JP2017222902A - Lance - Google Patents

Lance Download PDF

Info

Publication number
JP2017222902A
JP2017222902A JP2016118870A JP2016118870A JP2017222902A JP 2017222902 A JP2017222902 A JP 2017222902A JP 2016118870 A JP2016118870 A JP 2016118870A JP 2016118870 A JP2016118870 A JP 2016118870A JP 2017222902 A JP2017222902 A JP 2017222902A
Authority
JP
Japan
Prior art keywords
pipe
gas
lance
tube
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016118870A
Other languages
Japanese (ja)
Other versions
JP6481662B2 (en
Inventor
知之 川島
Tomoyuki Kawashima
知之 川島
安藤 誠
Makoto Ando
誠 安藤
大山 伸幸
Nobuyuki Oyama
伸幸 大山
明紀 村尾
Akinori Murao
明紀 村尾
尚貴 山本
Naoki Yamamoto
尚貴 山本
博 竹生
Hiroshi Takeu
博 竹生
浩史 仲川
Hiroshi Nakagawa
浩史 仲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016118870A priority Critical patent/JP6481662B2/en
Publication of JP2017222902A publication Critical patent/JP2017222902A/en
Application granted granted Critical
Publication of JP6481662B2 publication Critical patent/JP6481662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blast Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lance capable of preventing melt damage at a confluent part where a gas such as a combustion-supporting gas and a combustible gas collides with a transport pipe of a solid fuel such as a powdered coal.SOLUTION: An outside pipe 7 is disposed while being converged concentrically outside of an inside pipe 6 at a middle way of a pipe path, a part ahead in a blowing direction from the confluent part of the inside pipe 6 for blowing a solid fuel including at least the confluent part to the outside pipe 7 is formed like a straight pipe, the outside pipe 7 for blowing a combustion-supporting gas or a combustible gas is bent in one direction at the confluent part with the inside pipe 6, and an angle formed between a center axis of the outside pipe 7 at a bent part and a center axis of the inside pipe 6, that is a cross angle φ, is less than 90°, preferably greater than 0°and not greater than 60°, thereby the dynamic pressure when a gas blown from the outside pipe 7 collides with the inside pipe 6 is reduced to suppress melt damage.SELECTED DRAWING: Figure 2

Description

本発明は、微粉炭や粒状合成樹脂などの固体燃料と、酸素などの支燃性ガス又はLNG(Liquefied Natural Gas:液化天然ガス)などの易燃性ガスとを個別に高炉送風管に吹込んで燃焼させるランスに関するものである。   In the present invention, solid fuel such as pulverized coal and granular synthetic resin, and flammable gas such as flammable gas such as oxygen or LNG (Liquefied Natural Gas) are individually blown into a blast furnace blow pipe. It relates to a lance to be burned.

高炉への微粉炭吹込みは、コークスとの価格差に基づくコストメリットが大きいことから、多くの高炉で採用され、経済性の向上に大きく寄与している。近年は、コークス炉の炉命延長の観点からも、その重要性が再認識され、ますます微粉炭の大量吹込みが指向されるようになった。しかし、高炉に吹込む微粉炭量を増してゆくと、微粉炭の燃焼率が低下して、レースウェイ内で微粉炭が燃焼しきれずに、未燃焼の未燃チャーとして炉内に放出される。この未燃チャーは、ソルーションロス反応により炉内で消費されるが、炉内消費量には自ずと限界値が存在するため、消費限界値以上に未燃チャーが発生すると、ダストとして炉頂から排出されて燃料費の上昇を招く。更に、未燃チャーが炉芯や溶融帯に蓄積すると、通気性や通液性が阻害され、炉況不安定や生産性低下の原因となる。   The pulverized coal injection into the blast furnace is adopted in many blast furnaces because it has a large cost merit based on the price difference with the coke, and greatly contributes to the improvement of economy. In recent years, the importance of coke ovens has been re-recognized from the viewpoint of extending the life of coke ovens, and more and more pulverized coal has been increasingly injected. However, as the amount of pulverized coal injected into the blast furnace is increased, the combustion rate of pulverized coal decreases, and the pulverized coal cannot be burned in the raceway and is discharged into the furnace as unburned unburned char. . This unburned char is consumed in the furnace due to the solution loss reaction, but there is a limit value in the furnace consumption, so if unburned char is generated above the consumption limit value, it is discharged as dust from the top of the furnace. As a result, fuel costs increase. Furthermore, if unburned char accumulates in the furnace core or molten zone, the air permeability and liquid permeability are hindered, causing furnace instability and productivity reduction.

この問題を解決する手段として、微粉炭吹込み用ランスを多重管構造とし、例えば微粉炭と酸素との接触効率を向上させ、微粉炭を積極的に燃焼させる方法が多数提案されている。しかしながら、微粉炭や粒状合成樹脂などの粉体(固体燃料)と、酸素などの支燃性ガスとを個別に吹込むことにより、ランス先端部や支燃性ガスの輸送管での溶損が発生し、長期間の安定吹込みができなくなることも多い。そのため、ランス寿命の低下に伴う補修費の増大ばかりでなく、安価な微粉炭の吹込み量が減少することからコストアップの要因となっていた。このランス溶損対策として、例えば下記特許文献1では、同心状に配置された4本の管のうち、第3の管を第2の管及び第4の管より短くして、第2の管と第3の管との間、及び第3の管と第4の管との間を冷却水の折り返し水路とすると共に、第1の管と第2の管との間に螺旋状のフィンを設けている。そして、このような冷却水の流路を設けることで、大量の冷却水を管周方向で均一に流すことができ、冷却効果が向上してランスの熱負荷を大幅に低減することができるとしている。   As means for solving this problem, many methods have been proposed in which the pulverized coal blowing lance has a multi-tube structure, for example, the contact efficiency between pulverized coal and oxygen is improved, and the pulverized coal is actively combusted. However, by blowing separately powders (solid fuel) such as pulverized coal and granular synthetic resin and combustion-supporting gas such as oxygen, the lance tip and combustion-supporting gas transport pipes are not damaged. It often occurs and long-term stable blowing cannot be performed. For this reason, not only the repair cost increases due to the decrease in the lance life, but also the amount of low-powder pulverized coal decreases, which has been a factor in increasing costs. As a countermeasure against the lance melting, for example, in Patent Document 1 below, among the four tubes arranged concentrically, the third tube is made shorter than the second tube and the fourth tube, so that the second tube Between the first pipe and the third pipe, and between the third pipe and the fourth pipe as a cooling water return channel, and between the first pipe and the second pipe, a helical fin is provided. Provided. And by providing such a cooling water flow path, a large amount of cooling water can be made to flow uniformly in the pipe circumferential direction, and the cooling effect can be improved and the heat load of the lance can be greatly reduced. Yes.

