JP2017222895A - Method for annealing steel product - Google Patents

Method for annealing steel product Download PDF

Info

Publication number
JP2017222895A
JP2017222895A JP2016117852A JP2016117852A JP2017222895A JP 2017222895 A JP2017222895 A JP 2017222895A JP 2016117852 A JP2016117852 A JP 2016117852A JP 2016117852 A JP2016117852 A JP 2016117852A JP 2017222895 A JP2017222895 A JP 2017222895A
Authority
JP
Japan
Prior art keywords
heating furnace
annealing
steel material
furnace
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016117852A
Other languages
Japanese (ja)
Inventor
遥平 山田
Yohei Yamada
遥平 山田
昌平 中久保
Shohei Nakakubo
昌平 中久保
武田 実佳子
Mikako Takeda
実佳子 武田
大樹 出雲
Daiki Izumo
大樹 出雲
泰弘 西川
Yasuhiro Nishikawa
泰弘 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016117852A priority Critical patent/JP2017222895A/en
Publication of JP2017222895A publication Critical patent/JP2017222895A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for annealing a steel product enabling oxidation of a surface of a steel product to be easily and relatively inexpensively suppressed.SOLUTION: The method for annealing a steel product according to the present invention uses in a heat treatment step, a heating furnace where a heat insulator is arranged inside an outer wall and has a step of heat treating the steel product while blowing non-oxidizable gas to the heating furnace. The method for annealing a steel product satisfies a relationship of F/V×100≥(1/30×X×X)+(58/3), where F [Nm/h] denotes non-oxidizable gas supply amount per 1 hr to the heating furnace, V [m] denotes inner volume of the outer wall, X[%] denotes volume percent of the heat insulator in the inner volume of the outer wall, X[%] denotes porosity of the heat insulator. The heating furnace is a batch type heating furnace and the method for annealing a steel product preferably has a step of replacing atmosphere in the heating furnace with the non-oxidizable gas before temperature rising.SELECTED DRAWING: Figure 1

Description

本発明は、鋼材の焼鈍方法に関する。   The present invention relates to a method for annealing a steel material.

鋼材を焼鈍する際、加熱炉内の雰囲気中に水分が存在すると、鋼材の酸化が促進されるため、鋼材の表面に酸化皮膜が形成されて例えば変色による外観不良等の欠陥を生じさせるおそれがある。このため、例えば炉内を窒素ガス等の不活性ガスで置換(不酸化性ガス)することも行われているが、鋼材の酸化を十分に抑制することは難しい。   When steel is annealed, if moisture is present in the atmosphere in the heating furnace, oxidation of the steel is promoted, so that an oxide film is formed on the surface of the steel and may cause defects such as poor appearance due to discoloration, for example. is there. For this reason, for example, the inside of the furnace is replaced with an inert gas such as nitrogen gas (non-oxidizing gas), but it is difficult to sufficiently suppress the oxidation of the steel material.

炉内の置換では鋼材の酸化を十分に抑制できない理由としては、加熱炉の炉壁に用いられる断熱材の存在が考えられる。具体的には、断熱材は、多孔性材料から形成されるため、その気孔内に水分を吸着しており、熱処理時の温度上昇に伴って水分を放出することで、炉内の水分量を増大させると考えられる。   The reason why the oxidation of the steel material cannot be sufficiently suppressed by the replacement in the furnace is considered to be the presence of a heat insulating material used for the furnace wall of the heating furnace. Specifically, since the heat insulating material is formed of a porous material, moisture is adsorbed in the pores, and the moisture content in the furnace is reduced by releasing moisture as the temperature rises during heat treatment. It is thought to increase.

これに対して、鋼材を焼鈍する熱処理中に加熱炉に不酸化性ガスを連続して供給し、加熱炉内の露点を低下させる方法が提案されている(特開平9−256074号公報参照)。この公報に記載の方法では、加熱炉内の雰囲気の露点を測定し、この露点が目標範囲内となるよう不酸化性ガスの供給量を調節する。   On the other hand, a method has been proposed in which a non-oxidizing gas is continuously supplied to a heating furnace during a heat treatment for annealing a steel material to reduce the dew point in the heating furnace (see JP-A-9-256074). . In the method described in this publication, the dew point of the atmosphere in the heating furnace is measured, and the supply amount of the non-oxidizing gas is adjusted so that the dew point is within the target range.

上記公報に記載されるように不酸化性ガスの供給量を調節するためには、露点計、ガス流量を調節する制御弁及び露点計の検出値に基づいて制御弁を調節するコントローラーを設ける必要があり、設備コストが必要となる。また、オペレーターが定期的に炉内の露点を測定し、マニュアル操作によってガス流量を調節することも不可能ではないが、焼鈍のための熱処理は長時間に亘って行われるため、マニュアル操作で露点を管理することはオペレーターへの負担が大きい。   As described in the above publication, in order to adjust the supply amount of the non-oxidizing gas, it is necessary to provide a dew point meter, a control valve for adjusting the gas flow rate, and a controller for adjusting the control valve based on the detected value of the dew point meter. There is an equipment cost. In addition, it is not impossible for the operator to periodically measure the dew point in the furnace and adjust the gas flow rate by manual operation, but since the heat treatment for annealing is performed for a long time, the dew point is manually operated. Managing this is a heavy burden on the operator.

