WO2024034458A1 - Optical member and illumination device - Google Patents

Optical member and illumination device Download PDF

Info

Publication number
WO2024034458A1
WO2024034458A1 PCT/JP2023/028084 JP2023028084W WO2024034458A1 WO 2024034458 A1 WO2024034458 A1 WO 2024034458A1 JP 2023028084 W JP2023028084 W JP 2023028084W WO 2024034458 A1 WO2024034458 A1 WO 2024034458A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
predetermined direction
optical member
central region
Prior art date
Application number
PCT/JP2023/028084
Other languages
French (fr)
Japanese (ja)
Inventor
圭一郎 野村
隆延 豊嶋
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2024034458A1 publication Critical patent/WO2024034458A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present invention relates to an optical member and a lighting device.
  • a light source device using a lens that utilizes total internal reflection a so-called TIR lens
  • a TIR lens includes a refracting section located in the center and a reflecting section located around the refracting section.
  • Patent Document 1 is known as a document disclosing a light source device using a TIR lens.
  • the optical unit (light source device) disclosed in Patent Document 1 includes a plurality of light sources (light emitting elements), a plurality of optical means (TIR lenses) each having a function of a collimating lens arranged on the plurality of light sources, and a plurality of optical means. It includes a plurality of lens arrays arranged on the exit surface side of the lens, forming a plurality of different light distribution patterns.
  • the optical unit disclosed in Patent Document 1 is mainly used as a vehicle lamp.
  • a light source device as described above may be used, for example, as a lighting device (backlight) for a head-up display (hereinafter sometimes referred to as "HUD") mounted on a vehicle or the like.
  • a light source device used in a HUD is particularly required to be bright and without unevenness, that is, to have high brightness and a uniform brightness distribution. In other words, high luminous flux utilization efficiency and appropriate light distribution are required.
  • the above-mentioned TIR lens can condense the light emitted from the light emitting element that has a large angle (directivity angle) with the emission axis and spreads outward, so it may be used as an optical means suitable for this purpose. many.
  • FIG. 9 is a schematic diagram illustrating an overview of a lighting device using a conventional TIR lens and light irradiation.
  • the conventional lighting device includes a plurality of light emitting elements 1, a TIR lens 2, a light distribution adjusting lens 3, a diffusion sheet 4, and a display section 5.
  • the arrows in the figure schematically indicate the traveling direction of light emitted from each light emitting element 1.
  • a plurality of light emitting elements 1 are arranged along the lateral direction (predetermined direction) in the figure, and irradiate light in the direction of the TIR lens 2.
  • the TIR lens 2 is formed to extend in the lateral direction in the figure, and collimates the light from the light emitting element 1 in a direction (second direction) perpendicular to the paper surface of FIG.
  • the light distribution adjustment lens 3 refracts the light from the light emitting element 1 via the TIR lens 2 and irradiates it onto the diffusion sheet 4 and the display section 5 .
  • the diffusion sheet 4 transmits the irradiated light while diffusing or scattering it.
  • the display unit 5 is a part of a liquid crystal display device or the like that transmits light and displays an image, and displays an image using light diffused by the diffusion sheet 4 from the back side.
  • a concave lens is used as the light distribution adjustment lens 3, the light incidence surface and the light exit surface of which are concave over the entire area in the lateral direction (predetermined direction) in the figure.
  • the irradiation range of the light transmitted through the TIR lens 2 can be expanded along a predetermined direction, and a wide range on the diffusion sheet 4 and the display section 5 can be well irradiated.
  • the light incident on both ends of the TIR lens 2 and the light distribution adjustment lens 3 in a predetermined direction is further expanded outward, so that a part of the light is transferred to the diffusion sheet 4.
  • the light propagates outside the range of the display section 5, resulting in a decrease in the utilization efficiency of the emitted light from the light emitting element 1.
  • the present invention has been made in view of the above conventional problems, and provides an optical member and a lighting device that can make the light distribution uniform along a predetermined direction and improve the light utilization efficiency.
  • the purpose is to
  • an optical member of the present invention has a light entrance surface into which light enters, and a light exit surface disposed opposite to the light entrance surface, the light entrance surface and the light exit surface are arranged opposite to the light entrance surface.
  • the surface is formed along a predetermined direction, and has a central region located in the center of the predetermined direction, and both side regions located on both sides of the central region along the predetermined direction, and the central region is It has a negative optical power, and the both side regions have a positive optical power.
  • the optical member has negative optical power in the central region in a predetermined direction and positive optical power in both side regions, so that light is expanded in the vicinity of the central region. At the same time, it is possible to collect light within the irradiation range in both side areas, make the light distribution uniform along a predetermined direction, and improve the light utilization efficiency.
  • the central region has a concave lens shape that is thin near the center and thick at the ends in the predetermined direction, and the both side regions have a convex lens shape that is thin at the ends in the predetermined direction.
  • the central region has a meniscus lens shape in which the light entrance surface and the light exit surface are curved in the direction of incidence of the light in the predetermined direction.
  • a lenticular portion in which concavities and convexities are repeated along two axial directions perpendicular to the predetermined direction is formed on the light entrance surface or the light exit surface.
  • the lighting device of the present invention includes the optical member according to any one of the above aspects, a plurality of light emitting parts arranged on the light incident surface side, and a combination of the optical member and the light emitting part. It is characterized by having a collimating lens disposed in between.
  • the plurality of light emitting units are arranged along the predetermined direction
  • the collimating lens is a refracting lens arranged at the center along a second direction perpendicular to the predetermined direction.
  • This is a total internal reflection lens comprising a refracting section and a reflecting section disposed on both sides of the refracting section.
  • the total internal reflection lens has the refracting section and the reflecting section extending in the predetermined direction.
  • an optical member and a lighting device that can make the light distribution uniform along a predetermined direction and improve the light utilization efficiency.
  • FIG. 1(a) is a schematic cross-sectional view along a predetermined direction
  • FIG. 1(b) is a schematic cross-sectional view along a second direction. It is a schematic cross-sectional view.
  • FIG. 2 is a diagram schematically explaining the outline of a lighting device 200 according to a second embodiment, and is a schematic cross-sectional view along a predetermined direction.
  • 3(a) shows a light distribution adjusting lens 113
  • FIG. 3(b) shows a light distribution adjusting lens 213.
  • FIG. 4(a) shows the light distribution adjusting lens 113
  • FIG. 4(b) shows the light distribution adjusting lens 213.
  • FIG. 6 is a diagram schematically showing a range 213d having the maximum thickness in the light distribution adjustment lens 213.
  • FIG. 6(a) shows a virtual image obtained by the lighting device 100
  • FIG. 6(b) shows a virtual image obtained by the lighting device 200
  • FIG. 6(c) shows the brightness distribution of the lighting device 100
  • FIG. 6(d) shows the brightness distribution of the lighting device 200
  • 7(a) shows the relative brightness distribution of the lighting device 100
  • FIG. 7(b) shows the relative brightness distribution of the lighting device 200
  • FIG. 8(a) is a schematic cross-sectional view along a predetermined direction
  • FIG. 8(b) is a schematic perspective view. be.
  • FIG. 2 is a schematic diagram illustrating an overview of a lighting device using a conventional TIR lens and light irradiation.
  • FIG. 1 is a diagram schematically explaining the outline of a lighting device 100 according to the present embodiment
  • FIG. 1(a) is a schematic cross-sectional view along a predetermined direction
  • FIG. FIG. 1A the horizontal direction is the x-axis direction (predetermined direction)
  • the vertical direction is the z-axis direction
  • the direction perpendicular to the plane of the paper is the y-axis direction (second direction).
  • the lighting device 100 includes a light emitting element 111, a TIR lens 112, a light distribution adjustment lens 113, a diffusion sheet 114, and a display section 115.
  • the light emitting element 111 is an electronic component that is mounted on a mounting board (not shown) on which wiring is formed and emits light in a predetermined color when a current is supplied by a drive circuit.
  • a plurality of light emitting elements 111 are arranged along the x-axis direction (predetermined direction), and correspond to a light emitting section in the present invention.
  • the term "arrangement along the x-axis direction" includes a case where it can be considered to be substantially in the x-axis direction, and may be an inclination of several degrees, a staggered arrangement, or the like.
  • the specific structure of the light emitting element 111 is not limited, it may be an LED package that combines a light emitting diode (LED) that emits primary light and a wavelength conversion member that converts the wavelength of a part of the primary light into secondary light.
  • LED light emitting diode
  • the material of the light emitting diode is not limited either, and known materials and structures can be used.
  • a GaN-based LED that emits blue light can be used.
  • the material of the wavelength conversion member is not limited, and for example, a YAG-based phosphor material that emits yellow light when excited by blue light can be used.
  • the light emitting elements 111 are arranged in one row, but may be arranged in two or more rows. Further, the light emitting element 111 is not limited to an LED, but may be a semiconductor laser or the like.
  • the TIR lens 112 is arranged between the plurality of light emitting elements 111 and the light distribution adjustment lens 113, and extends along the arrangement direction (x-axis direction) of the light emitting elements 111. Further, the TIR lens 112 includes a refraction section 112a disposed at the center and reflection sections 112b disposed on both sides of the refraction section 112a in the y-axis direction (second direction) orthogonal to the x-axis direction. . Further, the reflecting portion 112b has a reflecting surface 112c whose outer surface in the y-axis direction is inclined. Further, the surfaces of the refracting section 112a and the reflecting section 112b that face the light distribution adjusting lens 113 have an output surface 112d.
  • a part of the light emitted from the light emitting element 111 enters the refracting section 112a, is refracted according to the refractive index difference, passes through the refracting section 112a, and is irradiated onto the light distribution adjustment lens 113 from the output surface 112d.
  • the other part of the light emitted from the light emitting element 111 enters the reflection part 112b from the inner surface provided at the boundary between the refraction part 112a and the reflection part 112b, is totally reflected by the reflection surface 112c, and is reflected from the output surface.
  • the light is irradiated onto the light distribution adjustment lens 113 from 112d.
  • the TIR lens 112 focuses the light emitted from the light emitting element 111 having a large directivity angle in the y-axis direction by total internal reflection (TIR). It has a function as a collimating lens that emits parallel light or light close to parallel light (hereinafter, both are collectively referred to as "substantially parallel light”). Therefore, the TIR lens 112 corresponds to a total internal reflection lens in the present invention.
  • the light emitted from the light emitting element 111 with a large directivity angle is, for example, light that spreads outward in the y-axis direction in FIG. 1(b). That is, the TIR lens 112 can efficiently collect the light emitted from the light emitting element 111.
  • the light distribution adjustment lens 113 is arranged on the exit surface 112d side of the TIR lens 112, and has a light entrance surface into which light enters, and a light exit surface arranged opposite to the light entrance surface.
  • the light distribution adjustment lens 113 is formed to extend along the x-axis direction, and has a central region 113a and both side regions 113b.
  • a lenticular portion 113c is formed with repeated concavities and convexities along the y-axis direction.
  • this embodiment shows an example in which the lenticular portion 113c is provided on the light incident surface side, the lenticular portion 113c may be provided on the light exit surface side, or the lenticular portion 113c may be omitted.
  • the central region 113a is located at the center in the x-axis direction and has negative optical power. Further, the both-side regions 113b are located on both sides of the central region 113a, and have positive optical power.
  • the boundaries between the central region 113a and both side regions 113b may not be clearly defined in terms of shape, there is a region where light emitted from the light exit surface expands when parallel light enters from the light entrance surface. This corresponds to the central region 113a, and the regions where light is focused correspond to both side regions 113b. Therefore, the light distribution adjusting lens 113 corresponds to an optical member in the present invention.
