WO2014102919A1 - System and method for evaluating state of processed surface - Google Patents

System and method for evaluating state of processed surface Download PDF

Info

Publication number
WO2014102919A1
WO2014102919A1 PCT/JP2012/083549 JP2012083549W WO2014102919A1 WO 2014102919 A1 WO2014102919 A1 WO 2014102919A1 JP 2012083549 W JP2012083549 W JP 2012083549W WO 2014102919 A1 WO2014102919 A1 WO 2014102919A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
dimensional
ray diffraction
hardness
diffraction
Prior art date
Application number
PCT/JP2012/083549
Other languages
French (fr)
Japanese (ja)
Inventor
ユウ 王
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2012/083549 priority Critical patent/WO2014102919A1/en
Priority to JP2014553927A priority patent/JP5989135B2/en
Priority to TW102142061A priority patent/TWI515426B/en
Publication of WO2014102919A1 publication Critical patent/WO2014102919A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/25Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/629Specific applications or type of materials welds, bonds, sealing compounds

Definitions

  • the present invention relates to a surface processing state evaluation system and evaluation method, and more particularly, to a non-destructive evaluation system and evaluation method using an X-ray diffraction phenomenon.
  • the surface of the structure generally retains plastic strain and increases hardness due to processing history such as grinding and polishing.
  • the plastic strain and hardness are used when evaluating the surface processing state of a structure as an index reflecting the degree of processing.
  • the higher the degree of surface processing the higher the susceptibility to stress corrosion cracking (SCC).
  • SCC stress corrosion cracking
  • the plastic deformation zone and surface fine crystal structure formed by surface processing may be the starting point and the propagation path of SCC.
  • Non-destructive methods are required when measuring the surface processing of actual machine structures and large parts.
  • the X-ray diffraction method is applied to various material evaluations such as crystal structure analysis, component analysis, and residual stress measurement as a non-destructive measurement method.
  • X-ray diffractometry means that when incident X-rays strike a regularly arranged lattice plane of atoms inside a crystal material, the reflected X-ray is reflected when the optical path difference between different lattice planes is exactly an integral multiple of the X-ray wavelength. This is a method that uses the phenomenon that the lines interfere with each other and strengthen each other.
  • Patent Document 1 in the evaluation of delayed fracture resistance of a steel sheet molded article, a steel sheet molded article is obtained by using a relationship in which the amount of hydrogen is associated with the distortion of crystal grains in the structure of the steel material when delayed fracture occurs.
  • a technique for performing a delayed fracture hydrogen amount estimation step for estimating the amount of hydrogen that causes delayed fracture in the evaluation site by obtaining the amount of hydrogen corresponding to the strain of the crystal grains in the structure of the evaluation site is described.
  • the local difference parameter KAM Kernel Average Misorientation
  • EBSD electron backscattering diffraction
  • the half width is a difference between diffraction angles at two points at a level half the maximum value of the X-ray diffraction intensity.
  • Patent Document 2 describes a method of inspecting hardness from the half value of the X-ray diffraction intensity curve of the measurement object based on the relationship between the half value and hardness of the X-ray diffraction intensity curve.
  • Patent Document 3 as a method of non-destructively inspecting mechanical parts for fatigue damage, a monochromatic thin bundle X-ray is irradiated two-dimensionally and continuously on the surface of a machine part, and an X-ray diffraction intensity signal is used. A technique is described in which the half-value width of each diffracted X-ray is measured, and the fatigue damage at the measurement location is evaluated using a diffracted X-ray half-width-fatigue damage reference diagram.
  • JP 2011-033600 A Japanese Patent No. 2615064 Japanese Patent Publication No. 07-046081
  • the surface processing degree of the structure affects stress corrosion cracking, etc., it is required to evaluate the surface processing degree.
  • some devices and methods for evaluating the surface processing state of a structure by measuring the hardness by utilizing the phenomenon that the hardness increases by work hardening have been proposed. If a contact-type portable hardness tester is used, it is possible to measure the actual machine. However, since the diamond indenter is pushed into the measurement surface at the time of measurement, the plastic strain is further increased by measurement at the measurement location. Further, considering that SCC is mainly generated at the surface starting point, the indentation remaining on the measurement surface after the hardness measurement is not preferable from the viewpoint of preventing SCC.
  • Patent Document 1 the EBSD method is used.
  • the EBSD method is a destructive analysis method, it cannot be applied when a non-destructive method such as an actual machine structure or a manufactured part is required.