特開平9−256074号公報Japanese Patent Laid-Open No. 9-256074

上記不都合に鑑みて、本発明は、比較的安価かつ容易に鋼材の表面の酸化を抑制できる鋼材の焼鈍方法を提供することを課題とする。   In view of the above inconveniences, an object of the present invention is to provide a method for annealing a steel material that can easily suppress oxidation of the surface of the steel material at a relatively low cost.

上記課題を解決するためになされた発明は、外壁内側に断熱材が配設される加熱炉を用い、この加熱炉に不酸化性ガスを吹き込みながら鋼材を熱処理する工程を備える鋼材の焼鈍方法であって、上記熱処理工程で、上記加熱炉への1時間当たりの不酸化性ガス供給量をF[Nm/h]、上記外壁の内容積をV[m]、上記外壁の内容積に占める上記断熱材の体積割合をX[%]、上記断熱材の気孔率をX[%]として、次の式(1)の関係を満たすことを特徴とする鋼材の焼鈍方法である。
F/V×100≧(1/30×X×X)+(58/3) ・・・(1)
The invention made in order to solve the above-mentioned problems is a method of annealing a steel material comprising a step of heat-treating a steel material while blowing a non-oxidizing gas into the heating furnace using a heating furnace in which a heat insulating material is disposed inside the outer wall. In the heat treatment step, the amount of the non-oxidizing gas supplied to the heating furnace per hour is F [Nm 3 / h], the inner volume of the outer wall is V [m 3 ], and the inner volume of the outer wall is It is a steel material annealing method characterized by satisfying the relationship of the following formula (1), where X m [%] is the volume ratio of the heat insulating material and X c [%] is the porosity of the heat insulating material.
F / V × 100 ≧ (1/30 × X m × X c ) + (58/3) (1)

当該鋼材の焼鈍方法は、上記式(1)を満たすことによって、断熱材から放出される水蒸気を不酸化性ガスによって加熱炉の外に追い出して炉内の雰囲気ガスの露点を低く保つことで、鋼材の表面の酸化を抑制することができる。また、当該鋼材の焼鈍方法は、特別な制御装置を必要としないため比較的安価に行うことができ、オペレーターの負担も小さいので比較的容易に行うことができる。   The method for annealing the steel material is to keep the dew point of the atmospheric gas in the furnace low by driving out the water vapor released from the heat insulating material by the non-oxidizing gas by satisfying the above formula (1), Oxidation of the surface of the steel material can be suppressed. Further, the steel material annealing method can be performed relatively inexpensively because it does not require a special control device, and can be performed relatively easily because the burden on the operator is small.

上記加熱炉がバッチ式焼鈍炉であり、昇温前に加熱炉内の雰囲気を不酸化性ガスで置換する工程を備えるとよい。このように、上記加熱炉がバッチ式焼鈍炉であり、昇温前に加熱炉内の雰囲気を不酸化性ガスで置換する工程を備えることによって、より確実に鋼材の表面の酸化を抑制することができる。   The heating furnace is a batch annealing furnace, and it is preferable to include a step of replacing the atmosphere in the heating furnace with an inert gas before raising the temperature. Thus, the said heating furnace is a batch type annealing furnace, and it suppresses the oxidation of the surface of steel more reliably by providing the process of substituting the atmosphere in a heating furnace with non-oxidizing gas before temperature rising. Can do.

ここで、「不酸化性ガス」とは、酸素原子を有しないガス、又は酸素原子の化学結合が安定であり、熱処理温度において酸素を供給する能力を有しないガスを意味する。   Here, the “non-oxidizing gas” means a gas that does not have an oxygen atom or a gas that has a stable chemical bond of oxygen atoms and does not have the ability to supply oxygen at a heat treatment temperature.

以上のように、本発明に係る鋼材の焼鈍方法は、比較的安価かつ容易に鋼材の表面の酸化を抑制することができる。   As described above, the method for annealing a steel material according to the present invention can suppress oxidation of the surface of the steel material relatively easily and inexpensively.

本発明の一実施形態の鋼材の焼鈍方法に用いる装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the apparatus used for the annealing method of the steel material of one Embodiment of this invention. 図1の装置を用いる鋼材の焼鈍方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the annealing method of the steel materials using the apparatus of FIG. 断熱材の体積率及び気孔率と、不酸化性ガスの供給量と、鋼材表面の酸化による変色との関係を示すグラフである。It is a graph which shows the relationship between the volume rate and porosity of a heat insulating material, the supply amount of non-oxidizing gas, and discoloration by the oxidation of the steel material surface.

以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

[鋼材の焼鈍方法]
本発明の一実施形態に係る鋼材の焼鈍方法は、図1に示すように、鋼材1を加熱炉2内に配置して熱処理する鋼材の焼鈍方法である。当該焼鈍方法は、例えば自動車、船舶、建材、家電等に用いられる鋼板の製造の一工程として行うことができる。
[Steel annealing method]
A steel material annealing method according to an embodiment of the present invention is a steel material annealing method in which a steel material 1 is disposed in a heating furnace 2 and heat-treated as shown in FIG. The said annealing method can be performed as one process of manufacture of the steel plate used for a motor vehicle, a ship, a building material, a household appliance, etc., for example.

