、前記光拡散板の下面における、前記光軸と前記光拡散板の下面との交点からP/2の距離の点に向かって、前記発光装置から出射された光の光度である。]
    A substrate,
    A plurality of light emitting devices according to claim 5 or 6, which are arranged on the substrate at regular intervals.
    A light diffusing plate that is disposed substantially parallel to the substrate on the plurality of light emitting devices and transmits light from the light emitting devices while diffusing;
    In the angular range from the direction along the optical axis to the direction in which the light having the highest luminous intensity is emitted from the light emitting device, the luminous intensity of the light from the light emitting device gradually increases as the angle with respect to the optical axis increases, and Satisfying Equation (2), Equation (3) and Equation (4)
    Surface light source device.
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    [In the above formula (2), formula (3) and formula (4),
    P is a distance between the centers of the plurality of light emitting devices,
    H is the distance between the upper surface of the substrate and the lower surface of the light diffusing plate,
    L is the distance from the intersection of the optical axis and the lower surface of the light diffusing plate to the point where the light with the highest luminous intensity reaches the lower surface of the light diffusing plate,
    I 0 is the luminous intensity of the light emitted from the light emitting device in the optical axis direction;
    I 1/2 is the luminous intensity of the light emitted from the light emitting device toward the point at a distance of P / 2 from the intersection of the optical axis and the lower surface of the light diffusing plate on the lower surface of the light diffusing plate. is there. ]
  8.  請求項7に記載の面光源装置と、
     前記面光源装置から出射された光を照射される被照射部材と、
     を有する、表示装置。
     
    A surface light source device according to claim 7;
    A member to be irradiated with light emitted from the surface light source device;
    A display device.
PCT/JP2016/075177 2015-09-03 2016-08-29 Luminous flux control member, light-emitting device, planar light source device, and display device WO2017038758A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680051184.1A CN107923997B (en) 2015-09-03 2016-08-29 Flux control member, light emitting device, planar light source device and display device
US15/757,454 US10634296B2 (en) 2015-09-03 2016-08-29 Luminous flux control member, light-emitting device, planar light source device, and display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015174013 2015-09-03
JP2015-174013 2015-09-03
JP2015-199459 2015-10-07
JP2015199459A JP6682229B2 (en) 2015-09-03 2015-10-07 Light flux control member, light emitting device, surface light source device, and display device

Publications (1)

Publication Number Publication Date
WO2017038758A1 true WO2017038758A1 (en) 2017-03-09

Family

ID=58187595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075177 WO2017038758A1 (en) 2015-09-03 2016-08-29 Luminous flux control member, light-emitting device, planar light source device, and display device

Country Status (1)

Country Link
WO (1) WO2017038758A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211221A (en) * 2007-02-27 2008-09-11 Samsung Electro Mech Co Ltd Backlight unit having light-emitting diodes and method of manufacturing the same
WO2014024681A1 (en) * 2012-08-10 2014-02-13 コニカミノルタ株式会社 Optical element for led and led illumination device
JP2014063718A (en) * 2012-08-27 2014-04-10 Enplas Corp Luminous flux control member, light-emitting device, surface light source device, and display apparatus
JP2014102485A (en) * 2012-10-23 2014-06-05 Konica Minolta Inc Optical element for led, and led illumination device
US20150211713A1 (en) * 2014-01-28 2015-07-30 Enplas Corporation Surface light source device and display apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211221A (en) * 2007-02-27 2008-09-11 Samsung Electro Mech Co Ltd Backlight unit having light-emitting diodes and method of manufacturing the same
WO2014024681A1 (en) * 2012-08-10 2014-02-13 コニカミノルタ株式会社 Optical element for led and led illumination device
JP2014063718A (en) * 2012-08-27 2014-04-10 Enplas Corp Luminous flux control member, light-emitting device, surface light source device, and display apparatus
JP2014102485A (en) * 2012-10-23 2014-06-05 Konica Minolta Inc Optical element for led, and led illumination device
US20150211713A1 (en) * 2014-01-28 2015-07-30 Enplas Corporation Surface light source device and display apparatus

Similar Documents

Publication Publication Date Title
JP6111110B2 (en) Luminous flux control member, light emitting device, surface light source device, and display device
JP5957364B2 (en) Luminous flux control member, light emitting device, surface light source device, and display device
US10222651B2 (en) Light flux controlling member, light emitting device, surface light source device and display device
JP6682229B2 (en) Light flux control member, light emitting device, surface light source device, and display device
JP6629601B2 (en) Light flux controlling member, light emitting device, surface light source device, and display device
JP6356997B2 (en) Light flux controlling member, light emitting device, surface light source device, and display device
JP6383652B2 (en) Light emitting device and light flux controlling member
WO2018194118A1 (en) Light flux control member, light-emitting device, surface light source device and display device
WO2018155676A1 (en) Light-emitting device, planar light source device and display device
JP6130164B2 (en) Surface light source device and display device
WO2017002725A1 (en) Light-emitting device, surface light source device and display device
JP6067696B2 (en) Luminous flux control member, light emitting device, lighting device, and display device
JP2017016995A (en) Light-emitting device, surface light source device and display device
WO2017002686A1 (en) Light flux controlling member, light emitting device, surface light source device and display device
JP6983116B2 (en) Surface light source device and display device
WO2017038758A1 (en) Luminous flux control member, light-emitting device, planar light source device, and display device
JP2012145829A (en) Light-emitting device and luminaire
WO2018135407A1 (en) Luminous flux control member, light-emitting device, planar light source device, and display device
WO2019087871A1 (en) Light bundle control member, light emitting device, area-light source device, and display device
US20210072596A1 (en) Light emitting device, surface light source device, and luminous flux control member
WO2018159676A1 (en) Planar light source device and display device
WO2019039366A1 (en) Light emitting device, surface light source device, and luminous flux control member
JP2018036407A (en) Luminous flux control member, light emitting device, surface light source device, and display device
WO2021070343A1 (en) Planar light source device and display device
TWI548838B (en) Optical component and illumination apparatus having the optical component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841790

Country of ref document: EP

Kind code of ref document: A1