JP2017218839A - Pressure receiving structure - Google Patents

Pressure receiving structure Download PDF

Info

Publication number
JP2017218839A
JP2017218839A JP2016115454A JP2016115454A JP2017218839A JP 2017218839 A JP2017218839 A JP 2017218839A JP 2016115454 A JP2016115454 A JP 2016115454A JP 2016115454 A JP2016115454 A JP 2016115454A JP 2017218839 A JP2017218839 A JP 2017218839A
Authority
JP
Japan
Prior art keywords
pressure receiving
anchor
bearing plate
plate
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016115454A
Other languages
Japanese (ja)
Other versions
JP6653879B2 (en
Inventor
刈茅 孝一
Koichi Karikaya
孝一 刈茅
宏夫 井上
Hiroo Inoue
宏夫 井上
司 岡本
Tsukasa Okamoto
司 岡本
敏郎 鎌田
Toshiro Kamata
敏郎 鎌田
成一郎 堤
Seiichiro Tsutsumi
成一郎 堤
広基 寺澤
Hiroki Terasawa
広基 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Sekisui Chemical Co Ltd
Original Assignee
Osaka University NUC
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Sekisui Chemical Co Ltd filed Critical Osaka University NUC
Priority to JP2016115454A priority Critical patent/JP6653879B2/en
Publication of JP2017218839A publication Critical patent/JP2017218839A/en
Application granted granted Critical
Publication of JP6653879B2 publication Critical patent/JP6653879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pressure receiving structure which can facilitate inspection.SOLUTION: A pressure receiving structure 1 according to an embodiment is installed on a slope face 10, and includes a pressure receiving plate 2, an anchor 3, and a pressure bearing plate 4. The pressure receiving plate 2 is arranged on the slope face 10 side. The anchor 3 is arranged to penetrate an inside of the pressure receiving plate 2. The pressure bearing plate 4 is disposed on an upper side of the pressure receiving plate 2 and receives pressure from the anchor 3. The pressure bearing plate 4 is formed of a metallic material having a yield stress of 100 MPa or higher. The pressure bearing plate 4 has an analysis part 41 having surface roughness Ra of 100 or below and enabling X-ray analysis at least on a part thereof.SELECTED DRAWING: Figure 1

Description

本発明は、法面の崩壊または地滑りの発生を防止するために法面に設置される受圧構造体に関する。   The present invention relates to a pressure receiving structure installed on a slope in order to prevent the slope from being collapsed or landslide.

法面の崩壊または地滑りの発生を防止するための構造体として、法面上に受圧板を設置し、受圧板によって法面を押さえ込む受圧構造体が広く採用されている(例えば、特許文献1参照。)
詳細には、法面には、滑り線を越えて岩盤にまで達する採掘穴が形成されており、受圧板には、貫通孔が形成されている。貫通孔および採掘穴にアンカが配置されており、アンカの引張り強さを利用して受圧板によって法面が押さえ込まれ、地滑り活動力に対抗している。
As a structure for preventing the collapse of a slope or the occurrence of landslide, a pressure-receiving structure in which a pressure-receiving plate is installed on the slope and the slope is pressed by the pressure-receiving plate is widely adopted (for example, see Patent Document 1). .)
In detail, a digging hole reaching the rock mass beyond the slip line is formed on the slope, and a through hole is formed in the pressure receiving plate. Anchors are placed in the through holes and mining holes, and the slope is pressed down by the pressure receiving plate using the tensile strength of the anchors to counteract the landslide activity force.

特開2003−184094号公報JP 2003-184094 A

しかしながら、受圧構造体を設置した後にアンカが正常に機能しているかどうかは外観から判断できない。そのため、一般的にリフトオフ試験によってアンカの健全性評価指標である残存緊張力が評価されているが、コストが高く簡単に行うことができなかった。
本発明は、簡易に検査を行うことが可能な受圧構造体を提供することを目的とする。
However, it cannot be determined from the appearance whether the anchor is functioning normally after the pressure receiving structure is installed. Therefore, although the residual tension, which is an anchor's soundness evaluation index, is generally evaluated by a lift-off test, the cost is high and cannot be easily performed.
An object of this invention is to provide the pressure receiving structure which can test | inspect easily.

第1の発明に係る受圧構造体は、法面に設置される受圧構造体であって、本体部と、アンカと、受圧部と、を備える。本体部は、法面側に配置される。アンカは、本体部の内部を貫通するようにして配置される。受圧部は、本体部の上側に配置されアンカからの圧力を受ける。受圧部は、降伏応力が100MPa以上の金属材料で形成されている。受圧部は、表面粗度がRa100以下でありX線分析を可能とする分析部を少なくとも一部に有する。   A pressure receiving structure according to a first invention is a pressure receiving structure installed on a slope, and includes a main body portion, an anchor, and a pressure receiving portion. The main body is disposed on the slope side. An anchor is arrange | positioned so that the inside of a main-body part may be penetrated. The pressure receiving part is disposed on the upper side of the main body part and receives pressure from the anchor. The pressure receiving part is made of a metal material having a yield stress of 100 MPa or more. The pressure receiving part has at least a part of an analysis part that has a surface roughness of Ra100 or less and enables X-ray analysis.

ここで、アンカ力(数100kN)より設定される所定の降伏点を有する金属より構成される受圧部の弾性変形領域においてX線回折を用いることによって、歪みの状態からアンカの応力状況を特定できる。
すなわち、アンカの引張り力によって受圧部に生じる歪みをX線回折で検出することによって、間接的にアンカの残存緊張力を評価することができる。
このため、リフトオフ試験を用いずに簡易にアンカの応力状況を特定することができる。
Here, by using X-ray diffraction in the elastic deformation region of the pressure receiving portion made of a metal having a predetermined yield point set by the anchor force (several hundred kN), the stress state of the anchor can be specified from the strain state. .
That is, the residual tension force of the anchor can be indirectly evaluated by detecting the strain generated in the pressure receiving portion by the tensile force of the anchor by X-ray diffraction.
For this reason, the stress state of the anchor can be easily specified without using the lift-off test.

第2の発明に係る受圧構造体は、第1の発明に係る受圧構造体であって、受圧部は、平均結晶粒径が1〜30μmである。
受圧部の結晶粒径の平均が1〜30μmであることにより、より適切に残存緊張力を評価し、アンカの応力状況を特定することができる。
The pressure receiving structure according to the second invention is the pressure receiving structure according to the first invention, and the pressure receiving part has an average crystal grain size of 1 to 30 μm.
When the average grain size of the pressure receiving portion is 1 to 30 μm, the residual tension can be more appropriately evaluated and the stress state of the anchor can be specified.

