JP2017223135A - 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法 - Google Patents

内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法 Download PDF

Info

Publication number
JP2017223135A
JP2017223135A JP2016117652A JP2016117652A JP2017223135A JP 2017223135 A JP2017223135 A JP 2017223135A JP 2016117652 A JP2016117652 A JP 2016117652A JP 2016117652 A JP2016117652 A JP 2016117652A JP 2017223135 A JP2017223135 A JP 2017223135A
Authority
JP
Japan
Prior art keywords
ammonia
exhaust gas
ammonia adsorption
branch
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016117652A
Other languages
English (en)
Other versions
JP6743499B2 (ja
Inventor
鉄平 大堀
Teppei Ohori
鉄平 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016117652A priority Critical patent/JP6743499B2/ja
Publication of JP2017223135A publication Critical patent/JP2017223135A/ja
Application granted granted Critical
Publication of JP6743499B2 publication Critical patent/JP6743499B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】選択還元型触媒装置を通過後の排気ガスに含まれるアンモニアをNOx浄化性能を維持しながら浄化処理することができる内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法を提供する。
【解決手段】選択還元型触媒装置14より下流側の排気通路11の一部を2つの分岐通路310、311にして、この2つの分岐通路の各々にアンモニア吸着除去装置300、301を備えて、排気ガスGの流れをこの2つの分岐通路の間で切り替える流路切替装置32を2つの分岐通路の分岐点に備える。いずれか一方のアンモニア吸着除去装置に排気ガスを流すとともに、2つの分岐通路の合流点より下流側の排気通路11を通過する排気ガスGの濃度Dが第1設定濃度閾値D1以上となったときに、流路切替装置32を制御して、排気ガスGの流れを、他方のアンモニア吸着除去装置を備える分岐通路に切り替える。
【選択図】図5