特開2000−160216号公報JP 2000-160216 A

しかしながら、微粉炭や粒状合成樹脂などの粉体(固体燃料)と、例えば酸素などの支燃性ガスとを個別に吹込むことによる溶損は、ランス先端部だけでなく、輸送管内の支燃性ガスが固体燃料吹込み管と衝突する合流部でも生じることが分かった。支燃性ガスは、断熱圧縮及び摩擦熱によって温度が上昇することがある。断熱圧縮は、主にバルブの急開き操作に起因して、圧力調整器、バルブ、配管などの閉空間に高圧ガスが急激に流入し、ガスの圧力とガスの温度が急上昇する現象である。また、摩擦熱は、狭い空隙を高圧ガスが流動するときの流体の流動摩擦によって発生する熱であり、この摩擦熱によってガスの温度と空隙を形成する部材の温度が上昇する。そして、これらの断熱圧縮や摩擦熱によって加熱された管が、酸素との接触に伴う自己酸化熱によって更に熱を発生する。特に、支燃性ガスの流れ方向が急激に変化する微粉炭輸送管との合流部では、ランスに高い動圧が生じるため、例えば微粉炭の輸送管外面に生じている酸化被膜が高い動圧で除去され、その後も自己酸化と酸化被膜の除去が繰り返されて溶損に至る可能性がある。微粉炭とLNGなどの易燃性ガスを個別に吹込む場合、易燃性ガス合流部における微粉炭輸送管の自己酸化は生じないものの、断熱圧縮によって易燃性ガスの温度が上昇することに加え、合流部で高い動圧が生じることに変わりはないので、このような状態が長く続くと、やはり合流部において微粉炭輸送管に溶損が生じる可能性がある。   However, melt damage caused by individually blowing powder (solid fuel) such as pulverized coal or granular synthetic resin and a combustion-supporting gas such as oxygen is not limited to the lance tip, but is also supported in the transport pipe. It has been found that the volatile gas also occurs at the junction where the solid gas collides with the solid fuel injection pipe. The temperature of the combustion-supporting gas may increase due to adiabatic compression and frictional heat. Adiabatic compression is a phenomenon in which high-pressure gas suddenly flows into a closed space such as a pressure regulator, a valve, and piping due to a sudden opening operation of the valve, and the gas pressure and the gas temperature rapidly increase. The frictional heat is heat generated by the fluid friction of the fluid when the high-pressure gas flows through a narrow gap, and the temperature of the gas and the temperature of the member that forms the gap rise due to this frictional heat. And the pipe | tube heated by these adiabatic compression and frictional heat generate | occur | produces further heat | fever by the self-oxidation heat accompanying contact with oxygen. In particular, high dynamic pressure is generated in the lance at the junction with the pulverized coal transport pipe where the flow direction of the combustion-supporting gas changes abruptly. For example, the oxide film generated on the outer surface of the pulverized coal transport pipe has high dynamic pressure. After that, the auto-oxidation and the removal of the oxide film may be repeated to cause melting damage. When flammable gas such as pulverized coal and LNG is blown individually, the self-oxidation of the pulverized coal transport pipe does not occur at the flammable gas confluence, but the temperature of the flammable gas rises due to adiabatic compression. In addition, since there is no change in that high dynamic pressure is generated in the joining portion, if such a state continues for a long time, there is a possibility that the pulverized coal transport pipe may also be melted in the joining portion.

本発明は、上記のような問題点に着目してなされたものであり、微粉炭などの固体燃料の輸送管に支燃性ガスや易燃性ガスなどが衝突する合流部での溶損を抑制することが可能なランスを提供することを目的とするものである。   The present invention has been made paying attention to the above-described problems, and it is possible to prevent melting at a junction where a combustion-supporting gas or a flammable gas collides with a transport pipe of solid fuel such as pulverized coal. It aims at providing the lance which can be suppressed.

本発明者らは、上記の課題を解決するために鋭意検討を行い、その結果、外側管と内側管との合流部において、外側管の合流角度が重要であり、この角度を適切な範囲にすることで、上記溶損が抑制できることが判明した。すなわち、外側管の合流角度が垂直またはそれに近い角度では、断熱圧縮による温度上昇が大きく、また高い動圧が生じるために溶損が発生しやすくなるが、外側管の角度を適切にすると、支燃性ガスまたは易燃性ガスが斜め方向から合流部に流れることになる。その結果、断熱圧縮による温度上昇が小さくなり、さらに動圧も小さくなるので、ランスの溶損を抑制できると推測される。   The inventors of the present invention have made extensive studies to solve the above problems, and as a result, the merging angle of the outer tube is important at the merging portion between the outer tube and the inner tube, and this angle is set within an appropriate range. By doing so, it was found that the above-mentioned melting loss can be suppressed. That is, when the merging angle of the outer pipe is vertical or close to it, the temperature rise due to adiabatic compression is large, and high dynamic pressure is generated, so that melting damage is likely to occur. The flammable gas or the flammable gas flows from the oblique direction to the junction. As a result, the temperature rise due to adiabatic compression is reduced, and the dynamic pressure is also reduced, so that it is presumed that the lance can be prevented from being damaged.