第3の発明に係る受圧構造体は、第1の発明に係る受圧構造体であって、分析部は、アンカと受圧部との接触最外位置から半径100mm以内に配置されている。
このように接触最外位置から半径100mm以内の位置で分析を行うことによって、アンカによる受圧部の応力場において、歪みの状態を適切に判断できる。
すなわち、アンカと受圧部との接触位置から遠い位置で分析を行った場合、受圧部に生じる歪みが少なくなり、アンカの応力状況を正確に特定し難くなるが、接触最外位置から半径100mm以内の位置で分析を行うことにより、より正確に受圧部に生じる歪みを特定することができる。
The pressure receiving structure according to the third invention is the pressure receiving structure according to the first invention, and the analysis part is arranged within a radius of 100 mm from the contact outermost position between the anchor and the pressure receiving part.
As described above, by performing analysis at a position within a radius of 100 mm from the outermost contact position, it is possible to appropriately determine the state of distortion in the stress field of the pressure receiving portion by the anchor.
That is, when the analysis is performed at a position far from the contact position between the anchor and the pressure receiving portion, the distortion generated in the pressure receiving portion is reduced, and it becomes difficult to accurately identify the stress state of the anchor, but within a radius of 100 mm from the outermost position of the contact. By performing the analysis at the position, it is possible to specify the distortion generated in the pressure receiving portion more accurately.

第4の発明に係る受圧構造体は、第1〜3のいずれかの発明に係る受圧構造体であって、分析部の表面を被覆する被覆部材を更に備えている。
このように被覆部材を備えていることにより、風雨等の経年劣化から分析部を適切に保護できるため、より正確にアンカの応力状況を特定することができる。
A pressure receiving structure according to a fourth aspect of the present invention is the pressure receiving structure according to any one of the first to third aspects of the present invention, and further includes a covering member that covers the surface of the analysis unit.
By providing the covering member in this manner, the analysis unit can be appropriately protected from aging deterioration such as wind and rain, and thus the stress state of the anchor can be specified more accurately.

本発明によれば、簡易に検査を行うことが可能な受圧構造体を提供することができる。   According to the present invention, it is possible to provide a pressure receiving structure that can be easily inspected.

本発明に係る実施の形態の受圧構造体を示す斜視図。The perspective view which shows the pressure receiving structure of embodiment which concerns on this invention. 図1のAA´間の矢示断面図。FIG. 3 is a cross-sectional view taken along the line AA ′ in FIG. 1. 図1の受圧構造体の受圧板2の分解斜視図。The disassembled perspective view of the pressure receiving plate 2 of the pressure receiving structure of FIG. (a)図1の受圧構造体の平面図、(b)図4(a)の支圧板近傍の拡大図。(A) The top view of the pressure receiving structure of FIG. 1, (b) The enlarged view of the pressure-bearing plate vicinity of FIG. 4 (a). 図1の受圧構造体におけるアンカの状態を判断するためにX線を用いた支圧板の応力測定を行っている状態を示す模式図。The schematic diagram which shows the state which is measuring the stress of the bearing plate which used the X-ray in order to judge the state of the anchor in the pressure receiving structure of FIG. 実施例において支圧板を非載荷状態でX線応力測定を行っている状態を示す図。The figure which shows the state which is measuring the X-ray stress in the non-loading state in the bearing plate in an Example. (a)S45Cで形成された支圧板のSEM画像の一例を示す図、(b)SM490Aで形成された支圧板のSEM画像の一例を示す図、(c)SM490Bで形成された支圧板のSEM画像の一例を示す図である。(A) The figure which shows an example of the SEM image of the bearing plate formed by S45C, (b) The figure which shows an example of the SEM image of the bearing plate formed by SM490A, (c) The SEM of the bearing plate formed by SM490B It is a figure which shows an example of an image. (a)S45Cで形成された支圧板4のデバイ環画像の一例を示す図、(b)SM490Aで形成された支圧板4のデバイ環画像の一例を示す図、(c)SM490Bで形成された支圧板4のデバイ環画像の一例を示す図。(A) The figure which shows an example of the Debye ring image of the bearing plate 4 formed by S45C, (b) The figure which shows an example of the Debye ring image of the bearing plate 4 formed by SM490A, (c) It was formed by SM490B The figure which shows an example of the Debye ring image of the bearing plate. S45C、SM490A、SM490Bのそれぞれの材料で形成された支圧板の推定応力、応力推定標準偏差、および平均粒径の表を示す図。The figure which shows the table | surface of the estimated stress of the bearing plate formed with each material of S45C, SM490A, and SM490B, stress estimated standard deviation, and an average particle diameter. 本発明に係る実施の形態の受圧構造体の分析部を被覆部材で覆った状態を示す平面図。The top view which shows the state which covered the analysis part of the pressure receiving structure of embodiment which concerns on this invention with the coating | coated member.

本発明の受圧構造体について図面を参照しながら説明する。
(受圧構造体1の概要)
図1は、本発明に係る実施の形態の受圧構造体1を示す斜視図である。図2は、図1のAA´間の矢示断面図であり、法面に設置した状態を示す図である。
本実施の形態の受圧構造体1は、図1に示すように、主に受圧板2と、アンカ3と、支圧板4と、を備える。
The pressure receiving structure of the present invention will be described with reference to the drawings.
(Outline of pressure receiving structure 1)
FIG. 1 is a perspective view showing a pressure receiving structure 1 according to an embodiment of the present invention. FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG.
The pressure receiving structure 1 of this Embodiment is mainly provided with the pressure receiving plate 2, the anchor 3, and the bearing plate 4 as shown in FIG.

受圧板2は、図2に示すように、傾斜地の法面10に設置される。受圧板2には、貫通孔が形成されている。アンカ3は、受圧板2の貫通孔を介して法面10に挿し込まれている。
支圧板4は、受圧板2の上面に載置されており、上方からアンカ3のナット部材32によって受圧板2に押え付けられている。
As shown in FIG. 2, the pressure receiving plate 2 is installed on the slope 10 of the slope. A through hole is formed in the pressure receiving plate 2. The anchor 3 is inserted into the slope 10 through the through hole of the pressure receiving plate 2.
The pressure bearing plate 4 is placed on the upper surface of the pressure receiving plate 2 and is pressed against the pressure receiving plate 2 by the nut member 32 of the anchor 3 from above.