Description

本発明は、内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法に関する。
ディーゼルエンジンの排気通路には、選択還元型触媒装置(SCR)より下流側の排気通路に流出したアンモニアの大気への放出を防止するために、アンモニアスリップ触媒装置(ASC)が備えられることがある。
このアンモニアスリップ触媒装置は、白金(Pt)等の貴金属触媒を担持して、この貴金属触媒の機能によりアンモニアを無害な窒素(N2)に化学変化させる装置である。しかしながら、触媒の温度によっては、アンモニアを窒素にだけではなく窒素酸化物(NOx)や亜酸化窒素(N2O)に化学変化させる虞があり、排気ガス浄化システム全体としてのNOx浄化性能を低下させる虞があった。
また、このアンモニアスリップ触媒として、リッチバーン排ガスからのアンモニア排出を減少させるために、少なくとも1種の遷移金属を担持する小細孔モレキュラーシーブから成る第1触媒層と白金族金属を含む第2触媒層とを含む多層触媒が提案されている(例えば、特許文献1参照)。
特表2014−515701号公報
ところで、アンモニアスリップ触媒装置を備えずに、選択還元型触媒装置を通過後の排気ガスに含まれるアンモニアをNOx浄化性能を維持しながら浄化処理するシステムや、このシステムを用いた制御方法等については、未だ良案が提案されていない。
本発明の目的は、NOx浄化性能を維持しながら、選択還元型触媒装置を通過後の排気ガスに含まれるアンモニアを浄化処理することができる内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法を提供することにある。
上記の目的を達成するための本発明の内燃機関の排気ガス浄化システムは、内燃機関の排気通路に選択還元型触媒装置を備えて構成される内燃機関の排気ガス浄化システムにおいて、前記選択還元型触媒装置より下流側の前記排気通路の一部を2つの分岐通路にして、この2つの分岐通路の各々にアンモニア吸着除去装置を備えて、排気ガスの流れをこの2つの分岐通路の間で切り替える流路切替装置を前記2つの分岐通路の分岐点に備えるとともに、前記2つの分岐通路の合流点より下流側の前記排気通路にアンモニア濃度検出装置を備えて、前記排気ガス浄化システムを制御する制御装置が、前記流路切替装置を制御して、前記2つの分岐通路の各々に備えるアンモニア吸着除去装置の内、いずれか一方のアンモニア吸着除去装置を備える分岐通路に排気ガスを流すとともに、前記アンモニア濃度検出装置の検出値が予め設定された第1設定濃度閾値以上となったときに、前記流路切替装置を制御して、排気ガスの流れを、前記一方のアンモニア吸着除去装置を備える分岐通路から他方のアンモニア吸着除去装置を備える分岐通路に切り替える制御を行うように構成される。
また、上記の目的を達成するための本発明の内燃機関の排気ガス浄化方法は、内燃機関の排気通路に選択還元型触媒装置を備え、該選択還元型触媒装置より下流側の前記排気通路の一部を2つの分岐通路にして、この2つの分岐通路の各々にアンモニア吸着除去装置を備えて、排気ガスの流れをこの2つの分岐通路の間で切り替える流路切替装置を前記2つの分岐通路の分岐点に備えて構成される内燃機関の排気ガス浄化方法において、前記流路切替装置を制御して、前記2つの分岐通路の各々に備えるアンモニア吸着除去装置の内、いずれか一方のアンモニア吸着除去装置を備える分岐通路に排気ガスを流すとともに、前記2つの分岐通路の合流点より下流側の前記排気通路を通過する排気ガスに含まれるアンモニアの濃度が予め設定された第1設定濃度閾値以上となったときに、前記流路切替装置を制御して、排気ガスの流れを、前記一方のアンモニア吸着除去装置を備える分岐通路から他方のアンモニア吸着除去装置を備える分岐通路に切り替える制御を行うことを特徴とする方法である。
本発明の内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法によれば、NOx浄化性能を維持しながら、選択還元型触媒装置を通過後の排気ガスに含まれるアンモニアを浄化処理することができる。
本発明の内燃機関の排気ガス浄化システムの構成を示す図である。 アンモニア吸着除去装置の構成を示す図である。 アンモニア吸着除去装置の別の構成を示す図である。 排気ガスを最初に流す吸着除去装置を設定する制御フローを示す図である。 本発明の内燃機関の排気ガス浄化方法の制御フローを示す図である。 本発明の内燃機関の排気ガス浄化システムの別の構成を示す図である。 本発明の内燃機関の排気ガス浄化方法の別の制御フローを示す図である。 従来技術の内燃機関の排気ガス浄化システムの構成を示す図である。 酸素雰囲気化における、アンモニアスリップ触媒装置の温度と、排気ガスに含まれる各ガス成分の濃度の関係を示す図である。
以下、本発明に係る実施形態の内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法について、図面を参照しながら説明する。
図1に示すように、本発明の排気ガス浄化システム1は、エンジン(内燃機関)(図示しない)の排気通路(排気管)11に、上流側(エンジン側)より順に、酸化触媒装置(DOC)12、微粒子捕集装置13、選択還元型触媒装置(SCR)14を備えて構成されるシステムである。
酸化触媒装置12は、ハニカム構造を形成する基材に、排気ガスGの炭化水素(HC)や一酸化炭素(CO)等を酸化する貴金属触媒(酸化触媒)が担持されて構成される。貴金属触媒としては、炭化水素を水と二酸化炭素に、一酸化炭素を二酸化炭素にそれぞれ酸化する白金(Pt)系の触媒が好ましい。
この貴金属触媒による炭化水素及び一酸化炭素の酸化反応は発熱反応であるので、この発熱により排気ガスGは昇温する。これを利用して、微粒子捕集装置13の強制PM再生制御時等、高温の排気ガスGが必要となるときには、酸化触媒装置12より上流側の排気通路11を通過する排気ガスGに含まれる炭化水素の量を一時的に増加させて、この増加分の炭化水素を酸化触媒装置12で酸化させることで、排気ガスGを高温化している。
なお、炭化水素の量を一時的に増加させる方法としては、例えば、エンジンの気筒(シリンダ)(図示しない)内で燃料のポスト噴射を行う方法や、酸化触媒装置12より上流側の排気通路11に燃料噴射装置(図示しない)を備えて、この燃料噴射装置から燃料を噴射する方法がある。
微粒子捕集装置13は、排気ガスG中の粒子状物質(PM)を捕集するために、その内部にフィルタを備えて構成される。このフィルタは、多孔質のセラミックのハニカムのセル(チャンネル)の入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルタで構成される。
排気ガスGは、微粒子捕集装置13の目封じされていないセルの入口より流入し、隣接する出口を目封じされていないセルとの境界に形成されたPM捕集用の壁を通過した後、出口を目封じされていないセルの出口より流出する。排気ガスGに含まれるPMはPM捕集用の壁で捕集されるが、捕集量には限界がある。したがって、PM捕集量が限界値に到達する前に、微粒子捕集装置13の内部に高温の排気ガスGを通過させて、この排気ガスGの熱により微粒子捕集装置13の内部に捕集されたPMを燃焼除去する強制PM再生制御を定期的に行っている。
選択還元型触媒装置14は、その上流側の排気通路11に備えた尿素水供給装置20より噴射される尿素水Uを排気ガスGの熱により加水分解して生成されたアンモニア(NH3)を還元剤として、排気ガスGに含まれる窒素酸化物(NOx)を窒素(N2)に浄化する装置である。