本発明は、上記の知見に基づくものであり、その概要は以下の通りである。
(1)羽口を経て高炉内に熱風を送風する送風管に差し込まれて使用されるランスであって、管路の途中で内側管の外側に外側管を同心状に合流させて形成され、固体燃料を吹込む前記内側管は少なくとも前記外側管との合流部を含めてその合流部よりも吹込み方向先方部分が直管状に形成され、支燃性ガス又は易燃性ガスを吹込む前記外側管は前記内側管との合流部にあって一方向に屈曲され、前記屈曲部における前記外側管の中心軸と前記内側管の中心軸とのなす角度を90°未満としたことを特徴とするランス。
(2)前記屈曲部における前記外側管の中心軸と前記内側管の中心軸とのなす角度を0°超え60°以下としたことを特徴とする上記(1)の構成に記載のランス。
The present invention is based on the above findings, and the outline thereof is as follows.
(1) A lance used by being inserted into a blower pipe for blowing hot air into a blast furnace through a tuyere, formed by concentrically joining an outer pipe to the outside of the inner pipe in the middle of the pipeline, The inner pipe into which the solid fuel is blown is formed in a straight tube shape in the blowing direction from the merging part including at least the merging part with the outer pipe, and the flammable gas or the flammable gas is blown into the inner pipe. The outer tube is at a junction with the inner tube and is bent in one direction, and an angle formed by the central axis of the outer tube and the central axis of the inner tube at the bent portion is less than 90 °. Lance to do.
(2) The lance according to (1), wherein an angle formed by a central axis of the outer tube and a central axis of the inner tube at the bent portion is set to 0 ° to 60 ° or less.

本発明の固体燃料とは、例えば微粉炭が挙げられる。
また、本発明の支燃性ガスとは、少なくとも50vol%以上の酸素濃度を有するガスと定義する。
また、本発明で用いる易燃性ガスとは、文字通り、微粉炭よりも燃焼性のよいガスであり、例えば水素を主要成分として含有する水素、都市ガス、LNG、プロパンガスの他、製鉄所で発生する転炉ガス、高炉ガス、コークス炉ガスなどが適用可能である。また、LNGと同様なガスとしてシェールガス(shale gas)も利用できる。シェールガスは頁岩(シェール)層から採取される天然ガスであり、従来のガス田ではない場所から生産されることから、非在来型天然ガス資源と呼ばれているものである。都市ガスなどの易燃性ガスは、着火・燃焼が非常に早く、水素含有量が多いものでは燃焼カロリーも高く、また易燃性ガスは、微粉炭と異なり、灰分を含んでいないことも高炉の通気性、熱バランスに対して有利である。
Examples of the solid fuel of the present invention include pulverized coal.
The combustion-supporting gas of the present invention is defined as a gas having an oxygen concentration of at least 50 vol%.
In addition, the flammable gas used in the present invention is literally a gas that is more flammable than pulverized coal. For example, in addition to hydrogen containing hydrogen as a main component, city gas, LNG, propane gas, in steelworks The generated converter gas, blast furnace gas, coke oven gas, etc. are applicable. Further, shale gas can be used as a gas similar to LNG. Shale gas is a natural gas extracted from the shale layer, and is produced from a place other than the conventional gas field, so it is called an unconventional natural gas resource. Combustible gases such as city gas ignite and burn very quickly, and those with a high hydrogen content have high combustion calories, and unlike pulverized coal, flammable gas does not contain ash. It is advantageous for air permeability and heat balance.

本発明のランスでは、外側管から吹込まれる支燃性ガス又は易燃性ガスが内側管に衝突する動圧が低減されるので、合流部での内側管の溶損を抑制することができる。   In the lance of the present invention, since the dynamic pressure at which the combustion-supporting gas or the flammable gas blown from the outer tube collides with the inner tube is reduced, the inner tube can be prevented from being melted at the junction. .

本発明の高炉操業方法が適用された高炉の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the blast furnace to which the blast furnace operating method of this invention was applied. 図1の送風管に差し込まれたランスの正面図である。It is a front view of the lance inserted in the air duct of FIG. 図2のランスで内側管に生じる動圧を考察するために設定した模式的なランスの正面図である。It is the front view of the typical lance set in order to consider the dynamic pressure which arises in an inner side pipe | tube with the lance of FIG. 図3のランスの斜視図である。FIG. 4 is a perspective view of the lance of FIG. 3. 図3のランスにおける内側管の外表面と外側管の内表面を示す平面図である。FIG. 4 is a plan view showing an outer surface of an inner tube and an inner surface of an outer tube in the lance of FIG. 3. 図3のランスにおける内側管の外表面に衝突するガス流れの側面図である。It is a side view of the gas flow which collides with the outer surface of the inner side pipe | tube in the lance of FIG. 図2のランスで合流部における外側管と内側管の交差角度を種々に変更したときの動圧評価指標の説明図である。It is explanatory drawing of the dynamic pressure evaluation parameter | index when the crossing angle of the outer side pipe | tube and an inner side pipe | tube in a junction part is changed variously by the lance of FIG.