(受圧板2)
受圧板2は、第1受圧部材21と、第2受圧部材22とを有する。図3は、受圧板2の分解図である。
第1受圧部材21は、図2に示すように、法面10に接触して配置される。第1受圧部材21は、図3に示すように、底板211と、枠体212と、補強部材213と、鉄筋コンクリート部材214と、天板215と、を有する。
(Pressure plate 2)
The pressure receiving plate 2 includes a first pressure receiving member 21 and a second pressure receiving member 22. FIG. 3 is an exploded view of the pressure receiving plate 2.
As shown in FIG. 2, the first pressure receiving member 21 is disposed in contact with the slope 10. As shown in FIG. 3, the first pressure receiving member 21 includes a bottom plate 211, a frame body 212, a reinforcing member 213, a reinforced concrete member 214, and a top plate 215.

底板211は、矩形の板状部材であって法面10に載置される。また、底板211は、ガラス長繊維強化プラスチック発砲体(Fiber reinforced Foamed Urethane:FFU、以下FFUと呼ぶ。)によって形成されている。
枠体212は、4辺の棒状部材がつながって形成された平面視において矩形状の部材であり、FFUから形成されている。枠体212は、対向且つ並行して配置された2つの辺からなる組を2組有する。枠体212は、底板211の上側に配置されている。補強部材213は、2つの棒状部材213b、213cが互いに垂直に交わって形成されており、枠体212の内側に配置されている。補強部材213は、FFUによって形成されている。棒状部材213bは、枠体212の一方の組の2辺の中央に、その2辺と平行に配置されている。棒状部材213cは、枠体212の他方の組の2辺の中央に、その2辺と平行に配置されている。補強部材213によって枠体212の内側の空間は4つの直方体状の空間に区切られている。補強部材213の棒状部材213bと棒状部材213cが交わる部分には、上下方向に貫通孔213aが形成されている。なお、図には示していないが、底板211にも、貫通孔213aに対応する位置に貫通孔211a(図2参照)が形成されている。
The bottom plate 211 is a rectangular plate-like member and is placed on the slope 10. The bottom plate 211 is formed of a long glass fiber reinforced plastic foam (hereinafter referred to as FFU).
The frame body 212 is a rectangular member in a plan view formed by connecting four bar-shaped members, and is formed of FFU. The frame body 212 has two sets of two sides that are opposed and arranged in parallel. The frame body 212 is disposed above the bottom plate 211. The reinforcing member 213 is formed by two rod-like members 213 b and 213 c perpendicularly intersecting each other, and is disposed inside the frame body 212. The reinforcing member 213 is formed by FFU. The rod-shaped member 213b is disposed in the center of the two sides of one set of the frame body 212 in parallel with the two sides. The rod-shaped member 213c is arranged in the center of the two sides of the other set of the frame body 212 in parallel with the two sides. The space inside the frame body 212 is divided into four rectangular parallelepiped spaces by the reinforcing member 213. A through-hole 213a is formed in the vertical direction at a portion where the rod-shaped member 213b and the rod-shaped member 213c of the reinforcing member 213 intersect. Although not shown in the drawing, the bottom plate 211 also has a through hole 211a (see FIG. 2) at a position corresponding to the through hole 213a.

鉄筋コンクリート部材214は、4つの直方体状に空間のそれぞれに配置されている。鉄筋コンクリート部材214は、格子状に配置された鉄筋部材の周囲にモルタルまたはコンクリートが充填されることによって形成されている。
天板215は、矩形の板状部材であって、FFUによって形成されている。天板215は、枠体212の上側に配置される。天板215の外形は、枠体212の外形と一致するように形成されている。また、天板215には、貫通孔213aに対応する位置に、貫通孔215aが形成されている。
The reinforced concrete member 214 is arranged in each of four spaces in the shape of a rectangular parallelepiped. The reinforced concrete member 214 is formed by filling mortar or concrete around the reinforced members arranged in a lattice pattern.
The top plate 215 is a rectangular plate-like member, and is formed by FFU. The top plate 215 is disposed on the upper side of the frame body 212. The outer shape of the top plate 215 is formed to match the outer shape of the frame body 212. The top plate 215 has a through hole 215a at a position corresponding to the through hole 213a.

第2受圧部材22は、平面視において十字形状であって、FFUによって形成されている。第2受圧部材22は、側面視において端から中央に向かって高さが高くなるように階段状に形成されている。第2受圧部材22は、その中央部分に、上下方向に貫通孔22aが形成されている。第2受圧部材22は、第1積層部221と、第2積層部222と、受圧ヘッド223とを有する。下から順に、第1積層部221、第2積層部222、および受圧ヘッド223の順に積層されており、貫通孔22aは、受圧ヘッド223、第1積層部221、および第2積層部222を貫いて形成されている。   The second pressure receiving member 22 has a cross shape in a plan view and is formed by FFU. The second pressure receiving member 22 is formed in a stepped shape so that the height increases from the end toward the center in a side view. The second pressure receiving member 22 has a through hole 22a formed in the vertical direction at the center thereof. The second pressure receiving member 22 includes a first stacked portion 221, a second stacked portion 222, and a pressure receiving head 223. In order from the bottom, the first stacked portion 221, the second stacked portion 222, and the pressure receiving head 223 are stacked in this order, and the through hole 22 a penetrates the pressure receiving head 223, the first stacked portion 221, and the second stacked portion 222. Is formed.

第1積層部221は、平面視において十字形状に形成された板状部材である。第1積層部221は、貫通孔22aが形成されている中央部分から4方向に板状部材が突出した形状である。第1積層部221は、天板215上に配置されている。
第2積層部222は、平面視において十字形状に形成された板状部材である。第2積層部222は、第1積層部221の十字形状と対応するように第1積層部221の上側に配置されている。第2積層部222は、第1積層部221と同様の形状であるが、貫通孔22aが形成されている中央部分から板状部材が突出している長さが第1積層部221よりも短く形成されている。
The first stacked portion 221 is a plate-like member formed in a cross shape in plan view. The 1st lamination | stacking part 221 is a shape where the plate-shaped member protruded in four directions from the center part in which the through-hole 22a is formed. The first stacked unit 221 is disposed on the top plate 215.
The second stacked portion 222 is a plate-like member formed in a cross shape in plan view. The second stacked unit 222 is disposed on the upper side of the first stacked unit 221 so as to correspond to the cross shape of the first stacked unit 221. The second stacked portion 222 has the same shape as the first stacked portion 221, but is formed so that the plate member protrudes from the central portion where the through hole 22 a is formed shorter than the first stacked portion 221. Has been.

