JP6664825B2 - Low calorie gas burner and boiler - Google Patents

Low calorie gas burner and boiler Download PDF

Info

Publication number
JP6664825B2
JP6664825B2 JP2015095513A JP2015095513A JP6664825B2 JP 6664825 B2 JP6664825 B2 JP 6664825B2 JP 2015095513 A JP2015095513 A JP 2015095513A JP 2015095513 A JP2015095513 A JP 2015095513A JP 6664825 B2 JP6664825 B2 JP 6664825B2
Authority
JP
Japan
Prior art keywords
primary air
air
fuel
secondary air
calorie gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015095513A
Other languages
Japanese (ja)
Other versions
JP2016211783A (en
Inventor
津村 俊一
俊一 津村
佐藤 一教
一教 佐藤
徹哉 岩瀬
徹哉 岩瀬
大塚 徹
徹 大塚
豊 冠木
豊 冠木
法広 塚田
法広 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Industries Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Industries Co Ltd filed Critical Mitsubishi Hitachi Power Systems Industries Co Ltd
Priority to JP2015095513A priority Critical patent/JP6664825B2/en
Publication of JP2016211783A publication Critical patent/JP2016211783A/en
Application granted granted Critical
Publication of JP6664825B2 publication Critical patent/JP6664825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、製鉄所等で発生する副生ガスである、発熱量の低い高炉ガス、コークス炉ガスや産業用肥料プラントで生成される廃ガス等を燃料とするバーナ装置及び該バーナ装置を備えたボイラに関し、特に、可燃性成分としてCOを含む低カロリーガスを燃料とした低カロリーガスバーナ装置及び該低カロリーガスバーナ装置を備えたボイラに関する。   The present invention is provided with a burner device and a burner device that use blast furnace gas having a low calorific value, coke oven gas or waste gas generated in an industrial fertilizer plant as fuel, which is a by-product gas generated in a steel mill or the like. In particular, the present invention relates to a low calorie gas burner device using low calorie gas containing CO as a combustible component as a fuel, and a boiler provided with the low calorie gas burner device.

一般に、製油所や製鉄所等で発生する副生ガスや産業用肥料プラントで生成される廃ガス等は、一酸化炭素(CO)や水素(H)等の可燃性成分とともに窒素(N)等の不活性成分を含み、その多くは発熱量の低い低カロリーガスである。副生ガスとしては、コークス炉で発生するコークス炉ガス(以下、COGという)と高炉で発生する高炉ガス(以下、BFGという)などがある。 In general, by-product gas generated in an oil refinery or a steel mill, waste gas generated in an industrial fertilizer plant, and the like include nitrogen (N 2 ) together with combustible components such as carbon monoxide (CO) and hydrogen (H 2 ). ), And many of them are low calorie gases having a low calorific value. Examples of the by-product gas include a coke oven gas (hereinafter, referred to as COG) generated in a coke oven and a blast furnace gas (hereinafter, referred to as BFG) generated in a blast furnace.

そして、近年、エネルギー資源の有効利用の観点から、これらの副生ガスも、ボイラにおいて燃料として用いられるようになってきた。即ち、低カロリーガスバーナ装置としての利用である。しかし、副生ガスは発熱量が低いため、低カロリーガスバーナの他に助燃バーナを用いて燃焼することが一般的である。助燃バーナを用いることで燃焼性は良好となるが、燃料の価格上昇や顧客のニーズの多様化等により、なるべく助燃バーナに頼ることなく低カロリーガスバーナ単独で燃焼性を確保できる技術が必要とされている。   In recent years, from the viewpoint of effective utilization of energy resources, these by-product gases have also been used as fuel in boilers. That is, it is used as a low calorie gas burner device. However, since the by-product gas has a low calorific value, it is common to burn by using an auxiliary burner in addition to the low calorie gas burner. Combustibility is improved by using an auxiliary burner.However, due to rising fuel prices and diversification of customer needs, there is a need for a technology that can ensure combustion using only low-calorie gas burners without resorting to an auxiliary burner. ing.

下記特許文献1には、低カロリーガスを混合室に旋回流として噴出するガスボディと、燃焼用空気を低カロリーガスと同一方向の旋回流として噴出するエアボディと、混合室に位置する先端部にガス噴出孔を有する点火パイプと、点火パイプのガス噴出孔の後方に設けた保炎板とを備え、混合室で混合した低カロリーガスと燃焼用空気との混合ガスが旋回流として噴出する構成の低カロリーガス燃焼用バーナが開示されている。燃焼排ガスが旋回流となって排ガス中心部に発生する低圧部によりバーナ方向に向かって逆流する排ガスの流れが生じ、保炎機能が発揮される構成である。   Patent Document 1 below discloses a gas body that ejects low-calorie gas into a mixing chamber as a swirling flow, an air body that ejects combustion air as a swirling flow in the same direction as the low-calorie gas, and a tip located in the mixing chamber. An ignition pipe having a gas ejection hole at the bottom and a flame holding plate provided behind the gas ejection hole of the ignition pipe, and a mixed gas of the low-calorie gas and the combustion air mixed in the mixing chamber is ejected as a swirling flow. A burner for burning low calorie gas is disclosed. In this configuration, the combustion exhaust gas is swirled to generate a flow of the exhaust gas flowing backward in the burner direction by a low-pressure portion generated in the center of the exhaust gas, thereby exhibiting a flame holding function.

また、下記特許文献2には、火炉に面したガスバーナ先端に燃料ガス流と直角に突起した保炎リングを形成し、保炎リング下流に生じた渦流により自燃させる構成とした低カロリーガスバーナ装置が開示されている。   Patent Document 2 below discloses a low calorie gas burner device in which a flame holding ring protruding at right angles to the fuel gas flow is formed at the tip of a gas burner facing a furnace and self-burns by a vortex generated downstream of the flame holding ring. It has been disclosed.

更に、下記特許文献3に記載の構成によれば、二重管構造の内管又は外管の何れか一方に低カロリーガスの供給流路を設け、内管又は外管のいずれか他方に空気の供給流路を設け、低カロリーガスの供給流路の断面積を空気の供給流路の断面積よりも大きくして内管開口部にスワラを設置した低カロリーガスバーナ構造が開示されている。内管のスワラにより内管側の低カロリーガス又は空気が旋回して外管から供給される空気又は低カロリーガスと混合しやすくなる構成である。   Further, according to the configuration described in Patent Literature 3 below, a supply path for a low-calorie gas is provided in one of the inner tube and the outer tube having a double-tube structure, and air is provided in the other of the inner tube and the outer tube. A low calorie gas burner structure is disclosed in which a supply flow path is provided, the cross-sectional area of the low-calorie gas supply flow path is made larger than the cross-sectional area of the air supply flow path, and a swirler is installed at the inner pipe opening. The swirler of the inner tube turns the low-calorie gas or air on the inner tube side to easily mix with the air or low-calorie gas supplied from the outer tube.

そして、下記特許文献4には、燃焼室の円錐面の角度を軸線に対して5〜30°の範囲に形成し、燃焼室への低カロリーガスの燃料噴出口を環状に形成し、低カロリーガス燃料噴出口に旋回羽根を設け、燃焼室に開口した支燃性ガス噴出口をガス燃料の旋回方向と同方向に噴出するように配設したガスバーナが開示されている。低カロリーガス燃料自体が旋回流となって燃料室に噴出すると共に旋回流と同方向に支燃性ガスが噴出することで、両者の混合を十分行うようにしたものである。   In Patent Document 4 below, the angle of the conical surface of the combustion chamber is formed in the range of 5 to 30 ° with respect to the axis, and the fuel injection port of the low-calorie gas into the combustion chamber is formed in an annular shape. A gas burner is disclosed in which a swirl vane is provided at a gas fuel outlet, and a combustible gas outlet opened to a combustion chamber is arranged to be injected in the same direction as the swirling direction of gas fuel. The low-calorie gas fuel itself is swirled and ejected into the fuel chamber, and the supporting gas is ejected in the same direction as the swirled flow, so that both are sufficiently mixed.

特開平11−257614号公報JP-A-11-257614 実開昭61−63521号公報Japanese Utility Model Publication No. 61-63521 特開2012−117795号公報JP 2012-117795 A 特開平7−12314号公報JP-A-7-12314

上記特許文献1〜4に記載の構成によれば、低カロリーガス燃料を旋回流としたり(特許文献2,4)、内側の燃焼用空気及び外側の低カロリーガス燃料を同一方向の旋回流としたり(特許文献1)、内側の燃焼用空気又は低カロリーガス燃料を旋回流としたりすることで(特許文献3)、低カロリーガス燃料の保炎性を高めたり、燃焼用空気と低カロリーガス燃料との混合性を良好としたりしている。   According to the configurations described in Patent Documents 1 to 4, a low-calorie gas fuel is used as a swirl flow (Patent Documents 2 and 4), or an inner combustion air and an outer low-calorie gas fuel are used as swirl flows in the same direction. (Patent Literature 1), or using the inner combustion air or low-calorie gas fuel as a swirling flow (Patent Literature 3) to enhance the flame holding properties of the low-calorie gas fuel, or to reduce the combustion air and low-calorie gas. It has good mixability with fuel.

上記構成により、ある程度燃焼性は向上するものの、低カロリーガス燃料が多量の場合は、燃料に対する空気比を増加させたり、旋回力を増加させたりする必要が生じる。そして、この場合はボイラで発生する排ガス中のNOx濃度の増加やファンの駆動力の増加を招くため、ボイラ効率が悪くなってしまう。   According to the above configuration, although the combustibility is improved to some extent, when the amount of low-calorie gas fuel is large, it is necessary to increase the air ratio to the fuel or increase the turning force. In this case, an increase in the NOx concentration in the exhaust gas generated in the boiler and an increase in the driving force of the fan are caused, so that the boiler efficiency is deteriorated.