<加熱炉>
当該焼鈍方法は、加熱炉2として、図示するようなバッチ式のオープンコイル焼鈍炉を用いることができる。より詳しくは、当該焼鈍方法は、UAD(Unitized Annealing Department)焼鈍方式を好適に採用することができる。この場合、当該焼鈍方法により焼鈍される鋼材1は、典型的には、長尺の冷延鋼板を巻回したコイルとされる。
<Heating furnace>
In the annealing method, a batch type open coil annealing furnace as shown in the figure can be used as the heating furnace 2. More specifically, the annealing method can suitably employ a UAD (Unitized Annealing Department) annealing method. In this case, the steel material 1 annealed by the annealing method is typically a coil in which a long cold-rolled steel sheet is wound.

加熱炉2は、炉体3と、炉体3内に配設され、鋼材1が載置されるテーブル4と、炉体3内の上方に配設されるヒーター5と、炉体3内のテーブル4の側方に配設される循環ファン6とを備える。また、加熱炉2には、炉体3内に不酸化性ガスを供給するためのガス供給装置7が付設されている。   The heating furnace 2 is disposed in the furnace body 3, the table 4 on which the steel material 1 is placed, the heater 5 disposed in the furnace body 3, and the furnace body 3. And a circulation fan 6 disposed on the side of the table 4. Further, the heating furnace 2 is provided with a gas supply device 7 for supplying a non-oxidizing gas into the furnace body 3.

(炉体)
炉体3は、外壁8と、この外壁8の内側に配設される断熱材9とを有し、内部空間を密閉できるよう構成される。
(Furnace body)
The furnace body 3 includes an outer wall 8 and a heat insulating material 9 disposed on the inner side of the outer wall 8, and is configured to seal the inner space.

外壁8は、例えば鉄によって構成され、炉体3の強度及び機密性を担保する。   The outer wall 8 is made of, for example, iron, and ensures the strength and confidentiality of the furnace body 3.

断熱材9は、例えば煉瓦、モルタル等の多孔性材料から形成される。   The heat insulating material 9 is formed from a porous material such as brick or mortar, for example.

断熱材9の合計体積の外壁8の内容積に占める割合の下限としては、5%が好ましく、7%がより好ましい。一方、断熱材9の合計体積の外壁8の内容積に占める割合の上限としては、30%が好ましく、20%がより好ましい。断熱材9の合計体積が上記下限に満たない場合、加熱炉2の断熱性が不足して熱効率が不十分となるおそれがある。逆に、断熱材9の合計体積が上記上限を超える場合、断熱材9からの水分放出量が過大となり、不酸化性ガスの消費量が不必要に増大するおそれがある。   The lower limit of the ratio of the total volume of the heat insulating material 9 to the inner volume of the outer wall 8 is preferably 5%, more preferably 7%. On the other hand, the upper limit of the ratio of the total volume of the heat insulating material 9 to the inner volume of the outer wall 8 is preferably 30%, more preferably 20%. When the total volume of the heat insulating material 9 is less than the said minimum, there exists a possibility that the heat insulation of the heating furnace 2 may be insufficient, and thermal efficiency may become inadequate. Conversely, when the total volume of the heat insulating material 9 exceeds the above upper limit, the amount of moisture released from the heat insulating material 9 becomes excessive, and the consumption of the non-oxidizing gas may increase unnecessarily.

断熱材9の気孔率の下限としては、10%が好ましく、15%がより好ましい。一方、断熱材9の気孔率の上限としては、85%が好ましく、80%がより好ましい。断熱材9の気孔率が上記下限に満たない場合、断熱材の断熱性が不足して熱効率が不十分となるおそれがある。逆に、断熱材9の気孔率が上記上限を超える場合、断熱材の強度が不十分となるおそれがある。   As a minimum of the porosity of the heat insulating material 9, 10% is preferable and 15% is more preferable. On the other hand, the upper limit of the porosity of the heat insulating material 9 is preferably 85% and more preferably 80%. When the porosity of the heat insulating material 9 is less than the lower limit, the heat insulating property of the heat insulating material may be insufficient and the thermal efficiency may be insufficient. Conversely, when the porosity of the heat insulating material 9 exceeds the upper limit, the strength of the heat insulating material may be insufficient.

(テーブル)
テーブル4は、炉内のガスが上下に通過できるよう構成される。
(table)
The table 4 is configured so that the gas in the furnace can pass vertically.

(ヒーター)
ヒーター5は、例えば電気ヒーター、ラジアントチューブバーナー等によって構成することができる。
(heater)
The heater 5 can be composed of, for example, an electric heater, a radiant tube burner, or the like.

(循環ファン)
循環ファン6は、ヒーター5で加熱された炉内のガスを、鋼材1の鋼板の隙間を通して、テーブル4を上から下へと通過させるよう吸引し、このガスをヒーター5に再供給することで、炉内を循環させる。
(Circulation fan)
The circulation fan 6 sucks the gas in the furnace heated by the heater 5 through the gap between the steel plates 1 through the table 4 from the top to the bottom, and supplies the gas again to the heater 5. Circulate in the furnace.

(ガス供給装置)
ガス供給装置7は、高圧の不酸化性ガスが充填されたガスボンベ10と、このガスボンベ10から加熱炉2に供給される不酸化性ガスの流量を調節する調整弁11とを有する構成とすることができる。
(Gas supply device)
The gas supply device 7 includes a gas cylinder 10 filled with a high-pressure non-oxidizing gas, and an adjustment valve 11 that adjusts the flow rate of the non-oxidizing gas supplied from the gas cylinder 10 to the heating furnace 2. Can do.