受圧ヘッド223は、矩形の板状の部材であり、第2積層部222の中央部の上側に配置されている。受圧ヘッド223は、第1積層部221の中央部分と第2積層部222の中央部分と同様の形状である。
受圧板2の貫通孔2aは、図2に示すように、底板211の貫通孔211a、補強部材213の貫通孔213a、天板215の貫通孔215a、第2受圧部材22の貫通孔22aから形成されている。
The pressure receiving head 223 is a rectangular plate-like member, and is disposed on the upper side of the central portion of the second stacked portion 222. The pressure receiving head 223 has the same shape as the central portion of the first stacked portion 221 and the central portion of the second stacked portion 222.
As shown in FIG. 2, the through hole 2 a of the pressure receiving plate 2 is formed from the through hole 211 a of the bottom plate 211, the through hole 213 a of the reinforcing member 213, the through hole 215 a of the top plate 215, and the through hole 22 a of the second pressure receiving member 22. Has been.

(アンカ3)
アンカ3は、図2に示すように、アンカ部材31と、ナット部材32とを有する。
法面10には、図2に示すように、滑り線11を越えて岩盤12に達する採掘穴13が形成されている。アンカ部材31は、受圧板2の貫通孔2aを介して採掘穴13に挿通されている。アンカ部材31の地中側の端は、セメント等のグラウト材14によって固定されている。アンカ部材31の受圧板2側の端には、ネジ加工が施されている。このネジ加工の部分に、ナット部材32が螺合されている。
(Anka 3)
As shown in FIG. 2, the anchor 3 includes an anchor member 31 and a nut member 32.
As shown in FIG. 2, a digging hole 13 is formed in the slope 10 so as to reach the rock 12 beyond the slip line 11. The anchor member 31 is inserted into the mining hole 13 through the through hole 2 a of the pressure receiving plate 2. An underground end of the anchor member 31 is fixed by a grout material 14 such as cement. The end of the anchor member 31 on the pressure receiving plate 2 side is threaded. A nut member 32 is screwed into the threaded portion.

(支圧板4)
支圧板4は、図1および図2に示すように、受圧板2の上面に載置されている。詳しくは、支圧板4は、受圧板2の受圧ヘッド223の上面に配置されている。支圧板4には、図2に示すように、貫通孔22aに対応する位置に貫通孔4aが形成されている。支圧板4の上側には、アンカ部材31と螺合したナット部材32が配置されている。ナット部材32を締めることによって、支圧板4は上方からナット部材32によって受圧板2に押えつけられ、受圧板2は法面10を押え込む。
(Supporting plate 4)
The pressure bearing plate 4 is placed on the upper surface of the pressure receiving plate 2 as shown in FIGS. 1 and 2. Specifically, the pressure bearing plate 4 is disposed on the upper surface of the pressure receiving head 223 of the pressure receiving plate 2. As shown in FIG. 2, the support plate 4 has a through hole 4a at a position corresponding to the through hole 22a. A nut member 32 screwed with the anchor member 31 is arranged on the support pressure plate 4. By tightening the nut member 32, the pressure bearing plate 4 is pressed against the pressure receiving plate 2 by the nut member 32 from above, and the pressure receiving plate 2 presses the slope 10.

図4(a)は、受圧構造体1の平面図であり、図4(b)は、図4(a)の支圧板4近傍の拡大図である。
図4(a)および図4(b)に示すように、支圧板4は、X線による分析を可能とする分析部41を有している。分析部41は、支圧板4の上面4sに形成されたX線によって分析される領域であり、表面粗度がRa100以下に形成されている。分析部41は、アンカ3のナット部材32と支圧板4との接触最外位置から100mm以内に形成されている。ここで、ナット部材32と支圧板4との接触最外位置とは、図4(b)の平面視においてナット部材32の外周端32eのことである。すなわち、外周端32eから100mm以内に分析部41が形成されているほうが好ましい。また、図では、分かり易くするために分析部41にハッチングが施されている。
4A is a plan view of the pressure receiving structure 1, and FIG. 4B is an enlarged view of the vicinity of the pressure bearing plate 4 of FIG. 4A.
As shown in FIGS. 4 (a) and 4 (b), the bearing plate 4 has an analysis unit 41 that enables X-ray analysis. The analysis unit 41 is an area analyzed by X-rays formed on the upper surface 4s of the bearing plate 4 and has a surface roughness of Ra100 or less. The analysis unit 41 is formed within 100 mm from the outermost contact position between the nut member 32 of the anchor 3 and the bearing plate 4. Here, the contact outermost position between the nut member 32 and the bearing plate 4 is the outer peripheral end 32e of the nut member 32 in a plan view of FIG. That is, it is preferable that the analysis unit 41 is formed within 100 mm from the outer peripheral end 32e. In the figure, the analysis unit 41 is hatched for easy understanding.

また、支圧板4は、降伏応力が100MPa以上の金属材料で形成されている。ナット部材32による支圧板4の締め付け力は、支圧板4の変形が弾性変形領域以内となる大きさに設定されている。また、支圧板4の平均結晶粒径は1μm以上30μm以内であることが好ましい。
なお、支圧板4は、降伏応力が500MPa以上の金属材料で形成されている方がより好ましい。降伏強度に関して、Pbが5MPaであり、Alが60〜80Pa、真鍮が200〜300Pa、鉄が300〜400Paであるため、支圧板4としては、真鍮、鉄を主とする金属板が好ましい。
The bearing plate 4 is made of a metal material having a yield stress of 100 MPa or more. The tightening force of the bearing plate 4 by the nut member 32 is set to such a magnitude that the deformation of the bearing plate 4 is within the elastic deformation region. The average crystal grain size of the bearing plate 4 is preferably 1 μm or more and 30 μm or less.
The bearing plate 4 is more preferably formed of a metal material having a yield stress of 500 MPa or more. Regarding the yield strength, Pb is 5 MPa, Al is 60 to 80 Pa, Brass is 200 to 300 Pa, and Iron is 300 to 400 Pa. Therefore, the support plate 4 is preferably a metal plate mainly composed of brass and iron.