また、前記副生ガスを利用したボイラの場合、火炉の下方から上方に向かってBFGバーナ、COGバーナ、二段燃焼用のアフターエアポート(以下、AAPという)を配置し、ボイラ火炉上部に過熱器を設置した構成が一般的である。この構成において、特にCOGバーナは過熱器との距離が近いため、また下段のBFGバーナの火炎からの上昇気流の影響により、火炎が長炎化すると、火炎が火炉上部に流動し、過熱器の下部に接触する可能性が高まってしまう。火炎が過熱器の下部に接触すると、過熱器の損傷を引き起こす副因となるポテンシャルを有することになる。これは、ボイラ火炉をコンパクトにするという最近の技術的趨勢によって生じた新たな課題である。   In the case of the boiler using the by-product gas, a BFG burner, a COG burner, and an after-air port (hereinafter, referred to as AAP) for two-stage combustion are arranged from the bottom of the furnace upward, and a superheater is provided at the top of the boiler furnace. Is generally used. In this configuration, in particular, the COG burner is close to the superheater, and when the flame becomes prolonged due to the effect of ascending airflow from the flame of the lower BFG burner, the flame flows to the upper part of the furnace and the superheater is heated. The possibility of touching the lower part increases. If the flame contacts the lower part of the superheater, it will have the potential to cause damage to the superheater. This is a new challenge created by the recent technological trend of making boiler furnaces compact.

本発明の課題は、製鉄所等で発生する副生ガスのような低カロリーガスの燃料を用いたバーナ装置において、燃料に対する空気比を増加させることなく、燃料の燃焼性を良好とする低カロリーガスバーナ装置を提供することである。また、本発明の課題は、バーナ火炎の長炎化を防いで、火炉上部に配置した過熱器の下部への火炎の接触を防止できる低カロリーガスバーナ装置を備えたボイラを提供することである。   An object of the present invention is to provide a burner device using a fuel of a low calorie gas such as a by-product gas generated in a steel mill or the like, without increasing the air ratio to the fuel, thereby reducing the calorific value of the fuel. It is to provide a gas burner device. Another object of the present invention is to provide a boiler provided with a low-calorie gas burner device capable of preventing the burner flame from being prolonged and preventing the flame from contacting a lower portion of a superheater disposed at an upper portion of the furnace.

上記本発明の課題は、下記の構成を採用することにより達成できる。
請求項1記載の発明は、火炉の壁面のスロートに設けられたバーナ装置であって、燃焼用の一次空気を搬送する一次空気搬送管と、該一次空気搬送管の出口部に設けられ、火炉に向かって末広がり形状を有し、一次空気搬送管から火炉に噴出される前記一次空気に旋回を与える一次空気旋回部材と、一次空気搬送管の外周に設けられ、一次空気搬送管の軸を中心とする螺旋状に旋回させる方向から導入されて一次空気搬送管の外周を旋回しながら一次空気搬送管の出口部に向けて流動し且つ前記一次空気の旋回方向と同方向の旋回が付与された発熱量5000kcal/mN以下の低カロリーガスを搬送する燃料搬送管と、該燃料搬送管の外周に設けられ、燃焼用の二次空気を搬送する二次空気搬送管と、該二次空気搬送管に設けられ、二次空気搬送管に供給される二次空気に前記一次空気の旋回方向と同方向の旋回を与える二次空気旋回部材とを設け、前記低カロリーガスと前記一次空気と前記二次空気がそれぞれ旋回され、且つ、前記低カロリーガスが内側の前記一次空気と外側の前記二次空気により挟み込まれ、前記二次空気は、旋回の強さを表すスワール数が前記低カロリーガスよりも大きく、且つ、前記一次空気は、前記スワール数が前記低カロリーガスよりも小さいことを特徴とする低カロリーガスバーナ装置である。
請求項2記載の発明は、火炉の壁面のスロートに設けられたバーナ装置であって、燃焼用の一次空気を搬送する一次空気搬送管と、該一次空気搬送管の出口部に設けられ、火炉に向かって末広がり形状を有し、一次空気搬送管から火炉に噴出される前記一次空気に旋回を与える一次空気旋回部材と、一次空気搬送管の外周に設けられ、旋回機構を通じ、一次空気搬送管の軸を中心とする螺旋状に旋回させる方向から導入されて一次空気搬送管の外周を旋回しながら一次空気搬送管の出口部に向けて流動し且つ前記一次空気の旋回方向と同方向の旋回が付与された発熱量5000kcal/mN以下の低カロリーガスを搬送する燃料搬送管と、該燃料搬送管の外周に設けられ、燃焼用の二次空気を搬送する二次空気搬送管と、該二次空気搬送管に設けられ、二次空気搬送管に供給される二次空気に前記一次空気の旋回方向と同方向の旋回を与える二次空気旋回部材とを設け、前記二次空気は、旋回の強さを表すスワール数が前記低カロリーガスよりも大きく、且つ、前記一次空気は、前記スワール数が前記低カロリーガスよりも小さいことを特徴とする低カロリーガスバーナ装置である。
The above object of the present invention can be achieved by employing the following configuration.
The invention according to claim 1 is a burner device provided on a throat on a wall surface of a furnace, comprising: a primary air transport pipe for transporting primary air for combustion; and a furnace provided at an outlet of the primary air transport pipe. A primary air swirling member that has a divergent shape toward the center and gives a swirl to the primary air ejected from the primary air conveying pipe to the furnace, and is provided on the outer periphery of the primary air conveying pipe, and the center of the axis of the primary air conveying pipe is provided. It was introduced from the direction of spiraling and flowed toward the outlet of the primary air transport pipe while rotating around the outer periphery of the primary air transport pipe, and was given a swirl in the same direction as the primary air swivel direction. A fuel transport pipe for transporting a low calorie gas having a calorific value of 5000 kcal / m 3 N or less, a secondary air transport pipe provided around the fuel transport pipe and transporting secondary air for combustion, and the secondary air Provided on the transport tube, A secondary air swirling member for imparting swirling in the same direction as the swirling direction of the primary air to the secondary air supplied to the secondary air conveying pipe, wherein the low calorie gas, the primary air, and the secondary air swirl, respectively. And, the low-calorie gas is sandwiched between the inner primary air and the outer secondary air, and the secondary air has a swirl number representing a swirling strength greater than the low-calorie gas, and The primary air is a low calorie gas burner device , wherein the swirl number is smaller than the low calorie gas .
The invention according to claim 2 is a burner device provided on a throat on a wall surface of a furnace, comprising: a primary air transport pipe for transporting primary air for combustion; and a furnace provided at an outlet of the primary air transport pipe. A primary air swiveling member having a divergent shape toward the primary air swiveling member for swirling the primary air ejected from the primary air conveying tube to the furnace, and a primary air conveying tube provided on an outer periphery of the primary air conveying tube and having a swirling mechanism. Is introduced from the direction of spiraling around the axis of the air, and flows toward the outlet of the primary air transport pipe while rotating around the outer periphery of the primary air transport pipe, and swirls in the same direction as the primary air swivel direction. A fuel transfer pipe for transferring a low calorie gas having a calorific value of 5000 kcal / m 3 N or less, a secondary air transfer pipe provided on an outer periphery of the fuel transfer pipe and transferring secondary air for combustion; The secondary air transport Provided in the tube, and a secondary air swirl member providing a pivot for turning the same direction as the primary air to secondary air supplied to the secondary air conveying tube is provided, the secondary air, the strength of the swirl Is smaller than the low-calorie gas, and the primary air is smaller in the swirl number than the low-calorie gas .

請求項3記載の発明は、前記二次空気旋回部材が前記二次空気へ与える旋回力は、前記一次空気旋回部材が前記一次空気へ与える旋回力よりも大きいことを特徴とする請求項1または2に記載の低カロリーガスバーナ装置である。
請求項4記載の発明は、前記燃料搬送管の出口外周に保炎器を設けた請求項1ないしのいずれかに記載の低カロリーガスバーナ装置である。
請求項5記載の発明は、火炉の壁面のスロートに設けられたバーナ装置であって、燃焼用の一次空気を搬送する一次空気搬送管と、該一次空気搬送管の出口部に設けられ、火炉に向かって末広がり形状を有し、一次空気搬送管から火炉に噴出される前記一次空気に旋回を与える一次空気旋回部材と、一次空気搬送管の外周に設けられ、一次空気搬送管の軸を中心とする螺旋状に旋回させる方向から導入されて一次空気搬送管の外周を旋回しながら一次空気搬送管の出口部に向けて流動し且つ前記一次空気の旋回方向と同方向の旋回が付与された発熱量5000kcal/mN以下の低カロリーガスを搬送する燃料搬送管と、該燃料搬送管の外周に設けられ、燃焼用の二次空気を搬送する二次空気搬送管と、該二次空気搬送管に設けられ、二次空気搬送管に供給される二次空気に前記一次空気の旋回方向と同方向の旋回を与える二次空気旋回部材と、前記燃料搬送管の出口外周に保炎器を設け、前記保炎器は前記保炎器の下流側に渦流を形成することで前記二次空気の少なくとも一部を前記燃料搬送管側に向け流動させ、前記二次空気は、旋回の強さを表すスワール数が前記低カロリーガスよりも大きく、且つ、前記一次空気は、前記スワール数が前記低カロリーガスよりも小さいことを特徴とする低カロリーガスバーナ装置である。
請求項6記載の発明は、前記保炎器は歯型形状であることを特徴とする請求項またはに記載の低カロリーガスバーナ装置である。
According to a third aspect of the invention, the turning force the secondary air swirl member is given to the secondary air, according to claim 1 wherein the primary air swirler member being larger than the turning force applied to the primary air or 3. The low calorie gas burner device according to 2 .
The invention according to claim 4 is the low calorie gas burner device according to any one of claims 1 to 3 , wherein a flame stabilizer is provided on the outer periphery of the outlet of the fuel transfer pipe.
The invention according to claim 5 is a burner device provided on a throat on a wall surface of a furnace, comprising: a primary air transport pipe for transporting primary air for combustion; and a furnace provided at an outlet of the primary air transport pipe. A primary air swirling member that has a divergent shape toward the center and gives a swirl to the primary air ejected from the primary air conveying pipe to the furnace, and is provided on the outer periphery of the primary air conveying pipe, and the center of the axis of the primary air conveying pipe is provided. It was introduced from the direction of spiraling and flowed toward the outlet of the primary air transport pipe while rotating around the outer periphery of the primary air transport pipe, and was given a swirl in the same direction as the primary air swivel direction. A fuel transport pipe for transporting a low calorie gas having a calorific value of 5000 kcal / m 3 N or less, a secondary air transport pipe provided around the fuel transport pipe and transporting secondary air for combustion, and the secondary air Provided on the transport tube, A secondary air swirling member for turning secondary air supplied to the secondary air conveying pipe in the same direction as the swirling direction of the primary air, and a flame stabilizer provided on an outer periphery of an outlet of the fuel transport pipe; Forms a vortex on the downstream side of the flame stabilizer, thereby causing at least a part of the secondary air to flow toward the fuel transfer pipe side, and the secondary air has a swirl number indicating a swirling strength. The low calorie gas burner device according to claim 1, wherein the swirl number of the primary air is smaller than that of the low calorie gas .
The invention according to claim 6 is the low calorie gas burner device according to claim 4 or 5 , wherein the flame stabilizer has a tooth shape.