次に、本発明の高炉操業方法の一実施形態について図面を参照しながら説明する。図1は、この実施形態の高炉操業方法が適用された高炉の全体図である。図に示すように、高炉1の羽口3には、熱風を送風するための送風管2が接続され、この送風管2を貫通してランス4が設置されている。熱風には、例えば大気を用いる。羽口3の熱風送風方向先方のコークス堆積層には、レースウェイ5と呼ばれる燃焼空間が存在し、主として、この燃焼空間で鉄鉱石の還元、即ち造銑が行われる。図では、図示左方の送風管2にのみランス4が挿入されているが、周知のように、炉壁に沿って円周状に配置された送風管2及び羽口3の何れにもランス4を挿入設定することは可能である。また、羽口当たりのランスの数も1本に限定されず、2本以上を挿入することが可能である。また、ランスの形態も、単管ランスをはじめ、二重管ランスや複数のランスを束ねたものも適用可能である。この実施形態では、送風管2の内部では二重管ランスとなるランス4を用いている。   Next, an embodiment of the blast furnace operating method of the present invention will be described with reference to the drawings. FIG. 1 is an overall view of a blast furnace to which the blast furnace operating method of this embodiment is applied. As shown in the figure, a blast pipe 2 for blowing hot air is connected to the tuyere 3 of the blast furnace 1, and a lance 4 is installed through the blast pipe 2. For example, air is used as the hot air. A combustion space called a raceway 5 exists in the coke deposit layer ahead of the hot air blowing direction of the tuyere 3, and iron ore is reduced, that is, ironmaking is mainly performed in this combustion space. In the figure, the lance 4 is inserted only into the left blower pipe 2 shown in the figure, but as is well known, the lance is provided to both the blower pipe 2 and the tuyere 3 arranged circumferentially along the furnace wall. It is possible to insert and set 4. Further, the number of lances per tuyere is not limited to one, and two or more lances can be inserted. Moreover, the form of a lance can be applied to a single pipe lance, a double pipe lance, or a bundle of a plurality of lances. In this embodiment, a lance 4 serving as a double-pipe lance is used inside the blower pipe 2.

例えば固体燃料として微粉炭をランス4から吹込む場合、微粉炭は、Nなどのキャリアガス(搬送ガス)と共に吹込まれる。ランス4から固体燃料として微粉炭だけを吹込む場合、ランス4から羽口3を通過してレースウェイ5内に吹込まれた微粉炭は、コークスと共に、その揮発分と固定炭素が燃焼し、燃焼しきれずに残った、一般にチャーと呼ばれる炭素と灰分の集合体は、レースウェイ5から未燃チャーとして排出される。未燃チャーは炉内に蓄積され、炉内通気性を悪化させるため、レースウェイ5内で微粉炭をできるだけ燃焼させる、つまり微粉炭の燃焼性向上が求められる。羽口3の熱風送風方向先方における熱風速度は約200m/secであり、ランス4の先端からレースウェイ5内における酸素の存在領域は約0.3〜0.5mとされているので、実質的に1/1000秒のレベルで微粉炭粒子の昇温及び酸素との接触効率の改善が必要となる。 For example, when pulverized coal is blown from the lance 4 as a solid fuel, the pulverized coal is blown together with a carrier gas (carrier gas) such as N 2 . When only pulverized coal is blown from the lance 4 as a solid fuel, the pulverized coal blown into the raceway 5 from the lance 4 through the tuyere 3 is burned with coke and its volatiles and fixed carbon. The aggregate of carbon and ash, generally called char, remaining without being exhausted is discharged from the raceway 5 as unburned char. Since unburned char is accumulated in the furnace and deteriorates the air permeability in the furnace, it is required to burn the pulverized coal as much as possible in the raceway 5, that is, to improve the flammability of the pulverized coal. The hot air velocity at the tip of the tuyere 3 in the direction of blowing hot air is about 200 m / sec, and the oxygen existing area in the raceway 5 from the tip of the lance 4 is about 0.3 to 0.5 m. In addition, it is necessary to raise the temperature of the pulverized coal particles and improve the contact efficiency with oxygen at a level of 1/1000 second.

羽口3からレースウェイ5内に吹込まれた微粉炭は、まず送風からの対流伝熱によって加熱され、更にレースウェイ5内の火炎からの輻射伝熱、伝導伝熱によって急激に粒子温度が上昇し、300℃以上昇温した時点から熱分解が開始し、揮発分に着火して火炎が形成され、燃焼温度は1400〜1700℃に達する。揮発分が放出してしまうと、前述したチャーとなる。チャーは、主に固定炭素であるので、燃焼反応と共に、炭素溶解反応と呼ばれる反応も生じる。このとき、ランス4から送風管2内に吹込まれる微粉炭の揮発分の増加により、微粉炭の着火が促進され、揮発分の燃焼量増加により微粉炭の昇温速度と最高温度が上昇し、微粉炭の分散性と温度の上昇によりチャーの反応速度が上昇する。即ち、揮発分の気化膨張に伴って微粉炭が分散し、揮発分が燃焼し、この燃焼熱によって微粉炭が急速に加熱、昇温すると考えられる。一方、ランス4から送風管2内に微粉炭と共に例えば易燃性ガスとしてLNGを吹込む場合、LNGが送風中の酸素と接触してLNGが燃焼し、その燃焼熱によって微粉炭が急速に加熱、昇温されると考えられ、これにより微粉炭の着火が促進される。   The pulverized coal blown into the raceway 5 from the tuyere 3 is first heated by convective heat transfer from the air blow, and then the particle temperature rapidly rises by radiant heat transfer and conduction heat transfer from the flame in the raceway 5. Then, thermal decomposition starts when the temperature rises to 300 ° C. or more, ignites volatile matter, forms a flame, and the combustion temperature reaches 1400 to 1700 ° C. When the volatile matter is released, it becomes the char described above. Since char is mainly fixed carbon, a reaction called a carbon dissolution reaction occurs along with a combustion reaction. At this time, the increase in the volatile content of the pulverized coal blown from the lance 4 into the blower pipe 2 promotes the ignition of the pulverized coal, and the increase in the combustion amount of the volatile component increases the heating rate and the maximum temperature of the pulverized coal. The rate of char reaction increases due to the dispersibility of pulverized coal and an increase in temperature. That is, it is considered that the pulverized coal is dispersed with the vaporization and expansion of the volatile matter, the volatile matter is combusted, and the pulverized coal is rapidly heated and heated by this combustion heat. On the other hand, when LNG is blown into the blow pipe 2 from the lance 4 together with pulverized coal, for example, as flammable gas, the LNG comes into contact with the oxygen being blown and the LNG burns, and the pulverized coal is rapidly heated by the combustion heat. It is considered that the temperature is raised, and this facilitates the ignition of pulverized coal.