支圧板4の緊張力は、230〜1100kN程度である。緊張力が900kNのとき、ナット部材32近傍において450MPa程度の圧縮応力が発生し、周方向へ向かって100MPaに収束する。このため、支圧板4の応力範囲は、最大部分は100〜500MPaとなり、最小部分が20MPa〜110MPaとなる。上述したように、分析部41は、ナット部材32よりも外周側にずれているが、ナット部材32の外周端32eから100mm以内に形成することで、後述するX線の応力推定が可能な応力が発生している範囲内に設定されている。
また、Ra100は、測定可能下限であり、100よりも大きい場合には回折像が乱れ、算出応力値にばらつきが生じることが想定される。
The tension of the bearing plate 4 is about 230 to 1100 kN. When the tension force is 900 kN, a compressive stress of about 450 MPa is generated in the vicinity of the nut member 32 and converges to 100 MPa in the circumferential direction. For this reason, the stress range of the bearing plate 4 has a maximum portion of 100 to 500 MPa and a minimum portion of 20 to 110 MPa. As described above, the analysis unit 41 is shifted to the outer peripheral side with respect to the nut member 32. However, by forming the analysis unit 41 within 100 mm from the outer peripheral end 32e of the nut member 32, a stress capable of estimating X-ray stress described later is provided. Is set within the range where the error occurs.
Ra100 is the lower limit of measurable, and when it is larger than 100, it is assumed that the diffraction image is disturbed and the calculated stress value varies.

(X線応力測定)
図5は、本実施の形態の受圧構造体1の支圧板4に対してX線応力測定を行っている状態を示す側面模式図である。
(X-ray stress measurement)
FIG. 5 is a schematic side view showing a state in which X-ray stress measurement is performed on the bearing plate 4 of the pressure receiving structure 1 of the present embodiment.

例えば、図5に示すように、X線応力測定装置5が支圧板4の上方に配置され、支圧板4の分析部41に入射角θでX線が照射される。θは、支圧板4の上面4sに垂直な直線Lからの角度である。
これによって、分析部41の結晶構造に従ってデバイ環が形成される。すなわち、アンカ3のナット部材32によって、支圧板4が押さえつけられて応力が発生しているため、支圧板4の結晶構造に歪みが生じる。この結晶構造の歪みにより、X線の照射によって形成されるデバイ環に歪みが生じる。
For example, as shown in FIG. 5, the X-ray stress measuring device 5 is disposed above the bearing plate 4, and the analysis unit 41 of the bearing plate 4 is irradiated with X-rays at an incident angle θ. θ is an angle from a straight line L perpendicular to the upper surface 4 s of the bearing plate 4.
Thereby, a Debye ring is formed according to the crystal structure of the analysis unit 41. That is, since the stress is generated by pressing the bearing plate 4 by the nut member 32 of the anchor 3, the crystal structure of the bearing plate 4 is distorted. This distortion of the crystal structure causes distortion in the Debye ring formed by X-ray irradiation.

このようにアンカ3によって支圧板4に応力が生じた状態のデバイ環と、支圧板4に応力が生じていない状態(非載荷状態)でのデバイ環を比較することによって、支圧板4に生じる応力が推定される。
この支圧板4に生じる応力に基づいて、間接的にアンカ3が正常に機能しているかを判断することができる。すなわち、デバイ環の歪みが小さく、支圧板4に生じる応力が非常に小さい場合には、アンカ部材31が例えば腐食により途切れ、アンカ3による引張り力がほとんど機能していないと判断できる。
As described above, the Debye ring in a state where stress is generated in the bearing plate 4 by the anchor 3 and the Debye ring in a state where no stress is generated in the bearing plate 4 (non-loading state) are generated in the bearing plate 4. Stress is estimated.
Based on the stress generated in the bearing plate 4, it can be indirectly determined whether the anchor 3 is functioning normally. That is, when the Debye ring distortion is small and the stress generated in the bearing plate 4 is very small, it can be determined that the anchor member 31 is interrupted by, for example, corrosion, and the tensile force by the anchor 3 is hardly functioning.

次に、支圧板4を形成する金属材料の種類や粒径がX線回折による応力推定精度に与える影響について、実施例に基づいて説明する。
(実施例)
S45C、SM490AおよびSM490Bの3鋼種で形成した支圧板4を対象に、平均結晶粒径と応力推定精度の関係について、比較検討を行う。
Next, the influence of the type and particle size of the metal material forming the bearing plate 4 on the accuracy of stress estimation by X-ray diffraction will be described based on examples.
(Example)
For the bearing plate 4 made of three steel types, S45C, SM490A, and SM490B, a comparative study is performed on the relationship between the average crystal grain size and the stress estimation accuracy.

はじめに、JISG0551に基づいて、以下のように各鋼材の種類における平均結晶粒径を算出した。
(1)各鋼種の試験片表面を、ターンテーブル研磨機を用いて研磨し、平滑にする。
(2)研磨した各試験片を腐食液に十秒程度浸して腐食させ、速やかに水で洗い流して腐食の進行を止める。これにより、組織ごとの腐食の進行の違いにより、組織を凹凸として表すことができる。この作業は、エッチングという。
(3)エッチングをした各試験片について走査型電子顕微鏡(以下、SEMと称する)を用いて組織観察を行い、結晶粒界が明瞭なSEM画像が得られる。
(4)得られたSEM画像に線分を引き、線分上の結晶粒の個数を数える。
(5)SEM画像のスケールと比較し、線分の長さを換算する。
(6)換算した線分の長さを個数で除す。
(7)(4)〜(6)の手順を繰り返し、平均する。
First, based on JISG0551, the average crystal grain size in each steel material type was calculated as follows.
(1) The surface of the test piece of each steel type is polished and smoothed using a turntable polishing machine.
(2) Each polished specimen is immersed in a corrosive solution for about 10 seconds to be corroded, and immediately rinsed with water to stop the progress of corrosion. Thereby, a structure | tissue can be represented as an unevenness | corrugation by the difference in the progress of corrosion for every structure | tissue. This operation is called etching.
(3) Microscopic observation of each etched specimen using a scanning electron microscope (hereinafter referred to as SEM) provides an SEM image with a clear crystal grain boundary.
(4) A line segment is drawn on the obtained SEM image, and the number of crystal grains on the line segment is counted.
(5) Compare the scale of the SEM image and convert the length of the line segment.
(6) Divide the length of the converted line segment by the number.
(7) The procedures of (4) to (6) are repeated and averaged.

観察対象の各鋼種において、15×15×9mmのテストピースを用いた。エッチング液は、約1%の硝酸エタノールを使用した。SEM画像は1鋼種につき4−6枚を用意し、1枚当たりに引いた線分は約20本である。
上記3種類の支圧板4の表面の複数点について、図6に示すように、非載荷状態(支圧板単体)でX線応力測定装置5を用いてX線応力推定を行い、応力推定精度の評価を行った。要するに、支圧板4を単体で載置した状態でX線応力測定装置5からX線を照射した。評価項目は、推定応力値と応力推定標準偏差の平均値およびデバイ環の形状とした。
A test piece of 15 × 15 × 9 mm was used for each steel type to be observed. The etchant used was about 1% ethanol nitrate. 4-6 SEM images are prepared for each steel type, and about 20 line segments are drawn per sheet.
As shown in FIG. 6, the X-ray stress is estimated using the X-ray stress measuring device 5 in a non-loading state (supporting plate alone) at a plurality of points on the surface of the three types of bearing plates 4 and the stress estimation accuracy is improved. Evaluation was performed. In short, X-rays were irradiated from the X-ray stress measuring device 5 with the bearing plate 4 placed alone. The evaluation items were the estimated stress value, the average value of the stress estimation standard deviation, and the Debye ring shape.