  • the central region 113a and the light distribution adjustment lens 113 are not limited, the central region 113a has a concave lens shape that is thin near the center and thick at the edges, as shown in FIG. A combination of convex lens-shaped both side regions 113b can be used.
  • the TIR lens 112 and the light distribution adjustment lens 113 have the function of guiding the light emitted from the light emitting element 111 to the illumination area of the illumination target.
  • the back surface of the diffusion sheet 114 (the surface on the light emitting element 111 side) is used as an example of the illumination area.
  • the area to be illuminated may be determined by taking into consideration the specifications of the light source device, and for example, the back surface of the display unit 115 may be directly illuminated.
  • the TIR lens 112 and the light distribution adjustment lens 113 are made of, for example, resin such as acrylic resin, glass, or the like.
  • the diffusion sheet 114 is an optical member that is disposed between the light distribution adjustment lens 113 and the display section 115 and transmits the light emitted from the light distribution adjustment lens 113 while diffusing or scattering it. Therefore, the diffusion sheet 114 functions to diffuse the highly directional light deflected by the TIR lens 112 and the light distribution adjustment lens 113 and output it to the display section 115, so that the display section 115 is more uniformly illuminated.
  • the specific material and structure of the diffusion sheet 114 are not limited, and a substantially plate-like sheet in which light-scattering particles are dispersed in resin may be used, or a sheet having a structure in which minute irregularities are formed on the surface of a resin material may be used. You can also use it as
  • the display unit 115 is a device that displays an image in response to an image signal from a control unit (not shown). Although the specific configuration of the display section 115 is not limited, a liquid crystal display device or the like that transmits light from the back side (light emitting element 111 side) and displays an image can be used.
  • the light emitted from the light emitting element 111 enters the TIR lens 112 while expanding in the x-axis direction and the y-axis direction. Further, as shown in FIG. 1(a), in the TIR lens 112, the structure of the refracting part 112a and the reflecting part 112b extends along the x-axis direction, so that the light spread in the x-axis direction remains at the exit surface. The light is magnified and irradiated from 112d toward the light distribution adjustment lens 113.
  • the light incident on the central region 113a of the light distribution adjustment lens 113 receives negative optical power and is refracted in the direction of further expansion, and is irradiated in a wide range near the center of the diffusion sheet 114 and the display section 115. .
  • the light incident on both side regions 113b of the light distribution adjustment lens 113 receives positive optical power and is refracted in the direction of condensation, and is condensed or parallel light toward the vicinity of both sides of the diffusion sheet 114 and the display section 115. irradiated.
  • the TIR lens 112 since the TIR lens 112 is provided with a refracting section 112a and a reflecting section 112b in the y-axis direction, it functions as a collimating lens in the y-axis direction, and the output surface 112d Light is emitted as substantially parallel light from.
  • the light collimated in the y-axis direction is refracted by the lenticular portion 113c provided on the light incidence surface of the light distribution adjustment lens 113, and then irradiated onto the diffusion sheet 114.
  • the intensity of light is relatively high near the center of the x-axis where the light from the plurality of light emitting elements 111 overlaps and reaches the light emitting elements 111 at the ends.
  • the intensity of light tends to be relatively small near both ends of the x-axis, where only light from the center reaches.
  • negative optical power is given to the light in the central region 113a of the light distribution adjustment lens 113, and the light incident on the center of the x-axis is expanded, thereby changing the light distribution of the output light. Can be expanded.
  • the light distribution adjustment lens 113 has negative optical power in the central region 113a in the x-axis direction, and has positive optical power in both side regions 113b.
  • the light is expanded in the vicinity of the central region 113a, while the light is concentrated within the irradiation range in the both side regions 113b, making the light distribution uniform along the x-axis direction, and increasing the light utilization efficiency. It becomes possible to improve the performance.
  • FIG. 2 is a diagram schematically explaining the outline of the lighting device 200 according to the present embodiment, and is a schematic cross-sectional view along a predetermined direction.
  • the lighting device 200 includes a light emitting element 211, a TIR lens 212, a light distribution adjustment lens 213, a diffusion sheet 214, and a display section 215.
  • the structure of the refracting section 112a and the reflecting section 112b of the TIR lens 212 along the y-axis direction is the same as that of the first embodiment, and the explanation thereof will be omitted.
  • the light distribution adjustment lens 213 is formed to extend along the x-axis direction, and has a central region 213a and both side regions 213b. Further, the central region 213a has negative optical power, and both side regions 113b have positive optical power. As shown in FIG. 2, in this embodiment, the central region 213a has a light incident surface and a light exit surface curved in the direction of the light emitting element 211 (light incident direction) in the x-axis direction, and has a meniscus lens shape. ing.
  • the light distribution adjustment lens 213 has negative optical power in the central region 213a in the x-axis direction and positive optical power in both side regions 213b. This makes it possible to expand the light in the vicinity of the central region 213a and gather the light within the irradiation range in the both side regions 213b, making the light distribution uniform along the x-axis direction and improving the light utilization efficiency. becomes.
  • FIG. 3 is a schematic diagram illustrating the progression of light in the illumination devices 100, 200, in which FIG. 3(a) shows the light distribution adjustment lens 113, and FIG. 3(b) shows the light distribution adjustment lens 213.
  • FIGS. 3A and 3B schematically illustrate the path of light that receives negative optical power in the vicinity of the boundary between the central regions 113a and 213a and the both-side regions 113b and 213b.
  • the incident light receives negative optical power and positive optical power, respectively, and the light distribution is changed along the x-axis direction. Similar to the first embodiment, it is possible to make the light uniform and improve the light usage efficiency.
  • the central region 113a has a concave lens shape, and the both side regions 113b have a convex lens shape, so that the light incident surface and the light The change in curvature of the exit surface increases.
  • the negative optical power is greater than in the center of the central region 113a, and light traveling outward from the diffusion sheet 114 is generated.
  • the central region 213a has a meniscus lens shape, and the both side regions 213b have a convex lens shape, so that the boundary between the two regions forms a light incident surface.
  • the change in curvature of the light exit surface can be made smaller than that of the light distribution adjustment lens 113. Therefore, the negative optical power in the central region 213a is approximately the same throughout the region, and light traveling outward from the diffusion sheet 214 can be suppressed.
  • the traveling direction of the light can be set to fall within the diffusion sheet 214, so that the light enters the diffusion sheet 214. Further uniformity can be achieved by increasing the amount of light.
  • FIG. 4 is a schematic diagram illustrating the progress of light near the boundary where the optical power changes between positive and negative.
  • FIG. 4(a) shows the light distribution adjustment lens 113
  • FIG. 4(b) shows the light distribution adjustment lens 113. 213 is shown.
  • a part of the light obliquely incident on the end of the light incident surface in the central region 113a is strongly affected by negative optical power and is shifted along the x-axis.
  • the light may spread outward in the direction and be emitted from the light emitting surfaces of both side regions 113b. Since the both side regions 113b receive strong positive optical power, the light travels further outward in the x-axis direction.
  • the light distribution adjustment lens 213 as shown in FIG. The light reaches the side closer to the central region 213a on the light emitting surface of 213b and is emitted. Therefore, the positive optical power received by both side regions 213b becomes weaker than that of the light distribution adjustment lens 113, and the angle of the light directed outward in the x-axis direction can be made smaller and placed within the range of the diffusion sheet 214.
  • FIG. 5 is a diagram schematically showing a range 213d having the maximum thickness in the light distribution adjustment lens 213.
  • a holding member for appropriately holding and fixing may be formed integrally with the light distribution adjusting lens 213.
  • the thickness of the light distribution adjusting lens 213 indicates the thickness of a portion that has optical power and contributes to refraction of light.
  • the light distribution adjustment lens 213 has a central area 213a shaped like a meniscus lens and both side areas 213b shaped like a convex lens, and has a maximum thickness in the z-axis direction at any position in the x-axis direction. .
  • the position where this light distribution adjustment lens 213 has the maximum thickness is defined as the thickest position.
  • the thickest position When the center in the x-axis direction is expressed as 0% and both ends as 100%, it is preferable that the thickest position exists within a range 213d of 5% or more and 95% or less.
  • the thickest position is smaller than the range 213d, the expansion of light by the central region 213a becomes insufficient.
  • the thickest position is larger than the range 213d, the light condensation at both side regions 213b becomes insufficient, and the amount of light reaching the outside of the diffusion sheet 214 increases.
  • FIG. 5 shows only the light distribution adjusting lens 213 in which the central region 213a is shaped like a meniscus lens, the same applies to the light distribution adjusting lens 113 in which the central region 113a is shaped like a concave lens. Further, although FIG. 5 shows an example of a bilaterally symmetrical shape as the light distribution adjustment lens 213, it may be bilaterally asymmetrical, and the maximum thickness and the thickest position in the left and right ranges 213d may be different.
  • FIG. 6 is a diagram showing virtual image display and brightness in the lighting devices 100 and 200
  • FIG. 6(a) shows a virtual image obtained by the lighting device 100
  • FIG. 6(b) shows a virtual image obtained by the lighting device 200
  • 6(c) shows the brightness distribution of the lighting device 100
  • FIG. 6(d) shows the brightness distribution of the lighting device 200.
  • the virtual images and brightness cross-sections shown in FIGS. 6(a) to 6(d) are obtained by using the illumination devices 100 and 200 as backlights of the HUD device, and using the lighting devices 100 and 200 as backlights of the HUD device. ) seen from the left end. As shown in FIGS.
  • the central region 213a of the light distribution adjustment lens 213 has a meniscus lens shape, so that the uniformity of the light distribution is more improved in the rightmost region in the figure. are doing.
  • FIG. 7 is a graph showing the brightness distribution of the lighting devices 100 and 200
  • FIG. 7(a) shows the relative brightness distribution of the lighting device 100
  • FIG. 7(b) shows the relative brightness distribution of the lighting device 200.
  • the relative brightness distributions shown in FIGS. 7(a) and 7(b) were measured at the center of the diffusion sheets 114 and 214 in the y-axis direction, as shown by solid lines in FIGS. 6(c) and 6(d).
  • both the light distribution adjustment lenses 113 and 213 emit light over a wide range with a relative brightness of 0.7 or more, and the light is distributed along the x-axis direction.
  • the distribution is made more uniform and the efficiency of light use is improved.
  • the light distribution adjustment lens 213 shown in FIG. 7(b) it is possible to irradiate with a relative brightness of 0.7 or more even near both ends, making the light distribution more uniform and making better use of light. Can improve efficiency.
  • FIG. 8 is a diagram showing a case where a lenticular portion 213c is provided on the light incidence surface of the light distribution adjustment lens 213,
  • FIG. 8(a) is a schematic cross-sectional view along a predetermined direction, and FIG. FIG.
  • the lenticular portion 213c is formed as a periodic uneven shape in the y-axis direction of the light incident surface, and the uneven shape extends along the x-axis direction.
  • FIG. 8 shows an example in which the lenticular portion 213c is provided on the light incident surface side
  • the lenticular portion 213c may be provided on the light emitting surface side, or may be provided on both the light incident surface side and the light emitting surface side. good.
  • the light distribution adjustment lenses 113, 213 are shaped like Fresnel lenses, by appropriately designing the shapes of the light entrance surface and the light exit surface, the central regions 113a, 213a have negative optical power, and both side regions 113b, 213b can have positive optical power. Further, by forming the light distribution adjusting lenses 113 and 213 into a Fresnel lens shape, it is possible to reduce the thickness.
  • the light distribution adjusting lenses 113, 213 are shown as having a quadrilateral shape in which the central regions 113a, 213a and both side regions 113b, 213b are extended in the y-axis direction.
  • the lenses 113 and 213 may have a circular shape.
  • the vicinity of the center of the circle becomes the central region 113a, 213a and has negative optical power, and the vicinity of the outer periphery becomes both side regions 113b, 213b and has positive optical power. It will have the following. In this case, it is preferable to use circular TIR lenses 112 and 212 as well. Further, a collimating lens having a shape different from that of the TIR lenses 112 and 212 may be used.