請求項7記載の発明は、製油所又は製鉄所で発生する副生ガスや産業用肥料プラントで生成される廃ガスを含む低発熱量のガス燃料を燃料として燃焼する火炉を備えたボイラにおいて、火炉内には、下段に高炉ガスを燃料とするBFGバーナ装置、中段にコークス炉ガスを燃料とするCOGバーナ装置、上段に空気を供給するアフターエアポート、該アフターエアポートよりも上部に過熱器を備え、前記COGバーナ装置は、前記請求項1から請求項のいずれか一項に記載の低カロリーガスバーナ装置であることを特徴とするボイラである。 The invention according to claim 7 is a boiler provided with a furnace that burns as a fuel a low calorific value gas fuel containing by-product gas generated at an oil refinery or a steel mill or waste gas generated at an industrial fertilizer plant, In the furnace, a BFG burner device using blast furnace gas as fuel in the lower stage, a COG burner device using coke oven gas as fuel in the middle stage, an after-air port for supplying air to the upper stage, and a superheater above the after-air port The boiler is characterized in that the COG burner device is the low-calorie gas burner device according to any one of claims 1 to 6 .

請求項8記載の発明は、前記BFGバーナ装置は、前記請求項1から請求項のいずれか一項に記載の低カロリーガスバーナ装置であることを特徴とする請求項記載のボイラである。 The invention according to claim 8 is the boiler according to claim 7 , wherein the BFG burner device is the low calorie gas burner device according to any one of claims 1 to 6 .

(作用)
上述のように、COGやBFGなどの副生ガスは発熱量が低いため、燃焼性がどうしても劣ってしまう。燃焼性を向上させるためには、燃料と空気との混合性を良好にすることが重要である。
(Action)
As described above, since the by-product gas such as COG and BFG has a low calorific value, the combustibility is inferior. In order to improve the combustibility, it is important to improve the mixability between the fuel and the air.

そこで、本発明によれば、一次空気と低カロリーガス燃料と二次空気とをそれぞれ旋回流とし、低カロリーガス燃料を内側の一次空気と外側の二次空気によって挟み込むことで、燃料と空気との混合を促進させることができる。   Therefore, according to the present invention, the primary air, the low-calorie gas fuel, and the secondary air are respectively swirled, and the low-calorie gas fuel is sandwiched between the inner primary air and the outer secondary air, so that the fuel and the air are separated. Mixing can be promoted.

即ち、請求項1記載の発明によれば、低カロリーガス燃料が一次空気搬送管の外周を螺旋状に流動し、燃料搬送管の先端から火炉内に旋回して噴出する。また、一次空気搬送管からは、出口部の一次空気旋回部材によって旋回力が与えられた一次空気が外側に流れて、一次空気と同一の旋回方向の旋回が付与された低カロリーガス燃料との混合が促進される。更に、二次空気搬送管からは二次空気旋回部材によって一次空気および低カロリーガス燃料と同一の旋回方向の旋回力が与えられた二次空気が噴出することで、低カロリーガス燃料との混合が促進される。すなわち、一次空気と二次空気と低カロリーガス燃料とが同一方向に旋回され、低カロリーガスが旋回する一次空気と二次空気に挟み込まれることで、低カロリーガス燃料との混合が促進される。また、一次空気と二次空気と低カロリーガス燃料との旋回方向が同一であることによって、一次空気と二次空気と低カロリーガス燃料との旋回が弱まらず、バーナ近傍に再循環領域(逆流域)が形成され、火炎がバーナに安定して保持されるようになることで火炎の短炎化にも繋がる。さらに、旋回の強さを表すスワール数が二次空気>低カロリーガス>一次空気とすることで、大きな再循環領域を作り出すことができ、高温ガスをバーナ近くに戻すことができ、短炎化でき、燃焼状態を格段に良好にできる。
請求項2記載の発明によれば、低カロリーガス燃料が旋回機構により一次空気搬送管の外周を螺旋状に流動し、燃料搬送管の先端から火炉内に旋回して噴出する。また、一次空気搬送管からは、出口部の一次空気旋回部材によって旋回力が与えられた一次空気が外側に流れて、一次空気と同一の旋回方向の旋回が付与された低カロリーガス燃料との混合が促進される。更に、二次空気搬送管からは二次空気旋回部材によって一次空気および低カロリーガス燃料と同一の旋回方向の旋回力が与えられた二次空気が噴出することで、低カロリーガス燃料との混合が促進される。すなわち、一次空気と二次空気と低カロリーガス燃料とが同一方向に旋回され、低カロリーガスが旋回する一次空気と二次空気に挟み込まれることで、低カロリーガス燃料との混合が促進される。また、一次空気と二次空気と低カロリーガス燃料との旋回方向が同一であることによって、一次空気と二次空気と低カロリーガス燃料との旋回が弱まらず、バーナ近傍に再循環領域(逆流域)が形成され、火炎がバーナに安定して保持されるようになることで火炎の短炎化にも繋がる。さらに、旋回の強さを表すスワール数が二次空気>低カロリーガス>一次空気とすることで、大きな再循環領域を作り出すことができ、高温ガスをバーナ近くに戻すことができ、短炎化でき、燃焼状態を格段に良好にできる。
That is, according to the first aspect of the present invention, the low-calorie gas fuel spirally flows around the outer circumference of the primary air transport pipe, and is swirled into the furnace from the tip of the fuel transport pipe and ejected. Further, from the primary air conveying pipe, the primary air to which the swirling force is given by the primary air swirling member at the outlet portion flows outward, and the primary air is swirled in the same swirling direction as the low calorie gas fuel. Mixing is promoted. Further, secondary air, which is given a swirling force in the same swirling direction as the primary air and the low-calorie gas fuel by the secondary air swirling member, is ejected from the secondary air conveying pipe, thereby mixing with the low-calorie gas fuel. Is promoted. That is, the primary air, the secondary air, and the low-calorie gas fuel are swirled in the same direction, and the low-calorie gas is sandwiched between the swirling primary air and the secondary air, so that the mixing of the low-calorie gas fuel is promoted. . Further, since the swirling directions of the primary air, the secondary air, and the low-calorie gas fuel are the same, the swirl of the primary air, the secondary air, and the low-calorie gas fuel is not weakened, and a recirculation region is provided near the burner. (Backflow area) is formed, and the flame is stably held by the burner, which leads to shortening of the flame. Furthermore, by setting the swirl number representing the strength of the swirl to be secondary air> low calorie gas> primary air, a large recirculation area can be created, and high-temperature gas can be returned near the burner, resulting in a shorter flame. The combustion state can be remarkably improved.
According to the second aspect of the present invention, the low-calorie gas fuel spirally flows around the outer periphery of the primary air transport pipe by the swirl mechanism, and is swirled into the furnace from the tip of the fuel transport pipe and ejected. Further, from the primary air conveying pipe, the primary air to which the swirling force is given by the primary air swirling member at the outlet portion flows outward, and the primary air is swirled in the same swirling direction as the primary air with the low-calorie gas fuel. Mixing is promoted. Further, secondary air, which is given a swirling force in the same swirling direction as the primary air and the low-calorie gas fuel by the secondary air swirling member, is ejected from the secondary air conveying pipe, thereby mixing with the low-calorie gas fuel. Is promoted. That is, the primary air, the secondary air, and the low-calorie gas fuel are swirled in the same direction, and the low-calorie gas is sandwiched between the swirling primary air and the secondary air, so that the mixing with the low-calorie gas fuel is promoted. . Further, since the swirling directions of the primary air, the secondary air, and the low-calorie gas fuel are the same, the swirl of the primary air, the secondary air, and the low-calorie gas fuel is not weakened, and a recirculation region is provided near the burner. (Backflow area) is formed, and the flame is stably held by the burner, which leads to shortening of the flame. Furthermore, by setting the swirl number representing the strength of the swirl to be secondary air> low calorie gas> primary air, a large recirculation area can be created, and high-temperature gas can be returned near the burner, resulting in a shorter flame. The combustion state can be remarkably improved.

請求項3記載の発明によれば、上記請求項1または2に記載の発明の効果に加えて、二次空気へ与える旋回力を一次空気へ与える旋回力よりも大きくすることで、二次空気の圧損を低いまま維持しつつ、低カロリーガスとの混合を促進できる。さらに、一次空気が旋回力で拡げられることで、大きな再循環領域を作り出すことができ、相乗効果として燃焼状態が格段に良好になる。
請求項4記載の発明によれば、上記請求項1ないしのいずれかに記載の発明の作用に加えて、燃料搬送管出口の保炎器によって渦流が形成されることで、保炎器近傍で常時燃焼の種火となる火炎が形成されるため、低カロリーガス燃料の燃焼が促進され、短時間で燃焼が完結することで短炎化が達成される。
According to the third aspect of the present invention, in addition to the effects of the first or second aspect of the present invention, by making the swirling force applied to the secondary air larger than the swirling force applied to the primary air, the secondary air While maintaining the pressure loss of the fuel cell low, the mixing with the low calorie gas can be promoted. Further, since the primary air is expanded by the swirling force, a large recirculation region can be created, and the combustion state is significantly improved as a synergistic effect.
According to the fourth aspect of the present invention, in addition to the operation of the invention according to any of 3 to no preceding claim 1, by vortex by flameholder fuel conveying pipe outlet is formed, near the flame stabilizer As a result, a flame that is a seed flame for constant combustion is formed, so that the combustion of the low-calorie gas fuel is promoted, and the flame is shortened by completing the combustion in a short time.