応力の推定箇所としては、20点を無作為に選択した。また、X線応力推定装置として、cosα法による二次元応力解析手法を採用した可搬型の応力推定装置が用いられた。なお、本実施例では、支圧板4の全体をエッチングしているため、分析部41は支圧板4の上面全体であり、応力の推定箇所は、支圧板4の全体から選択できる。
X線応力推定装置の測定条件は、X線の入射角θが35°であり、試料距離が39mmであり、X線出力は20kVで1mAに設定されている。試料距離とは、X線応力測定装置5のX線照射(コリメータ)位置から計測対象までの距離を示す。測定装置の角度は、角度計を用いて行い、材料との距離及び測定位置決めについては目視により行った。X線照射点は、直径2mm、深さ0.01mm程度であり、測定に要する時間は、1点あたり1〜2分程度である。
Twenty points were randomly selected as stress estimation locations. As the X-ray stress estimation apparatus, a portable stress estimation apparatus that employs a two-dimensional stress analysis method based on the cos α method was used. In this embodiment, since the entire bearing plate 4 is etched, the analysis unit 41 is the entire upper surface of the bearing plate 4, and the stress estimation location can be selected from the entire bearing plate 4.
The measurement conditions of the X-ray stress estimation apparatus are an X-ray incident angle θ of 35 °, a sample distance of 39 mm, and an X-ray output of 20 kV and 1 mA. The sample distance indicates the distance from the X-ray irradiation (collimator) position of the X-ray stress measurement apparatus 5 to the measurement target. The angle of the measuring device was measured using an goniometer, and the distance from the material and the measurement positioning were performed visually. The X-ray irradiation point has a diameter of 2 mm and a depth of about 0.01 mm, and the time required for measurement is about 1 to 2 minutes per point.

なお、X線応力測定を行う前に、支圧板4の表面の黒皮を酸性除去剤により除去し、金属組織を露出させた。   Prior to the X-ray stress measurement, the black skin on the surface of the bearing plate 4 was removed with an acid remover to expose the metal structure.

(結晶粒の観察結果)
図7(a)は、S45Cで形成された支圧板のSEM画像の一例を示す図である。図7(b)は、SM490Aで形成された支圧板のSEM画像の一例を示す図である。図7(c)は、SM490Bで形成された支圧板のSEM画像の一例を示す図である。
(Observation results of crystal grains)
Fig.7 (a) is a figure which shows an example of the SEM image of the bearing plate formed by S45C. FIG. 7B is a diagram illustrating an example of an SEM image of a bearing plate formed of SM490A. FIG.7 (c) is a figure which shows an example of the SEM image of the bearing plate formed with SM490B.

本実施例で用いたS45Cの平均粒径は34.0μmと結晶粒が比較的粗大であったのに対してSM490A,SM490Bの平均粒径は、それぞれ7.2μm、4.6μmと小さいことが確認された。   The average particle size of S45C used in this example was 34.0 μm and the crystal grains were relatively coarse, whereas the average particle size of SM490A and SM490B was as small as 7.2 μm and 4.6 μm, respectively. confirmed.

(結晶粒径と応力推定精度の関係)
図8(a)は、S45Cで形成された支圧板4のデバイ環画像の一例を示す図である。図8(b)は、SM490Aで形成された支圧板4のデバイ環画像の一例を示す図である。図8(c)は、SM490Bで形成された支圧板4のデバイ環画像の一例を示す図である。図9は、S45C、SM490A、SM490Bのそれぞれの材料で形成された支圧板の推定応力、応力推定標準偏差、および平均粒径を示す表である。
(Relationship between crystal grain size and stress estimation accuracy)
Fig.8 (a) is a figure which shows an example of the Debye ring image of the bearing plate 4 formed by S45C. FIG. 8B is a diagram illustrating an example of a Debye ring image of the bearing plate 4 formed of SM490A. FIG. 8C is a diagram illustrating an example of a Debye ring image of the bearing plate 4 formed of SM490B. FIG. 9 is a table showing the estimated stress, the stress estimated standard deviation, and the average particle diameter of the bearing plates formed of the materials S45C, SM490A, and SM490B.

図8(a)および図9に示すように、平均結晶粒が比較的粗大なS45Cでは推定応力に対して応力推定標準偏差の値が大きく、明瞭なデバイ環が得られなかった。一方、図8(b)、図8(c)および図9に示すように、平均粒径が小さいSM490AおよびSM490Bでは応力推定標準偏差の値も比較的小さく、明瞭なデバイ環を得ることが可能なことが確認できる。   As shown in FIGS. 8A and 9, in S45C in which the average crystal grains are relatively coarse, the stress estimation standard deviation is large with respect to the estimated stress, and a clear Debye ring was not obtained. On the other hand, as shown in FIGS. 8B, 8C and 9, SM490A and SM490B having a small average particle size have a relatively small value of the stress estimation standard deviation, and a clear Debye ring can be obtained. It can be confirmed.

すなわち、本実施例の条件では、平均粒径が7.2μm程度の鋼種については明瞭なデバイ環が取得可能となることが確認された。
このように、明瞭なデバイ環が得られることにより、アンカ3によって受圧板2に押えつけられたときの支圧板4の応力を測定することができ、間接的にアンカ3の状態を判断することができる。
That is, under the conditions of this example, it was confirmed that a clear Debye ring can be obtained for a steel type having an average particle size of about 7.2 μm.
Thus, by obtaining a clear Debye ring, the stress of the bearing plate 4 when pressed against the pressure receiving plate 2 by the anchor 3 can be measured, and the state of the anchor 3 is indirectly determined. Can do.