Abstract

Provided are an optical member and an illumination device that make it possible to achieve a uniform light allocation distribution in a predetermined direction, and improved light utilization efficiency. An optical member (113) comprises a light incident surface on which light is incident, and a light exit surface disposed opposite the light incident surface. The light incident surface and the light exit surface are formed along a predetermined direction. The optical member (113) includes a central region (113a) positioned at the center in the predetermined direction, and side regions (113b) that are positioned on both sides of the central region (113a) along the predetermined direction. The central region (113a) has a negative optical power, and the side regions (113b) have a positive optical power.

Description

光学部材および照明装置Optical components and lighting devices
 本発明は、光学部材および照明装置に関する。 The present invention relates to an optical member and a lighting device.
 従来全反射を利用したレンズ、いわゆるTIRレンズを用いた光源装置が知られている。TIRレンズは中央部に配置された屈折部、および屈折部の周囲に配置された反射部を備えている。TIRレンズを用いた光源装置を開示した文献として、例えば特許文献1が知られている。 A light source device using a lens that utilizes total internal reflection, a so-called TIR lens, is conventionally known. A TIR lens includes a refracting section located in the center and a reflecting section located around the refracting section. For example, Patent Document 1 is known as a document disclosing a light source device using a TIR lens.
 特許文献1に開示された光学ユニット(光源装置)は複数の光源(発光素子)、複数の光源上に各々配置されたコリメートレンズの機能を有する複数の光学手段(TIRレンズ)、複数の光学手段の出射面側に配置された複数のレンズアレイを備え、複数の異なる配光パターンを形成している。特許文献1に開示された光学ユニットの用途は、主に車両用灯具である。 The optical unit (light source device) disclosed in Patent Document 1 includes a plurality of light sources (light emitting elements), a plurality of optical means (TIR lenses) each having a function of a collimating lens arranged on the plurality of light sources, and a plurality of optical means. It includes a plurality of lens arrays arranged on the exit surface side of the lens, forming a plurality of different light distribution patterns. The optical unit disclosed in Patent Document 1 is mainly used as a vehicle lamp.
特開2021-189306号公報Japanese Patent Application Publication No. 2021-189306
 上記のような光源装置は例えば車両等に搭載されるヘッドアップディスプレイ(以下、「HUD」という場合がある)の照明装置(バックライト)として用いられる場合もある。HUDに用いる光源装置においては、特に明るく、むらのない、すなわち、高輝度で均一な輝度分布であることが求められる。換言すれば、光束の利用効率が高く、適切な配光であることが求められる。上記のTIRレンズは、発光素子からの出射光において出射軸とのなす角度(指向角)が大きく外側に広がる光も集光させることができるので、この目的に適合する光学手段として用いられる場合も多い。 A light source device as described above may be used, for example, as a lighting device (backlight) for a head-up display (hereinafter sometimes referred to as "HUD") mounted on a vehicle or the like. A light source device used in a HUD is particularly required to be bright and without unevenness, that is, to have high brightness and a uniform brightness distribution. In other words, high luminous flux utilization efficiency and appropriate light distribution are required. The above-mentioned TIR lens can condense the light emitted from the light emitting element that has a large angle (directivity angle) with the emission axis and spreads outward, so it may be used as an optical means suitable for this purpose. many.
 図9は、従来のTIRレンズを用いた照明装置の概要と光照射について説明する模式図である。図9に示すように、従来の照明装置は複数の発光素子1と、TIRレンズ2と、配光調整レンズ3と、拡散シート4と、表示部5を備えている。図中における矢印は、各発光素子1から照射される光の進行方向を模式的に示している。 FIG. 9 is a schematic diagram illustrating an overview of a lighting device using a conventional TIR lens and light irradiation. As shown in FIG. 9, the conventional lighting device includes a plurality of light emitting elements 1, a TIR lens 2, a light distribution adjusting lens 3, a diffusion sheet 4, and a display section 5. The arrows in the figure schematically indicate the traveling direction of light emitted from each light emitting element 1.
 複数の発光素子1は図中横方向(所定方向)に沿って配列されており、TIRレンズ2方向に光を照射する。TIRレンズ2は図中横方向に延伸して形成されており、図9の紙面に対して垂直な方向(第2方向)において発光素子1からの光をコリメートする。配光調整レンズ3は、TIRレンズ2を介した発光素子1からの光を屈折して、拡散シート4および表示部5に対して照射する。拡散シート4は照射された光を拡散または散乱しながら透過する。表示部5は、液晶表示装置等の光を透過して画像を表示する部分であり、拡散シート4で拡散された背面側からの光によって画像表示を行う。 A plurality of light emitting elements 1 are arranged along the lateral direction (predetermined direction) in the figure, and irradiate light in the direction of the TIR lens 2. The TIR lens 2 is formed to extend in the lateral direction in the figure, and collimates the light from the light emitting element 1 in a direction (second direction) perpendicular to the paper surface of FIG. The light distribution adjustment lens 3 refracts the light from the light emitting element 1 via the TIR lens 2 and irradiates it onto the diffusion sheet 4 and the display section 5 . The diffusion sheet 4 transmits the irradiated light while diffusing or scattering it. The display unit 5 is a part of a liquid crystal display device or the like that transmits light and displays an image, and displays an image using light diffused by the diffusion sheet 4 from the back side.
 図9に示した従来技術の照明装置では、一例として配光調整レンズ3として図中横方向(所定方向)の全域にわたって光入射面および光出射面が凹形状である凹レンズを用いている。これにより、TIRレンズ2を透過した光の照射範囲を所定方向に沿って拡大して、拡散シート4および表示部5における広い範囲を良好に照射することができる。 In the conventional illumination device shown in FIG. 9, as an example, a concave lens is used as the light distribution adjustment lens 3, the light incidence surface and the light exit surface of which are concave over the entire area in the lateral direction (predetermined direction) in the figure. Thereby, the irradiation range of the light transmitted through the TIR lens 2 can be expanded along a predetermined direction, and a wide range on the diffusion sheet 4 and the display section 5 can be well irradiated.
 しかし、配光調整レンズ3として凹レンズを用いることで、TIRレンズ2および配光調整レンズ3の所定方向における両端に入射した光はさらに外部方向に拡大されるため、光の一部が拡散シート4および表示部5の範囲外に進行して、発光素子1からの出射光の利用効率が低下してしまうという問題があった。 However, by using a concave lens as the light distribution adjustment lens 3, the light incident on both ends of the TIR lens 2 and the light distribution adjustment lens 3 in a predetermined direction is further expanded outward, so that a part of the light is transferred to the diffusion sheet 4. There is also a problem in that the light propagates outside the range of the display section 5, resulting in a decrease in the utilization efficiency of the emitted light from the light emitting element 1.
 そこで本発明は、上記従来の問題点に鑑みなされたものであり、所定方向に沿って配光分布を均一化するとともに、光の利用効率を向上させることが可能な光学部材および照明装置を提供することを目的とする。 The present invention has been made in view of the above conventional problems, and provides an optical member and a lighting device that can make the light distribution uniform along a predetermined direction and improve the light utilization efficiency. The purpose is to
 上記課題を解決するために、本発明の光学部材は、光が入射する光入射面と、前記光入射面と対向して配された光出射面を有し、前記光入射面および前記光出射面は、所定方向に沿って形成されており、前記所定方向の中央に位置する中央領域と、前記所定方向に沿って前記中央領域の両側に位置する両側領域とを有し、前記中央領域は負の光学的パワーを有し、前記両側領域は正の光学的パワーを有することを特徴とする。 In order to solve the above problems, an optical member of the present invention has a light entrance surface into which light enters, and a light exit surface disposed opposite to the light entrance surface, the light entrance surface and the light exit surface are arranged opposite to the light entrance surface. The surface is formed along a predetermined direction, and has a central region located in the center of the predetermined direction, and both side regions located on both sides of the central region along the predetermined direction, and the central region is It has a negative optical power, and the both side regions have a positive optical power.
 このような本発明の光学部材では、光学部材が所定方向の中央領域で負の光学的パワーを有し、両側領域で正の光学的パワーを有することで、中央領域の近傍では光を拡大しつつ両側領域では光を照射範囲内に集め、所定方向に沿って配光分布を均一化するとともに、光の利用効率を向上させることが可能となる。 In such an optical member of the present invention, the optical member has negative optical power in the central region in a predetermined direction and positive optical power in both side regions, so that light is expanded in the vicinity of the central region. At the same time, it is possible to collect light within the irradiation range in both side areas, make the light distribution uniform along a predetermined direction, and improve the light utilization efficiency.
 また、本発明の一態様では、前記中央領域は、前記所定方向において中心近傍が薄く端部が厚い凹レンズ形状であり、前記両側領域は、前記所定方向において端部が薄い凸レンズ形状である。 Further, in one aspect of the present invention, the central region has a concave lens shape that is thin near the center and thick at the ends in the predetermined direction, and the both side regions have a convex lens shape that is thin at the ends in the predetermined direction.
 また、本発明の一態様では、前記中央領域は、前記所定方向において前記光入射面および前記光出射面が前記光の入射方向に湾曲したメニスカスレンズ形状である。 Further, in one aspect of the present invention, the central region has a meniscus lens shape in which the light entrance surface and the light exit surface are curved in the direction of incidence of the light in the predetermined direction.
 また、本発明の一態様では、前記光入射面または前記光出射面には、前記所定方向と直交する2軸方向に沿って凹凸が繰り返されるレンチキュラー部が形成されている。 Furthermore, in one aspect of the present invention, a lenticular portion in which concavities and convexities are repeated along two axial directions perpendicular to the predetermined direction is formed on the light entrance surface or the light exit surface.
 また上記課題を解決するために、本発明の照明装置は、上記何れか一つの態様の光学部材と、前記光入射面側に配置された複数の発光部と、前記光学部材と前記発光部の間に配置されたコリメートレンズを有することを特徴とする。 In order to solve the above problems, the lighting device of the present invention includes the optical member according to any one of the above aspects, a plurality of light emitting parts arranged on the light incident surface side, and a combination of the optical member and the light emitting part. It is characterized by having a collimating lens disposed in between.
 また、本発明の一態様では、複数の前記発光部は、前記所定方向に沿って配置されており、前記コリメートレンズは、前記所定方向と直交する第2方向に沿った中央に配置された屈折部と、前記屈折部の両脇に配置された反射部を備えた内部全反射レンズである。 Further, in one aspect of the present invention, the plurality of light emitting units are arranged along the predetermined direction, and the collimating lens is a refracting lens arranged at the center along a second direction perpendicular to the predetermined direction. This is a total internal reflection lens comprising a refracting section and a reflecting section disposed on both sides of the refracting section.
 また、本発明の一態様では、前記内部全反射レンズは、前記所定方向に前記屈折部および前記反射部が延伸されている。 Furthermore, in one aspect of the present invention, the total internal reflection lens has the refracting section and the reflecting section extending in the predetermined direction.
 本発明では、所定方向に沿って配光分布を均一化するとともに、光の利用効率を向上させることが可能な光学部材および照明装置を提供することができる。 According to the present invention, it is possible to provide an optical member and a lighting device that can make the light distribution uniform along a predetermined direction and improve the light utilization efficiency.
第1実施形態に係る照明装置100の概要を模式的に説明する図であり、図1(a)は所定方向に沿った模式断面図であり、図1(b)は第2方向に沿った模式断面図である。1(a) is a schematic cross-sectional view along a predetermined direction, and FIG. 1(b) is a schematic cross-sectional view along a second direction. It is a schematic cross-sectional view. 第2実施形態に係る照明装置200の概要を模式的に説明する図であり、所定方向に沿った模式断面図である。FIG. 2 is a diagram schematically explaining the outline of a lighting device 200 according to a second embodiment, and is a schematic cross-sectional view along a predetermined direction. 照明装置100,200における光の進行について説明する模式図であり、図3(a)は配光調整レンズ113を示し、図3(b)は配光調整レンズ213を示している。3(a) shows a light distribution adjusting lens 113, and FIG. 3(b) shows a light distribution adjusting lens 213. FIG. 光学的パワーの正負が切り替わる境界近傍での光の進行について説明する模式図であり、図4(a)は配光調整レンズ113を示し、図4(b)は配光調整レンズ213を示している。4(a) shows the light distribution adjusting lens 113, and FIG. 4(b) shows the light distribution adjusting lens 213. FIG. There is. 配光調整レンズ213における最大の厚みを有する範囲213dを模式的に示す図である。FIG. 6 is a diagram schematically showing a range 213d having the maximum thickness in the light distribution adjustment lens 213. 照明装置100,200での虚像表示と輝度を示す図であり、図6(a)は照明装置100で得られる虚像を示し、図6(b)は照明装置200で得られる虚像を示し、図6(c)は照明装置100の輝度分布を示し、図6(d)は照明装置200の輝度分布を示している。6(a) shows a virtual image obtained by the lighting device 100, FIG. 6(b) shows a virtual image obtained by the lighting device 200, and FIG. 6(c) shows the brightness distribution of the lighting device 100, and FIG. 6(d) shows the brightness distribution of the lighting device 200. 照明装置100,200の輝度分布を示すグラフであり、図7(a)は照明装置100の相対輝度分布を示し、図7(b)は照明装置200の相対輝度分布を示している。7(a) shows the relative brightness distribution of the lighting device 100, and FIG. 7(b) shows the relative brightness distribution of the lighting device 200. FIG. 配光調整レンズ213の光入射面にレンチキュラー部213cを設けた場合を示す図であり、図8(a)は所定方向に沿った模式断面図であり、図8(b)は模式斜視図である。8(a) is a schematic cross-sectional view along a predetermined direction, and FIG. 8(b) is a schematic perspective view. be. 従来のTIRレンズを用いた照明装置の概要と光照射について説明する模式図である。FIG. 2 is a schematic diagram illustrating an overview of a lighting device using a conventional TIR lens and light irradiation.