請求項5記載の発明によれば、低カロリーガス燃料が一次空気搬送管の外周を螺旋状に流動し、燃料搬送管の先端から火炉内に旋回して噴出する。また、一次空気搬送管からは、出口部の一次空気旋回部材によって旋回力が与えられた一次空気が外側に流れて、低カロリーガス燃料との混合が促進される。更に、二次空気搬送管からは二次空気旋回部材によって一次空気と同一の旋回方向の旋回力が与えられた二次空気が噴出することで、低カロリーガス燃料との混合が促進される。特に、保炎器の下流側に渦流が形成されることで、燃料ガス側に空気旋回流が巻き込まれる形となり、低カロリーガス燃料と二次空気の混合が促進される。また、一次空気と二次空気の旋回方向が同一であることによって、一次空気と二次空気の旋回が弱まらず、バーナ近傍に再循環領域(逆流域)が形成され、火炎がバーナに安定して保持されるようになることで火炎の短炎化にも繋がる。さらに、旋回の強さを表すスワール数が二次空気>低カロリーガス>一次空気とすることで、大きな再循環領域を作り出すことができ、高温ガスをバーナ近くに戻すことができ、短炎化でき、燃焼状態を格段に良好にできる。
請求項6記載の発明によれば、上記請求項4または5に記載の発明の作用に加えて、歯型形状の保炎器によって、渦流が効率よく形成され、着火性が良好となって、燃料を早く燃焼させることができる。
According to the fifth aspect of the present invention, the low-calorie gas fuel flows spirally around the outer periphery of the primary air transport pipe, and swirls into the furnace from the tip of the fuel transport pipe and jets out. In addition, the primary air to which the swirling force is given by the primary air swirling member at the outlet portion flows outward from the primary air conveying pipe, and the mixing with the low calorie gas fuel is promoted. Further, secondary air to which a swirling force in the same swirling direction as that of the primary air is given by the secondary air swirling member is ejected from the secondary air conveying pipe, so that mixing with the low calorie gas fuel is promoted. In particular, the swirl flow is formed downstream of the flame stabilizer, so that the swirling air flow is entrained on the fuel gas side, and the mixing of the low-calorie gas fuel and the secondary air is promoted. In addition, since the swirling directions of the primary air and the secondary air are the same, the swirling of the primary air and the secondary air is not weakened, and a recirculation area (backflow area) is formed near the burner, and the flame flows to the burner. Being stably maintained leads to shortening of the flame. Furthermore, by setting the swirl number representing the strength of the swirl to be secondary air> low calorie gas> primary air, a large recirculation area can be created, and high-temperature gas can be returned near the burner, resulting in a shorter flame. The combustion state can be remarkably improved.
According to the invention of claim 6 , in addition to the effect of the invention of claim 4 or 5 , the eddy current is efficiently formed by the tooth-shaped flame stabilizer, and the ignitability is improved. The fuel can be burned quickly.

請求項7記載の発明によれば、製油所又は製鉄所で発生する副生ガスや産業用肥料プラントで生成される廃ガスを含む低発熱量のガス燃料を燃料として燃焼する火炉を備えたボイラにおいて、COGバーナ装置を請求項1から請求項6のいずれか一項に記載の低カロリーガスバーナ装置とすることで、燃焼性が良好となり、COGバーナ装置での短炎化が達成される。従って、COGバーナ装置による火炎が過熱器の下部に接触する可能性を低減できる。 According to the invention as set forth in claim 7, a boiler provided with a furnace for burning low-calorific value gaseous fuel containing by-product gas generated in a refinery or a steel mill or waste gas generated in an industrial fertilizer plant as a fuel. In the above, by using the low calorie gas burner device according to any one of claims 1 to 6 as the COG burner device, the flammability is improved, and the flame shortening in the COG burner device is achieved. Therefore, the possibility that the flame by the COG burner device contacts the lower part of the superheater can be reduced.

請求項8記載の発明によれば、上記請求項7記載の発明の作用に加えて、COGバーナ装置に加えて、BFGバーナ装置も請求項1から請求項6のいずれか一項に記載の低カロリーガスバーナ装置とすることで、COGよりも発熱量の低いBFGの燃焼性も良好となり、より一層バーナ装置における短炎化作用が大きくなる。また、COGバーナ装置の長炎化に寄与するBFGバーナ装置の火炎からの上昇気流も抑えることができる。 According to an eighth aspect of the present invention, in addition to the operation of the seventh aspect of the present invention, in addition to the COG burner apparatus, a BFG burner apparatus according to any one of the first to sixth aspects is also provided. By using a calorie gas burner device, the flammability of BFG having a lower calorific value than COG is improved, and the effect of shortening the flame in the burner device is further increased. In addition, it is possible to suppress the upward airflow from the flame of the BFG burner device, which contributes to the prolongation of the flame of the COG burner device.

請求項1,2,記載の発明によれば、低カロリーガス燃料と一次空気と二次空気との混合が促進されることで、燃焼性が向上すると共に、短炎化も達成される。また、請求項1,2,5記載の発明によれば、バーナ近傍に大きな再循環領域を作り出すことができ、燃焼状態を良好にすることができる。
請求項3記載の発明によれば、上記請求項1または2に記載の発明の効果に加えて、2次空気の圧損を低く維持しつつ低カロリーガス燃料との混合を促進でき、燃焼状態も良好にすることができる。
請求項4記載の発明によれば、上記請求項1ないしのいずれかに記載の発明の効果に加えて、燃料搬送管出口の保炎器によって、低カロリーガス燃料の燃焼が促進され、更なる短炎化が達成される。
According to the first, second, and fifth aspects of the invention, the mixing of the low-calorie gas fuel, the primary air, and the secondary air is promoted, so that the combustibility is improved and the flame is shortened. According to the first, second, and fifth aspects of the present invention, a large recirculation region can be created near the burner, and the combustion state can be improved.
According to the third aspect of the invention, in addition to the effects of the first or second aspect of the invention, mixing with the low-calorie gas fuel can be promoted while maintaining the pressure loss of the secondary air low, and the combustion state can be improved. Can be good.
According to the invention described in claim 4 , in addition to the effect of the invention described in any one of claims 1 to 3 , in addition to the effect of the flame stabilizer at the outlet of the fuel transfer pipe, the combustion of low-calorie gas fuel is promoted. A shorter flame is achieved.

請求項6記載の発明によれば、上記請求項または記載の発明の効果に加えて、歯型形状の保炎器によって、保炎器近傍の渦流が効率よく形成され、着火性が良好となって、燃焼性がより向上する。 According to the invention of claim 6 , in addition to the effects of the invention of claim 4 or 5 , the eddy current near the flame stabilizer is efficiently formed by the tooth-shaped flame stabilizer, and the ignitability is good. As a result, the flammability is further improved.

請求項記載の発明によれば、製油所又は製鉄所で発生する副生ガスや産業用肥料プラントで生成される廃ガスを含む低発熱量のガス燃料を燃料として燃焼する火炉を備えたボイラにおいて、COGバーナ装置による火炎が過熱器の下部に接触することを防止でき、過熱器の損傷の副因となるポテンシャルを低減できる。 According to the invention as set forth in claim 7, a boiler provided with a furnace for burning low-calorific value gaseous fuel containing by-product gas generated in a refinery or a steel mill or waste gas generated in an industrial fertilizer plant as a fuel. In this case, it is possible to prevent the flame generated by the COG burner from coming into contact with the lower portion of the superheater, and it is possible to reduce the potential that is a cause of damage to the superheater.

請求項記載の発明によれば、上記請求項記載の発明の効果に加えて、COGバーナ装置の長炎化に寄与するBFGバーナ装置の火炎からの上昇気流が抑制されることで、より一層、COGバーナ装置による火炎が過熱器の下部に接触する可能性が低減される。 According to the eighth aspect of the present invention, in addition to the effect of the seventh aspect of the present invention, the updraft from the flame of the BFG burner device, which contributes to the prolongation of the flame of the COG burner device, is suppressed. Further, the possibility that the flame by the COG burner device contacts the lower portion of the superheater is reduced.

本発明の一実施例であるボイラの側面図である。It is a side view of the boiler which is one Example of this invention. 図1のボイラの正面図である。It is a front view of the boiler of FIG. 図1のボイラのバーナ装置の一部断面を示す平面図である。It is a top view which shows the partial cross section of the burner apparatus of the boiler of FIG. 図2のCOGバーナの拡大図である。FIG. 3 is an enlarged view of the COG burner of FIG. 2. 図3のS−S線矢視図である。FIG. 4 is a view taken along line SS in FIG. 3. 本実施例のバーナ装置の燃焼性能の評価を説明するための平面図である。It is a top view for explaining evaluation of combustion performance of a burner device of this example. COGバーナの一次空気、二次空気、COGの速度分布及びガス流れを解析した結果である。It is the result of analyzing the velocity distribution and gas flow of primary air, secondary air, and COG of a COG burner.

以下に、本発明の実施の形態を示す。   Hereinafter, embodiments of the present invention will be described.

図1には、本発明の一実施例のボイラ1の側面図を示し、図2には、図1のボイラ1の正面図を示し、図3には、図1のボイラ1のバーナ装置の一部断面を示す平面図を示す。火炉3は水平断面が四角形であり、ノーズ5付近から火炉出口7にかけて過熱器9が配置されている。火炉3の前壁11及び後壁13には、下段及び中段にBFGバーナ15、上段にCOGバーナ17、更にその上にAAP19を配置している。   1 shows a side view of a boiler 1 according to an embodiment of the present invention, FIG. 2 shows a front view of the boiler 1 of FIG. 1, and FIG. 3 shows a burner device of the boiler 1 of FIG. FIG. 2 is a plan view showing a partial cross section. The furnace 3 has a rectangular horizontal section, and a superheater 9 is arranged from the vicinity of the nose 5 to the furnace outlet 7. On the front wall 11 and the rear wall 13 of the furnace 3, a BFG burner 15 is arranged in a lower stage and a middle stage, a COG burner 17 is arranged in an upper stage, and an AAP 19 is further arranged thereon.