(特徴等)
(1)
本実施の形態の受圧構造体1は、法面10に設置される受圧構造体であって、受圧板2(本体部の一例)と、アンカ3と、支圧板4(受圧部の一例)と、を備える。受圧板2は、法面10側に配置される。アンカ3は、受圧板2の内部を貫通するようにして配置される。支圧板4は、受圧板2の上側に配置されアンカ3からの圧力を受ける。支圧板4は、降伏応力が100MPa以上の金属材料で形成されている。支圧板4は、表面粗度がRa100以下でありX線分析を可能とする分析部41を少なくとも一部に有する。
(Features etc.)
(1)
The pressure receiving structure 1 according to the present embodiment is a pressure receiving structure that is installed on a slope 10, and includes a pressure receiving plate 2 (an example of a main body), an anchor 3, and a bearing plate 4 (an example of a pressure receiving portion). . The pressure receiving plate 2 is disposed on the slope 10 side. The anchor 3 is disposed so as to penetrate the inside of the pressure receiving plate 2. The pressure bearing plate 4 is disposed on the upper side of the pressure receiving plate 2 and receives pressure from the anchor 3. The bearing plate 4 is made of a metal material having a yield stress of 100 MPa or more. The bearing plate 4 has at least a part of an analysis unit 41 having a surface roughness of Ra100 or less and enabling X-ray analysis.

ここで、アンカ力(数100kN)より設定される所定の降伏点を有する金属より構成される支圧板4の弾性変形領域においてX線回折を用いることによって、歪みの状態からアンカの応力状況を特定できる。
すなわち、アンカ3の引張り力によって支圧板4に生じる歪みをX線回折で検出することによって、間接的にアンカ3の残存緊張力を評価することができる。
このため、リフトオフ試験を用いずに簡易にアンカ3の応力状況を特定することができる。
Here, the stress state of the anchor is identified from the strain state by using X-ray diffraction in the elastic deformation region of the bearing plate 4 made of metal having a predetermined yield point set by the anchor force (several hundred kN). it can.
That is, the residual tension force of the anchor 3 can be indirectly evaluated by detecting the strain generated in the bearing plate 4 by the tensile force of the anchor 3 by X-ray diffraction.
For this reason, the stress condition of the anchor 3 can be easily specified without using the lift-off test.

(2)
本実施の形態の受圧構造体1は、支圧板4は、平均結晶粒径が1〜30μmである。
支圧板4の結晶粒径の平均が1〜30μmであることにより、より適切に残存緊張力を評価し、アンカの応力状況を特定することができる。
(2)
In the pressure receiving structure 1 of the present embodiment, the bearing plate 4 has an average crystal grain size of 1 to 30 μm.
When the average crystal grain size of the bearing plate 4 is 1 to 30 μm, the residual tension can be more appropriately evaluated, and the stress state of the anchor can be specified.

(3)
本実施の形態の受圧構造体1では、分析部41は、アンカ3と支圧板4との接触最外位置から半径100mm以内に配置されている。
このように接触最外位置から半径100mm以内の位置で分析を行うことによって、アンカ3による支圧板4の応力場において、歪みの状態を適切に判断できる。
すなわち、アンカ3と支圧板4との接触位置から遠い位置で分析を行った場合、受圧部に生じる歪みが少なくなり、アンカの応力状況を正確に特定し難くなるが、接触最外位置から半径100mm以内の位置で分析を行うことにより、より正確に特定することができる。
(3)
In the pressure receiving structure 1 of the present embodiment, the analysis unit 41 is arranged within a radius of 100 mm from the outermost contact position between the anchor 3 and the bearing plate 4.
Thus, by performing analysis at a position within a radius of 100 mm from the outermost contact position, it is possible to appropriately determine the state of distortion in the stress field of the bearing plate 4 by the anchor 3.
That is, when the analysis is performed at a position far from the contact position between the anchor 3 and the bearing plate 4, the distortion generated in the pressure receiving portion is reduced, and it becomes difficult to accurately identify the stress state of the anchor. By performing analysis at a position within 100 mm, it can be specified more accurately.

[他の実施の形態]
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
(A)
上記実施の形態では、支圧板4の表面粗さRaが100以下である領域である分析部41は、外部環境に露出されているが、X線による測定を行うとき以外は、図10に示すように、その表面が被覆部材42によって覆われていても良い。
このように被覆部材42を備えていることにより、風雨等の経年劣化から分析部を適切に保護できるため、より正確にアンカ3の応力状況を特定することができる。
[Other embodiments]
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the summary of invention.
(A)
In the above embodiment, the analysis unit 41, which is a region where the surface roughness Ra of the bearing plate 4 is 100 or less, is exposed to the external environment, but is shown in FIG. 10 except when measuring by X-rays. Thus, the surface may be covered with the covering member 42.
By providing the covering member 42 in this manner, the analysis unit can be appropriately protected from aging deterioration such as wind and rain, and therefore, the stress state of the anchor 3 can be specified more accurately.

(B)
上記実施の形態では、底板211、枠体212、補強部材213、および第2受圧部材22は、FFUから形成されているが、FFUに限らなくても良く、コンクリートで形成されていてもよい。
また、鉄筋コンクリート部材214は、鉄筋が挿入されておらず、コンクリートだけで形成されていてもよい。
(B)
In the said embodiment, although the baseplate 211, the frame 212, the reinforcement member 213, and the 2nd pressure receiving member 22 are formed from FFU, it may not be restricted to FFU and may be formed with concrete.
Further, the reinforced concrete member 214 may be formed of only concrete without inserting a reinforcing bar.

(C)
上記実施の形態では、第2受圧部材22が平面視において十字形状に形成されているが、これに限られるものではない。例えば、第2受圧部材22の第1積層部221および第2積層部222が矩形状であって、上方からみて、天板215、第1積層部221、第2積層部222、受圧ヘッド223の順に外形が段々と小さくなるように形成されていてもよい。
(C)
In the above embodiment, the second pressure receiving member 22 is formed in a cross shape in plan view, but the present invention is not limited to this. For example, the first stacked portion 221 and the second stacked portion 222 of the second pressure receiving member 22 are rectangular, and the top plate 215, the first stacked portion 221, the second stacked portion 222, and the pressure receiving head 223 are viewed from above. You may form so that an external shape may become small gradually.

本発明の受圧構造体は、簡易に検査を行うことが可能な効果を有し、例えば切土法面安定化に用いられるグランドアンカなどに広く適用可能である。   The pressure receiving structure of the present invention has an effect capable of easily performing an inspection, and can be widely applied to, for example, a ground anchor used for cutting slope stabilization.