 (第1実施形態)
 以下、本発明の実施形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。図1は、本実施形態に係る照明装置100の概要を模式的に説明する図であり、図1(a)は所定方向に沿った模式断面図であり、図1(b)は第2方向に沿った模式断面図である。図1(a)における横方向をx軸方向(所定方向)とし、縦方向をz軸方向とし、紙面に垂直な方向をy軸方向(第2方向)とする。また、図1(b)における横方向はy軸方向に対応し、縦方向はz軸方向に対応し、紙面に垂直な方向はx軸方向に対応している。図1(a)(b)に示すように、照明装置100は、発光素子111と、TIRレンズ112と、配光調整レンズ113と、拡散シート114と、表示部115を有している。
(First embodiment)
Embodiments of the present invention will be described in detail below with reference to the drawings. Identical or equivalent constituent elements, members, and processes shown in each drawing are denoted by the same reference numerals, and redundant explanations will be omitted as appropriate. FIG. 1 is a diagram schematically explaining the outline of a lighting device 100 according to the present embodiment, FIG. 1(a) is a schematic cross-sectional view along a predetermined direction, and FIG. FIG. In FIG. 1A, the horizontal direction is the x-axis direction (predetermined direction), the vertical direction is the z-axis direction, and the direction perpendicular to the plane of the paper is the y-axis direction (second direction). Further, in FIG. 1(b), the horizontal direction corresponds to the y-axis direction, the vertical direction corresponds to the z-axis direction, and the direction perpendicular to the paper surface corresponds to the x-axis direction. As shown in FIGS. 1A and 1B, the lighting device 100 includes a light emitting element 111, a TIR lens 112, a light distribution adjustment lens 113, a diffusion sheet 114, and a display section 115.
 発光素子111は、配線が形成された搭載基板(図示省略)に搭載されて、駆動回路によって電流が供給されることで所定の色で発光する電子部品である。発光素子111は複数個がx軸方向(所定方向)に沿って配置されており、本発明における発光部に相当している。ここではx軸方向に沿って配置とは、実質的にx軸方向と見做せる場合を含み、数度の傾斜や千鳥状の配置等であってもよい。発光素子111の具体的な構造は限定されないが、一次光を発光する発光ダイオード(LED:Light Emitting Diode)と、一次光の一部を二次光に波長変換する波長変換部材を組み合わせたLEDパッケージを用いることができる。また、発光ダイオードの材料も限定されず、公知の材料および構造を用いることができる。一例としては、青色光を発光するGaN系LEDを用いることができる。また、波長変換部材の材料も限定されず、一例としては青色光で励起されて黄色光を発光するYAG系蛍光体材料等を用いることができる。なお、本実施形態では発光素子111の配列数を1列としているが、2列以上であってもよい。また発光素子111はLEDに限らず半導体レーザー等であってもよい。 The light emitting element 111 is an electronic component that is mounted on a mounting board (not shown) on which wiring is formed and emits light in a predetermined color when a current is supplied by a drive circuit. A plurality of light emitting elements 111 are arranged along the x-axis direction (predetermined direction), and correspond to a light emitting section in the present invention. Here, the term "arrangement along the x-axis direction" includes a case where it can be considered to be substantially in the x-axis direction, and may be an inclination of several degrees, a staggered arrangement, or the like. Although the specific structure of the light emitting element 111 is not limited, it may be an LED package that combines a light emitting diode (LED) that emits primary light and a wavelength conversion member that converts the wavelength of a part of the primary light into secondary light. can be used. Further, the material of the light emitting diode is not limited either, and known materials and structures can be used. As an example, a GaN-based LED that emits blue light can be used. Further, the material of the wavelength conversion member is not limited, and for example, a YAG-based phosphor material that emits yellow light when excited by blue light can be used. Note that in this embodiment, the light emitting elements 111 are arranged in one row, but may be arranged in two or more rows. Further, the light emitting element 111 is not limited to an LED, but may be a semiconductor laser or the like.
 TIRレンズ112は、複数の発光素子111と配光調整レンズ113の間に配置され、発光素子111の配列方向(x軸方向)に沿って延伸されている。また、TIRレンズ112は、x軸方向と直交するy軸方向(第2方向)において、中央に配置された屈折部112aと、屈折部112aの両脇に配置された反射部112bを備えている。また、反射部112bはy軸方向の外側面が傾斜した反射面112cを有している。また、屈折部112aおよび反射部112bの配光調整レンズ113と対向する面は出射面112dを有している。発光素子111から照射された光の一部は、屈折部112aに入射して屈折率差に応じて屈折され、屈折部112a内を透過して出射面112dから配光調整レンズ113に照射される。また、発光素子111から照射された光の他の一部は、屈折部112aと反射部112bの境界に設けられた内側面から反射部112bに入射し、反射面112cで全反射されて出射面112dから配光調整レンズ113に照射される。 The TIR lens 112 is arranged between the plurality of light emitting elements 111 and the light distribution adjustment lens 113, and extends along the arrangement direction (x-axis direction) of the light emitting elements 111. Further, the TIR lens 112 includes a refraction section 112a disposed at the center and reflection sections 112b disposed on both sides of the refraction section 112a in the y-axis direction (second direction) orthogonal to the x-axis direction. . Further, the reflecting portion 112b has a reflecting surface 112c whose outer surface in the y-axis direction is inclined. Further, the surfaces of the refracting section 112a and the reflecting section 112b that face the light distribution adjusting lens 113 have an output surface 112d. A part of the light emitted from the light emitting element 111 enters the refracting section 112a, is refracted according to the refractive index difference, passes through the refracting section 112a, and is irradiated onto the light distribution adjustment lens 113 from the output surface 112d. . Further, the other part of the light emitted from the light emitting element 111 enters the reflection part 112b from the inner surface provided at the boundary between the refraction part 112a and the reflection part 112b, is totally reflected by the reflection surface 112c, and is reflected from the output surface. The light is irradiated onto the light distribution adjustment lens 113 from 112d.
 図1(b)に示したように、TIRレンズ112はy軸方向において、内部全反射(TIR:Total Internal Reflection)により、大きな指向角を有する発光素子111からの出射光を集光し、例えば平行光、あるいは平行光に近い光(以下、両者を併せて「略平行光」という)として出射するコリメートレンズとしての機能を有する。したがって、TIRレンズ112は、本発明における内部全反射レンズに相当している。発光素子111からの指向角が大きい出射光とは、例えば図1(b)においてy軸方向の外側に広がる光である。すなわち、TIRレンズ112は発光素子111からの出射光を効率よく集光することができる。 As shown in FIG. 1(b), the TIR lens 112 focuses the light emitted from the light emitting element 111 having a large directivity angle in the y-axis direction by total internal reflection (TIR). It has a function as a collimating lens that emits parallel light or light close to parallel light (hereinafter, both are collectively referred to as "substantially parallel light"). Therefore, the TIR lens 112 corresponds to a total internal reflection lens in the present invention. The light emitted from the light emitting element 111 with a large directivity angle is, for example, light that spreads outward in the y-axis direction in FIG. 1(b). That is, the TIR lens 112 can efficiently collect the light emitted from the light emitting element 111.
 配光調整レンズ113は、TIRレンズ112の出射面112d側に配置されており、光が入射する光入射面と、光入射面と対向して配された光出射面を有している。また配光調整レンズ113は、x軸方向に沿って延伸して形成されており、中央領域113aと、両側領域113bとを有している。また、配光調整レンズ113の光入射面側には、y軸方向に沿って凹凸が繰り返されるレンチキュラー部113cが形成されている。本実施形態ではレンチキュラー部113cを光入射面側に設けた例を示しているが、レンチキュラー部113cを光出射面側に設けるとしてもよく、レンチキュラー部113cを省略するとしてもよい。 The light distribution adjustment lens 113 is arranged on the exit surface 112d side of the TIR lens 112, and has a light entrance surface into which light enters, and a light exit surface arranged opposite to the light entrance surface. The light distribution adjustment lens 113 is formed to extend along the x-axis direction, and has a central region 113a and both side regions 113b. Furthermore, on the light incident surface side of the light distribution adjustment lens 113, a lenticular portion 113c is formed with repeated concavities and convexities along the y-axis direction. Although this embodiment shows an example in which the lenticular portion 113c is provided on the light incident surface side, the lenticular portion 113c may be provided on the light exit surface side, or the lenticular portion 113c may be omitted.
 中央領域113aは、x軸方向の中央に位置しており、負の光学的パワーを有する部分である。また、両側領域113bは、中央領域113aの両側に位置しており、正の光学的パワーを有する部分である。中央領域113aと両側領域113bの境界は、形状の上では明確に定まらない場合があるが、光入射面側から平行光が入射した場合に、光出射面側から出射する光が拡大する領域が中央領域113aに相当し、光が集光される領域が両側領域113bに相当する。したがって、配光調整レンズ113は本発明における光学部材に相当している。中央領域113aおよび配光調整レンズ113の具体的な形状は限定されないが、図1(a)に示したような、中心近傍が薄く端部が厚い凹レンズ形状の中央領域113aと、端部が薄い凸レンズ形状の両側領域113bの組み合わせを用いることができる。 The central region 113a is located at the center in the x-axis direction and has negative optical power. Further, the both-side regions 113b are located on both sides of the central region 113a, and have positive optical power. Although the boundaries between the central region 113a and both side regions 113b may not be clearly defined in terms of shape, there is a region where light emitted from the light exit surface expands when parallel light enters from the light entrance surface. This corresponds to the central region 113a, and the regions where light is focused correspond to both side regions 113b. Therefore, the light distribution adjusting lens 113 corresponds to an optical member in the present invention. Although the specific shapes of the central region 113a and the light distribution adjustment lens 113 are not limited, the central region 113a has a concave lens shape that is thin near the center and thick at the edges, as shown in FIG. A combination of convex lens-shaped both side regions 113b can be used.
 TIRレンズ112および配光調整レンズ113は、両者相まって発光素子111から出射した光を照明対象の照明領域に導く機能を有する。本実施形態では照明領域の一例として拡散シート114の裏面(発光素子111側の面)としている。しかしながら、どこを照明領域とするかは光源装置の仕様等を勘案して決定すればよく、例えば表示部115の裏面を直接照射するとしてもよい。TIRレンズ112および配光調整レンズ113は、例えばアクリル樹脂等の樹脂、ガラス等によって形成されている。 The TIR lens 112 and the light distribution adjustment lens 113 have the function of guiding the light emitted from the light emitting element 111 to the illumination area of the illumination target. In this embodiment, the back surface of the diffusion sheet 114 (the surface on the light emitting element 111 side) is used as an example of the illumination area. However, the area to be illuminated may be determined by taking into consideration the specifications of the light source device, and for example, the back surface of the display unit 115 may be directly illuminated. The TIR lens 112 and the light distribution adjustment lens 113 are made of, for example, resin such as acrylic resin, glass, or the like.
 拡散シート114は、配光調整レンズ113と表示部115の間に配置されて、配光調整レンズ113から照射された光を拡散または散乱しながら透過する光学部材である。したがって拡散シート114は、TIRレンズ112および配光調整レンズ113で偏向した指向性の高い光を拡散させて表示部115に出射し、表示部115がより均一に照明されるように機能する。拡散シート114の具体的な材料や構成は限定されず、樹脂に光散乱粒子を分散した略板状のものを用いるとしてもよく、樹脂材料の表面に微小な凹凸を形成した構造のシートを用いるとしてもよい。 The diffusion sheet 114 is an optical member that is disposed between the light distribution adjustment lens 113 and the display section 115 and transmits the light emitted from the light distribution adjustment lens 113 while diffusing or scattering it. Therefore, the diffusion sheet 114 functions to diffuse the highly directional light deflected by the TIR lens 112 and the light distribution adjustment lens 113 and output it to the display section 115, so that the display section 115 is more uniformly illuminated. The specific material and structure of the diffusion sheet 114 are not limited, and a substantially plate-like sheet in which light-scattering particles are dispersed in resin may be used, or a sheet having a structure in which minute irregularities are formed on the surface of a resin material may be used. You can also use it as