なお、排気ガスGに含まれるNOxの浄化に使用されないアンモニアは、選択還元型触媒装置14の内部に吸蔵されるか、または、選択還元型触媒装置14より下流側の排気通路11に流出(スリップ)する。また、選択還元型触媒装置14のアンモニア吸蔵容量(アンモニアを吸蔵可能な上限量)は、選択還元型触媒装置14の温度が高くなるにつれて、少なくなる。
また、尿素水供給装置20には、尿素水供給ポンプ21により尿素水タンク22に貯留した尿素水Uが供給される。排気通路11への尿素水Uの供給量(噴射量)は、後述する尿素水供給制御装置(DCU)40により尿素水供給ポンプ21の出力を調整制御することにより、制御される。なお、尿素水Uの供給量を、尿素水供給装置20の弁開度を調整制御することにより、制御してもよい。
また、選択還元型触媒装置14より上流側の尿素水供給装置20と微粒子捕集装置13の間の排気通路11に上流NOx濃度センサ23を備えるとともに、尿素水供給装置20と選択還元型触媒装置14の間の排気通路11に温度センサ24を備える。また、選択還元型触媒装置14より下流側の排気通路11に下流NOx濃度センサ25を備える。
また、本発明の内燃機関の排気ガス浄化システム1を制御する尿素水供給制御装置(DCU、制御装置)40が備えられる。この尿素水供給制御装置40は、エンジンの運転状態を制御するエンジン制御装置(ECU)41より、エンジンへの吸気流量等、エンジンの運転状態に関わるデータを受信するとともに、上流NOx濃度センサ23、温度センサ24及び下流NOx濃度センサ25の各検出値のデータを受信して、これらの受信したデータを基に、尿素水供給ポンプ21の出力を調整制御して、尿素水供給装置20からの尿素水Uの供給量を制御する装置である。
本発明の排気ガス浄化システム1は、図1に示すように、選択還元型触媒装置14より下流側の排気通路11にアンモニアスリップ触媒装置15を備えることなく、この排気通路11の一部を2つの分岐通路310、311にして、この2つの分岐通路31の各々にアンモニア吸着除去装置300、301を備えて、排気ガスGの流れをこの2つの分岐通路31の間で切り替える三方弁(流路切替装置)32を2つの分岐通路31の分岐点に備えるシステムである点で、図8に示す従来技術の内燃機関の排気ガス浄化システム1Xとは異なっている。また、2つの分岐通路31の合流点より下流側の排気通路11にアンモニア濃度センサ(アンモニア濃度検出装置)26を備える。なお、以後の説明では、2つのアンモニア吸着除去装置30のそれぞれを第1のアンモニア吸着除去装置300、第2のアンモニア吸着除去装置301とするとともに、第1のアンモニア吸着除去装置300を備える分岐通路を第1の分岐通路310、第2のアンモニア吸着除去装置301を備える分岐通路を第2の分岐通路311とする。
アンモニア吸着除去装置30について説明する。アンモニア吸着除去装置30は、図2に示すように、アンモニア吸着部30Aと、アンモニア分解部30Bと、ヒーター(加熱部)30Cとで構成される。アンモニア吸着部30Aは、排気ガスGに含まれるアンモニアを吸着する部材である。アンモニア分解部30Bは、アンモニア吸着部30Aより脱離したアンモニアを低酸素雰囲気化で窒素及び水素に分解する部材である。ヒーター30Cは、アンモニア吸着部30A及びアンモニア分解部30Bの両方を加熱する部材である。
アンモニア吸着部30Aは、より詳細には、低温ではアンモニアを吸着し、ヒーター30Cによる加熱により高温化すると吸着したアンモニアを脱離する性質を有する材料で構成される部材である。この材料として、例えば、ゼオライト、ゼオライト様化合物、メソポーラスシリカ、活性炭、MOF、PCP、金属酸化物等のように、アンモニアを吸着及び脱離する性質に加えて、大きな比面積を有してアンモニアを吸着させ易い性質を有する材料を用いると好ましい。
また、アンモニア分解部30Bは、より詳細には、低酸素雰囲気化(無酸素雰囲気化を含む)でアンモニアを窒素と水素に分解する活性を有する材料で構成される部材である。この材料として、例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、金(Au)を構成要素とする貴金属触媒、金属酸化物、遷移金属イオン交換ゼオライト等の材料が好ましい。また、アンモニア吸着部30Aを構成する材料が有する性質も兼ね備えた材料を用いても良い。
なお、アンモニア吸着除去装置30の内部構成は、図2に示すように、排気ガスGの上流側より順に、ヒーター30C、アンモニア吸着部30A及びアンモニア分解部30Bの混合部を備える構成としてもよいし、図3に示すように、排気ガスGの上流側より順に、ヒーター30C、アンモニア吸着部30A、アンモニア分解部30Bを備える構成としてもよい。また、図示しないが、ヒーター30Cをアンモニア吸着除去装置30の最上流側に備えるのではなく、アンモニア吸着部30A及びアンモニア分解部30Bの外周にヒーター30Cを隣接して備える構成としてもよい。また、図示しないが、ヒーター30Cをアンモニア吸着部30A及びアンモニア分解部30Bの混合部に内蔵する形で備える構成としてもよい。
また、アンモニア吸着部30Aは低温時にアンモニアを吸着する能力が増加するため、選択還元型触媒装置14と三方弁32の間の排気通路11に、アンモニア吸着除去装置30に流入する排気ガスGの温度を冷却する構成を加えると好ましい。この構成は、例えば、選択還元型触媒装置14と三方弁32の間の排気通路11に冷却装置(図示しない)を備えて、この冷却装置により排気ガスGを冷却する構成であったり、または、排気通路11を構成する排気管を外気との接触面積が大きくなる形状として、大量の外気が排気管に接触することで排気ガスGを冷却する構成であったりする。
また、図1に示す2つのアンモニア吸着除去装置30の各々が備えるアンモニア吸着部30Aのアンモニアの吸着可能な容量は、同等に設定してもよいし、いずれか一方のアンモニア吸着部30Aのアンモニアの吸着可能な容量を大きく設定してもよい。
そして、本発明では、尿素水供給制御装置40が、三方弁32を制御して、2つの分岐通路31の各々に備えるアンモニア吸着除去装置30の内、いずれか一方のアンモニア吸着除去装置300(301)を備える分岐通路310(311)に排気ガスGa(Gb)を流すとともに、アンモニア濃度センサ26の検出値Dが第1設定濃度閾値D1以上となったときに、三方弁32を制御して、排気ガスGの流れを、一方のアンモニア吸着除去装置300(301)を備える分岐通路310(311)から他方のアンモニア吸着除去装置301(300)を備える分岐通路311(310)に切り替える制御を行うように構成する。ここで、第1設定濃度閾値D1は、この閾値以上となると、一方のアンモニア吸着除去装置300(301)のアンモニア吸着部30Aへのアンモニアの吸着量Aが予め設定された第1設定吸着量閾値A1以上で飽和状態となっていると判定できる閾値として、実験等により予め設定される閾値である。
すなわち、本発明の内燃機関の排気ガス浄化システム1では、アンモニア濃度センサ26の検出値Dが第1設定濃度閾値D1以上となる度に、排気ガスGに含まれるアンモニアの吸着対象を、直前までアンモニアを吸着していた一方のアンモニア吸着除去装置300(301)より、直前までアンモニアを吸着していなかった他方のアンモニア吸着除去装置301(300)に切り替える。したがって、排気ガスGに含まれるアンモニアを2つのアンモニア吸着除去装置30により切れ目なく除去することが可能となる。
また、直前までアンモニアを吸着していた一方のアンモニア吸着除去装置300(301)は飽和状態にあるため、次の三方弁32による流路切替時までに、このアンモニア吸着除去装置300(301)のアンモニア吸着部30Aに吸着したアンモニアを除去して再生する必要がある。