  • Patent Document 2 describes a method of inspecting the hardness from the half value of the X-ray diffraction intensity curve of the measurement object, based on the relationship between the half value and the hardness of the X-ray diffraction intensity curve. According to the configuration of the apparatus and the embodiment, the evaluation method uses only the half width on the one-dimensional X-ray diffraction intensity line profile. Further, the relationship between the X-ray half width and the surface plastic strain is not discussed.
  • Patent Document 3 as a method for non-destructively inspecting mechanical parts for fatigue damage, a monochromatic thin bundle X-ray is irradiated two-dimensionally and continuously on the surface of the machine part, and each of the X-ray diffraction intensity signals is used.
  • the technology to measure the half width of diffracted X-rays and evaluate fatigue damage is described, it can be applied to textures and coarse crystal materials with direction dependency of X-ray diffraction intensity such as weld metal It's not a good technique. Further, the relationship between the diffracted X-ray half width and the plastic strain or hardness of the surface is not discussed.
  • the present invention provides a system capable of nondestructively evaluating the surface processing state of a measurement object even in a texture or coarse crystal material having a direction dependency of X-ray diffraction intensity such as a weld metal, and It aims to provide a method.
  • the value obtained by subtracting the half width by the apparatus from the half width of the X-ray intensity curve in the radial direction with respect to the X-ray incident center of the two-dimensional X-ray diffraction spot, and the center angle with respect to the X-ray incident center is obtained from the relationship between the two-dimensional X-ray diffraction parameter obtained in advance and at least one physical quantity of plastic strain or hardness. The processing state is evaluated.
  • FIG. 1 Schematic which shows the structure of the plastic strain and hardness evaluation system by this invention.
  • the block diagram which shows the structure of the evaluation system of the plastic strain and hardness by this invention.
  • the schematic diagram which shows the optical system at the time of measuring the half value width B of the radial direction with respect to the incident center of two-dimensional X-ray diffraction.
  • the schematic diagram which shows an optical system when measuring a position.
  • Schematic diagram of a standard powder diffraction ring recorded on a two-dimensional X-ray diffractometer The schematic diagram which shows the optical system at the time of using an imaging plate detector.
  • the schematic diagram which shows the method of calculating
  • the schematic diagram which shows the calculation method of the two-dimensional X-ray-diffraction parameter w.
  • the schematic diagram which shows the optical system in the case of arrange
  • the schematic diagram which shows the analysis method by the representative photograph of 2D X-ray diffraction currently recorded on the imaging plate, and an image processing algorithm.
  • the correlation diagram which shows the relationship between the two-dimensional X-ray-diffraction parameter w and the plastic distortion
  • the correlation diagram which shows the relationship between the two-dimensional X-ray-diffraction parameter w and Vickers hardness HV.
  • the master diagram which shows the relationship between the two-dimensional X-ray-diffraction parameter w of the weld metal plate material measured by the method of this invention, and the plastic distortion
  • the master diagram which shows the relationship between the two-dimensional X-ray-diffraction parameter w of the weld metal plate material measured by the method of this invention in an Example, and Vickers hardness HV.
  • the measurement result which shows the hardness dependence of the SCC progress rate of the welding heat affected zone of SUS316 published in the nonpatent literature 2.
  • a master diagram obtained by functionalizing the relationship between the two-dimensional X-ray diffraction parameter and plastic strain or hardness is prepared in advance, and the plastic strain or hardness is determined nondestructively using this master diagram as an evaluation criterion. Propose system and method to evaluate.
  • a two-dimensional X-ray is obtained by constructing a plastic strain introduced by a uniaxial tensile test of a metal material test piece, or a functional relationship between hardness and a two-dimensional X-ray diffraction parameter obtained from the test piece. Create a master diagram showing the relationship between diffraction parameters and plastic strain or hardness.
  • the two-dimensional X-ray diffraction parameter w is defined by Equation (1).
  • the value obtained by subtracting the half-value width B 0 by the apparatus from the half-value width B of the X-ray intensity curve in the radial direction with respect to the X-ray incident center at the two-dimensional X-ray diffraction spot, and the center angle with respect to the X-ray incident center The definite integral over the whole circumference range is defined as a two-dimensional X-ray diffraction parameter w.
  • the X-ray diffraction parameters obtained from the surface of the object to be measured are plotted on this master diagram, so that the plastic strain or hardness of the surface of the object to be measured is nondestructive. Evaluation becomes possible.
  • Example 1 of the present invention will be described in detail.
  • the correspondence between the two-dimensional X-ray diffraction parameter w and the plastic strain or hardness is approximated by the least square method and expressed as a function.
  • the approximation method is not limited to the least square method, and an arbitrary approximation method can be used.
  • the hardness is applicable not only to Vickers hardness (HV) but also to other defined hardnesses such as Brinell hardness (HBS, HBW) and Rockwell hardness (HRC, HRB).