この実施形態では、固体燃料と共に支燃性ガスをランス4から吹込む。固体燃料として微粉炭を、支燃性ガスとして酸素を用いた。なお、支燃性ガスの酸素濃度は、95vol%以上とした。ランス4には、前述のように二重管ランスを用い、二重管ランスを構成する内側管6から微粉炭をキャリアガスと共に吹込み、外側管7(厳密には内側管6と外側管7の隙間)から酸素を吹込む。但し、この二重管ランスは、全長にわたって二重管であるわけではなく、図2に示すように、管路の途中で内側管6の外側に外側管7を同心状に合流させて形成されている。この二重管ランスでは、外側管7も内側管6も、図の右方から左方に向けて酸素や微粉炭を吹込む。このうち、微粉炭を吹込む内側管6は少なくとも外側管7との合流部を含めてその合流部よりも吹込み方向先方部分が直管状に形成されている。また、酸素を吹込む外側管7は内側管6との合流部にあって一方向に屈曲され、屈曲部における外側管7の中心軸と内側管6の中心軸とのなす角度を90°未満としている。そして、この実施形態では、屈曲部における外側管7の中心軸と内側管6の中心軸とのなす角度(以下、単に外側管7と内側管6の交差角度ともいう)を0°超え60°以下とする。   In this embodiment, the combustion-supporting gas is blown from the lance 4 together with the solid fuel. Pulverized coal was used as the solid fuel, and oxygen was used as the combustion-supporting gas. Note that the oxygen concentration of the combustion-supporting gas was 95 vol% or more. As described above, a double pipe lance is used for the lance 4, and pulverized coal is blown together with the carrier gas from the inner pipe 6 constituting the double pipe lance, and the outer pipe 7 (strictly speaking, the inner pipe 6 and the outer pipe 7). Oxygen is blown in through the gap. However, this double pipe lance is not a double pipe over the entire length, and is formed by concentrically joining the outer pipe 7 outside the inner pipe 6 in the middle of the pipe as shown in FIG. ing. In this double pipe lance, oxygen and pulverized coal are blown into the outer pipe 7 and the inner pipe 6 from the right to the left in the figure. Among these, the inner pipe 6 into which the pulverized coal is blown is formed in a straight tubular shape in the blowing direction ahead of the joining part including at least the joining part with the outer pipe 7. In addition, the outer tube 7 for blowing oxygen is at a junction with the inner tube 6 and is bent in one direction, and an angle formed by the central axis of the outer tube 7 and the central axis of the inner tube 6 at the bent portion is less than 90 °. It is said. In this embodiment, the angle between the central axis of the outer tube 7 and the central axis of the inner tube 6 at the bent portion (hereinafter, also simply referred to as the intersection angle between the outer tube 7 and the inner tube 6) exceeds 0 ° and 60 °. The following.

この屈曲部、つまり外側管7と内側管6の合流部における外側管7と内側管6の交差角度を設定するために、外側管7から吹込まれる酸素が内側管6に衝突する時の動圧を評価する。外側管7から吹込まれる酸素が内側管6に衝突する時、その動圧が最も大きいと考えられるのは、図3、図4に示すように、外側管7と内側管6の合流角度が垂直である場合である。そこで、外側管7から吹込まれる酸素が内側管6に衝突する際の動圧の最大値をPvmaxとしたとき、この動圧最大値Pvmaxに影響を与える要因について考察する。この動圧最大値Pvmaxに影響を与える要因としては、図4に示すように、合流部入口レイノルズ数Re、入口流速Vin、入口動圧Pvin、入口面積Sin(外側管7が内側管6に合流する直前の管の内面積)、合流部出口流速Voutが挙げられる。この他、この実施形態では、外側管7から吹込まれる酸素が内側管6との衝突から逃れる逃げ面積Sescを考える。この逃げ面積Sescは、外側管7から吹込まれる酸素が内側管6と全く衝突しない無衝突面積Snoと、外側管7から吹込まれる酸素が内側管6の外表面に沿うように流れる、つまり内側管6には接触しているものの動圧になりにくい流れ面積Sflowとの和と考える。即ち、逃げ面積Sescは、下記(1)式で示される。
Sesc=Sno+Sflow ・・・(1)
図5は、図3のランスの合流部における内側管6の外表面と外側管7の内表面を示す平面図である。図中の符号dは、内側管6の外径を、図中の符号Dは、外側管7の内径を示す。図5のハッチング部分の総面積が無衝突面積Snoに相当する。図より、無衝突面積Snoは、幾何学的に下記(2)式で与えられる。
In order to set the crossing angle of the outer tube 7 and the inner tube 6 at the bent portion, that is, the junction of the outer tube 7 and the inner tube 6, the movement when oxygen blown from the outer tube 7 collides with the inner tube 6. Evaluate the pressure. When oxygen blown from the outer tube 7 collides with the inner tube 6, the dynamic pressure is considered to be the largest, as shown in FIGS. 3 and 4, because the merging angle between the outer tube 7 and the inner tube 6 is This is the case when it is vertical. Therefore, when the maximum value of the dynamic pressure when oxygen blown from the outer pipe 7 collides with the inner pipe 6 is defined as Pvmax, factors that affect the maximum dynamic pressure value Pvmax will be considered. Factors affecting the dynamic pressure maximum value Pvmax include, as shown in FIG. 4, the junction inlet Reynolds number Re, the inlet flow velocity Vin, the inlet dynamic pressure Pvin, the inlet area Sin (the outer pipe 7 joins the inner pipe 6). The inner area of the tube immediately before the merging), and the merging portion outlet flow velocity Vout. In addition, in this embodiment, the escape area Sesc from which oxygen blown from the outer tube 7 escapes from the collision with the inner tube 6 is considered. This escape area Sesc flows so that the oxygen blown from the outer pipe 7 does not collide with the inner pipe 6 at all and the oxygen blown from the outer pipe 7 flows along the outer surface of the inner pipe 6. Although it is in contact with the inner pipe 6, it is considered to be the sum of the flow area Sflow that is difficult to cause dynamic pressure. That is, the clearance area Sesc is expressed by the following equation (1).
Sesc = Sno + Sflow (1)
FIG. 5 is a plan view showing the outer surface of the inner tube 6 and the inner surface of the outer tube 7 at the junction of the lance shown in FIG. The symbol d in the drawing indicates the outer diameter of the inner tube 6, and the symbol D in the drawing indicates the inner diameter of the outer tube 7. The total area of hatched portions in FIG. 5 corresponds to the collision-free area Sno. From the figure, the collision-free area Sno is geometrically given by the following equation (2).