アンモニア吸着除去装置30の再生方法について説明する。まず、アンモニア濃度センサ26の検出値Dが第1設定濃度閾値D1以上で、三方弁32による流路切替が完了した後に、直前までアンモニアを吸着していた一方のアンモニア吸着除去装置300(301)にて、ヒーター30Cによりアンモニア吸着部30Aを加熱して、アンモニア吸着部30Aを高温化させることで、アンモニア吸着部30Aに吸着したアンモニアを脱離させて、この脱離したアンモニアをアンモニア分解部30Bに移動させる。
ここで、一方のアンモニア吸着除去装置300(301)への排気ガスGa(Gb)の流入を停止しているため、排気ガスGa(Gb)に含まれる酸素がアンモニア吸着除去装置300(301)に流入されることなく、また、一方のアンモニア吸着除去装置300(301)の内部に在留する酸素もアンモニア吸着部30Aに吸着したアンモニアのごく一部により消費し尽くすため、一方のアンモニア吸着除去装置300(301)の内部は低酸素雰囲気に移行していく。この低酸素雰囲気下で、ヒーター30Cによりアンモニア分解部30Bを高温化して、この高温化したアンモニア分解部30Bに担持された触媒等にアンモニアを接触させることで、アンモニアを窒素及び水素に分解除去して、アンモニア吸着部30Aを加熱再生する(アンモニア吸着除去装置30の加熱再生制御)。このときの化学反応式は、2NH3→N2+3H2が主となり、その他の化学反応は殆ど発生しない。また、ヒーター30Cによるアンモニア分解部30Bの加熱は、三方弁32による流路切替時点より実験等により予め設定された設定時間が経過して一方のアンモニア吸着除去装置300(301)の内部に低酸素雰囲気が形成されたときから開始してもよいが、アンモニア吸着部30Aの加熱開始時点と同時期に開始することで、一方のアンモニア吸着除去装置300(301)の内部が低酸素雰囲気に移行したときに、アンモニア分解部30Bが高温化しており、アンモニアの窒素及び水素への分解除去反応を速やかに行うことができるので好ましい。
なお、酸素雰囲気下で、高温のアンモニア分解部30Bにアンモニアを接触させると、4NH3+3O2→2N2+6H2O、4NH3+5O2→4NO+6H2O、2NH3+2O2→N2O+3H2O、2NO+O2→2NO2等の化学反応が起き、アンモニアから窒素だけでなく、窒素酸化物(NOx)や亜酸化窒素(N2O)が発生する虞がある。この発生反応は、図9に示すように、アンモニアスリップ触媒装置15が高温になるにつれて、アンモニアスリップ触媒装置15を通過後の排気ガスGに含まれる窒素酸化物(NOx)または亜酸化窒素(N2O)の割合が多くなっていくのと同様である。
すなわち、アンモニア吸着除去装置30は、アンモニア分解部30Bを低酸素雰囲気下かつ高温にすることで、アンモニア(NH3)を窒素酸化物(NOx)や亜酸化窒素(N2O)への化学変化を抑制し、窒素(N2)及び水素(H2)のみへの化学変化を主とする装置である。
したがって、上記の制御により、選択還元型触媒装置14を通過後の排気ガスGに含まれるアンモニアをNOx浄化性能を維持しながら浄化処理することができる。
また、他方のアンモニア吸着除去装置301(300)により排気ガスGに含まれるアンモニアを吸着しているときに、一方のアンモニア吸着除去装置300(301)の加熱再生を行うので、再度アンモニア濃度センサ26の検出値Dが第1設定濃度閾値D1以上となり、三方弁32の制御により、排気ガスGの流れが一方のアンモニア吸着除去装置300(301)に切り替わったときにも、一方のアンモニア吸着除去装置300(301)によりアンモニアを確実に除去して、大気へのアンモニアスリップを抑制することができる。
なお、図2、図3では、アンモニア吸着部30A及びアンモニア分解部30Bの加熱をヒーター30Cにより行っているが、この加熱方法に限定されない。例えば、高温の排気ガスGの廃熱を利用した加熱方法を用いたり、または、選択還元型触媒装置14と三方弁32の間の排気通路11に上流側より順に燃料供給装置及び酸化触媒装置(図示しない)を備えて、燃料供給装置より供給した燃料を下流側の酸化触媒装置で酸化発熱させたりすることで、アンモニア吸着除去装置30を加熱するための熱量を発生させる方法を用いてもよい。
アンモニア吸着部30Aへのアンモニアの吸着量Aの算出方法について説明する。アンモニアの吸着量Aの算出は、例えば、以下の方法で行われる。すなわち、尿素水供給制御装置40により、エンジンの運転状態と、上流NOx濃度センサ23の検出値と、選択還元型触媒装置14へのアンモニアの吸着量と、温度センサ24の検出値とに基づいて、選択還元型触媒装置14より下流側の排気通路11に流出するアンモニア量を推定し、この推定したアンモニア量の時間積分値と三方弁32による流路切替情報に基づいて2つのアンモニア吸着除去装置32のそれぞれのアンモニア吸着部30Aへのアンモニアの吸着量Aを推定算出する方法である。
この算出方法を用いることで、アンモニア吸着部30Aへのアンモニアの吸着量Aを高精度で算出することができる。
なお、図1では流路切替装置として三方弁32を備えたが、流路切替機能だけでなく流量調整機能も備えた流量調整弁(流量調整装置)32を代わりに備えてもよい。この場合は、三方弁32のように2つの分岐通路31のいずれか一方に排気ガスGを流通させるのではなく、2つの分岐通路31のいずれか一方または両方に排気ガスGを流通させることができる。
三方弁32のように、2つの分岐通路31の間の排気ガスGの流れを即時に切り替える構成であると、流路切替装置の制御が簡単となる。これに対して、流量調整弁32を備えると、2つの分岐通路31の間で排気ガスGの流れを切り替えるときに、各分岐通路31を通過する排気ガスGの流量を徐々にまたは段階的に変化させながら切り替えることができるので、アンモニア濃度センサ26の検出値Dの急激な変動を確実に抑制することができ、この検出値Dに基づく流路切替精度を向上させることができる。
排気ガスGを最初に流すアンモニア吸着除去装置30の設定方法について図4の制御フローを参照しながら説明する。この制御フローは、エンジンの始動時に上級の制御フローより呼ばれてスタートする制御フローである。
図4の制御フローがスタートすると、ステップS10にて、2つのアンモニア吸着除去装置300、301のそれぞれのアンモニア吸着量A、Bを算出する。この場合のアンモニア吸着量A、Bについては、直前のエンジン停止前に算出して尿素水供給制御装置40に記憶しておいた値を用いる。この算出方法は上述した方法と同様であるので、ここでは説明を省略する。ステップS10の制御を実施後、ステップS20に進む。
ステップS20にて、ステップS10で算出したアンモニア吸着量A、Bの内、いずれの吸着量がより大きな値であるかを判定する。第1のアンモニア吸着除去装置300のアンモニア吸着量Aの方が大きい場合(YES)には、ステップS30に進み、ステップS30にて、流路切替装置32を制御して、第1のアンモニア吸着除去装置300を備える第1の分岐通路310に排気ガスGが流れるようにする。ステップS30の制御を実施後、ステップS50に進む。
一方、ステップS20にて、第2のアンモニア吸着除去装置301のアンモニア吸着量Bの方が大きい場合(NO)には、ステップS40に進み、ステップS40にて、流路切替装置32を制御して、第2のアンモニア吸着除去装置301を備える第2の分岐通路311に排気ガスGが流れるようにする。ステップS40の制御を実施後、ステップS50に進む。
ステップS50にて、ステップS30またはステップS40で流路切替した際の流路切替装置32の状態を尿素水供給制御装置40に記憶させる。ステップS50の制御を実施後、後述する図5の制御フローのステップS60または図7の制御フローのステップS130に進む。以上の制御フローにしたがって、排気ガスGを最初に流すアンモニア吸着除去装置30が設定される。