ガス供給装置7が供給する不酸化性ガスとしては、鋼材1を酸化させないものであればよいが、好ましくは還元性を有するガスが用いられる。このような不酸化性ガスとしては、例えば水素ガス(H)、窒素ガス(N)、アルゴンガス(Ar)、水素及び窒素の混合ガス、アンモニア分解ガス等が挙げられる。 As the non-oxidizing gas supplied by the gas supply device 7, any gas that does not oxidize the steel material 1 may be used, but a reducing gas is preferably used. Examples of such non-oxidizing gas include hydrogen gas (H 2 ), nitrogen gas (N 2 ), argon gas (Ar), a mixed gas of hydrogen and nitrogen, and ammonia decomposition gas.

ガス供給装置7は、一定の流量で加熱炉2に不酸化性ガスを供給する。このガス供給装置7から加熱炉2への1時間当たりの不酸化性ガスの供給量の下限としては、加熱炉2の外壁8の内容積の15%が好ましく、20%がより好ましい。一方、ガス供給装置7から加熱炉2への1時間当たりの不酸化性ガスの供給量の上限としては、加熱炉2の外壁8の内容積の60%が好ましく、50%がより好ましい。ガス供給装置7から加熱炉2への1時間当たりの不酸化性ガスの供給量が上記下限に満たない場合、加熱炉2の内部の水蒸気を不酸化性ガスによって十分置換することができず、鋼材1の酸化を十分に抑制できないおそれがある。逆に、ガス供給装置7から加熱炉2への1時間当たりの不酸化性ガスの供給量が上記上限を超える場合、不酸化性ガスの消費量ひいては鋼材1の熱処理のコストが不必要に増大するおそれがある。   The gas supply device 7 supplies the non-oxidizing gas to the heating furnace 2 at a constant flow rate. As a lower limit of the supply amount of the non-oxidizing gas per hour from the gas supply device 7 to the heating furnace 2, 15% of the inner volume of the outer wall 8 of the heating furnace 2 is preferable, and 20% is more preferable. On the other hand, the upper limit of the supply amount of the non-oxidizing gas per hour from the gas supply device 7 to the heating furnace 2 is preferably 60% of the inner volume of the outer wall 8 of the heating furnace 2, and more preferably 50%. When the supply amount of the non-oxidizing gas per hour from the gas supply device 7 to the heating furnace 2 is less than the lower limit, the water vapor inside the heating furnace 2 cannot be sufficiently replaced with the non-oxidizing gas, There is a possibility that oxidation of the steel material 1 cannot be sufficiently suppressed. On the contrary, when the supply amount of the non-oxidizing gas per hour from the gas supply device 7 to the heating furnace 2 exceeds the above upper limit, the consumption amount of the non-oxidizing gas and the cost of the heat treatment of the steel material 1 is unnecessarily increased. There is a risk.

当該焼鈍方法は、図2に示すように、加熱炉2内に鋼材1を配置する工程<ステップS1:鋼材配置工程>と、加熱炉2内を不酸化性ガスで置換する工程<ステップS2:置換工程>と、加熱炉2内に不酸化性ガスを供給量しつつ予め設定される温度プロファイルとなるよう加熱及び冷却することにより鋼材1を熱処理する工程<ステップS3:熱処理工程>とを備える方法とすることができる。   As shown in FIG. 2, the annealing method includes a step of placing the steel material 1 in the heating furnace 2 <step S1: steel material placement step>, and a step of replacing the inside of the heating furnace 2 with an oxidizing gas <step S2: Replacement step> and a step <step S3: heat treatment step> of heat-treating the steel material 1 by heating and cooling so as to obtain a preset temperature profile while supplying the non-oxidizing gas into the heating furnace 2. It can be a method.

<鋼材配置工程>
ステップS1の鋼材配置工程では、鋼材1を加熱炉2のテーブル4上に、鋼材1のコイルの中心軸がテーブル4に垂直になるよう配置する。
<Steel material placement process>
In the steel material arrangement step of step S <b> 1, the steel material 1 is arranged on the table 4 of the heating furnace 2 so that the central axis of the coil of the steel material 1 is perpendicular to the table 4.

<置換工程>
ステップS2の置換工程では、ガス供給装置7から加熱炉2に不酸化性ガスを供給して、加熱炉2の内部を不酸化性ガスで置換する。
<Replacement process>
In the replacement process of step S2, an inert gas is supplied from the gas supply device 7 to the heating furnace 2, and the interior of the heating furnace 2 is replaced with the inert gas.

この置換工程を設けることにより、加熱前の加熱炉2内の酸素及び水分の存在量を低減することができ、鋼材1の酸化をより確実に抑制できる。   By providing this replacement step, the amount of oxygen and moisture in the heating furnace 2 before heating can be reduced, and oxidation of the steel material 1 can be more reliably suppressed.

<熱処理工程>
ステップS3の熱処理工程では、ガス供給装置7から加熱炉2に不酸化性ガスを供給しつつ、例えば炉内温度をオーステナイト化温度以上の焼鈍温度まで加熱する加熱工程と、炉内温度を焼鈍温度に保持する均熱工程と、炉内温度をゆっくりと低下させる冷却工程とを行う。
<Heat treatment process>
In the heat treatment process of step S3, for example, while supplying the non-oxidizing gas from the gas supply device 7 to the heating furnace 2, for example, a heating process in which the furnace temperature is heated to an annealing temperature equal to or higher than the austenitizing temperature, and the furnace temperature is set to the annealing temperature. A soaking step for maintaining the temperature in the furnace and a cooling step for slowly lowering the furnace temperature are performed.