Figure 2017222902
Figure 2017222902

図6は、図3のランスの合流部における内側管6の外表面に衝突するガス流れの側面図であり、図5の側面図に相当する。従って、図中の円は内側管6の外表面を示し、鉛直な矢印が、外側管7から吹込まれる酸素の流れを示している。この内側管6の外表面が描く上側半円弧の各点に衝突する酸素は、衝突後、主として、その点の接線方向に流れると考えられる。この衝突点と内側管6の中心点Oとを結ぶ線分が図6の横軸、例えば水平方向となす角度をψとし、更に、図5の平面視において、内側管6の軸線方向をz軸とする。また、図5において、内側管6の外表面と外側管7の内表面との交点と外側管7の中心点Qとを結ぶ線分が図の横軸となす角度、つまり内側管6の軸線方向zと垂直な方向となす角度をθ0とすると、流れ面積Sflowは、下記(3)式で与えられる。   6 is a side view of the gas flow that collides with the outer surface of the inner tube 6 at the merging portion of the lance of FIG. 3, and corresponds to the side view of FIG. Therefore, the circle in the figure indicates the outer surface of the inner tube 6, and the vertical arrow indicates the flow of oxygen blown from the outer tube 7. It is considered that oxygen colliding with each point of the upper semicircular arc drawn by the outer surface of the inner tube 6 flows mainly in the tangential direction of the point after the collision. An angle formed by a line segment connecting the collision point and the center point O of the inner tube 6 with respect to the horizontal axis in FIG. 6, for example, the horizontal direction is ψ, and the axial direction of the inner tube 6 in the plan view of FIG. Axis. In FIG. 5, the angle formed by the line connecting the intersection of the outer surface of the inner tube 6 and the inner surface of the outer tube 7 and the center point Q of the outer tube 7 with the horizontal axis of the drawing, that is, the axis of the inner tube 6 When the angle formed with the direction perpendicular to the direction z is θ0, the flow area Sflow is given by the following equation (3).

Figure 2017222902
Figure 2017222902

このうち、無衝突面積Snoと流れ面積Sflowの和で与えられる逃げ面積Sescは、入口面積Sinに応じて変動する。同様に、出口流速Voutは入口流速Vinに応じて変動する(正確には出口流速Voutの二乗値は入口流速Vinの二乗値に比例する)。また、動圧最大値Pvmaxは入口動圧Pvinに応じて変動する。また、この実施形態の場合、外側管7の配管内いっぱいに酸素が流れるので、レイノルズ数Reは、合流部の形状、特に外側管7内における内側管6のレイアウトを反映する。そこで、合流部において外側管7から吹込まれる酸素の内側管外表面への衝突に伴う動圧の評価指標を下記(4)式で与えられるAとする。この動圧評価指標Aは、無次元化によって、入口動圧、レイノルズ数、内側管6と外側管7の直径比、ガスの合流前後の流速比の影響を除去して、合流部の形状のみに依存した動圧最大値を評価することができる。   Among these, the escape area Sesc given by the sum of the collision-free area Sno and the flow area Sflow varies depending on the inlet area Sin. Similarly, the outlet flow velocity Vout varies depending on the inlet flow velocity Vin (exactly, the square value of the outlet flow velocity Vout is proportional to the square value of the inlet flow velocity Vin). The dynamic pressure maximum value Pvmax varies according to the inlet dynamic pressure Pvin. In the case of this embodiment, oxygen flows throughout the pipe of the outer pipe 7, and therefore, the Reynolds number Re reflects the shape of the merging portion, particularly the layout of the inner pipe 6 in the outer pipe 7. Therefore, the evaluation index of the dynamic pressure accompanying the collision of oxygen blown from the outer tube 7 to the outer surface of the inner tube at the junction is assumed to be A given by the following equation (4). This dynamic pressure evaluation index A eliminates the influence of the inlet dynamic pressure, the Reynolds number, the diameter ratio between the inner pipe 6 and the outer pipe 7, and the flow velocity ratio before and after the gas merging by making it dimensionless. Can be evaluated.

Figure 2017222902
Figure 2017222902

そこで、この実施形態では、動圧評価指標Aを小さくするために、前述のように、微粉炭を吹込む内側管6は、少なくとも外側管7との合流部を含めてその合流部よりも吹込み方向先方部分が直管状に形成される。そして、酸素を吹込む外側管7を内側管6との合流部にあって一方向に屈曲させ、その合流部における外側管7と内側管6との交差角度を90°未満とする。ここでは、屈曲部、つまり合流部における外側管7と内側管6の交差角度を規定するため、汎用流体ソフトを用いてコンピュータによる合流部の流体解析を行い、下記表1に示す3つのケースについて、外側管7と内側管6の交差角度を種々に変更しながら動圧評価指標Aを求めた。   Therefore, in this embodiment, in order to reduce the dynamic pressure evaluation index A, the inner pipe 6 into which the pulverized coal is blown is blown more than the merging section including at least the merging section with the outer pipe 7 as described above. A front portion in the insertion direction is formed in a straight tube shape. Then, the outer tube 7 through which oxygen is blown is bent in one direction at the junction with the inner tube 6, and the intersection angle between the outer tube 7 and the inner tube 6 at the junction is less than 90 °. Here, in order to define the crossing angle of the outer tube 7 and the inner tube 6 at the bent portion, that is, the merge portion, a fluid analysis of the merge portion is performed by a computer using general-purpose fluid software, and the three cases shown in Table 1 below are performed. The dynamic pressure evaluation index A was determined while variously changing the crossing angle between the outer tube 7 and the inner tube 6.