本発明の内燃機関の排気ガス浄化システム1を用いた、本発明の内燃機関の排気ガス浄化方法の制御フローについて、図5を参照しながら説明する。図5の制御フローは、エンジンの始動後で図4の制御フローのステップS50の制御が終了した後に、実験等により予め設定した制御時間毎に、上級の制御フローより呼ばれてスタートする制御フローである。
図5の制御フローがスタートすると、ステップS60にて、図4のステップS50または後述する図5のステップS120で尿素水供給制御装置40に記憶させた流路切替装置32の流路切替状態を呼び出しておく。エンジンの始動時で最初にステップS60の制御を行うときには、図4のステップS50の流路切替状態を呼び出し、2回目以降にステップS60の制御を行うときには、図5のステップS120の流路切替状態を呼び出す。また、2つの分岐通路31の合流点より下流側の排気通路11を通過する排気ガスGに含まれるアンモニアの濃度Dをアンモニア濃度センサ26等により検出するとともに、ステップS60の時点でアンモニアを吸着しているアンモニア吸着除去装置(吸着装置)30のアンモニア吸着部30Aへのアンモニアの吸着量A(B)を算出する。図5では、第1のアンモニア吸着除去装置300を吸着装置(アンモニアを吸着している装置)としている。ステップS60の制御を実施後、ステップS70に進む。なお、アンモニアの吸着量A(B)の算出方法については上述したので、ここでは説明を省略する。
ステップS70にて、アンモニアの濃度Dが第1設定濃度閾値D1以上であるか否かを判定する。アンモニアの濃度Dが第1設定濃度閾値D1未満である場合(NO)には、ステップS120に進み、ステップS120にて、ステップS120時点での流路切替装置32の流路切替状態を尿素水供給制御装置40に記憶させる。この場合は、ステップS60の時点での流路切替装置32の流路切替状態と同じとなる。ステップS120の制御を実施後、リターンに進んで、本制御フローを終了する。
一方、ステップS70にて、アンモニアの濃度Dが第1設定濃度閾値D1以上である場合(YES)には、ステップS80に進み、ステップS80にて、流路切替装置32を制御して、排気ガスGの流れを吸着装置(図5では第1のアンモニア吸着装置300)を備える分岐通路(図5では第1の分岐通路310)からアンモニアを吸着していなかった未吸着装置(図5では第2のアンモニア吸着装置301)を備える分岐通路(図5では第2の分岐通路311)に切り替える。ステップS80の制御を実施後、ステップS90に進む。
ステップS90にて、吸着装置(第1のアンモニア吸着装置300)の加熱再生制御を行う。ステップS90の制御を実施後、ステップS100に進む。
ステップS100にて、吸着装置(第1のアンモニア吸着装置300)のアンモニア吸着部30Aへのアンモニアの吸着量Aが第1設定吸着量閾値A1より小さい値として設定された第2設定吸着量閾値A2以下となったか否かを判定する。アンモニアの吸着量Aが第2設定吸着量閾値A2より大きい場合(NO)には、予め設定した待機時間を経過後、再度ステップS100の判定を行う。
一方、ステップS100にて、アンモニアの吸着量Aが第2設定吸着量閾値A2以下となった場合(YES)には、ステップS110に進み、ステップS110にて、吸着装置(第1のアンモニア吸着装置300)の加熱再生を終了する。ステップS110の制御を実施後、ステップS120に進み、ステップS120にて、ステップS120時点での流路切替装置32の流路切替状態を尿素水供給制御装置40に記憶させる。この場合は、ステップS80にて流路切替を実施した後の流路切替装置32の流路切替状態と同じとなる。ステップS120の制御を実施後、リターンに進んで、本制御フローを終了する。
次に、本発明の内燃機関の排気ガス浄化システム1の別の構成を図6を参照しながら説明する。図6に示す本発明の内燃機関の排気ガス浄化システムは、図1に示す本発明の内燃機関の排気ガス浄化システムの構成に、さらに、選択還元型触媒装置14と流路切替装置32の間の排気通路11より分岐して、2つの分岐通路30の合流点より下流側の排気通路11に合流する第3の分岐通路33を備えて、排気ガスGの流れを2つの分岐通路30と第3の分岐通路33の間で切り替える第2の三方弁(第2の流路切替装置)34を排気通路11から第3の分岐通路33への分岐点に備えて構成されるシステムである。
そして、このシステムを基に、尿素水供給制御装置40が、アンモニア濃度センサ26の検出値Dが第1設定濃度閾値D1より低い値として設定された第2設定濃度閾値D2未満となったときに、第2の三方弁34を制御して、排気ガスGの流れを2つのアンモニア吸着除去装置300、301を備える分岐通路310、311から第3の分岐通路33に切り替える制御を行うように構成する。
図1に示す本発明の内燃機関の排気ガス浄化システムでは、アンモニアの濃度Dが第1設定濃度閾値D1未満である場合は、三方弁32による流路切替を行わずに、直前までアンモニアを吸着していた吸着装置30に引き続きアンモニアを吸着させる。これに対し、図6に示す本発明の内燃機関の排気ガス浄化システムでは、アンモニアの濃度Dが第1設定濃度閾値D1未満であっても、さらに、第2設定濃度閾値D2未満である場合には、三方弁32による流路切替は行わないものの、第2の三方弁34を制御して、2つのアンモニア吸着除去装置30を備える分岐通路31からアンモニア吸着除去装置30を備えない第3の分岐通路33に切り替える制御を行う。
このようにすることで、図1に示す本発明の内燃機関の排気ガス浄化システムが奏する作用効果に加え、さらに、アンモニアの濃度Dが第2設定濃度閾値D2未満であり、アンモニアスリップ量が極めて少ないときには、2つのアンモニア吸着除去装置30に排気ガスGを通過させずにアンモニアを吸着させないので、2つのアンモニア吸着除去装置30の加熱再生の頻度を少なくすることができる。
図6に示す本発明の内燃機関の排気ガス浄化システム1を用いた、本発明の内燃機関の排気ガス浄化方法の別の制御フローについて、図7を参照しながら説明する。図7の制御フローは、エンジンの始動後で図4の制御フローのステップS50の制御が終了した後に、実験等により予め設定した制御時間毎に、上級の制御フローより呼ばれてスタートする制御フローである。
図7の制御フローがスタートすると、ステップS130にて、図4のステップS50または後述する図7のステップS220で尿素水供給制御装置40に記憶させた流路切替装置32の流路切替状態を呼び出しておく。エンジンの始動時で最初にステップS130の制御を行うときには、図4のステップS50の流路切替状態を呼び出し、2回目以降にステップS130の制御を行うときには、図7のステップS220の流路切替状態を呼び出す。
また、このとき、尿素水供給制御装置40に記憶させた第2の流路切替装置34の流路切替状態も呼び出しておく。エンジンの始動時で最初にステップS130の制御を行うときには、第2の流路切替装置34の流路切替状態は、排気ガスGが2つの分岐通路31を通過する流路切替状態になっている。2回目以降にステップS130の制御を行うときには、図7のステップS220で尿素水供給制御装置40に記憶させた第2の流路切替装置34の流路切替状態となっている。
また、2つの分岐通路31の合流点より下流側の排気通路11を通過する排気ガスGに含まれるアンモニアの濃度Dをアンモニア濃度センサ26等により検出するとともに、ステップS130の時点でアンモニアを吸着しているアンモニア吸着除去装置(吸着装置)30のアンモニア吸着部30Aへのアンモニアの吸着量A(B)を算出する。図7では、第1のアンモニア吸着除去装置300を吸着装置(アンモニアを吸着している装置)としている。ステップS130の制御を実施後、ステップS140に進む。なお、アンモニアの吸着量A(B)の算出方法については上述したので、ここでは説明を省略する。