また、加熱炉2への1時間当たりの不酸化性ガス供給量をF[Nm/h]、外壁8の内容積をV[m]、外壁8の内容積Vに占める断熱材9の割合をX[%]、断熱材9の気孔率をX[%]とすると、次の式(1)の関係を満たすものとされる。
F/V×100≧(1/30×X×X)+(58/3) ・・・(1)
Further, the amount of the non-oxidizing gas supplied to the heating furnace 2 per hour is F [Nm 3 / h], the inner volume of the outer wall 8 is V [m 3 ], and the heat insulating material 9 occupies the inner volume V of the outer wall 8. When the ratio is X m [%] and the porosity of the heat insulating material 9 is X c [%], the relationship of the following formula (1) is satisfied.
F / V × 100 ≧ (1/30 × X m × X c ) + (58/3) (1)

なお、上記式(1)の左辺は、加熱炉2への1時間当たりの不酸化性ガスの供給量Fを加熱炉2の外壁8の内容積で除した値をパーセントで表したものであり、加熱炉2内の雰囲気ガスの不酸化性ガスによる換気(置換)割合を表す指標である。一方、上記式(1)の右辺の「X×X」は、外壁8の内容積に対する断熱材9の気孔の割合、つまり断熱材9の水分放出能力を表す指標である。従って、上記式(1)の左辺の値を右辺の値以上とすることによって、断熱材9から放出される水分を不酸化性ガスによって比較的短時間で置換することができるので、鋼材1の表面の酸化を十分に抑制することができる。 The left side of the above formula (1) represents the percentage obtained by dividing the supply amount F of the non-oxidizing gas per hour to the heating furnace 2 by the internal volume of the outer wall 8 of the heating furnace 2. This is an index representing the ventilation (substitution) ratio of the atmospheric gas in the heating furnace 2 with the non-oxidizing gas. On the other hand, “X m × X c ” on the right side of the above formula (1) is an index representing the ratio of the pores of the heat insulating material 9 to the internal volume of the outer wall 8, that is, the moisture releasing ability of the heat insulating material 9. Therefore, by setting the value on the left side of the above formula (1) to be equal to or greater than the value on the right side, the moisture released from the heat insulating material 9 can be replaced with the non-oxidizing gas in a relatively short time. Surface oxidation can be sufficiently suppressed.

ここで、加熱炉2内の水分量の時刻t[h]における水分量を示す水分指数X(t)は、次の式(2)で表される滞留時間分布関数によって表すことができる。
X(t)=(X×X)×exp(−F/V×t) ・・・(2)
Here, the moisture index X (t) indicating the moisture content at the time t [h] of the moisture content in the heating furnace 2 can be represented by a residence time distribution function represented by the following equation (2).
X (t) = ( Xm * Xc ) * exp (-F / V * t) (2)

つまり、加熱炉2において、断熱材9から水蒸気が放出されることで炉内雰囲気ガスの露点が上昇するが、加熱炉2に不酸化性ガスを供給することによって水蒸気を排出することで、炉内雰囲気ガスの露点を低下させることができる。より詳しくは、この水分指数X(t)に0.0075を乗じた値が、空気中に含まれる水分量[質量%]となる。   That is, in the heating furnace 2, the dew point of the atmospheric gas in the furnace rises due to the release of water vapor from the heat insulating material 9, but the furnace is discharged by supplying the non-oxidizing gas to the heating furnace 2. The dew point of the internal atmosphere gas can be lowered. More specifically, a value obtained by multiplying the moisture index X (t) by 0.0075 is the moisture content [% by mass] contained in the air.

このため、例えば10時間で露点を−20℃まで低下させる場合、露点が−20℃の空気中に含まれる水分量は0.102質量%であるので、上記水分指数X(10)が13.6となるようにすればよい。   For this reason, for example, when the dew point is lowered to −20 ° C. in 10 hours, the amount of water contained in the air having the dew point of −20 ° C. is 0.102% by mass. 6 may be set.

上記式(1)の左辺の右辺に対する比の下限としては、1.0であり、1.1が好ましく、1.2がより好ましい。一方、上記式(1)の左辺の右辺に対する比の上限としては、2.0が好ましく、1.9がより好ましい。   The lower limit of the ratio of the left side of the formula (1) to the right side is 1.0, preferably 1.1, and more preferably 1.2. On the other hand, the upper limit of the ratio of the left side to the right side of the formula (1) is preferably 2.0 and more preferably 1.9.

(加熱工程)
加熱工程において、加熱炉2内の温度上昇に伴って断熱材9に吸着している水分(水蒸気)が放出されて、炉内の雰囲気ガス中の水分含有量(露点)を増大する。一方、加熱炉2にはガス供給装置7から不酸化性ガスが吹き込まれるので、断熱材9から放出される水分を含む雰囲気が不酸化性ガスによって置換される。このため、炉内温度が十分に上昇し、断熱材9が水分を放出し終えた後は、雰囲気ガス中の水分含有量が次第に低下する。
(Heating process)
In the heating step, the moisture (water vapor) adsorbed on the heat insulating material 9 is released as the temperature in the heating furnace 2 rises, and the moisture content (dew point) in the atmospheric gas in the furnace is increased. On the other hand, since the non-oxidizing gas is blown into the heating furnace 2 from the gas supply device 7, the atmosphere containing moisture released from the heat insulating material 9 is replaced with the non-oxidizing gas. For this reason, after the furnace temperature rises sufficiently and the heat insulating material 9 finishes releasing moisture, the moisture content in the atmospheric gas gradually decreases.