 表示部115は、図示しない制御部からの画像信号に応じて画像を表示する装置である。表示部115の具体的な構成は限定されないが、背面側(発光素子111側)からの光を透過して画像を表示する液晶表示装置等を用いることができる。 The display unit 115 is a device that displays an image in response to an image signal from a control unit (not shown). Although the specific configuration of the display section 115 is not limited, a liquid crystal display device or the like that transmits light from the back side (light emitting element 111 side) and displays an image can be used.
 図1(a)(b)に示したように、発光素子111から照射された光は、x軸方向およびy軸方向に拡大しながらTIRレンズ112に入射する。また図1(a)に示したように、TIRレンズ112は、屈折部112aと反射部112bの構造がx軸方向に沿って延伸されているため、x軸方向に広がった光はそのまま出射面112dから配光調整レンズ113に向けて拡大して照射される。配光調整レンズ113の中央領域113aに入射した光は、負の光学的パワーを受けてより拡大する方向に屈折され、拡散シート114および表示部115の中央近傍に対して広い範囲で照射される。配光調整レンズ113の両側領域113bに入射した光は、正の光学的パワーを受けて集光する方向に屈折され、拡散シート114および表示部115の両側近傍に対して集光または平行光で照射される。 As shown in FIGS. 1(a) and 1(b), the light emitted from the light emitting element 111 enters the TIR lens 112 while expanding in the x-axis direction and the y-axis direction. Further, as shown in FIG. 1(a), in the TIR lens 112, the structure of the refracting part 112a and the reflecting part 112b extends along the x-axis direction, so that the light spread in the x-axis direction remains at the exit surface. The light is magnified and irradiated from 112d toward the light distribution adjustment lens 113. The light incident on the central region 113a of the light distribution adjustment lens 113 receives negative optical power and is refracted in the direction of further expansion, and is irradiated in a wide range near the center of the diffusion sheet 114 and the display section 115. . The light incident on both side regions 113b of the light distribution adjustment lens 113 receives positive optical power and is refracted in the direction of condensation, and is condensed or parallel light toward the vicinity of both sides of the diffusion sheet 114 and the display section 115. irradiated.
 また図1(b)に示したように、TIRレンズ112はy軸方向において屈折部112aと反射部112bが設けられているため、y軸方向に対してはコリメートレンズとして機能して出射面112dから略平行光として光が照射される。y軸方向でコリメートされた光は、配光調整レンズ113の光入射面に設けられたレンチキュラー部113cで屈折された後に拡散シート114に照射される。 Further, as shown in FIG. 1(b), since the TIR lens 112 is provided with a refracting section 112a and a reflecting section 112b in the y-axis direction, it functions as a collimating lens in the y-axis direction, and the output surface 112d Light is emitted as substantially parallel light from. The light collimated in the y-axis direction is refracted by the lenticular portion 113c provided on the light incidence surface of the light distribution adjustment lens 113, and then irradiated onto the diffusion sheet 114.
 複数の発光素子111はx軸方向に配列されているため、複数の発光素子111からの光が重なり合って到達するx軸中央近傍は光の強度が相対的に大きくなり、端部の発光素子111からの光のみが到達するx軸両端近傍は光の強度が相対的に小さくなる傾向がある。しかし、本実施形態の照明装置100では、配光調整レンズ113の中央領域113aで負の光学的パワーを光に与え、x軸中央に入射する光を拡大して、出射光の配光分布を広げることができる。また、配光調整レンズ113の両側領域113bで正の光学的パワーを光に与え、x軸両端に入射する光を集光して、拡散シート114の範囲内に照射される光量を多くすることができる。したがって、配光調整レンズ113を介して拡散シート114に照射される光は、x軸方向に沿って配光分布を均一化されるとともに、光の利用効率が向上する。 Since the plurality of light emitting elements 111 are arranged in the x-axis direction, the intensity of light is relatively high near the center of the x-axis where the light from the plurality of light emitting elements 111 overlaps and reaches the light emitting elements 111 at the ends. The intensity of light tends to be relatively small near both ends of the x-axis, where only light from the center reaches. However, in the illumination device 100 of this embodiment, negative optical power is given to the light in the central region 113a of the light distribution adjustment lens 113, and the light incident on the center of the x-axis is expanded, thereby changing the light distribution of the output light. Can be expanded. Furthermore, positive optical power is given to the light in both regions 113b of the light distribution adjustment lens 113, and the light incident on both ends of the x-axis is focused, thereby increasing the amount of light irradiated within the range of the diffusion sheet 114. Can be done. Therefore, the light distribution of the light irradiated onto the diffusion sheet 114 via the light distribution adjustment lens 113 is made uniform along the x-axis direction, and the light utilization efficiency is improved.
 上述したように、本実施形態の配光調整レンズ113および照明装置100では、配光調整レンズ113がx軸方向の中央領域113aで負の光学的パワーを有し、両側領域113bで正の光学的パワーを有することで、中央領域113aの近傍では光を拡大しつつ両側領域113bでは光を照射範囲内に集め、x軸方向に沿って配光分布を均一化するとともに、光の利用効率を向上させることが可能となる。 As described above, in the light distribution adjustment lens 113 and the lighting device 100 of this embodiment, the light distribution adjustment lens 113 has negative optical power in the central region 113a in the x-axis direction, and has positive optical power in both side regions 113b. By having the desired power, the light is expanded in the vicinity of the central region 113a, while the light is concentrated within the irradiation range in the both side regions 113b, making the light distribution uniform along the x-axis direction, and increasing the light utilization efficiency. It becomes possible to improve the performance.
 (第2実施形態)
 次に、本発明の第2実施形態について図2を用いて説明する。第1実施形態と重複する内容は説明を省略する。図2は、本実施形態に係る照明装置200の概要を模式的に説明する図であり、所定方向に沿った模式断面図である。図2に示したように、照明装置200は、発光素子211と、TIRレンズ212と、配光調整レンズ213と、拡散シート214と、表示部215を有している。TIRレンズ212のy軸方向に沿った屈折部112aと反射部112bの構造は第1実施形態と同様であり、説明を省略する。
(Second embodiment)
Next, a second embodiment of the present invention will be described using FIG. 2. Description of contents that overlap with those of the first embodiment will be omitted. FIG. 2 is a diagram schematically explaining the outline of the lighting device 200 according to the present embodiment, and is a schematic cross-sectional view along a predetermined direction. As shown in FIG. 2, the lighting device 200 includes a light emitting element 211, a TIR lens 212, a light distribution adjustment lens 213, a diffusion sheet 214, and a display section 215. The structure of the refracting section 112a and the reflecting section 112b of the TIR lens 212 along the y-axis direction is the same as that of the first embodiment, and the explanation thereof will be omitted.
 本実施形態の照明装置200においても、配光調整レンズ213は、x軸方向に沿って延伸して形成されており、中央領域213aと、両側領域213bとを有している。また、中央領域213aは負の光学的パワーを有し、両側領域113bは正の光学的パワーを有している。図2に示すように本実施形態では、中央領域213aは、x軸方向において光入射面および光出射面が発光素子211方向(光の入射方向)に湾曲しており、メニスカスレンズ形状を有している。 In the lighting device 200 of this embodiment as well, the light distribution adjustment lens 213 is formed to extend along the x-axis direction, and has a central region 213a and both side regions 213b. Further, the central region 213a has negative optical power, and both side regions 113b have positive optical power. As shown in FIG. 2, in this embodiment, the central region 213a has a light incident surface and a light exit surface curved in the direction of the light emitting element 211 (light incident direction) in the x-axis direction, and has a meniscus lens shape. ing.
 本実施形態の配光調整レンズ213および照明装置200でも、配光調整レンズ213がx軸方向の中央領域213aで負の光学的パワーを有し、両側領域213bで正の光学的パワーを有することで、中央領域213aの近傍において光を拡大しつつ両側領域213bにおいて光を照射範囲内に集め、x軸方向に沿って配光分布を均一化するとともに、光の利用効率を向上させることが可能となる。 Also in the light distribution adjustment lens 213 and illumination device 200 of this embodiment, the light distribution adjustment lens 213 has negative optical power in the central region 213a in the x-axis direction and positive optical power in both side regions 213b. This makes it possible to expand the light in the vicinity of the central region 213a and gather the light within the irradiation range in the both side regions 213b, making the light distribution uniform along the x-axis direction and improving the light utilization efficiency. becomes.
(配光分布の均一化についての説明)
 図3は、照明装置100,200における光の進行について説明する模式図であり、図3(a)は配光調整レンズ113を示し、図3(b)は配光調整レンズ213を示している。図3(a)(b)では、中央領域113a,213aのうち、両側領域113b,213bとの境界近傍において負の光学的パワーを受ける光の経路について模式的に示している。配光調整レンズ113,213の中央領域113a,213aおよび両側領域113b,213bにおいて、入射した光がそれぞれ負の光学的パワーと正の光学的パワーを受け、x軸方向に沿って配光分布を均一化するとともに、光の利用効率を向上させることが可能なことは第1実施形態と同様である。
(Explanation of uniform light distribution)
FIG. 3 is a schematic diagram illustrating the progression of light in the illumination devices 100, 200, in which FIG. 3(a) shows the light distribution adjustment lens 113, and FIG. 3(b) shows the light distribution adjustment lens 213. . FIGS. 3A and 3B schematically illustrate the path of light that receives negative optical power in the vicinity of the boundary between the central regions 113a and 213a and the both- side regions 113b and 213b. In the central region 113a, 213a and both side regions 113b, 213b of the light distribution adjustment lenses 113, 213, the incident light receives negative optical power and positive optical power, respectively, and the light distribution is changed along the x-axis direction. Similar to the first embodiment, it is possible to make the light uniform and improve the light usage efficiency.
 図3(a)に示したように、照明装置100の配光調整レンズ113では、中央領域113aが凹レンズ形状であり、両側領域113bが凸レンズ形状であるため、両者の境界において光入射面と光出射面の曲率変化が大きくなる。特に、中央領域113aのうち両側領域113bの近傍では、中央領域113aの中央よりも負の光学的パワーが大きくなり、拡散シート114よりも外側に進行する光が生じる。特に、中央領域113aを挟んで反対側に配置された発光素子111から入射した光については、光の進行方向が拡散シート114内に収まるように適切に設定することが困難である。 As shown in FIG. 3A, in the light distribution adjustment lens 113 of the illumination device 100, the central region 113a has a concave lens shape, and the both side regions 113b have a convex lens shape, so that the light incident surface and the light The change in curvature of the exit surface increases. In particular, in the vicinity of the both side regions 113b of the central region 113a, the negative optical power is greater than in the center of the central region 113a, and light traveling outward from the diffusion sheet 114 is generated. In particular, it is difficult to appropriately set the traveling direction of light incident from the light emitting elements 111 disposed on opposite sides of the central region 113a so that it falls within the diffusion sheet 114.
 図3(b)に示したように、照明装置200の配光調整レンズ213では、中央領域213aがメニスカスレンズ形状であり、両側領域213bが凸レンズ形状であるため、両者の境界において光入射面と光出射面の曲率変化を配光調整レンズ113よりも小さくできる。したがって、中央領域213aにおける負の光学的パワーは当該領域全体で同程度となり、拡散シート214よりも外側に進行する光を抑制することができる。特に、中央領域213aを挟んで反対側に配置された発光素子211から入射した光についても、光の進行方向が拡散シート214内に収まるように設定することができ、拡散シート214内に入射する光量を増加させて、さらなる均一化を図ることができる。 As shown in FIG. 3(b), in the light distribution adjustment lens 213 of the illumination device 200, the central region 213a has a meniscus lens shape, and the both side regions 213b have a convex lens shape, so that the boundary between the two regions forms a light incident surface. The change in curvature of the light exit surface can be made smaller than that of the light distribution adjustment lens 113. Therefore, the negative optical power in the central region 213a is approximately the same throughout the region, and light traveling outward from the diffusion sheet 214 can be suppressed. In particular, even for light incident from the light emitting elements 211 arranged on the opposite side with the central region 213a in between, the traveling direction of the light can be set to fall within the diffusion sheet 214, so that the light enters the diffusion sheet 214. Further uniformity can be achieved by increasing the amount of light.
 図4は、光学的パワーの正負が切り替わる境界近傍での光の進行について説明する模式図であり、図4(a)は配光調整レンズ113を示し、図4(b)は配光調整レンズ213を示している。配光調整レンズ113では図4(a)に示したように、中央領域113aにおいて光入射面の端部に斜め方向に入射した光の一部は、負の光学的パワーを強く受けてx軸方向外側に広がり、両側領域113bの光出射面から出射される場合がある。両側領域113bでは正の光学的パワーを強く受けるため、さらにx軸方向外側に向かって光が進行することとなる。 FIG. 4 is a schematic diagram illustrating the progress of light near the boundary where the optical power changes between positive and negative. FIG. 4(a) shows the light distribution adjustment lens 113, and FIG. 4(b) shows the light distribution adjustment lens 113. 213 is shown. In the light distribution adjustment lens 113, as shown in FIG. 4(a), a part of the light obliquely incident on the end of the light incident surface in the central region 113a is strongly affected by negative optical power and is shifted along the x-axis. The light may spread outward in the direction and be emitted from the light emitting surfaces of both side regions 113b. Since the both side regions 113b receive strong positive optical power, the light travels further outward in the x-axis direction.