ステップS140にて、アンモニアの濃度Dが第1設定濃度閾値D1以上であるか否かを判定する。アンモニアの濃度Dが第1設定濃度閾値D1以上である場合(YES)には、ステップS150に進み、ステップS150にて、流路切替装置32を制御して、排気ガスGの流れを吸着装置(図7では第1のアンモニア吸着装置300)を備える分岐通路(図7では第1の分岐通路310)からアンモニアを吸着していなかった未吸着装置(図7では第2のアンモニア吸着装置301)を備える分岐通路(図7では第2の分岐通路311)に切り替える。また、このとき、後述するステップS210で第2の流路切替装置34により排気ガスGの流れを第3の分岐通路33に切り替えている場合には、第2の流路切替装置34を制御して、排気ガスGの流れを第3の分岐通路33から2つのアンモニア吸着除去装置30を備える分岐通路31に切り替える。ステップS150の制御を実施後、ステップS160に進む。
ステップS160にて、吸着装置(第1のアンモニア吸着装置300)の加熱再生制御を行う。ステップS160の制御を実施後、ステップS170に進む。
ステップS170にて、吸着装置(第1のアンモニア吸着装置300)のアンモニア吸着部30Aへのアンモニアの吸着量Aが第2設定吸着量閾値A2以下となったか否かを判定する。アンモニアの吸着量Aが第2設定吸着量閾値A2より大きい場合(NO)には、予め設定した待機時間を経過後、再度ステップS170の判定を行う。
一方、ステップS170にて、アンモニアの吸着量Aが第2設定吸着量閾値A2以下となった場合(YES)には、ステップS180に進み、ステップS180にて、吸着装置(第1のアンモニア吸着装置300)の加熱再生を終了する。ステップS180の制御を実施後、ステップS220に進み、ステップS220にて、ステップS220時点での流路切替装置32及び第2の流路切替装置34の流路切替状態を尿素水供給制御装置40に記憶させる。この場合は、流路切替装置32の流路切替状態は、ステップS150にて流路切替を実施した後の流路切替状態と同じとなり、また、第2の流路切替装置34の流路切替状態は、ステップS150にて流路切替を行ったか否かに応じて、ステップS130の時点での流路切替状態またはステップS150の時点での流路切替状態と同じとなっている。ステップS220の制御を実施後、リターンに進んで、本制御フローを終了する。
一方、ステップS140にて、アンモニアの濃度Dが第1設定濃度閾値D1未満である場合(NO)には、ステップS190に進み、ステップS190にて、アンモニアの濃度Dが第2設定濃度閾値D2以上であるか否かを判定する。アンモニアの濃度Dが第2設定濃度閾値D2以上である場合(YES)には、ステップS200に進み、ステップS200にて、ステップS210で第2の流路切替装置34により排気ガスGの流れを第3の分岐通路33に切り替えている場合に限って、第2の流路切替装置34を制御して、排気ガスGの流れを第3の分岐通路33から2つのアンモニア吸着除去装置30を通過する分岐通路31に切り替える。このとき、流路切替装置32による流路切替は行わないので、排気ガスGは前回アンモニアを吸着していた吸着装置を備える分岐通路を通過することになる。ステップS200の制御を実施後、ステップS220に進む。
ステップS220にて、ステップS220時点での流路切替装置32及び第2の流路切替装置34の流路切替状態を尿素水供給制御装置40に記憶させる。この場合は、流路切替装置32の流路切替状態は、ステップS130の時点での流路切替状態と同じとなっており、また、第2流路切替装置34の流路切替状態は、ステップS200にて流路切替を行ったか否かに応じて、ステップS130の時点での流路切替状態またはステップS200の時点での流路切替状態と同じとなっている。ステップS220の制御を実施後、リターンに進んで、本制御フローを終了する。
また、ステップS190にて、アンモニアの濃度Dが第2設定濃度閾値D2未満である場合(NO)には、ステップS210に進み、ステップS210にて、第2の流路切替装置34を制御して、排気ガスGの流れを2つのアンモニア吸着除去装置30(300、301)を備える分岐通路31(310、311)から第3の分岐通路33に切り替える制御を行う。ステップS210の制御を実施後、ステップS220に進み、ステップS220にて、ステップS220時点での流路切替装置32及び第2の流路切替装置34の流路切替状態を尿素水供給制御装置40に記憶させる。この場合は、流路切替装置32の流路切替状態は、ステップS130の時点での流路切替状態と同じとなり、また、第2の流路切替装置34の流路切替状態は、ステップS210の時点での第2の流路切替装置34の流路切替状態と同じとなる。ステップS220の制御を実施後、リターンに進んで、本制御フローを終了する。
以上より、本発明の内燃機関の排気ガス浄化システム1を基にした、本発明の内燃機関の排気ガス浄化方法は、内燃機関の排気通路11に選択還元型触媒装置14を備え、この選択還元型触媒装置14より下流側の排気通路11の一部を2つの分岐通路31にして、この2つの分岐通路31の各々にアンモニア吸着除去装置30を備えて、排気ガスGの流れをこの2つの分岐通路31の間で切り替える流路切替装置32を2つの分岐通路31の分岐点に備えて構成される内燃機関の排気ガス浄化方法において、流路切替装置32を制御して、2つの分岐通路31の各々に備えるアンモニア吸着除去装置30の内、いずれか一方のアンモニア吸着除去装置300(301)を備える分岐通路310(311)に排気ガスGを流すとともに、2つの分岐通路31の合流点より下流側の排気通路11を通過する排気ガスGに含まれるアンモニアの濃度Dが予め設定された第1設定濃度閾値D1以上となったときに、流路切替装置32を制御して、排気ガスGの流れを、一方のアンモニア吸着除去装置300(301)を備える分岐通路310(311)から他方のアンモニア吸着除去装置301(300)を備える分岐通路311(310)に切り替える制御を行うことを特徴とする方法となる。
本発明の内燃機関の排気ガス浄化システム1及び内燃機関の排気ガス浄化方法によれば、選択還元型触媒装置14を通過後の排気ガスGに含まれるアンモニアをNOx浄化性能を維持しながら浄化処理することができる。
なお、本発明の制御において、流路切替装置32または第2の流路切替装置34を制御して、排気ガスGの流れを各分岐通路310、311、33の間で切り替える場合で、既に切り替えたい側の通路に切り替わっているときには、流路切替装置32または第2の流路切替装置34を新たに操作する必要はない。
1、1X 内燃機関の排気ガス浄化システム
11 排気通路
14 選択還元型触媒装置(SCR)
26 アンモニア濃度センサ(アンモニア濃度検出装置)
30 アンモニア吸着除去装置
300 第1のアンモニア吸着除去装置
301 第2のアンモニア吸着除去装置
30A アンモニア吸着部
30B アンモニア分解部
30C ヒーター(加熱部)
31 分岐通路
310 第1の分岐通路
311 第2の分岐通路
32 三方弁(流路切替装置)
33 第3の分岐通路
34 第2の三方弁(第2の流路切替装置)
40 尿素水供給制御装置(制御装置)
G 排気ガス
Ga 第1の分岐通路を通過する排気ガス
Gb 第2の分岐通路を通過する排気ガス
Gd 第3の分岐通路を通過する排気ガス
D アンモニア濃度センサの検出値
D1 第1設定濃度閾値
D2 第2設定濃度閾値