火炉3内の燃焼によって発生する排ガスは、矢印A方向に流れて出口7から過熱器9を通り、図示しない脱硝装置、脱硫装置、電気集塵機などを経て煙突から排出される。
図3には、ボイラ1に設置したCOGバーナ17の一例を示している。また、図4には、図2のCOGバーナ17の拡大図を示し、図5には、図3のS−S線矢視図を示す。
Exhaust gas generated by combustion in the furnace 3 flows in the direction of arrow A, passes through the superheater 9 from the outlet 7, and is discharged from the chimney via a denitration device, a desulfurization device, an electric dust collector, and the like (not shown).
FIG. 3 shows an example of the COG burner 17 installed in the boiler 1. FIG. 4 shows an enlarged view of the COG burner 17 of FIG. 2, and FIG. 5 shows a view taken along the line S--S of FIG.

火炉3の壁面スロート3aに配置されたCOGバーナ17は、円筒状の一次空気搬送管21を備え、一次空気搬送管21の内部には、燃焼用一次空気流路23と、その出口部にスワラ(一次空気旋回部材、旋回羽根ともいう)25とを備えている。スワラ25は中心軸に設けた支持部材27によって支持されている。スワラ25は、複数の羽根状体或いはその類似体で構成されていて、風箱39から供給されて矢印B方向(水平方向)に流れる一次空気に弱旋回を与えると共に、末広がりにする作用がある。   The COG burner 17 disposed on the wall throat 3a of the furnace 3 has a cylindrical primary air conveying pipe 21. Inside the primary air conveying pipe 21, a primary air flow path 23 for combustion and a swirler at its outlet are provided. (Also referred to as a primary air swirling member or swirling vane) 25. The swirler 25 is supported by a support member 27 provided on the center shaft. The swirler 25 is composed of a plurality of blades or an analog thereof, and has a function of giving a weak swirl to the primary air supplied from the wind box 39 and flowing in the direction of the arrow B (horizontal direction) and expanding the swirl. .

また、一次空気搬送管21の外周部にはCOG燃料搬送管29が設けられ、COG燃料搬送管29の内部にCOG燃料流路31が設けられている。
更に、COG燃料搬送管29の外周部には燃焼用二次空気流路35を形成する二次空気搬送管33が設けられている。
Further, a COG fuel transfer pipe 29 is provided on an outer peripheral portion of the primary air transfer pipe 21, and a COG fuel flow path 31 is provided inside the COG fuel transfer pipe 29.
Further, on the outer peripheral portion of the COG fuel transport pipe 29, a secondary air transport pipe 33 forming a secondary air flow path 35 for combustion is provided.

二次空気流路35には火炉3の側壁の外側に配置される風箱39から矢印C方向に燃焼用空気が供給される。二次空気流路35にはエアレジスタ(二次空気旋回部材)41を設けており、エアレジスタ41によって燃焼用空気流が形成されて燃焼用空気が供給される。エアレジスタ41は、燃焼用空気を流したり止めたりする仕切り(ダンパ)であり、バーナから噴射される燃料に燃焼用空気を供給するが、燃焼用空気を燃料と混合する際、燃焼用空気に旋回を与え、火炎手前では極力空気の混合を抑制したり、火炎手前より少しずつ混合したりして、燃焼性を調整したり、火炎を安定させるための空気流を調整する機能をもつ。なお、エアレジスタ41には案内羽根を利用する軸流式など種々のものがある。   Combustion air is supplied to the secondary air flow passage 35 in the direction of arrow C from a wind box 39 arranged outside the side wall of the furnace 3. An air register (secondary air swirling member) 41 is provided in the secondary air passage 35, and a combustion air flow is formed by the air register 41 to supply combustion air. The air register 41 is a partition (damper) for flowing and stopping the combustion air, and supplies the combustion air to the fuel injected from the burner. When mixing the combustion air with the fuel, the air register 41 By providing a swirl, it has the function of suppressing the mixing of air as much as possible before the flame, mixing it little by little as compared to before the flame, adjusting the combustibility, and adjusting the air flow for stabilizing the flame. There are various types of air registers 41 such as an axial flow type using guide vanes.

そして、エアレジスタ41は図示しない開閉機構や制御装置などにより作動することで、旋回力(スワール数)の強弱や燃焼用空気の流量及び流速を調整、制御可能である。
一方、一次空気流路23の先端部に設置したスワラ25は固定式で、一次空気に対して、燃料及び二次空気と同一旋回方向に、スワール数が0.1程度の旋回を与えるように構成している。
The air register 41 is operated by an opening / closing mechanism or a control device (not shown) to adjust and control the strength of the swirling force (swirl number) and the flow rate and flow rate of the combustion air.
On the other hand, the swirler 25 installed at the tip of the primary air flow path 23 is of a fixed type, and gives a swirl with a swirl number of about 0.1 to the primary air in the same swirl direction as the fuel and the secondary air. Make up.

表1には、BFG及びCOGの燃料性状を示す。尚、表1中のHHVとは高位発熱量を示し、LHVとは低位発熱量を示している。   Table 1 shows the fuel properties of BFG and COG. In Table 1, HHV indicates a high heating value, and LHV indicates a low heating value.

BFGは不活性成分であるNが多いため、発熱量が1000kcal/mN以下と、燃料としてはかなり低い。COGは、H、CO、CHなどの可燃性成分を含むため、BFGよりは発熱量が高いが、それでも5000kcal/mN以下である。一方、天然ガスの発熱量は約10,000kcal/mNであるため、これに比べるとBFGやCOGは燃焼性が劣る燃焼特性を有している。 BFG Since N 2 is often inactive ingredients, and calorific value 1000 kcal / m 3 N or less, much lower as fuel. Since COG contains flammable components such as H 2 , CO, and CH 4 , the calorific value is higher than that of BFG, but it is still 5000 kcal / m 3 N or less. On the other hand, since the calorific value of natural gas is about 10,000 kcal / m 3 N, BFG and COG have combustion characteristics that are inferior in combustibility.

そして、COGバーナ17は火炉3の上段に位置するため、出口7に設置されている過熱器9との距離が近い。また、下段及び中段のBFGバーナ15の火炎からの上昇流の影響もあり、火炎が長炎化すると、火炎が火炉3の上部に流動して過熱器9下部に接触する可能性が高まってしまう。通常、BFGバーナとCOGバーナの混焼パターンは、BFG/COG(燃料の発熱量の比)が50/50であるが、運用条件によって60/40〜40/60の範囲で対応させる。BFG燃料はCOG燃料に対して発熱量が1/5以下程度であるため、一本当たり同一の入熱とするためには、BFGはCOGに対して5倍以上燃料を投入する必要がある。そのため、図2に示すように燃料ダクトが大きくなり、バーナも大きくなる。   Since the COG burner 17 is located at the upper stage of the furnace 3, the distance from the superheater 9 installed at the outlet 7 is short. In addition, there is an influence of the upward flow from the flames of the lower and middle BFG burners 15, and when the flame is prolonged, the possibility that the flame flows to the upper part of the furnace 3 and contacts the lower part of the superheater 9 increases. . Normally, the co-firing pattern of the BFG burner and the COG burner has a BFG / COG (ratio of the calorific value of the fuel) of 50/50, but corresponds to a range of 60/40 to 40/60 depending on the operating conditions. Since the BFG fuel has a calorific value of about 1/5 or less of the COG fuel, in order to make the same heat input per piece, it is necessary to feed the BFG fuel 5 times or more to the COG fuel. Therefore, as shown in FIG. 2, the fuel duct becomes large, and the burner also becomes large.

そして、特にボイラ1の負荷が高く、且つBFG燃料に対してCOG燃料の割合(発熱量の割合)が高い場合は、高負荷に伴うBFGバーナ15による上昇流の増加及びCOG燃料の増加に伴う長炎化によって過熱器9下部に接触する可能性が高くなる。火炎を短炎化するためには、空気とCOG燃料との混合を促進して燃焼性を良好とすることが必要である。   In particular, when the load of the boiler 1 is high and the ratio of the COG fuel to the BFG fuel (the ratio of the calorific value) is high, the rising flow by the BFG burner 15 due to the high load and the increase of the COG fuel are accompanied. The possibility of contact with the lower part of the superheater 9 increases due to the prolonged flame. In order to shorten the flame, it is necessary to promote the mixing of the air and the COG fuel to improve the combustibility.

COG燃料搬送管29に供給されるCOGは、図4に示すように、スクロール形状の燃料導入管43により一次空気搬送管21の軸と略直交する方向から導入されて一次空気搬送管21の外周に沿って螺旋状(矢印D方向)に旋回しながら流動し、COG燃料搬送管29の出口先端から火炉3内に噴出する。   As shown in FIG. 4, the COG supplied to the COG fuel transfer pipe 29 is introduced from a direction substantially perpendicular to the axis of the primary air transfer pipe 21 by a scroll-shaped fuel introduction pipe 43, and the outer periphery of the primary air transfer pipe 21. And flows in a spiral manner (in the direction of arrow D) along the line, and squirts into the furnace 3 from the outlet end of the COG fuel transfer pipe 29.

また、一次空気流路23を矢印B方向に流れる一次空気は出口部のスワラ25によって旋回流となり、更に末広がり状に形成された先端部21aによって外側に流れることで、COGとより早く混合する。そして、二次空気流路35からはエアレジスタ41によって旋回力が与えられた二次空気が噴出することで、内側のCOGとの混合がより促進されると共に、二次空気の旋回によって、バーナ近傍に再循環領域Wが形成されることで、短炎化にも繋がる。   Further, the primary air flowing in the primary air flow path 23 in the direction of arrow B is swirled by the swirler 25 at the outlet, and further flows outward by the tip 21a formed in a divergent shape, whereby the primary air is mixed with COG more quickly. Then, the secondary air to which the swirling force is given by the air register 41 is ejected from the secondary air flow passage 35, so that the mixing with the inner COG is further promoted. The formation of the recirculation region W in the vicinity leads to shortening of the flame.