  • the function representing the correspondence between the two-dimensional X-ray diffraction parameter w and the plastic strain or hardness is not limited to that shown in the following description.
  • correspondences can be expressed in an arbitrary function form.
  • the correspondence is represented by the point sequence data (the function is represented by the point sequence data).
  • plastic strain or hardness can be evaluated using a correlation diagram or a master diagram showing these correspondences.
  • the correspondence represented by the data of the point sequence is also referred to as “function”.
  • FIG. 1 (a) is a schematic diagram showing the configuration of a plastic strain or hardness evaluation system according to the present invention.
  • the plastic strain evaluation system according to the present invention includes an X-ray diffraction apparatus 100, an image analysis apparatus 110 that performs image processing and numerical calculation, and two-dimensional X-ray diffraction parameters w of various materials and plastic strain or hardness.
  • a database 120 constructed with a master diagram representing the relationship is provided.
  • the X-ray diffractometer 100 includes an X-ray tube 101 and a two-dimensional X-ray detector 102, and X-rays are incident on the surface of the measurement object 104 and diffracted two-dimensional X-ray diffraction spots are converted into two-dimensional X-rays. Record in line detector 102.
  • the image analysis apparatus 110 measures the X-ray diffraction intensity half-value width B and the central angle ⁇ in the radial direction with respect to the X-ray incident center O point from the two-dimensional X-ray diffraction spots obtained on the surface of the measurement object 104.
  • a one-dimensional X-ray diffraction intensity line profile in a certain radial direction is obtained as an X-ray diffraction intensity curve 111.
  • the plastic strain or hardness of the measurement object 104 Based on the master diagram corresponding to the material of the measurement object 104 in the database 120 constructed with the master diagram representing the relationship between the two-dimensional X-ray diffraction parameter w of various materials and the plastic strain or hardness, From the two-dimensional X-ray diffraction parameter w obtained by substituting the half-value width B, the central angle ⁇ , and the X-ray diffraction intensity half-value width B 0 by the apparatus into the equation (1), the plastic strain or hardness of the measurement object 104 To evaluate.
  • FIG. 1B is a block diagram showing the configuration of a plastic strain or hardness evaluation system according to the present invention.
  • the image analysis apparatus 110 includes an X-ray incidence center calculation unit 112 that obtains the X-ray incidence center position from the result of the X-ray measurement apparatus 100, and an X-ray diffraction intensity / center angle that obtains a half-value width and a center angle of the X-ray diffraction intensity.
  • a calculation unit 113, a two-dimensional X-ray diffraction parameter calculation unit 114 for obtaining a two-dimensional X-ray diffraction parameter defined by Equation (1), a master diagram representing a relationship between the two-dimensional X-ray diffraction parameter w and plastic strain or hardness are provided with a master diagram creation unit 115 and a plastic strain / hardness calculation unit 116. Further, an input device 118 such as a keyboard and a display device 119 for displaying the results are also provided.
  • FIG. 2 is a flowchart of a method for nondestructively evaluating the plastic strain of the surface processed layer of the measurement object in the embodiment of the present invention.
  • This flow diagram is divided into two parts: “Create Master Diagram” and “Actual Measurement”.
  • “Create Master Diagram” create a master diagram
  • “Actual Measurement” use the X-ray diffraction parameters obtained by the X-ray diffraction method and the created master diagram to determine the plasticity of the measurement object. Evaluate strain.
  • FIG. 2 shows one of them. Hereinafter, the method illustrated in FIG. 2 will be described as “a procedure for creating a master diagram”.
  • Procedure for Creating Master Diagram A procedure for functionalizing the correlation between the two-dimensional X-ray diffraction parameter w and plastic strain or hardness will be described as a procedure for creating a master diagram.
  • the master diagram is a function of the correlation between the two-dimensional X-ray diffraction parameter w and plastic strain or hardness. Therefore, a master diagram is created by obtaining the relationship between the two-dimensional X-ray diffraction parameter w and plastic strain or hardness.
  • the half-value width of the diffraction intensity of X-rays is a parameter that reflects lattice distortion, particle size, etc. Components that are affected by the system are also included.
  • the half-value width B 0 by the apparatus it is necessary to separate the half-value width B 0 by the apparatus from the actually measured half-value width B.
  • the half-value width of the diffraction intensity is set to B 0 by the apparatus using a measurement object in an unstrained state.
  • the measured value of B 0 is affected by the divergence angle of incident X-rays, the measured value depends on the irradiation region size ⁇ and the irradiation distance l.