Claims (5)

  1. 内燃機関の排気通路に選択還元型触媒装置を備えて構成される内燃機関の排気ガス浄化システムにおいて、
    前記選択還元型触媒装置より下流側の前記排気通路の一部を2つの分岐通路にして、この2つの分岐通路の各々にアンモニア吸着除去装置を備えて、排気ガスの流れをこの2つの分岐通路の間で切り替える流路切替装置を前記2つの分岐通路の分岐点に備えるとともに、
    前記2つの分岐通路の合流点より下流側の前記排気通路にアンモニア濃度検出装置を備えて、
    前記排気ガス浄化システムを制御する制御装置が、
    前記流路切替装置を制御して、前記2つの分岐通路の各々に備えるアンモニア吸着除去装置の内、いずれか一方のアンモニア吸着除去装置を備える分岐通路に排気ガスを流すとともに、
    前記アンモニア濃度検出装置の検出値が予め設定された第1設定濃度閾値以上となったときに、前記流路切替装置を制御して、排気ガスの流れを、前記一方のアンモニア吸着除去装置を備える分岐通路から他方のアンモニア吸着除去装置を備える分岐通路に切り替える制御を行うように構成される内燃機関の排気ガス浄化システム。
  2. 前記アンモニア吸着除去装置を、排気ガスに含まれるアンモニアを吸着するアンモニア吸着部と、該アンモニア吸着部より脱離したアンモニアを低酸素雰囲気化で窒素及び水素に分解するアンモニア分解部と、前記アンモニア吸着部及び前記アンモニア分解部を加熱する加熱部とで構成される請求項1に記載の内燃機関の排気ガス浄化システム。
  3. 前記制御装置が、
    排気ガスの流れを、前記一方のアンモニア吸着除去装置から前記他方のアンモニア吸着除去装置に切り替えて、前記一方のアンモニア吸着除去装置への排気ガスの流入を停止した後に、
    前記一方のアンモニア吸着除去装置にて、前記加熱部により前記アンモニア吸着部及び前記アンモニア分解部を加熱して、前記アンモニア吸着部に吸着したアンモニアを脱離させ、この脱離したアンモニアを前記アンモニア分解部で低酸素雰囲気化で窒素及び水素に分解することで、前記一方のアンモニア吸着除去装置のアンモニア吸着部を再生する制御を行うように構成される請求項2に記載の内燃機関の排気ガス浄化システム。
  4. さらに、前記選択還元型触媒装置と前記流路切替装置の間の前記排気通路より分岐して、前記2つの分岐通路の合流点より下流側の前記排気通路に合流する第3の分岐通路を備えて、排気ガスの流れを前記2つの分岐通路と前記第3の分岐通路の間で切り替える第2の流路切替装置を前記排気通路から前記第3の分岐通路への分岐点に備えるとともに、
    前記制御装置が、
    前記アンモニア濃度検出装置の検出値が前記第1設定濃度閾値より低い値として設定された第2設定濃度閾値未満となったときに、前記第2の流路切替装置を制御して、排気ガスの流れを、前記一方のアンモニア吸着除去装置または前記他方のアンモニア吸着除去装置を備える分岐通路から前記第3の分岐通路に切り替える制御を行うように構成される請求項1〜3のいずれか一項に記載の内燃機関の排気ガス浄化システム。
  5. 内燃機関の排気通路に選択還元型触媒装置を備え、該選択還元型触媒装置より下流側の前記排気通路の一部を2つの分岐通路にして、この2つの分岐通路の各々にアンモニア吸着除去装置を備えて、排気ガスの流れをこの2つの分岐通路の間で切り替える流路切替装置を前記2つの分岐通路の分岐点に備えて構成される内燃機関の排気ガス浄化方法において、
    前記流路切替装置を制御して、前記2つの分岐通路の各々に備えるアンモニア吸着除去装置の内、いずれか一方のアンモニア吸着除去装置を備える分岐通路に排気ガスを流すとともに、
    前記2つの分岐通路の合流点より下流側の前記排気通路を通過する排気ガスに含まれるアンモニアの濃度が予め設定された第1設定濃度閾値以上となったときに、前記流路切替装置を制御して、排気ガスの流れを、前記一方のアンモニア吸着除去装置を備える分岐通路から他方のアンモニア吸着除去装置を備える分岐通路に切り替える制御を行うことを特徴とする内燃機関の排気ガス浄化方法。
JP2016117652A 2016-06-14 2016-06-14 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法 Active JP6743499B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016117652A JP6743499B2 (ja) 2016-06-14 2016-06-14 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016117652A JP6743499B2 (ja) 2016-06-14 2016-06-14 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法