このように、COG、一次空気、二次空気がそれぞれ旋回流となって、且つCOGが内側の一次空気と外側の二次空気により挟み込まれることで、燃料と空気との混合が促進されて燃焼性が向上する。   As described above, the COG, the primary air, and the secondary air are each swirled, and the COG is sandwiched between the inner primary air and the outer secondary air, so that the mixing of the fuel and the air is promoted and the combustion is performed. The performance is improved.

また、COG燃料搬送管29の出口先端に保炎器45を設けると、保炎器45近傍で渦流Uが形成されることで、COGの燃焼が促進され、短時間で燃焼が完結することで、より短炎化を図ることができる。この保炎器45は、図5に示すように歯型形状とすれば、丸枠Zの拡大図に示すように、歯に当たって歯の両側方、上方向から渦が生じる。渦はCOGと空気との混合を促進すると共に、逆向きの流れでもあるので火炎を保持しやすくする作用がある。従って、渦流が効率よく形成され、着火性が良好となって、燃料を早く燃焼させることができる。   Further, when the flame stabilizer 45 is provided at the outlet end of the COG fuel transfer pipe 29, the vortex U is formed in the vicinity of the flame stabilizer 45, so that the combustion of COG is promoted and the combustion is completed in a short time. The flame can be further shortened. If this flame stabilizer 45 is formed in a tooth shape as shown in FIG. 5, a vortex is generated on both sides of the tooth and upward from the tooth as shown in the enlarged view of the round frame Z. The vortex promotes the mixing of COG and air, and also has the effect of facilitating the holding of the flame because the vortex also flows in the opposite direction. Therefore, the vortex is efficiently formed, the ignitability is improved, and the fuel can be burned quickly.

尚、エアレジスタ41を絞り二次空気に強旋回をかけることで、COGと空気との混合は促進されるが、エアレジスタ41を絞りすぎると、二次空気の圧力損失が増加するため、二次空気はエアレジスタ41により中〜強旋回を与えることが望ましい。一次空気はスワラ25により弱旋回を与えることで、大きな再循環領域Wを作り出す。この再循環領域Wは高温ガスをバーナ近くに戻す作用があり、燃焼状態を格段に良好にする。   It should be noted that mixing the COG and air is promoted by narrowing the air register 41 and making a strong swirl on the secondary air. However, if the air register 41 is narrowed too much, the pressure loss of the secondary air increases. It is desirable that the secondary air give a medium to strong turn by the air register 41. The primary air gives the swirler 25 a weak swirl to create a large recirculation area W. The recirculation region W has a function of returning the high-temperature gas to the vicinity of the burner, and makes the combustion state much better.

COG燃料が多量の場合は、燃料に対する空気比を増加させれば燃焼性が向上するものの、NOx濃度が増加してしまうため、空気比を1以下に抑えることが望ましい。
以下に、図3のCOGバーナ17を用いた場合の燃焼性能の評価結果を示す。尚、図6にも、同じバーナを示している。
When the amount of COG fuel is large, although the combustion performance is improved by increasing the air ratio with respect to the fuel, the NOx concentration increases. Therefore, it is desirable to suppress the air ratio to 1 or less.
The evaluation results of the combustion performance when the COG burner 17 of FIG. 3 is used are shown below. FIG. 6 shows the same burner.

本実施例の妥当性を検証するために流動解析を実施した。解析ソフトは、汎用流体解析ソフト(Ansys Fluent)(アンシス・ジャパン株式会社製)を用い、解析手法は、有限体積法を適用した。解析条件として、一次空気のSw(スワール数)を0.1、二次空気のSwを0.5、COGのSwを0.4とした。   A flow analysis was performed to verify the validity of this example. The analysis software used was general-purpose fluid analysis software (Ansys Fluent) (manufactured by Ansys Japan KK), and the analysis method was a finite volume method. As analysis conditions, Sw (the swirl number) of the primary air was 0.1, Sw of the secondary air was 0.5, and Sw of the COG was 0.4.

また、COGの燃焼性状は表1とした。バーナ負荷は定格(100%負荷)条件をベース(バーナ一本の容量は蒸発量ベースで30t/hである)として一次、二次の燃焼用空気量及び燃料量の計画値を適用した。具体的には、一次空気量を4.3t/h、二次空気量を17.4t/h、一次及び二次空気温度が160℃、COG量3500mN/h、COG温度が40℃の計画条件を用いた。また、一次空気と二次空気の流量配分は23%(一次)対77%(二次)とした。 Table 1 shows the combustion properties of COG. The burner load was based on the rated (100% load) condition (the capacity of one burner is 30 t / h on the basis of the amount of evaporation), and the primary and secondary combustion air amounts and the planned values of the fuel amount were applied. Specifically, the primary air amount is 4.3 t / h, the secondary air amount is 17.4 t / h, the primary and secondary air temperatures are 160 ° C., the COG amount is 3500 m 3 N / h, and the COG temperature is 40 ° C. The design conditions were used. Also, the flow rate distribution between the primary air and the secondary air was set to 23% (primary) versus 77% (secondary).

そして、COG、一次空気、二次空気は全て同一方向の旋回とし、空気比(理論空気量に対する割合)は0.95とした。
尚、スワール数とは、旋回を伴う流れにおいて、旋回の強さを表す無次元数であり、下記式(1)で表され、スワール数が大きいほど旋回の強い流れとなる。
The COG, primary air, and secondary air were all swirled in the same direction, and the air ratio (ratio to the theoretical air amount) was 0.95.
Note that the swirl number is a dimensionless number that indicates the strength of a turn in a flow accompanied by a turn, and is represented by the following equation (1). The larger the swirl number, the stronger the turn.

Sw=Gθ/(GxR) (1)
Gθ:周方向角運動量 Gx:軸方向運動量 R:管の半径
比較例1として、一次空気、二次空気、COGの全てが旋回無しの場合、比較例2として、一次空気とCOGは旋回無しで二次空気のみ旋回有りの場合とし、流動状態を比較するため解析を実施した。
Sw = Gθ / (GxR) (1)
Gθ: Circumferential angular momentum Gx: Axial momentum R: Radius of pipe As Comparative Example 1, when all of primary air, secondary air, and COG have no turning, as Comparative Example 2, primary air and COG have no turning. An analysis was performed to compare the flow states, with only the secondary air having swirl.

尚、比較例1では、図6に示すスワラ25及びエアレジスタ41がないバーナ装置を用いて、COG燃料を燃料導入管43によらずに一次空気搬送管21と同軸方向から導入することで行い、比較例2では、図6に示すスワラ25がない(エアレジスタ41はある)バーナ装置を用いて、同じくCOG燃料を一次空気搬送管21と同軸方向から導入することで行った。即ち、比較例1では、一次空気、二次空気、COGの全てが直線流となり、比較例2では、二次空気のみエアレジスタ41によって旋回流となるが、一次空気とCOGは直線流となる条件である。   In the first comparative example, the COG fuel was introduced from the same direction as the primary air transfer pipe 21 without using the fuel introduction pipe 43 by using the burner device without the swirler 25 and the air register 41 shown in FIG. In Comparative Example 2, the burner device without the swirler 25 (having the air register 41) shown in FIG. 6 was used to introduce COG fuel from the same direction as the primary air conveying pipe 21 in the same manner. That is, in Comparative Example 1, all of the primary air, secondary air, and COG form a straight flow, and in Comparative Example 2, only the secondary air forms a swirling flow by the air register 41, but the primary air and COG form a linear flow. Condition.

バーナ先端Eからの軸方向距離X=0.1m、0.2m、0.4mの地点における最も空気濃度の低い箇所(P1、P2、P3)及びバーナ先端からの軸方向距離X=0.1m、0.5m、2.0mの地点における最も空気濃度の高い箇所(P4、P5、P6)の空気濃度を解析した結果を表2に示す。   The points (P1, P2, P3) where the air concentration is lowest at the points of the axial distance X = 0.1m, 0.2m, 0.4m from the burner tip E and the axial distance X = 0.1m from the burner tip. , 0.5 m, and 2.0 m, Table 2 shows the results of analyzing the air concentrations at the points (P4, P5, and P6) where the air concentration was highest.

空気濃度の測定は、燃焼反応は無視した条件下で上記解析ソフトによる定常解析を行った。各条件における燃料に対する空気濃度の分布を流動解析によって算出し、数値化して比較評価を行った。   For the measurement of the air concentration, a steady-state analysis was performed using the above analysis software under the condition that the combustion reaction was ignored. The distribution of air concentration with respect to the fuel under each condition was calculated by flow analysis, quantified and compared for evaluation.

最も空気濃度の低い箇所に着目した場合は、空気濃度の最小値が上昇する程混合が進んでいると言える(0%で燃料と未混合、100%で燃料と完全混合)。この地点は、概ねCOG燃料搬送管29の出口先端から火炉3内に噴出するCOG燃料流の軌跡上にある。比較例1では、バーナ先端から0.4mの地点P3においても7%、比較例2でも11%に留まるが、実施例では47%と大幅にアップする。従って、明らかに混合が促進されていることが分かる。   When attention is paid to the location where the air concentration is the lowest, it can be said that the mixing is advanced as the minimum value of the air concentration increases (0% is not mixed with fuel, and 100% is completely mixed with fuel). This point is substantially on the trajectory of the COG fuel flow ejected into the furnace 3 from the outlet end of the COG fuel transfer pipe 29. In Comparative Example 1, it is 7% even at the point P3 0.4 m from the tip of the burner, and it is 11% in Comparative Example 2. However, in Example, it is significantly increased to 47%. Therefore, it can be seen that mixing is clearly promoted.