  • the half width B 0 by the apparatus must be measured at the same irradiation area size ⁇ and irradiation distance l as when the half width B of the measurement object is actually measured.
  • the optical system schematic diagram at the time of measuring the half width B in FIG. 3 is shown.
  • X-ray tube 1 for irradiating X-rays two-dimensional X-ray detector 2 for detecting diffracted X-rays, measurement object 4, incident X-rays 6, diffracted X-rays 7 and two-dimensional diffraction spots 8 of the measurement object
  • the relationship is as shown in FIG.
  • the central angle ⁇ of the discontinuous diffraction spots is detected as a parameter, the upper limit of the number of crystals that are surrounded by the irradiation region and contributes to diffraction and the crystal orientation are required.
  • the number of crystals that are surrounded by the irradiation region and contribute to diffraction is adjusted to several hundred or less by adjusting the irradiation region size ⁇ in accordance with the crystal grain size and crystal orientation of the actual material.
  • the irradiation area size is 2 mm or less.
  • the X-ray irradiation distance 1 is preferably set to 10 to 30 mm. In the case of a general metal, the penetration depth of incident X-rays is about 10 ⁇ m. However, the X-ray diffraction intensity is affected by absorption by the material.
  • FIG. 4 is a schematic diagram of an optical system when the position of the incident center O point is measured.
  • a standard powder sample 5 in an unstrained state is used.
  • the diffraction angle ⁇ corresponding to the diffractive surface interval d is determined from the relationship shown in Equation (2). Therefore, in the case of the standard powder sample, the diffraction angle 2 ⁇ 0 is known from the X-ray wavelength ⁇ and the appropriate diffraction surface interval d of the standard powder sample.
  • FIG. 5 shows a schematic diagram of the two-dimensional diffraction ring 9 of the standard powder sample recorded in the two-dimensional X-ray diffractometer.
  • a plurality of maximum luminance points can be detected, and an approximate circle can be determined by the least square method indicated by a white line in the figure. If the center O of the approximate circle is the incident center, the radius R P can be measured.
  • a detector for recording the diffraction angle and diffraction intensity of diffracted X-rays a two-dimensional position-sensitive proportional counter (PSPC) or imaging plate (IP) is used.
  • PSPC position-sensitive proportional counter
  • IP imaging plate
  • a detector in which a representative photostimulable phosphor is applied to a two-dimensional X-ray detector is used. This is because a wide range of diffraction information can be acquired in a short time.
  • the two-dimensional position sensitive proportional counter is an X-ray detector that can determine the X-ray receiving position on the detection surface. It is not necessary to scan the detector when measuring the diffraction intensity curve. Further, the X-ray energy can be converted into an electric signal, and the X-ray diffraction intensity can be measured two-dimensionally by the image processing circuit.
  • the detector and the X-ray tube are fixed. Therefore, if the coordinates of the incident center O point are determined in one initial measurement, the standard powder will be used again during the actual measurement. It is not necessary to obtain the incident center O point using.
  • the diffraction center of the standard powder sample is recorded on the same imaging plate as the object to be measured and the coordinates of the incident center O point are measured. There is a need to.
  • FIG. 6 shows an optical system when the imaging plate two-dimensional X-ray detector 3 is used. By irradiating twice with X-rays, the diffraction rings of the standard powder sample and the measurement object are recorded on the same imaging plate.
  • the half-value width B of the diffraction angle is obtained by Equation (3). As shown, the distance coordinate s must be converted to a diffraction angle 2 ⁇ coordinate.
  • the half-value width B is determined by subtracting the background from the X-ray diffraction intensity profile curve with respect to the diffraction angle 2 ⁇ coordinate and performing function approximation of the X-ray diffraction intensity curve.
  • the half-value width B is obtained by a known “half-value width method” or “function approximation method”.
  • Fig. 7 shows the "half-value width method".
  • a half-value width B is a difference between diffraction angles at two points that are directly at a half level of the maximum value of the X-ray diffraction intensity.
  • function approximation is performed on the X-ray diffraction intensity profile curve obtained by measurement, and then the half width B is obtained.
  • function approximation any one of known Gaussian curves, Lorentz curves, and pseudo-Voigt functions may be used.
  • An X-ray diffraction intensity curve I V approximated by a pseudo-Voigt function is expressed by Expression (8) using I G and I L.
  • indicates a Gaussian degree.
  • width S R of the diffraction intensity profile shown in FIG. 5 generally has a simple relationship represented by the equation (9).
  • the integration width B ′ or the diffraction intensity profile width S R is also used as an alternative parameter for the half-value width B, which is a variable of the two-dimensional X-ray diffraction parameter w shown in Expression (1).