 それに対して配光調整レンズ213では図4(b)に示したように、中央領域213aにおいて光入射面の端部に斜め方向に入射した光は、負の光学的パワーを受けるが、両側領域213bの光出射面においてより中央領域213aに近い側に到達して出射される。したがって、両側領域213bで受ける正の光学的パワーは配光調整レンズ113よりも弱くなり、x軸方向外側に向かう光の角度を小さくして、拡散シート214の範囲内にすることができる。 On the other hand, in the light distribution adjustment lens 213, as shown in FIG. The light reaches the side closer to the central region 213a on the light emitting surface of 213b and is emitted. Therefore, the positive optical power received by both side regions 213b becomes weaker than that of the light distribution adjustment lens 113, and the angle of the light directed outward in the x-axis direction can be made smaller and placed within the range of the diffusion sheet 214.
 図5は、配光調整レンズ213における最大の厚みを有する範囲213dを模式的に示す図である。図5では、配光調整レンズ213として光学的パワーを有する部分だけを示しているが、適切に保持および固定するための保持部材を配光調整レンズ213と一体に形成するとしてもよい。保持部材が配光調整レンズ213と一体に形成されている場合には、配光調整レンズ213の厚みとは、光学的パワーを有して光の屈折に寄与する部分の厚みを示す。配光調整レンズ213は、メニスカスレンズ形状の中央領域213aと凸レンズ形状の両側領域213bを有しており、x軸方向の何れかの位置においてz軸方向での厚みが最大値を有している。この配光調整レンズ213が最大の厚みを有する位置を最厚位置とする。x軸方向での中央を0%とし両端を100%と表現した場合には、最厚位置が5%以上95%以内の範囲213d内に存在することが好ましい。最厚位置が範囲213dよりも小さい場合には、中央領域213aによる光の拡大が不十分になる。また、最厚位置が範囲213dよりも大きい場合には、両側領域213bでの集光が不十分になり拡散シート214よりも外側に到達する光量が増加してしまう。図5では中央領域213aがメニスカスレンズ形状の配光調整レンズ213のみを示しているが、中央領域113aが凹レンズ形状の配光調整レンズ113でも同様である。また、図5では配光調整レンズ213として左右対称形状の例を示したが、左右非対称であってもよく、左右それぞれの範囲213dにおける最大の厚さおよび最厚位置が異なっていてもよい。 FIG. 5 is a diagram schematically showing a range 213d having the maximum thickness in the light distribution adjustment lens 213. In FIG. 5, only a portion having optical power is shown as the light distribution adjusting lens 213, but a holding member for appropriately holding and fixing may be formed integrally with the light distribution adjusting lens 213. When the holding member is formed integrally with the light distribution adjusting lens 213, the thickness of the light distribution adjusting lens 213 indicates the thickness of a portion that has optical power and contributes to refraction of light. The light distribution adjustment lens 213 has a central area 213a shaped like a meniscus lens and both side areas 213b shaped like a convex lens, and has a maximum thickness in the z-axis direction at any position in the x-axis direction. . The position where this light distribution adjustment lens 213 has the maximum thickness is defined as the thickest position. When the center in the x-axis direction is expressed as 0% and both ends as 100%, it is preferable that the thickest position exists within a range 213d of 5% or more and 95% or less. When the thickest position is smaller than the range 213d, the expansion of light by the central region 213a becomes insufficient. Furthermore, if the thickest position is larger than the range 213d, the light condensation at both side regions 213b becomes insufficient, and the amount of light reaching the outside of the diffusion sheet 214 increases. Although FIG. 5 shows only the light distribution adjusting lens 213 in which the central region 213a is shaped like a meniscus lens, the same applies to the light distribution adjusting lens 113 in which the central region 113a is shaped like a concave lens. Further, although FIG. 5 shows an example of a bilaterally symmetrical shape as the light distribution adjustment lens 213, it may be bilaterally asymmetrical, and the maximum thickness and the thickest position in the left and right ranges 213d may be different.
 図6は、照明装置100,200での虚像表示と輝度を示す図であり、図6(a)は照明装置100で得られる虚像を示し、図6(b)は照明装置200で得られる虚像を示し、図6(c)は照明装置100の輝度分布を示し、図6(d)は照明装置200の輝度分布を示している。図6(a)~図6(d)に示した虚像および輝度断面は、照明装置100,200をHUD装置のバックライトとして用い、運転者の目が存在しうると想定される領域(アイボックス)の左端から見たものである。図6(a)~図6(d)に示したように、虚像および虚像輝度のどちらにおいても、x軸方向に対して均一な配光分布で光照射されていることが理解できる。特に、図6(b)(d)に示した照明装置200では、配光調整レンズ213の中央領域213aがメニスカスレンズ形状であるため、図中右端の領域においてより配光分布の均一性が向上している。 FIG. 6 is a diagram showing virtual image display and brightness in the lighting devices 100 and 200, FIG. 6(a) shows a virtual image obtained by the lighting device 100, and FIG. 6(b) shows a virtual image obtained by the lighting device 200. 6(c) shows the brightness distribution of the lighting device 100, and FIG. 6(d) shows the brightness distribution of the lighting device 200. The virtual images and brightness cross-sections shown in FIGS. 6(a) to 6(d) are obtained by using the illumination devices 100 and 200 as backlights of the HUD device, and using the lighting devices 100 and 200 as backlights of the HUD device. ) seen from the left end. As shown in FIGS. 6(a) to 6(d), it can be seen that light is irradiated with a uniform light distribution in the x-axis direction in both the virtual image and the virtual image brightness. In particular, in the lighting device 200 shown in FIGS. 6(b) and 6(d), the central region 213a of the light distribution adjustment lens 213 has a meniscus lens shape, so that the uniformity of the light distribution is more improved in the rightmost region in the figure. are doing.
 図7は、照明装置100,200の輝度分布を示すグラフであり、図7(a)は照明装置100の相対輝度分布を示し、図7(b)は照明装置200の相対輝度分布を示している。図7(a)(b)に示した相対輝度分布は、図6(c)(d)に実線で示したように、拡散シート114,214のy軸方向における中央で測定した。図7(a)(b)に示したように、配光調整レンズ113,213の何れにおいても、広い範囲にわたって相対輝度を0.7以上で照射しており、x軸方向に沿って配光分布を均一化し、光の利用効率を向上できていることがわかる。特に、図7(b)に示した配光調整レンズ213を用いた場合には、両端近傍においても相対輝度を0.7以上で照射できており、より配光分布の均一化と光の利用効率を向上できる。 7 is a graph showing the brightness distribution of the lighting devices 100 and 200, FIG. 7(a) shows the relative brightness distribution of the lighting device 100, and FIG. 7(b) shows the relative brightness distribution of the lighting device 200. There is. The relative brightness distributions shown in FIGS. 7(a) and 7(b) were measured at the center of the diffusion sheets 114 and 214 in the y-axis direction, as shown by solid lines in FIGS. 6(c) and 6(d). As shown in FIGS. 7(a) and 7(b), both the light distribution adjustment lenses 113 and 213 emit light over a wide range with a relative brightness of 0.7 or more, and the light is distributed along the x-axis direction. It can be seen that the distribution is made more uniform and the efficiency of light use is improved. In particular, when the light distribution adjustment lens 213 shown in FIG. 7(b) is used, it is possible to irradiate with a relative brightness of 0.7 or more even near both ends, making the light distribution more uniform and making better use of light. Can improve efficiency.
 図8は、配光調整レンズ213の光入射面にレンチキュラー部213cを設けた場合を示す図であり、図8(a)は所定方向に沿った模式断面図であり、図8(b)は模式斜視図である。図8に示したようにレンチキュラー部213cは、光入射面のy軸方向に周期的な凹凸形状として形成されており、x軸方向に沿って当該凹凸形状が延伸されている。図8ではレンチキュラー部213cを光入射面側に設けた例を示しているが、レンチキュラー部213cを光出射面側に設けるとしてもよく、光入射面側と光出射面側の両方に設けるとしてもよい。配光調整レンズ213のy軸方向に凹凸形状のレンチキュラー部213cを設けることで、y軸方向に対する配光分布を調整することができる。 FIG. 8 is a diagram showing a case where a lenticular portion 213c is provided on the light incidence surface of the light distribution adjustment lens 213, FIG. 8(a) is a schematic cross-sectional view along a predetermined direction, and FIG. FIG. As shown in FIG. 8, the lenticular portion 213c is formed as a periodic uneven shape in the y-axis direction of the light incident surface, and the uneven shape extends along the x-axis direction. Although FIG. 8 shows an example in which the lenticular portion 213c is provided on the light incident surface side, the lenticular portion 213c may be provided on the light emitting surface side, or may be provided on both the light incident surface side and the light emitting surface side. good. By providing the uneven lenticular portion 213c in the y-axis direction of the light distribution adjustment lens 213, the light distribution in the y-axis direction can be adjusted.
 (第3実施形態)
 次に、本発明の第3実施形態について説明する。第1実施形態と重複する内容は説明を省略する。第1実施形態および第2実施形態では、配光調整レンズ113,213として中央領域113a,213aと両側領域113b,213bの光入射面および光出射面が滑らかに連続して形成された例を示したが、x軸方向に複数の区分に分割して段差を設けたフレネルレンズ形状としてもよい。
(Third embodiment)
Next, a third embodiment of the present invention will be described. Description of contents that overlap with those of the first embodiment will be omitted. In the first embodiment and the second embodiment, examples are shown in which the light incidence and light exit surfaces of the central regions 113a, 213a and both side regions 113b, 213b are formed smoothly and continuously as the light distribution adjusting lenses 113, 213. However, a Fresnel lens shape may be used in which the lens is divided into a plurality of sections in the x-axis direction and steps are provided.
 配光調整レンズ113,213をフレネルレンズ形状としても、光入射面と光出射面の形状を適切に設計することで、中央領域113a,213aでは負の光学的パワーを有し、両側領域113b,213bでは正の光学的パワーを有することができる。また、配光調整レンズ113,213をフレネルレンズ形状とすることで、薄型化を図ることが可能となる。 Even if the light distribution adjustment lenses 113, 213 are shaped like Fresnel lenses, by appropriately designing the shapes of the light entrance surface and the light exit surface, the central regions 113a, 213a have negative optical power, and both side regions 113b, 213b can have positive optical power. Further, by forming the light distribution adjusting lenses 113 and 213 into a Fresnel lens shape, it is possible to reduce the thickness.
 (第4実施形態)
 次に、本発明の第4実施形態について説明する。第1実施形態と重複する内容は説明を省略する。第1実施形態および第2実施形態では、配光調整レンズ113,213としてy軸方向に中央領域113a,213aおよび両側領域113b,213bが延伸された四辺形状のものを示したが、配光調整レンズ113,213を円形状としてもよい。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described. Description of contents that overlap with those of the first embodiment will be omitted. In the first embodiment and the second embodiment, the light distribution adjusting lenses 113, 213 are shown as having a quadrilateral shape in which the central regions 113a, 213a and both side regions 113b, 213b are extended in the y-axis direction. The lenses 113 and 213 may have a circular shape.
 配光調整レンズ113,213を円形状とした場合には、円形の中心近傍が中央領域113a,213aとなり負の光学的パワーを有し、外周近傍が両側領域113b,213bとなり正の光学的パワーを有するものとなる。この場合、TIRレンズ112,212も円形状のものを用いることが好ましい。また、TIRレンズ112,212とは異なる形状のコリメートレンズを用いるとしてもよい。 When the light distribution adjustment lenses 113, 213 are circular, the vicinity of the center of the circle becomes the central region 113a, 213a and has negative optical power, and the vicinity of the outer periphery becomes both side regions 113b, 213b and has positive optical power. It will have the following. In this case, it is preferable to use circular TIR lenses 112 and 212 as well. Further, a collimating lens having a shape different from that of the TIR lenses 112 and 212 may be used.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. are also included within the technical scope of the present invention.
 本国際出願は、2022年8月10日に出願された日本国特許出願である特願2022-128517号に基づく優先権を主張するものであり、当該日本国特許出願である特願2022-128517号の全内容は、本国際出願に援用される。 This international application claims priority based on Japanese patent application No. 2022-128517, which is a Japanese patent application filed on August 10, 2022. The entire contents of No. 1 are incorporated by reference into this international application.
 本発明の特定の実施の形態についての上記説明は、例示を目的として提示したものである。それらは、網羅的であったり、記載した形態そのままに本発明を制限したりすることを意図したものではない。数多くの変形や変更が、上記の記載内容に照らして可能であることは当業者に自明である。 The above descriptions of specific embodiments of the invention have been presented for purposes of illustration. They are not intended to be exhaustive or to limit the invention to the precise forms described. It will be obvious to those skilled in the art that many modifications and variations are possible in light of the above description.
100,200…照明装置
111,211…発光素子
112,212…TIRレンズ
112a…屈折部
112b…反射部
112c…反射面
112d…出射面
113,213…配光調整レンズ
113a,213a…中央領域
113b,213b…両側領域
113c,213c…レンチキュラー部
114,214…拡散シート
115,215…表示部
213d…範囲 
100,200...Illumination device 111,211...Light emitting element 112,212...TIR lens 112a...Refraction part 112b...Reflection part 112c...Reflection surface 112d... Emission surface 113, 213...Light distribution adjustment lens 113a, 213a... Central region 113b, 213b...both side regions 113c, 213c... lenticular portions 114, 214... diffusion sheets 115, 215...display portion 213d...range