また、最も空気濃度の高い箇所に着目した場合は、空気濃度の最大値が低下する程混合が進んでいると言える(100%で燃料と未混合、0%で燃料と完全混合)。この地点は、概ね一次空気搬送管21の出口先端から火炉3内に噴出する一次空気流の軌跡上にある。比較例1では、バーナ先端Eから2.0mの地点P6においても63%、比較例2でも59%であるものの、実施例では53%と低下する。従って、明らかに混合特性が優れていると言える。   In addition, when attention is paid to the location where the air concentration is highest, it can be said that the mixing progresses as the maximum value of the air concentration decreases (100% is not mixed with fuel, and 0% is completely mixed with fuel). This point is substantially on the trajectory of the primary air flow ejected into the furnace 3 from the outlet end of the primary air conveying pipe 21. In Comparative Example 1, it is 63% at the point P6 2.0 m from the tip E of the burner, and 59% in Comparative Example 2, but it is 53% in the example. Therefore, it can be said that the mixing characteristics are clearly excellent.

図7には、上記実施例、比較例1、比較例2における一次空気、二次空気、COGの速度分布及びガス流れを解析した結果を示す。解析条件は、表2の条件と同様とした。
図7(A)には比較例1を、図7(B)には比較例2を、図7(C)には実施例を示している。比較例1の二次空気の流れでは、再循環領域が全く形成されていないことが分かる。一方、二次空気を旋回させた比較例2では、再循環領域Gが形成されているが、バーナからかなり離れていることが分かる。
FIG. 7 shows the results of analyzing the velocity distribution and gas flow of primary air, secondary air, and COG in the above example, Comparative Example 1, and Comparative Example 2. The analysis conditions were the same as those in Table 2.
7A shows Comparative Example 1, FIG. 7B shows Comparative Example 2, and FIG. 7C shows an example. It can be seen that in the flow of the secondary air of Comparative Example 1, no recirculation region was formed. On the other hand, in Comparative Example 2 in which the secondary air was swirled, the recirculation region G was formed, but it was found that the recirculation region G was considerably away from the burner.

一方、実施例では、バーナ近傍に再循環領域Hが形成されている。また、バーナ中央部からの逆流はバーナ近傍で軸方向速度が0付近となった後、円滑にバーナ火炎に沿って流れる特徴があり、バーナ近傍での着火性、保炎性が確実に向上する流動特性になっている。   On the other hand, in the embodiment, the recirculation region H is formed near the burner. In addition, the backflow from the central part of the burner is characterized in that it flows smoothly along the burner flame after the axial velocity becomes near zero near the burner, and the ignitability and flame holding properties near the burner are surely improved. It has flow characteristics.

以上のことから、本実施例のCOGバーナ17によってバーナ火炎の短炎化が達成され、火炎が過熱器9の下部に接触する可能性が低減すると共に、過熱器9の損傷の副因となるポテンシャルを解消できる。従って、コンパクトな火炉のボイラが実現する。   From the above, the COG burner 17 of the present embodiment achieves the shortening of the burner flame, reduces the possibility that the flame contacts the lower part of the superheater 9, and causes the superheater 9 to be damaged. Potential can be eliminated. Accordingly, a compact furnace boiler is realized.

また、COG燃料量が少ない又は低濃度の場合は、安定燃焼を保持するために、助燃燃料による補助燃焼が必要となる。その場合は、支持部材27を単なるスワラ25の支持に用いるだけではなく、助燃バーナとすれば助燃燃料が燃焼用空気と共に火炉3に投入される。例えば、油バーナ又はガスバーナとし、また助燃燃料としては、油、ガス、副生油、副生ガス等特に指定はないが、例えばLPGなどで良い。   When the amount of COG fuel is small or low, auxiliary combustion with auxiliary fuel is required to maintain stable combustion. In this case, the supporting member 27 is used not only for simply supporting the swirler 25, but also as an auxiliary burner, the auxiliary fuel is supplied to the furnace 3 together with the combustion air. For example, an oil burner or a gas burner is used, and the auxiliary combustion fuel is not particularly specified, such as oil, gas, by-product oil, and by-product gas. For example, LPG may be used.

尚、BFGバーナ15もCOGバーナ17と同様の構成としても良い。本構成を採用することにより、COGよりも発熱量の低いBFGの燃焼性も良好となり、より一層バーナ火炎の短炎化作用が大きくなる。また、COGバーナ17の長炎化に寄与するBFGバーナ15の火炎からの上昇気流も抑えることができる。   Note that the BFG burner 15 may have the same configuration as the COG burner 17. By adopting this configuration, the combustibility of BFG having a lower calorific value than COG is improved, and the effect of shortening the burner flame is further increased. Further, it is also possible to suppress the upward airflow from the flame of the BFG burner 15 which contributes to the prolongation of the flame of the COG burner 17.

低カロリーガスの燃料を用いたバーナ装置として、利用可能性がある。   It can be used as a burner device using low calorie gas fuel.

1 ボイラ 3 火炉
5 ノーズ 7 火炉出口
9 過熱器 11 前壁
13 後壁 15 BFGバーナ
17 COGバーナ 19 AAP
21 一次空気搬送管 23 一次空気流路
25 スワラ 27 支持部材
29 COG燃料搬送管 31 COG燃料流路
33 二次空気搬送管 35 二次空気流路
39 風箱 41 エアレジスタ
43 燃料導入管 45 保炎器
1 Boiler 3 Furnace 5 Nose 7 Furnace Exit 9 Superheater 11 Front Wall 13 Rear Wall 15 BFG Burner 17 COG Burner 19 AAP
Reference Signs List 21 Primary air transfer pipe 23 Primary air flow path 25 Swirler 27 Support member 29 COG fuel transfer pipe 31 COG fuel flow path 33 Secondary air transfer pipe 35 Secondary air flow path 39 Wind box 41 Air register 43 Fuel introduction pipe 45 Flame holding vessel

Claims (8)