  • the half width B 0 by the apparatus can be measured by using a standard powder in an unstrained state.
  • (2) Introduction of plastic strain by tensile test In order to consider the validity of the tensile test, it is preferable that the conditions of the preparation of the test piece and the tensile test comply with the provisions of JIS Z2241 (1998). Moreover, in order to consider the variation of a test piece, several test pieces are manufactured from the same material, and a strain gauge is installed in each test piece. On the other hand, plastic strain is introduced by a tensile test, and the residual strain ⁇ P after unloading is measured by the output of the strain gauge. Furthermore, the Vickers hardness HV of each test piece is measured.
  • the unevenness of the specimen surface and the high dislocation density affect the X-ray diffraction intensity. Therefore, in general, in the range where the plastic strain is small, the change in the half width B and the central angle ⁇ of the diffraction spot is High sensitivity to plastic strain. Therefore, it is desirable to set the interval between plastic strains to be relatively fine at a level with a small plastic strain, rather than at a large level. For example, plastic strain is introduced into the test piece at intervals of 1 to 2% when the plastic strain is 0 to 10%, and at intervals of 4 to 5% when 10 to 20%. However, since the plastic strain range varies depending on the material properties, it is necessary to set the plastic strain interval according to the actual material.
  • the present invention can be applied to plastic strain evaluation of a textured material or a coarse crystal material with high sensitivity of the central angle ⁇ of the diffraction spot due to plastic strain.
  • the texture material refers to a material having directionality in crystal growth, such as a weld metal or casting
  • the coarse crystal material refers to a material having a grain boundary of 20 ⁇ m or more.
  • the method for measuring the half-value width B in the drawing is the same as the method for measuring the half-value width B 0 using the above-described apparatus.
  • a range obtained by subtracting the background from the diffraction intensity may be used as the diffraction spot range.
  • a clear diffraction intensity such as a weld metal cannot be obtained, for example, “intensity of 25% or more of the maximum intensity”
  • the range of the diffraction spots can be specified by performing filtering on the diffraction intensity such as “use a spot having a diffraction spot”.
  • Two-dimensional X-ray diffraction is measured on the surface of the measurement object.
  • the half-value width B and the central angle ⁇ are measured from the two-dimensional X-ray diffraction spots by an image processing program, and w is obtained from the equation (1).
  • (3) By plotting the obtained two-dimensional X-ray diffraction parameter w on the master diagram w- ⁇ P or master diagram w-HV of the same material of the measurement object, the plasticity of the surface processed layer of the measurement object It is possible to estimate the strain ⁇ P or the Vickers hardness HV nondestructively.
  • Evaluation System 3.1 Two-dimensional X-ray Detector A position-sensitive two-dimensional X-ray detector or two-dimensional detection using an imaging plate can be used as the two-dimensional X-ray detector of this system.
  • the detector and the X-ray tube are fixed, so the coordinates of the incident center O point can be determined by one initial measurement using an unstrained standard powder sample. If it is determined, there is no need to measure a standard powder sample in an unstrained state again when actually measuring.
  • a two-dimensional X-ray detector using an imaging plate is cheaper and easier to manufacture than a position-sensitive two-dimensional X-ray detector, but if it has a replaceable structure, it is standard on the same imaging plate as the measurement object each time. It is necessary to record the diffraction ring of the powder sample and measure the coordinates of the incident center O point.
  • the X-ray incident center and the two-dimensional X-ray detector are arranged asymmetrically so that only a part of the two-dimensional X-ray diffraction ring can be measured according to the geometric conditions of the actual measurement environment (for example, a narrow place). It is also possible to use the asymmetric type two-dimensional X-ray detector 10 which comprises. However, in this case, when using the master diagram w- ⁇ P or w-HV obtained in the whole circumference central angle range 2 ⁇ , the actually measured two-dimensional X-ray diffraction parameter w is changed to It is necessary to correct by dividing the integral range of the central angle ⁇ of the diffraction spots by the ratio of the entire peripheral central angle range 2 ⁇ .
  • the degree of surface processing is evaluated nondestructively by measuring the plastic strain or hardness of a measurement object using a two-dimensional X-ray diffraction parameter. Therefore, this evaluation method can be applied to actual structures and finished products that cannot be sampled due to destruction. Also, the plastic strain or hardness can be evaluated simply by substituting the measured two-dimensional X-ray diffraction parameter into a function representing the relationship between the two-dimensional X-ray diffraction parameter prepared in advance as an evaluation criterion and the plastic strain or hardness. For this reason, prompt evaluation of the degree of surface processing at the measurement location is expected, and it can be used for mass measurement in consideration of variations in mass-produced products.