Publications (2)

Publication Number Publication Date
JP2017223135A true JP2017223135A (ja) 2017-12-21
JP6743499B2 JP6743499B2 (ja) 2020-08-19

Family

ID=60685940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016117652A Active JP6743499B2 (ja) 2016-06-14 2016-06-14 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法

Country Status (1)

Country Link
JP (1) JP6743499B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173782A (ja) * 1995-01-27 1997-07-08 Toyota Motor Corp 排気浄化方法及び排気浄化装置
JP2001009281A (ja) * 1999-07-01 2001-01-16 Nippon Shokubai Co Ltd アンモニア分解用触媒およびアンモニア含有排ガスの処理方法
JP2014047721A (ja) * 2012-08-31 2014-03-17 Toyota Industries Corp 排気ガス浄化装置
JP2015206274A (ja) * 2014-04-18 2015-11-19 いすゞ自動車株式会社 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法
JP2016094897A (ja) * 2014-11-14 2016-05-26 いすゞ自動車株式会社 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法
JP2016094894A (ja) * 2014-11-14 2016-05-26 いすゞ自動車株式会社 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173782A (ja) * 1995-01-27 1997-07-08 Toyota Motor Corp 排気浄化方法及び排気浄化装置
JP2001009281A (ja) * 1999-07-01 2001-01-16 Nippon Shokubai Co Ltd アンモニア分解用触媒およびアンモニア含有排ガスの処理方法
JP2014047721A (ja) * 2012-08-31 2014-03-17 Toyota Industries Corp 排気ガス浄化装置
JP2015206274A (ja) * 2014-04-18 2015-11-19 いすゞ自動車株式会社 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法
JP2016094897A (ja) * 2014-11-14 2016-05-26 いすゞ自動車株式会社 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法
JP2016094894A (ja) * 2014-11-14 2016-05-26 いすゞ自動車株式会社 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法

Also Published As

Publication number Publication date
JP6743499B2 (ja) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6228179B2 (ja) スリップ触媒と炭化水素発熱触媒の組合せ
KR101660026B1 (ko) 린번 내연 엔진용 배기 시스템
US8607551B2 (en) Exhaust gas purifier and system for exhaust gas purification
JP3885813B2 (ja) 排気ガス浄化装置の昇温方法及び排気ガス浄化システム
US20070012032A1 (en) Hybrid system comprising HC-SCR, NOx-trapping, and NH3-SCR for exhaust emission reduction
US9777654B2 (en) Method and apparatus for improved lightoff performance of aftertreatment catalysts
KR20180068808A (ko) 배기가스 정화장치 및 제어 방법
JP2009041430A (ja) NOx浄化方法及びNOx浄化システム
JP5287282B2 (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP3885814B2 (ja) 排気ガス浄化装置の昇温方法及び排気ガス浄化システム
JP6743498B2 (ja) 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法
JP3157556B2 (ja) 排気ガス浄化用触媒装置
JP2018145869A (ja) 排気ガス浄化システム、及び排気ガス浄化システムの硫黄被毒抑制方法
JP2013245606A (ja) 排気ガス浄化システム
JP2007146784A (ja) 内燃機関の排気浄化装置
JP6743499B2 (ja) 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法
JP6772798B2 (ja) 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法
JP6838384B2 (ja) 排気ガス浄化システム、及び排気ガス浄化システムの被毒抑制方法
JP2009273989A (ja) 排ガス浄化装置
JP2007144341A (ja) 内燃機関の排気浄化装置
WO2007029339A1 (ja) 内燃機関の排ガス浄化装置及び排ガス浄化方法
JP2006161668A (ja) 排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システム
JP6733383B2 (ja) 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法
JP2011169264A (ja) 排気浄化装置
JP2010242602A (ja) 排気ガス浄化システム及び排気ガス浄化システムの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6743499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150