当該焼鈍方法における熱処理の最高温度としては、鋼材1の種類や使用目的に応じて選択されるが、例えば700℃以上1000℃以下とされる。   Although the maximum temperature of the heat treatment in the annealing method is selected according to the type of steel material 1 and the purpose of use, it is set to 700 ° C. or higher and 1000 ° C. or lower, for example.

(均熱工程)
均熱工程では、加熱炉2の内部の雰囲気温度を焼鈍温度に保持することで、鋼材1の内部まで焼鈍温度に加熱する。
(Soaking process)
In the soaking process, the temperature inside the heating furnace 2 is maintained at the annealing temperature, whereby the steel material 1 is heated to the annealing temperature.

この均熱工程の保持時間としては、鋼材1の大きさ等にもよるが、例えば1時間以上36時間以下とすることができる。   The holding time of the soaking step may be, for example, 1 hour or more and 36 hours or less, depending on the size of the steel material 1 or the like.

(冷却工程)
冷却工程では、炉内温度を徐々に低下させる。冷却工程における平均冷却速度としては、例えば20℃/h以上100℃/h以下とすることができる。
(Cooling process)
In the cooling step, the furnace temperature is gradually lowered. The average cooling rate in the cooling step can be, for example, 20 ° C./h or more and 100 ° C./h or less.

<利点>
当該鋼材の焼鈍方法は、上記式(1)を満たすことによって、断熱材9から放出される水蒸気を不酸化性ガスによって加熱炉2の外に追い出して炉内の雰囲気ガスの露点を低く保つことで、鋼材1の表面の酸化による鋼材の表面の酸化を抑制することができる。また、当該鋼材の焼鈍方法は、特別な制御装置を必要としないため比較的安価に行うことができ、オペレーターの負担も小さいので比較的容易に行うことができる。
<Advantages>
In the annealing method of the steel material, by satisfying the above formula (1), the water vapor released from the heat insulating material 9 is driven out of the heating furnace 2 by the non-oxidizing gas, and the dew point of the atmospheric gas in the furnace is kept low. Thus, the oxidation of the surface of the steel material due to the oxidation of the surface of the steel material 1 can be suppressed. Further, the steel material annealing method can be performed relatively inexpensively because it does not require a special control device, and can be performed relatively easily because the burden on the operator is small.

[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other Embodiments]
The said embodiment does not limit the structure of this invention. Therefore, in the above-described embodiment, the components of each part of the above-described embodiment can be omitted, replaced, or added based on the description and common general knowledge of the present specification, and they are all interpreted as belonging to the scope of the present invention. Should.

当該鋼材の焼鈍方法において、使用する加熱炉は、連続式のものであってもよい。   In the steel material annealing method, the heating furnace to be used may be a continuous type.

当該鋼材の焼鈍方法により焼鈍される鋼材の形状としては、コイル状に巻回される帯板状のものに限定されず、例えばブロック状等、任意の形状とすることができる。   The shape of the steel material annealed by the steel material annealing method is not limited to a strip-like shape wound in a coil shape, and may be an arbitrary shape such as a block shape.

当該鋼材の焼鈍方法において、置換工程は省略してもよい。   In the annealing method for the steel material, the replacement step may be omitted.

以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。   EXAMPLES Hereinafter, although this invention is explained in full detail based on an Example, this invention is not interpreted limitedly based on description of this Example.

焼鈍する鋼材として冷間圧延コイルを作製し、外壁内側に断熱材が配設される加熱炉を用い、不酸化性ガスを吹き込みながら焼鈍する試験No.1〜9を行った。   Test No. 1 in which a cold-rolled coil was produced as a steel material to be annealed and annealed while blowing an inert gas using a heating furnace in which a heat insulating material was disposed inside the outer wall. 1-9 were performed.

(鋼材)
焼鈍する鋼材としては、冷間圧延コイルを用意した。具体的には、先ず、原料を溶解及び鋳造し、炭素を0.5質量%、シリコンを0.2質量%、マンガンを0.8質量%含み、残部が鉄及び不可避的不純物であるスラブを作製し、このスラブを熱間圧延した。次いで、得られた圧延材を酸洗して表面の酸化スケールを完全に除去し、さらに冷間圧延して得られた板圧が2mm、板幅が950mm、長さが20mの鋼板を内径610mmのコイル状に巻き取って冷間圧延コイルとした。
(Steel)
A cold rolled coil was prepared as the steel material to be annealed. Specifically, first, a raw material is melted and cast, and a slab containing 0.5% by mass of carbon, 0.2% by mass of silicon and 0.8% by mass of manganese, with the balance being iron and inevitable impurities. The slab was produced and hot rolled. Next, the obtained rolled material is pickled to completely remove the oxidized scale on the surface, and further cold-rolled to obtain a steel plate having a plate pressure of 2 mm, a plate width of 950 mm, and a length of 20 m, an inner diameter of 610 mm. Was coiled into a cold rolled coil.