  • Example 2 plastic strain and hardness were measured on a measurement object of a Ni-based weld metal DNiCrFe-1J (JIS Z 3224) on which a grinder was applied.
  • a plurality of tensile test pieces were manufactured from the Ni-base weld metal DNiCrFe-1J.
  • the surface was polished by electrolytic polishing to a depth of 50 ⁇ m and then subjected to stress relaxation heat treatment at 870 ° C. for 2 hours.
  • the tensile test is performed according to the standard of JIS Z 2241 (1998), and is 0%, 0.5%, 1.0%, 1.8%, 3.8%, 6.0%, 10.0% 14.7%, 19.8%, 24.8% and 29.6% of plastic strain ⁇ P were introduced, respectively.
  • the Vickers Vickers hardness HV was measured with a hardness measuring machine. The load for hardness measurement is 1 kgf, and the load time is 20 sec. Table 1 shows the value of Vickers hardness HV in each test piece.
  • FIG. 6 shows a schematic diagram of the measurement optical system.
  • An imaging plate was used for the two-dimensional X-ray detector.
  • the X-ray tube is Mn, and the output is 17 kV and 1.5 mA.
  • is 2.10314 ⁇ 10 ⁇ 10 m.
  • the imaging plate after the irradiation test was read with an X-ray diffraction pattern using an image analysis apparatus Typhoon FLA9000 manufactured by GE Healthcare Japan.
  • the resolution is 25 ⁇ m / Pixel.
  • Cu powder subjected to complete annealing was applied as a standard powder sample to the surface of a tensile test piece, and a two-dimensional diffraction ring was recorded on the same imaging plate as the tensile test piece.
  • the half width B 0 is 2.27 (deg).
  • FIG. 10B shows an analysis method using an image processing algorithm. The maximum luminance point is detected in the two-dimensional X-ray diffraction ring of the Cu powder, and an approximate circle of the two-dimensional X-ray diffraction ring of the Cu powder by the least square method by the image processing algorithm (black broken line in FIG.
  • Equation (11) B ⁇ is the half width in the radial direction at the central angle ⁇ .
  • the calculated unit of w is deg 2 .
  • FIG. 11 and FIG. 12 show correlation diagrams of the two-dimensional X-ray diffraction parameter w, the plastic strain ⁇ P and the Vickers hardness HV measured in this example, respectively.
  • the above function is a master diagram.
  • HV 0.024 w 2 + 0.2866w + 211.07.
  • Measurement object 110 Image analyzer 111 X-ray diffraction intensity curve 112 X-ray incident center calculation unit 113 X-ray diffraction intensity / center angle calculation unit 114 Two-dimensional X-ray diffraction parameter calculation unit 115 Master diagram creation unit 116 Plasticity Strain / hardness calculation unit 118 ... input device 119 ... display device 120 ... database w constructed by master diagram ... two-dimensional X-ray diffraction parameter ⁇ P ... plastic strain HV ... Vickers hardness I ... X-ray diffraction intensity O ... X-ray incident center position s ... Center with respect to the incident center position O at the distance R P ... radius l ... X-ray irradiation distance alpha ...

Abstract

The purpose of the present invention is to provide a system and a method capable of non-destructively evaluating the state of a processed surface of an object to be measured, even for aggregate structures and coarse crystalline materials that have anisotropic X-ray diffraction, such as weld metal. The means for achieving this is characterized by: finding a two-dimensional X-ray diffraction parameter, said two-dimensional X-ray diffraction parameter being the definite integral of the value of subtracting, from the full width of an X-ray intensity curve at half maximum in the radial direction relative to the center of the incident X-ray of the two-dimensional X-ray diffraction spots, the full width at half maximum owing to the device, over the entire circumference of a central angle for the center of the incident X-ray; and evaluating the state of a processed surface of the object to be measured from the relation of the two-dimensional X-ray diffraction parameter found in advance and at least one physical quantity from among either plastic deformity or hardness.

Description

表面加工状態の評価システムおよび評価方法Surface processing state evaluation system and evaluation method
 本発明は、表面加工状態の評価システムおよび評価方法に関し、より詳細には、X線回折現象を利用する非破壊的な評価システムおよび評価方法に関する。 The present invention relates to a surface processing state evaluation system and evaluation method, and more particularly, to a non-destructive evaluation system and evaluation method using an X-ray diffraction phenomenon.