Claims (7)

  1.  光が入射する光入射面と、前記光入射面と対向して配された光出射面を有し、
     前記光入射面および前記光出射面は、所定方向に沿って形成されており、
     前記所定方向の中央に位置する中央領域と、
     前記所定方向に沿って前記中央領域の両側に位置する両側領域とを有し、
     前記中央領域は負の光学的パワーを有し、前記両側領域は正の光学的パワーを有することを特徴とする光学部材。
    It has a light entrance surface into which light enters, and a light exit surface disposed opposite to the light entrance surface,
    The light entrance surface and the light exit surface are formed along a predetermined direction,
    a central region located at the center in the predetermined direction;
    and both side regions located on both sides of the central region along the predetermined direction,
    An optical member characterized in that the central region has negative optical power, and the both side regions have positive optical power.
  2.  請求項1に記載の光学部材であって、
     前記中央領域は、前記所定方向において中心近傍が薄く端部が厚い凹レンズ形状であり、
     前記両側領域は、前記所定方向において端部が薄い凸レンズ形状であることを特徴とする光学部材。
    The optical member according to claim 1,
    The central region has a concave lens shape that is thin near the center and thick at the ends in the predetermined direction;
    The optical member is characterized in that the both side regions have a convex lens shape with thin end portions in the predetermined direction.
  3.  請求項1に記載の光学部材であって、
     前記中央領域は、前記所定方向において前記光入射面および前記光出射面が前記光の入射方向に湾曲したメニスカスレンズ形状であることを特徴とする光学部材。
    The optical member according to claim 1,
    The optical member is characterized in that the central region has a meniscus lens shape in which the light incident surface and the light exit surface are curved in the light incident direction in the predetermined direction.
  4.  請求項1から3の何れか一つに記載の光学部材であって、
     前記光入射面または前記光出射面には、前記所定方向と直交する第2方向に沿って凹凸が繰り返されるレンチキュラー部が形成されていることを特徴とする光学部材。
    The optical member according to any one of claims 1 to 3,
    The optical member is characterized in that the light entrance surface or the light exit surface is formed with a lenticular portion in which concavities and convexities are repeated along a second direction orthogonal to the predetermined direction.
  5.  請求項1から3の何れか一つに記載の光学部材と、
     前記光入射面側に配置された複数の発光部と、
     前記光学部材と前記発光部の間に配置されたコリメートレンズを有することを特徴とする照明装置。
    The optical member according to any one of claims 1 to 3,
    a plurality of light emitting parts arranged on the light incidence surface side;
    An illumination device comprising a collimating lens disposed between the optical member and the light emitting section.
  6.  請求項5に記載の照明装置であって、
     複数の前記発光部は、前記所定方向に沿って配置されており、
     前記コリメートレンズは、前記所定方向と直交する第2方向に沿った中央に配置された屈折部と、前記屈折部の両脇に配置された反射部を備えた内部全反射レンズであることを特徴とする照明装置。
    The lighting device according to claim 5,
    The plurality of light emitting parts are arranged along the predetermined direction,
    The collimating lens is a total internal reflection lens that includes a refracting section disposed at the center along a second direction orthogonal to the predetermined direction, and reflecting sections disposed on both sides of the refracting section. lighting equipment.
  7.  請求項6に記載の照明装置であって、
     前記内部全反射レンズは、前記所定方向に前記屈折部および前記反射部が延伸されていることを特徴とする照明装置。 
    7. The lighting device according to claim 6,
    The illumination device is characterized in that the total internal reflection lens has the refraction section and the reflection section extending in the predetermined direction.
PCT/JP2023/028084 2022-08-10 2023-08-01 Optical member and illumination device WO2024034458A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022128517A JP2024025239A (en) 2022-08-10 2022-08-10 Optical components and lighting devices
JP2022-128517 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024034458A1 true WO2024034458A1 (en) 2024-02-15