Figure 2017222902
Figure 2017222902

算出された無次元動圧評価指標Aをグラフ化したのが図7である。同図では、外側管7と内側管6の交差角度φ=90°で動圧評価指標Aは最大となり、φ=90°〜φ=60°まで急激に減少し、その以下の交差角度ではほぼ一定となる。ここでは、動圧評価指標Aが40以下で動圧最大値Pvmaxが安定すると見なした。これは、合流部における外側管7と内側管6の交差角度φが小さくなることによって、合流前の外側管を流れる酸素の運動方向と合流後に想定される酸素流れの運動方向との差が小さくなり、それに伴って運動量の変化が少なくなるため、内側管外表面に酸素が衝突するときの動圧が低下したことが原因と考えられる。従って、内側管外表面が何らかの原因で温度上昇し、自己酸化が生じたとしても、外側管7と内側管6の交差角度φを60°以下とすることで、内側管外表面の動圧を低下させ、これにより内側管6の溶損を抑制することができると考えられる。なお、合流部における外側管7と内側管6の交差角度φの最小値は0°超えとした。   FIG. 7 is a graph of the calculated dimensionless dynamic pressure evaluation index A. In the figure, the dynamic pressure evaluation index A becomes the maximum at the intersection angle φ = 90 ° between the outer tube 7 and the inner tube 6 and rapidly decreases from φ = 90 ° to φ = 60 °. It becomes constant. Here, it was considered that the dynamic pressure evaluation index A is 40 or less and the maximum dynamic pressure value Pvmax is stable. This is because the crossing angle φ between the outer tube 7 and the inner tube 6 at the joining portion becomes small, so that the difference between the motion direction of oxygen flowing through the outer tube before joining and the motion direction of oxygen flow assumed after joining is small. Accordingly, the change in momentum is reduced accordingly, which is considered to be caused by a decrease in dynamic pressure when oxygen collides with the outer surface of the inner tube. Therefore, even if the temperature of the inner tube outer surface rises for some reason and auto-oxidation occurs, the dynamic pressure on the inner tube outer surface can be reduced by setting the crossing angle φ between the outer tube 7 and the inner tube 6 to 60 ° or less. It is considered that the inner pipe 6 can be prevented from being melted by this. Note that the minimum value of the crossing angle φ between the outer tube 7 and the inner tube 6 at the junction was over 0 °.

なお、この実施形態では、二重管ランスの内側管6から微粉炭を吹込み、外側管7から酸素を吹込む場合について説明したが、内側管6と外側管7が合流する二重管ランスでは、内側管6から微粉炭を吹込み、外側管7からLNGなどの易燃性ガスを吹込む場合でも同様の溶損問題が生じる可能性がある。外側管7と内側管6の交差角度φを変更した場合の動圧評価指標Aは、外側管7から吹込むガスが酸素、つまり支燃性ガスであっても、LNGなどの易燃性ガスであっても同様の結果であることから、本発明のランスは、内側管6から微粉炭などの固体燃料を吹込み、外側管7から易燃性ガスを吹込む場合でも同様に適用可能である。   In this embodiment, the case where pulverized coal is blown from the inner pipe 6 of the double pipe lance and oxygen is blown from the outer pipe 7 has been described. However, the double pipe lance in which the inner pipe 6 and the outer pipe 7 merge. Then, even when pulverized coal is blown from the inner pipe 6 and a flammable gas such as LNG is blown from the outer pipe 7, the same problem of melting damage may occur. The dynamic pressure evaluation index A when the crossing angle φ between the outer pipe 7 and the inner pipe 6 is changed is that the gas blown from the outer pipe 7 is oxygen, that is, a flammable gas such as LNG even if it is a combustion-supporting gas. However, since the same result is obtained, the lance of the present invention can be similarly applied even when solid fuel such as pulverized coal is blown from the inner pipe 6 and flammable gas is blown from the outer pipe 7. is there.

このように、この実施形態のランスでは、羽口3を経て高炉1内に熱風を送風する送風管2に差し込まれて使用する場合に、管路の途中で内側管6の外側に外側管7を同心状に合流させて形成する。このうち、固体燃料を吹込む内側管6は少なくとも外側管7との合流部を含めてその合流部よりも吹込み方向先方部分を直管状に形成する。また、支燃性ガス又は易燃性ガスを吹込む外側管7を内側管6との合流部にあって一方向に屈曲させる。そして、屈曲部における外側管7の中心軸と内側管6の中心軸とのなす角度、つまり交差角度φを90°未満とする。これにより、外側管7から吹込まれる支燃性ガス又は易燃性ガスの内側管外表面衝突時の動圧を低減することができ、内側管6の溶損を抑制することができる。
また、屈曲部における外側管7の中心軸と内側管6の中心軸とのなす角度、つまり交差角度φを0°超え60°以下とすることにより、外側管7から吹込まれる支燃性ガス又は易燃性ガスの内側管外表面衝突時の動圧をより一層低減することができ、内側管6の溶損を確実に抑制することができる。
As described above, in the lance of this embodiment, the outer tube 7 is disposed outside the inner tube 6 in the middle of the pipe line when used by being inserted into the blower tube 2 that blows hot air into the blast furnace 1 through the tuyere 3. Are formed concentrically. Among these, the inner pipe 6 that blows the solid fuel includes at least a joining part with the outer pipe 7 and forms a portion in the blowing direction ahead of the joining part in a straight tube shape. In addition, the outer pipe 7 for blowing the combustion-supporting gas or the flammable gas is bent in one direction at the junction with the inner pipe 6. Then, the angle formed by the central axis of the outer tube 7 and the central axis of the inner tube 6 in the bent portion, that is, the crossing angle φ is set to less than 90 °. Thereby, the dynamic pressure at the time of the inner tube outer surface collision of the combustion-supporting gas or the flammable gas blown from the outer tube 7 can be reduced, and the melting damage of the inner tube 6 can be suppressed.
Further, by setting the angle between the central axis of the outer tube 7 and the central axis of the inner tube 6 at the bent portion, that is, the intersection angle φ to 0 ° to 60 °, the combustion-supporting gas blown from the outer tube 7 Alternatively, the dynamic pressure of the flammable gas when the inner pipe collides with the outer surface can be further reduced, and the inner pipe 6 can be reliably prevented from being melted.