火炉の壁面のスロートに設けられたバーナ装置であって、
燃焼用の一次空気を搬送する一次空気搬送管と、
該一次空気搬送管の出口部に設けられ、火炉に向かって末広がり形状を有し、一次空気搬送管から火炉に噴出される前記一次空気に旋回を与える一次空気旋回部材と、
一次空気搬送管の外周に設けられ、一次空気搬送管の軸を中心とする螺旋状に旋回させる方向から導入されて一次空気搬送管の外周を旋回しながら一次空気搬送管の出口部に向けて流動し且つ前記一次空気の旋回方向と同方向の旋回が付与された発熱量5000kcal/mN以下の低カロリーガスを搬送する燃料搬送管と、
該燃料搬送管の外周に設けられ、燃焼用の二次空気を搬送する二次空気搬送管と、
該二次空気搬送管に設けられ、二次空気搬送管に供給される二次空気に前記一次空気の旋回方向と同方向の旋回を与える二次空気旋回部材とを設け、
前記低カロリーガスと前記一次空気と前記二次空気がそれぞれ旋回され、且つ、
前記低カロリーガスが内側の前記一次空気と外側の前記二次空気により挟み込まれ
前記二次空気は、旋回の強さを表すスワール数が前記低カロリーガスよりも大きく、且つ、前記一次空気は、前記スワール数が前記低カロリーガスよりも小さい
ことを特徴とする低カロリーガスバーナ装置。
A burner device provided on a throat on a wall of a furnace,
A primary air conveying pipe for conveying primary air for combustion,
A primary air swirling member provided at an outlet of the primary air conveying pipe, having a divergent shape toward the furnace, and turning the primary air ejected from the primary air conveying pipe to the furnace;
It is provided on the outer circumference of the primary air transport pipe, is introduced from a direction of spirally turning around the axis of the primary air transport pipe, and turns around the primary air transport pipe toward the outlet of the primary air transport pipe. A fuel transport pipe that transports a low calorie gas that flows and has a calorific value of 5000 kcal / m 3 N or less to which swirling in the same direction as the swirling direction of the primary air is provided;
A secondary air transport pipe provided on the outer periphery of the fuel transport pipe and transporting secondary air for combustion;
A secondary air swivel member is provided on the secondary air transfer pipe, and a secondary air swivel member is provided to give the secondary air supplied to the secondary air transfer pipe a turn in the same direction as the turn direction of the primary air.
The low-calorie gas, the primary air, and the secondary air are each swirled, and
The low-calorie gas is sandwiched between the inner primary air and the outer secondary air ,
The secondary air has a swirl number representing a swirling strength larger than the low calorie gas, and the primary air has a swirl number smaller than the low calorie gas. .
火炉の壁面のスロートに設けられたバーナ装置であって、
燃焼用の一次空気を搬送する一次空気搬送管と、
該一次空気搬送管の出口部に設けられ、火炉に向かって末広がり形状を有し、一次空気搬送管から火炉に噴出される前記一次空気に旋回を与える一次空気旋回部材と、
一次空気搬送管の外周に設けられ、旋回機構を通じ、一次空気搬送管の軸を中心とする螺旋状に旋回させる方向から導入されて一次空気搬送管の外周を旋回しながら一次空気搬送管の出口部に向けて流動し且つ前記一次空気の旋回方向と同方向の旋回が付与された発熱量5000kcal/mN以下の低カロリーガスを搬送する燃料搬送管と、
該燃料搬送管の外周に設けられ、燃焼用の二次空気を搬送する二次空気搬送管と、
該二次空気搬送管に設けられ、二次空気搬送管に供給される二次空気に前記一次空気の旋回方向と同方向の旋回を与える二次空気旋回部材とを設け
前記二次空気は、旋回の強さを表すスワール数が前記低カロリーガスよりも大きく、且つ、前記一次空気は、前記スワール数が前記低カロリーガスよりも小さいことを特徴とする低カロリーガスバーナ装置。
A burner device provided on a throat on a wall of a furnace,
A primary air conveying pipe for conveying primary air for combustion,
A primary air swirling member provided at an outlet of the primary air conveying pipe, having a divergent shape toward the furnace, and turning the primary air ejected from the primary air conveying pipe to the furnace;
Provided on the outer circumference of the primary air transport pipe, and introduced through a swivel mechanism from a direction of spirally rotating around the axis of the primary air transport pipe, and exiting the primary air transport pipe while rotating around the outer circumference of the primary air transport pipe A fuel transport pipe for transporting a low-calorie gas having a calorific value of 5000 kcal / m 3 N or less, which flows toward the section and is swirled in the same direction as the swirling direction of the primary air;
A secondary air transport pipe provided on the outer periphery of the fuel transport pipe and transporting secondary air for combustion;
A secondary air swivel member is provided on the secondary air transfer pipe, and a secondary air swivel member is provided to give the secondary air supplied to the secondary air transfer pipe a turn in the same direction as the turn direction of the primary air .
The secondary air has a swirl number representing a swirling strength larger than the low calorie gas, and the primary air has a swirl number smaller than the low calorie gas. .
前記二次空気旋回部材が前記二次空気へ与える旋回力は、前記一次空気旋回部材が前記一次空気へ与える旋回力よりも大きい
ことを特徴とする請求項1または2に記載の低カロリーガスバーナ装置。
It said secondary air swirl member turning force applied to the secondary air, the low calorie gas burner device according to claim 1 or 2, wherein the primary air swirler member being larger than the turning force applied to the primary air .
前記燃料搬送管の出口外周に保炎器を設けたことを特徴とする請求項1ないしのいずれかに記載の低カロリーガスバーナ装置。 The low calorie gas burner device according to any one of claims 1 to 3 , wherein a flame stabilizer is provided on an outer periphery of an outlet of the fuel transfer pipe. 火炉の壁面のスロートに設けられたバーナ装置であって、
燃焼用の一次空気を搬送する一次空気搬送管と、
該一次空気搬送管の出口部に設けられ、火炉に向かって末広がり形状を有し、一次空気搬送管から火炉に噴出される前記一次空気に旋回を与える一次空気旋回部材と、
一次空気搬送管の外周に設けられ、一次空気搬送管の軸を中心とする螺旋状に旋回させる方向から導入されて一次空気搬送管の外周を旋回しながら一次空気搬送管の出口部に向けて流動し且つ前記一次空気の旋回方向と同方向の旋回が付与された発熱量5000kcal/mN以下の低カロリーガスを搬送する燃料搬送管と、
該燃料搬送管の外周に設けられ、燃焼用の二次空気を搬送する二次空気搬送管と、
該二次空気搬送管に設けられ、二次空気搬送管に供給される二次空気に前記一次空気の旋回方向と同方向の旋回を与える二次空気旋回部材と、
前記燃料搬送管の出口外周に保炎器を設け、
前記保炎器は前記保炎器の下流側に渦流を形成することで前記二次空気の少なくとも一部を前記燃料搬送管側に向け流動させ
前記二次空気は、旋回の強さを表すスワール数が前記低カロリーガスよりも大きく、且つ、前記一次空気は、前記スワール数が前記低カロリーガスよりも小さい
ことを特徴とする低カロリーガスバーナ装置。
A burner device provided on a throat on a wall of a furnace,
A primary air conveying pipe for conveying primary air for combustion,
A primary air swirling member provided at an outlet of the primary air conveying pipe, having a divergent shape toward the furnace, and turning the primary air ejected from the primary air conveying pipe to the furnace;
It is provided on the outer circumference of the primary air transport pipe, is introduced from a direction of spirally turning around the axis of the primary air transport pipe, and turns around the primary air transport pipe toward the outlet of the primary air transport pipe. A fuel transport pipe that transports a low calorie gas that flows and has a calorific value of 5000 kcal / m 3 N or less to which swirling in the same direction as the swirling direction of the primary air is provided;
A secondary air transport pipe provided on the outer periphery of the fuel transport pipe and transporting secondary air for combustion;
A secondary air swiveling member provided on the secondary air conveying pipe, for giving the secondary air supplied to the secondary air conveying pipe a turning in the same direction as the turning direction of the primary air,
A flame stabilizer is provided around the outlet of the fuel transfer pipe,
The flame stabilizer causes at least a portion of the secondary air to flow toward the fuel transfer pipe side by forming a vortex downstream of the flame stabilizer ,
The secondary air has a swirl number representing a swirling strength larger than the low calorie gas, and the primary air has a swirl number smaller than the low calorie gas. .
前記保炎器は歯型形状であることを特徴とする請求項またはに記載の低カロリーガスバーナ装置。 Low calorie gas burner device according to claim 4 or 5, wherein the flame holder is a tooth shape. 製油所又は製鉄所で発生する副生ガスや産業用肥料プラントで生成される廃ガスを含む低発熱量のガス燃料を燃料として燃焼する火炉を備えたボイラにおいて、
火炉内には、下段に高炉ガスを燃料とするBFGバーナ装置、中段にコークス炉ガスを燃料とするCOGバーナ装置、上段に空気を供給するアフターエアポート、該アフターエアポートよりも上部に過熱器を備え、
前記COGバーナ装置は、前記請求項1から請求項のいずれか一項に記載の低カロリーガスバーナ装置であることを特徴とするボイラ。
In a boiler equipped with a furnace that burns as a fuel a low calorific value gas fuel including by-product gas generated in a refinery or a steel mill and waste gas generated in an industrial fertilizer plant,
In the furnace, a BFG burner device using blast furnace gas as fuel in the lower stage, a COG burner device using coke oven gas as fuel in the middle stage, an after-air port for supplying air to the upper stage, and a superheater above the after-air port ,
The boiler, wherein the COG burner device is the low calorie gas burner device according to any one of claims 1 to 6 .
前記BFGバーナ装置は、前記請求項1から請求項のいずれか一項に記載の低カロリーガスバーナ装置であることを特徴とする請求項記載のボイラ。 The boiler according to claim 7 , wherein the BFG burner device is the low-calorie gas burner device according to any one of Claims 1 to 6 .
JP2015095513A 2015-05-08 2015-05-08 Low calorie gas burner and boiler Active JP6664825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015095513A JP6664825B2 (en) 2015-05-08 2015-05-08 Low calorie gas burner and boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015095513A JP6664825B2 (en) 2015-05-08 2015-05-08 Low calorie gas burner and boiler

Publications (2)

Publication Number Publication Date
JP2016211783A JP2016211783A (en) 2016-12-15
JP6664825B2 true JP6664825B2 (en) 2020-03-13

Family

ID=57550815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015095513A Active JP6664825B2 (en) 2015-05-08 2015-05-08 Low calorie gas burner and boiler

Country Status (1)

Country Link
JP (1) JP6664825B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7262521B2 (en) * 2021-06-28 2023-04-21 三菱重工パワーインダストリー株式会社 Gas burner and combustion equipment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946552A (en) * 1973-09-10 1976-03-30 General Electric Company Fuel injection apparatus
JPS50103868A (en) * 1974-01-29 1975-08-16
JPS609536Y2 (en) * 1978-12-26 1985-04-04 三菱重工業株式会社 fuel combustion equipment
JPS5634016A (en) * 1979-08-27 1981-04-06 Hitachi Ltd Burning method for low-caloric fuel
JPH0140981Y2 (en) * 1984-09-28 1989-12-06
JP2715840B2 (en) * 1993-01-22 1998-02-18 住友金属工業株式会社 Different fuel combustion method in co-firing boiler
JPH08270906A (en) * 1995-03-29 1996-10-18 Shin Meiwa Ind Co Ltd Powder fuel burner
JPH09170714A (en) * 1995-12-18 1997-06-30 Babcock Hitachi Kk Fine coal powder burning burner
JP3788149B2 (en) * 1999-12-20 2006-06-21 株式会社日立製作所 Combined power generation system
JP3698041B2 (en) * 2000-09-29 2005-09-21 川崎重工業株式会社 Low calorie gas burning burner
JP5362620B2 (en) * 2009-05-26 2013-12-11 株式会社バイオマス・プロダクツ Biomass powder fuel combustion burner
PL2479491T3 (en) * 2011-01-20 2014-08-29 Fortum Oyj Method and burner for burning lean gas in a power plant boiler
JP5736583B2 (en) * 2012-01-30 2015-06-17 バブ日立工業株式会社 Burner equipment
JP5958856B2 (en) * 2012-04-25 2016-08-02 三菱日立パワーシステムズインダストリー株式会社 CO boiler

Also Published As

Publication number Publication date
JP2016211783A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
DK2829796T3 (en) Burner for mixed combustion of powdered coal and biomass and fuel combustion method
DK2829800T3 (en) Coal dust / biomass mixed-incinerator and fuel combustion process
JP5736583B2 (en) Burner equipment
TW457353B (en) A combustion burner of fine coal powder, and a combustion apparatus of fine coal powder
JP5386230B2 (en) Fuel burner and swirl combustion boiler
US20150226421A1 (en) Method of Co-Firing Coal or Oil with a Gaseous Fuel in a Furnace
JP2008111591A (en) Gas burner
JP5658126B2 (en) Oil burning burner, solid fuel burning burner unit and solid fuel burning boiler
JP6664825B2 (en) Low calorie gas burner and boiler
CN105247285B (en) Method for the combustion of a low nox premix gas burner
WO1997047923A1 (en) Fluent fuel fired burner
JP2010270990A (en) Fuel burner and turning combustion boiler
TW202140963A (en) Combustion system for a boiler with fuel stream distribution means in a burner and method of combustion
JP5399750B2 (en) Pulverized coal combustion apparatus and pulverized coal combustion method using pulverized coal combustion apparatus
JP2010210100A (en) Tubular flame burner
RU2642997C2 (en) Gas burner with low content of nitrogen oxides and method of fuel gas combustion
JP6732960B2 (en) Method for burning fuel and boiler
KR20210034334A (en) A Low-NOx combustor capable of internal recirculation of flue gas by using venturi effect through improvement of burner structure
JP7262521B2 (en) Gas burner and combustion equipment
CN102588971B (en) Mixed gas combustor
JP7191160B1 (en) Gas burner and combustion equipment
JP2001355808A (en) LOW-NOx BURNER AND ITS OPERATING METHOD
JP5958856B2 (en) CO boiler
JP6729045B2 (en) Combustion gas burner and by-product gas burner
Lei et al. Numerical simulation of the influence of gear-type combustion stabilizer on the flow field distribution and combustion products of swirl burner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200218

R150 Certificate of patent or registration of utility model

Ref document number: 6664825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250