(加熱炉)
試験No.1〜3では、加熱炉として、外壁の内容積が100m、外壁の内容積に占める断熱材の体積割合が7%、断熱材の気孔率が20%であるバッチ式UAD焼鈍炉を用いた。試験No.4〜7では、加熱炉として、外壁の内容積が100m、外壁の内容積に占める断熱材の体積割合が7%、断熱材の気孔率が80%であるバッチ式UAD焼鈍炉を用いた。試験No.8〜9では、加熱炉として、外壁の内容積が100m、外壁の内容積に占める断熱材の体積割合が20%、断熱材の気孔率が17.4%であるバッチ式UAD焼鈍炉を用いた。
(heating furnace)
Test No. 1 to 3, a batch type UAD annealing furnace in which the inner volume of the outer wall is 100 m 3 , the volume ratio of the heat insulating material to the inner volume of the outer wall is 7%, and the porosity of the heat insulating material is 20% is used as the heating furnace. . Test No. In 4 to 7, a batch type UAD annealing furnace in which the inner volume of the outer wall was 100 m 3 , the volume ratio of the heat insulating material occupying the inner volume of the outer wall was 7%, and the porosity of the heat insulating material was 80% was used as the heating furnace. . Test No. 8-9, as a heating furnace, a batch type UAD annealing furnace in which the inner volume of the outer wall is 100 m 3 , the volume ratio of the heat insulating material to the inner volume of the outer wall is 20%, and the porosity of the heat insulating material is 17.4%. Using.

(熱処理)
不酸化性ガスとして、100質量%濃度の水素ガスを供給しながら、約10時間かけて焼鈍温度(700℃)まで昇温し、約20時間保持した後、徐冷した。この間、炉内の雰囲気の露点を測定した。
(Heat treatment)
While supplying 100 mass% concentration of hydrogen gas as the non-oxidizing gas, the temperature was raised to the annealing temperature (700 ° C.) over about 10 hours, kept for about 20 hours, and then gradually cooled. During this time, the dew point of the atmosphere in the furnace was measured.

試験No.1〜9では、加熱炉への1時間当たりの不酸化性ガスの供給量を、それぞれ23[Nm/h]、24[Nm/h]、45[Nm/h]、24[Nm/h]、30[Nm/h]、38[Nm/h]、45[Nm/h]、24[Nm/h]、33[Nm/h]とした。 Test No. 1 to 9, the amount of the non-oxidizing gas supplied to the heating furnace per hour is 23 [Nm 3 / h], 24 [Nm 3 / h], 45 [Nm 3 / h], and 24 [Nm, respectively. 3 [/ m], 30 [Nm 3 / h], 38 [Nm 3 / h], 45 [Nm 3 / h], 24 [Nm 3 / h], and 33 [Nm 3 / h].

(評価)
上記試験No.1〜9で焼鈍した冷間圧延コイルについて、コイルの先端から20mの位置における鋼板幅方向一端のミルエッジを含む平面視で1辺15mmの正方形の試験片をそれぞれ切り出した。これらの試験片を色温度3500K、10000ルクスの照度で実態顕微鏡の写真撮影を行い、撮影した画像から鋼板表面のL*a*b*値を測定した。
(Evaluation)
Test No. above. About the cold-rolled coil annealed by 1-9, the square test piece of 1 side 15mm was cut out by plane view including the mill edge of the steel plate width direction end in the position of 20 m from the front-end | tip of a coil, respectively. These test pieces were photographed with an actual microscope at a color temperature of 3500 K and an illuminance of 10,000 lux, and the L * a * b * values on the surface of the steel sheet were measured from the photographed images.

次の表1に、試験No.1〜9の断熱材の体積割合及び気孔率と、不酸化性ガスの流量と、上記式(1)の左辺の右辺に対する比(1未満の場合は式(1)を充足しない)と、処理開始から10時間後の炉内雰囲気の露点と、試験片のL*値とを示す。   In Table 1 below, the test No. The volume ratio and porosity of the heat insulating materials of 1 to 9, the flow rate of the non-oxidizing gas, the ratio of the left side of the above formula (1) to the right side (if less than 1, the formula (1) is not satisfied), and processing The dew point of the furnace atmosphere 10 hours after the start and the L * value of the test piece are shown.

Figure 2017222895
Figure 2017222895

表に示すように、式(1)の左辺が右辺に対して大きい程、L*値が大きく鋼材の酸化による変色が少ないとことが分かる。なお、上記表において、L*値が60以上であるものは、酸化による変色が許容範囲内であるといえる。   As shown in the table, it can be seen that the larger the left side of the formula (1) is, the larger the L * value is and the less discoloration due to oxidation of the steel material. In the above table, when the L * value is 60 or more, it can be said that the discoloration due to oxidation is within the allowable range.

図3に,試験No.1〜9の加熱炉への1時間当たりの不酸化性ガス供給量の外壁の内容積に対する比(F/V)と、断熱材の体積割合と気孔率との積(X×X)と、鋼材の酸化との関係を、L*値が60以上を「〇」、L*値が60未満を「×」でプロットした。なお、図には、式(1)の左辺と右辺とが等しい場合を示す直線を合わせて示す。 In FIG. The product (X m × X c ) of the ratio (F / V) of the non-oxidizing gas supply amount per hour to the heating furnace of 1 to 9 to the inner volume of the outer wall and the volume ratio of the heat insulating material and the porosity The relationship between the L * value and the oxidation of the steel material is plotted as “◯” when the L * value is 60 or more and “×” when the L * value is less than 60. In the figure, a straight line indicating that the left side and the right side of Equation (1) are equal is also shown.

以上のように、試験の結果から、式(1)の左辺が右辺以上となるよう、不酸化性ガスを加熱炉に吹き込みながら熱処理を行うことによって、鋼材の酸化被膜形成を十分に抑制できることが確認できた。   As described above, from the test results, it is possible to sufficiently suppress the formation of an oxide film on the steel material by performing heat treatment while blowing the non-oxidizing gas into the heating furnace so that the left side of the formula (1) is equal to or greater than the right side. It could be confirmed.