1 高炉
2 送風管
3 羽口
4 ランス
5 レースウェイ
6 内側管
7 外側管
DESCRIPTION OF SYMBOLS 1 Blast furnace 2 Fan pipe 3 Tuyere 4 Lance 5 Raceway 6 Inner pipe 7 Outer pipe

Claims (2)

羽口を経て高炉内に熱風を送風する送風管に差し込まれて使用されるランスであって、管路の途中で内側管の外側に外側管を同心状に合流させて形成され、固体燃料を吹込む前記内側管は少なくとも前記外側管との合流部を含めてその合流部よりも吹込み方向先方部分が直管状に形成され、支燃性ガス又は易燃性ガスを吹込む前記外側管は前記内側管との合流部にあって一方向に屈曲され、前記屈曲部における前記外側管の中心軸と前記内側管の中心軸とのなす角度を90°未満としたことを特徴とするランス。   It is a lance used by being inserted into a blow pipe that blows hot air into the blast furnace through the tuyere, and is formed by concentrically joining the outer pipe to the outside of the inner pipe in the middle of the pipe. The inner pipe to be blown is formed in a straight tube shape at least in the blowing direction with respect to the merging part including at least the merging part with the outer pipe, and the outer pipe to which the combustion-supporting gas or the flammable gas is blown is A lance which is in a joining portion with the inner tube and is bent in one direction, and an angle formed by a central axis of the outer tube and a central axis of the inner tube in the bent portion is less than 90 °. 前記屈曲部における前記外側管の中心軸と前記内側管の中心軸とのなす角度を0°超え60°以下としたことを特徴とする請求項1に記載のランス。   2. The lance according to claim 1, wherein an angle formed by a central axis of the outer tube and a central axis of the inner tube at the bent portion is set to be greater than 0 ° and equal to or less than 60 °.
JP2016118870A 2016-06-15 2016-06-15 Lance Active JP6481662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016118870A JP6481662B2 (en) 2016-06-15 2016-06-15 Lance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016118870A JP6481662B2 (en) 2016-06-15 2016-06-15 Lance

Publications (2)

Publication Number Publication Date
JP2017222902A true JP2017222902A (en) 2017-12-21
JP6481662B2 JP6481662B2 (en) 2019-03-13

Family

ID=60686333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016118870A Active JP6481662B2 (en) 2016-06-15 2016-06-15 Lance

Country Status (1)

Country Link
JP (1) JP6481662B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263814A (en) * 1996-03-26 1997-10-07 Kawasaki Steel Corp Double tube lance for pretreating molten iron
JP2000192119A (en) * 1998-12-25 2000-07-11 Kobe Steel Ltd Method for blowing auxiliary fuel into blast furnace
JP2005060834A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk Burner for blowing pulverized fine coal for metallurgy, and method for blowing pulverized fine coal into metallurgical furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263814A (en) * 1996-03-26 1997-10-07 Kawasaki Steel Corp Double tube lance for pretreating molten iron
JP2000192119A (en) * 1998-12-25 2000-07-11 Kobe Steel Ltd Method for blowing auxiliary fuel into blast furnace
JP2005060834A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk Burner for blowing pulverized fine coal for metallurgy, and method for blowing pulverized fine coal into metallurgical furnace

Also Published As

Publication number Publication date
JP6481662B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
JP5263430B2 (en) Blast furnace operation method
JP5699833B2 (en) Blast furnace operation method
JP5974687B2 (en) Blast furnace operation method
JP5522326B1 (en) Blast furnace operation method and tube bundle type lance
JP5200618B2 (en) Blast furnace operation method
JP6260555B2 (en) Reducing material blowing device
JP6481662B2 (en) Lance
JP6477607B2 (en) Lance
JP6269533B2 (en) Blast furnace operation method
JP6269532B2 (en) Blast furnace operation method
JP5652575B1 (en) Blast furnace operating method and lance
KR20140109964A (en) Blast furnace operation method
JP6034313B2 (en) Combined lance for blast furnace tuyere
JP6664825B2 (en) Low calorie gas burner and boiler
JP2014210963A (en) Blast furnace operation method
JP6123720B2 (en) Multi-tube tubular flame burner
JP6443361B2 (en) Blast furnace operation method
JP2011168885A (en) Blast furnace operation method
JP6245192B2 (en) Blast furnace and blast furnace operation method
JP6176362B2 (en) Blast furnace operation method
JP6191731B2 (en) Blast furnace operation method
JP6044564B2 (en) Blast furnace operation method
JP5824813B2 (en) Blast furnace operation method
JP5987771B2 (en) Blast furnace operation method
JP5610109B1 (en) Blast furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190128

R150 Certificate of patent or registration of utility model

Ref document number: 6481662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250