 構造物の表面は、研削や研磨などの加工履歴により、一般的に塑性ひずみが残留し、硬さが高まる。塑性ひずみおよび硬さは、加工度を反映する指標として、構造物の表面加工状態を評価するときに使われる。特に、応力腐食環境において稼動する構造物の場合は、表面加工度が高いほど応力腐食割れ(SCC:stress corrosion cracking)の発生感受性が高まることが知られている。また、表面加工により形成される塑性変形帯や表面微細結晶組織は、SCCの発生起点や進展経路となる可能性があることが示唆されている。 The surface of the structure generally retains plastic strain and increases hardness due to processing history such as grinding and polishing. The plastic strain and hardness are used when evaluating the surface processing state of a structure as an index reflecting the degree of processing. In particular, in the case of a structure operating in a stress corrosion environment, it is known that the higher the degree of surface processing, the higher the susceptibility to stress corrosion cracking (SCC). In addition, it is suggested that the plastic deformation zone and surface fine crystal structure formed by surface processing may be the starting point and the propagation path of SCC.
 実機構造物や大型部品の表面加工状態を測定する場合は、非破壊的な手法が要求される。X線回折法は、非破壊的な測定方法として、結晶構造分析、成分分析および残留応力測定など、様々な材料評価に適用されている。X線回折法とは、入射X線が結晶材料内部における原子の規則的に配列した格子面に当たると、異なる格子面同士間の光路差がちょうどX線波長の整数倍の場合に、反射したX線がお互いに干渉して強め合うという現象を利用する方法である。 ¡Non-destructive methods are required when measuring the surface processing of actual machine structures and large parts. The X-ray diffraction method is applied to various material evaluations such as crystal structure analysis, component analysis, and residual stress measurement as a non-destructive measurement method. X-ray diffractometry means that when incident X-rays strike a regularly arranged lattice plane of atoms inside a crystal material, the reflected X-ray is reflected when the optical path difference between different lattice planes is exactly an integral multiple of the X-ray wavelength. This is a method that uses the phenomenon that the lines interfere with each other and strengthen each other.
 特許文献1には、鋼板成形品の耐遅れ破壊性の評価において、水素量と、遅れ破壊が発生する際の鋼材の組織内における結晶粒のひずみを対応付けた関係を用いて、鋼板成形品の評価部位の組織内における結晶粒のひずみに対応した水素量を求めることで、評価部位に遅れ破壊を発生させる水素量を推定する遅れ破壊水素量推定工程を行う技術が記載されている。結晶粒のひずみの評価において、電子後方散乱回折法(EBSD:electron back scattering diffraction)の局地方位差パラメータKAM(Kernel Average Misorientation)およびX線回折ピークの半価幅を用いている。なお、KAMとは、ある測定点とこれに隣接する測定点との方位差(ミスオリエンテーション)の平均値である。半価幅とは、X線回折強度の最大値の半分のレベルにある二点の回折角の差分である。 In Patent Document 1, in the evaluation of delayed fracture resistance of a steel sheet molded article, a steel sheet molded article is obtained by using a relationship in which the amount of hydrogen is associated with the distortion of crystal grains in the structure of the steel material when delayed fracture occurs. A technique for performing a delayed fracture hydrogen amount estimation step for estimating the amount of hydrogen that causes delayed fracture in the evaluation site by obtaining the amount of hydrogen corresponding to the strain of the crystal grains in the structure of the evaluation site is described. In the evaluation of crystal grain strain, the local difference parameter KAM (Kernel Average Misorientation) of electron backscattering diffraction (EBSD) and the half width of the X-ray diffraction peak are used. KAM is an average value of misorientation between a certain measurement point and a measurement point adjacent thereto. The half width is a difference between diffraction angles at two points at a level half the maximum value of the X-ray diffraction intensity.
 特許文献2には、X線回折の強度曲線の半価値と硬さの関係から、測定対象物のX線回折の強度曲線の半価値から硬さを検査する方法が記載されている。 Patent Document 2 describes a method of inspecting hardness from the half value of the X-ray diffraction intensity curve of the measurement object based on the relationship between the half value and hardness of the X-ray diffraction intensity curve.
 特許文献3には、機械部品の疲労損傷を非破壊的に検査する手法として、単色の細束X線を機械部品の表面に二次元的に且つ連続的に照射し、X線回折強度信号から各回折X線の半価幅を測定し、回折X線半価幅-疲労損傷基準線図を用いて測定箇所の疲労損傷を評価する技術が記載されている。 In Patent Document 3, as a method of non-destructively inspecting mechanical parts for fatigue damage, a monochromatic thin bundle X-ray is irradiated two-dimensionally and continuously on the surface of a machine part, and an X-ray diffraction intensity signal is used. A technique is described in which the half-value width of each diffracted X-ray is measured, and the fatigue damage at the measurement location is evaluated using a diffracted X-ray half-width-fatigue damage reference diagram.