本発明に係る鋼材の焼鈍方法は、冷間圧延コイルの光輝焼鈍に好適に利用することができる。   The steel material annealing method according to the present invention can be suitably used for bright annealing of cold rolled coils.

1 鋼材
2 加熱炉
3 炉体
4 テーブル
5 ヒーター
6 循環ファン
7 ガス供給装置
8 外壁
9 断熱材
10 ガスボンベ
11 調整弁
S1 鋼材配置工程
S2 置換工程
S3 熱処理工程
DESCRIPTION OF SYMBOLS 1 Steel material 2 Heating furnace 3 Furnace body 4 Table 5 Heater 6 Circulation fan 7 Gas supply apparatus 8 Outer wall 9 Heat insulating material 10 Gas cylinder 11 Adjustment valve S1 Steel material arrangement process S2 Replacement process S3 Heat treatment process

Claims (2)

外壁内側に断熱材が配設される加熱炉を用い、この加熱炉に不酸化性ガスを吹き込みながら鋼材を熱処理する工程を備える鋼材の焼鈍方法であって、
上記熱処理工程で、上記加熱炉への1時間当たりの不酸化性ガス供給量をF[Nm/h]、上記外壁の内容積をV[m]、上記外壁の内容積に占める上記断熱材の体積割合をX[%]、上記断熱材の気孔率をX[%]として、次の式(1)の関係を満たすことを特徴とする鋼材の焼鈍方法。
F/V×100≧(1/30×X×X)+(58/3) ・・・(1)
A method for annealing a steel material comprising a step of heat-treating a steel material while blowing a non-oxidizing gas into the heating furnace using a heating furnace in which a heat insulating material is disposed inside the outer wall,
In the heat treatment step, the non-oxidizing gas supply amount per hour to the heating furnace is F [Nm 3 / h], the inner volume of the outer wall is V [m 3 ], and the heat insulation occupies the inner volume of the outer wall. A steel material annealing method characterized by satisfying the relationship of the following formula (1), wherein the volume ratio of the material is X m [%] and the porosity of the heat insulating material is X c [%].
F / V × 100 ≧ (1/30 × X m × X c ) + (58/3) (1)
上記加熱炉がバッチ式焼鈍炉であり、昇温前に加熱炉内の雰囲気を不酸化性ガスで置換する工程を備える請求項1に記載の鋼材の焼鈍方法。   The method for annealing a steel material according to claim 1, wherein the heating furnace is a batch annealing furnace, and includes a step of replacing the atmosphere in the heating furnace with an inert gas before raising the temperature.
JP2016117852A 2016-06-14 2016-06-14 Method for annealing steel product Pending JP2017222895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016117852A JP2017222895A (en) 2016-06-14 2016-06-14 Method for annealing steel product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016117852A JP2017222895A (en) 2016-06-14 2016-06-14 Method for annealing steel product

Publications (1)

Publication Number Publication Date
JP2017222895A true JP2017222895A (en) 2017-12-21

Family

ID=60686328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016117852A Pending JP2017222895A (en) 2016-06-14 2016-06-14 Method for annealing steel product

Country Status (1)

Country Link
JP (1) JP2017222895A (en)

Similar Documents

Publication Publication Date Title
CN101634006A (en) Titanium plate coil blowing and annealing process
TW201538743A (en) Method of controlling dew point of reducing furnace and reducing furnace
KR20150001467A (en) Oriented electrical steel sheet and method of manufacturing the same
JP5338087B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating properties and continuous hot-dip galvanizing equipment
TW201207121A (en) Method for manufacturing non-oriented electromagnetic steel sheet and continuous annealing facility
JP2008001979A (en) Process for producing grain-oriented magnetic steel sheet and decarburization/annealing furnace used for the production method
JP2017222895A (en) Method for annealing steel product
RU2591097C2 (en) Method of producing sheet from normalised silicon steel
RU2620403C2 (en) Method and device for nitrogening the textured sheet from electrotechnical steel
EP2942407B1 (en) Method for adjusting in-furnace atmosphere of continuous heat-treating furnace
WO2013147155A1 (en) Method for producing carbon tool steel strip
KR20130077071A (en) Steel sheet for flux cord wire using batch annealing furnace heat treatment and method for manufacturing the steel sheet
JP6844110B2 (en) Manufacturing method of grain-oriented electrical steel sheet and manufacturing method of original sheet for grain-oriented electrical steel sheet
KR100561995B1 (en) Nitrification method of metal material
JP2017218637A (en) Annealing method of steel product
CN104342542B (en) A kind of production method containing Bi high magnetic induction grain-oriented silicon steel with excellent bottom
RU2354719C2 (en) Annealing method of low-carbon sheet steel
WO2021054408A1 (en) Method for manufacturing grain-oriented electrical steel sheet
US2290552A (en) Heat treating furnace
JP3823653B2 (en) Manufacturing method of high carbon hot rolled steel sheet
JP2012158772A (en) Method of manufacturing high-silicon steel sheet
JPS59118815A (en) Continuous annealing furnace
JP5664287B2 (en) Method for producing high silicon steel sheet
JP3679176B2 (en) Manufacturing method of deep drawing bluing cold rolled steel strip
ES2233079T3 (en) STEEL BAND THERMAL TREATMENT PROCEDURE.