1 :受圧構造体
2 :受圧板(本体部の一例)
2a :貫通孔
3 :アンカ
4 :支圧板(受圧部の一例)
4a :貫通孔
4s :上面
5 :X線応力測定装置
10 :法面
11 :滑り線
12 :岩盤
13 :採掘穴
14 :グラウト材
21 :第1受圧部材
22 :第2受圧部材
22a :貫通孔
31 :アンカ部材
32 :ナット部材
32e :外周端
41 :分析部
42 :被覆部材
211 :底板
211a :貫通孔
212 :枠体
213 :補強部材
213a :貫通孔
213b :棒状部材
213c :棒状部材
214 :鉄筋コンクリート部材
215 :天板
215a :貫通孔
221 :第1積層部
222 :第2積層部
223 :受圧ヘッド
1: Pressure receiving structure 2: Pressure receiving plate (an example of main body)
2a: Through hole 3: Anchor 4: Pressure bearing plate (an example of a pressure receiving portion)
4a: Through hole 4s: Upper surface 5: X-ray stress measuring device 10: Slope 11: Slip line 12: Rock 13: Mining hole 14: Grout material 21: First pressure member 22: Second pressure member 22a: Through hole 31 : Anchor member 32: Nut member 32e: Peripheral end 41: Analysis part 42: Cover member 211: Bottom plate 211a: Through hole 212: Frame body 213: Reinforcement member 213a: Through hole 213b: Bar member 213c: Bar member 214: Reinforced concrete member 215: Top plate 215a: Through hole 221: First laminated portion 222: Second laminated portion 223: Pressure receiving head

Claims (4)

法面に設置される受圧構造体であって、
前記法面側に配置される本体部と、
前記本体部の内部を貫通するようにして配置されるアンカと、
前記本体部の上側に配置され前記アンカからの圧力を受ける受圧部と、を備え、
前記受圧部は、降伏応力が100MPa以上の金属材料で形成され、
前記受圧部は、表面粗度がRa100以下でありX線分析を可能とする分析部を少なくとも一部に有する、
受圧構造体。
A pressure receiving structure installed on a slope,
A main body disposed on the slope side;
An anchor arranged to penetrate through the inside of the main body,
A pressure receiving portion arranged on the upper side of the main body portion and receiving pressure from the anchor,
The pressure receiving portion is formed of a metal material having a yield stress of 100 MPa or more,
The pressure-receiving unit has an analysis unit that has a surface roughness of Ra100 or less and enables X-ray analysis at least in part.
Pressure receiving structure.
前記受圧部は、平均結晶粒径が1〜30μmである、
請求項1に記載の受圧構造体。
The pressure receiving portion has an average crystal grain size of 1 to 30 μm.
The pressure receiving structure according to claim 1.
前記分析部は、前記アンカと前記受圧部との接触最外位置から半径100mm以内に配置されている、
請求項1または2に記載の受圧構造体。
The analysis unit is disposed within a radius of 100 mm from the outermost contact position between the anchor and the pressure receiving unit.
The pressure receiving structure according to claim 1 or 2.
前記分析部の表面を被覆する被覆部材を更に備えた、
請求項1〜3のいずれか1項に記載の受圧構造体。
A coating member that covers the surface of the analysis unit;
The pressure receiving structure according to any one of claims 1 to 3.
JP2016115454A 2016-06-09 2016-06-09 Pressure receiving structure Active JP6653879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016115454A JP6653879B2 (en) 2016-06-09 2016-06-09 Pressure receiving structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016115454A JP6653879B2 (en) 2016-06-09 2016-06-09 Pressure receiving structure

Publications (2)

Publication Number Publication Date
JP2017218839A true JP2017218839A (en) 2017-12-14
JP6653879B2 JP6653879B2 (en) 2020-02-26

Family

ID=60657363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016115454A Active JP6653879B2 (en) 2016-06-09 2016-06-09 Pressure receiving structure

Country Status (1)

Country Link
JP (1) JP6653879B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128272A (en) * 2018-01-25 2019-08-01 西日本高速道路株式会社 Estimation method of tensioning force of tendon in ground anchor
WO2019216383A1 (en) * 2018-05-09 2019-11-14 三菱製鋼株式会社 Spring manufacturing method and spring

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128272A (en) * 2018-01-25 2019-08-01 西日本高速道路株式会社 Estimation method of tensioning force of tendon in ground anchor
WO2019216383A1 (en) * 2018-05-09 2019-11-14 三菱製鋼株式会社 Spring manufacturing method and spring
JP2019196802A (en) * 2018-05-09 2019-11-14 三菱製鋼株式会社 Spring manufacturing method and sparing
JP7101040B2 (en) 2018-05-09 2022-07-14 三菱製鋼株式会社 Spring manufacturing method and spring
US11965571B2 (en) 2018-05-09 2024-04-23 Mitsubishi Steel Mfg. Co., Ltd. Method for manufacturing spring and spring

Also Published As

Publication number Publication date
JP6653879B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
US7690258B2 (en) Buried pipe examining method
Carpinteri et al. Critical behaviour in concrete structures and damage localization by acoustic emission
WO2014102919A1 (en) System and method for evaluating state of processed surface
CN105784238A (en) Method for measuring material surface residual stress and system thereof
JP2017218839A (en) Pressure receiving structure
Burke et al. Effect of surface roughness on cyclic ductility of corroded steel
Pasiou et al. Marble epistyles under shear: An experimental study of the role of “Relieving Space”
JP2011102527A (en) Horizontal load testing method of pile
JP2005315611A (en) Horizontal load testing method of pile
CN103901063A (en) Method for testing C-fiber reinforced resin based composite material by virtue of X-ray diffraction
Efimov Determination of tensile strength by the measured rock bending strength
Parivallal et al. Core-drilling technique for in-situ stress evaluation in concrete structures
CN108254253A (en) Material or component equivalent stress-strain relation assay method
Visalakshi et al. Detection and quantification of corrosion using electro-mechanical impedance (EMI) technique
JP7018626B2 (en) Pressure receiving structure
Lombillo et al. Minor destructive techniques applied to the mechanical characterization of historical rubble stone masonry structures
Carpinteri et al. An experimental study on retrofitted fiber-reinforced concrete beams using acoustic emission
JP2006275698A (en) Method of measuring internal strain of concrete structure, and the concrete structure
JP6554065B2 (en) Method and system for evaluating deterioration state of metal structure
Bradaï et al. Equi-biaxial loading effect on austenitic stainless steel fatigue life
Suzuki et al. Application of neutron stress measurement to reinforced concrete structure
Collini et al. Automated diagnosis of damages in ceilings by a portable device
Abraham et al. Non destructive testing of concrete nuclear containment plants with surface waves: Lab experiment on decimeter slabs and on the VeRCoRs mock-up
KR101144062B1 (en) Impact testing specimen for accelerating corrosive gas-induced damages
Samadian et al. Effects of flaw shape (idealization) on the interaction of co-planar surface flaws

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200116

R150 Certificate of patent or registration of utility model

Ref document number: 6653879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250