Family

ID=89851705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028084 WO2024034458A1 (en) 2022-08-10 2023-08-01 Optical member and illumination device

Country Status (2)

Country Link
JP (1) JP2024025239A (en)
WO (1) WO2024034458A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286608A (en) * 2005-03-07 2006-10-19 Nichia Chem Ind Ltd Planar illumination light source and planar illumination device
JP2017536564A (en) * 2014-09-29 2017-12-07 フィリップス ライティング ホールディング ビー ヴィ Optical apparatus, optical system, and method of shaping optical beam
JP2021189306A (en) * 2020-05-29 2021-12-13 株式会社小糸製作所 Optical unit and vehicular lighting fixture with the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286608A (en) * 2005-03-07 2006-10-19 Nichia Chem Ind Ltd Planar illumination light source and planar illumination device
JP2017536564A (en) * 2014-09-29 2017-12-07 フィリップス ライティング ホールディング ビー ヴィ Optical apparatus, optical system, and method of shaping optical beam
JP2021189306A (en) * 2020-05-29 2021-12-13 株式会社小糸製作所 Optical unit and vehicular lighting fixture with the same

Also Published As

Publication number Publication date
JP2024025239A (en) 2024-02-26

Similar Documents

Publication Publication Date Title
US9683719B2 (en) Luminous flux control member, light-emitting device, surface light source device, and display device
JP3804795B2 (en) Lighting device for flat panel display element
JP5380182B2 (en) Light emitting device, surface light source, and liquid crystal display device
JP4649553B2 (en) Light guide plate and liquid crystal display device having the same
US10634296B2 (en) Luminous flux control member, light-emitting device, planar light source device, and display device
JP2011014434A5 (en)
US20200089059A1 (en) Planar light source device and display device
JP2017129784A (en) Light flux control member, light emitting device, plane light source device and display device
WO2018194118A1 (en) Light flux control member, light-emitting device, surface light source device and display device
JP7138688B2 (en) Light source lens, illumination device and display device
US9116265B2 (en) Planar lighting device
US10323804B2 (en) Light-emitting device, surface light source device and display device
WO2017002725A1 (en) Light-emitting device, surface light source device and display device
WO2016194798A1 (en) Planar light source device and liquid crystal display device
JP4389529B2 (en) Surface illumination device and light guide plate
WO2024034458A1 (en) Optical member and illumination device
JP2018037257A (en) Surface light source device and liquid crystal display device
KR20200000330A (en) Spread illuminating apparatus
JP2012145829A (en) Light-emitting device and luminaire
WO2018109978A1 (en) Planar light source device and display device
WO2024034459A1 (en) Optical member and illumination device
JP7287668B2 (en) lighting equipment
WO2023153510A1 (en) Optical member, light source device, and head-up display
JP7038603B2 (en) Luminous flux control member, light emitting device, surface light source device and display device
WO2024053572A1 (en) Optical member and illumination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852429

Country of ref document: EP

Kind code of ref document: A1