特開2011-033600号公報JP 2011-033600 A 特許第2615064号公報Japanese Patent No. 2615064 特公平07-046081号公報Japanese Patent Publication No. 07-046081
 構造物の表面加工度は応力腐食割れ等に影響を与える為、表面加工度を評価することが求められる。例えば、加工硬化により硬さが上昇するという事象を利用して、硬さ測定により構造物の表面加工状態を評価する装置や方法がいくつか提案されている。接触式のポータブル硬度計を用いれば、実機測定も可能になる。しかし、測定の際にダイヤモンド圧子が測定表面に押し込むため、測定箇所は測定によりさらに塑性ひずみが高まってしまう。また、SCCが主に表面起点で発生することを考慮すると、硬さ測定後測定表面に残留した圧痕は、SCC防止の観点からは好ましくない。 Since the surface processing degree of the structure affects stress corrosion cracking, etc., it is required to evaluate the surface processing degree. For example, some devices and methods for evaluating the surface processing state of a structure by measuring the hardness by utilizing the phenomenon that the hardness increases by work hardening have been proposed. If a contact-type portable hardness tester is used, it is possible to measure the actual machine. However, since the diamond indenter is pushed into the measurement surface at the time of measurement, the plastic strain is further increased by measurement at the measurement location. Further, considering that SCC is mainly generated at the surface starting point, the indentation remaining on the measurement surface after the hardness measurement is not preferable from the viewpoint of preventing SCC.
 特許文献1においてはEBSD法を用いているが、EBSD法は、破壊的な分析手法であるため、実機構造物や製造部品などの非破壊的な手法が要求される場合には適用できない。 In Patent Document 1, the EBSD method is used. However, since the EBSD method is a destructive analysis method, it cannot be applied when a non-destructive method such as an actual machine structure or a manufactured part is required.
 特許文献2では、X線回折の強度曲線の半価値と硬さの関係から、測定対象物のX線回折の強度曲線の半価値から硬さを検査する方法が記載されているが、ただし、装置の構成および実施例によると、一次元のX線回折強度ラインプロファイル上の半価幅のみを利用した評価方法である。また、X線半価幅と表面の塑性ひずみとの関連は論じられていない。 Patent Document 2 describes a method of inspecting the hardness from the half value of the X-ray diffraction intensity curve of the measurement object, based on the relationship between the half value and the hardness of the X-ray diffraction intensity curve. According to the configuration of the apparatus and the embodiment, the evaluation method uses only the half width on the one-dimensional X-ray diffraction intensity line profile. Further, the relationship between the X-ray half width and the surface plastic strain is not discussed.
 特許文献3では、機械部品の疲労損傷を非破壊的に検査する手法として、単色の細束X線を機械部品の表面に二次元的に且つ連続的に照射し、X線回折強度信号から各回折X線の半価幅を測定し、疲労損傷を評価する技術が記載されているが、溶接金属のようなX線回折強度の方向依存性を持つ集合組織や粗大結晶材料に対して適用可能な技術では無い。また、回折X線半価幅と表面の塑性ひずみまたは硬さとの関連は論じられていない。 In Patent Document 3, as a method for non-destructively inspecting mechanical parts for fatigue damage, a monochromatic thin bundle X-ray is irradiated two-dimensionally and continuously on the surface of the machine part, and each of the X-ray diffraction intensity signals is used. Although the technology to measure the half width of diffracted X-rays and evaluate fatigue damage is described, it can be applied to textures and coarse crystal materials with direction dependency of X-ray diffraction intensity such as weld metal It's not a good technique. Further, the relationship between the diffracted X-ray half width and the plastic strain or hardness of the surface is not discussed.
 上記の特許文献1~3のいずれにおいても、X線回折強度曲線の半価幅または回折斑点の広がりはいずれも一次元的なパラメータであるため、溶接金属のようなX線回折強度の方向依存性を持つ集合組織や粗大結晶材料においては、適用できない場合があり、あるいは測定箇所によりバラツキが大きいという問題点がある。 
 そこで、本願発明は、溶接金属のようなX線回折強度の方向依存性を持つ集合組織や粗大結晶材料においても、測定対象物の表面加工状態を非破壊的に評価することが可能なシステムおよび方法を提供することを目的とする。
In any of the above Patent Documents 1 to 3, since the half width of the X-ray diffraction intensity curve or the spread of diffraction spots is a one-dimensional parameter, it depends on the direction of the X-ray diffraction intensity as in a weld metal. In the case of a textured structure or a coarse crystal material, there are cases where it cannot be applied or there is a problem that the variation varies depending on the measurement location.
Accordingly, the present invention provides a system capable of nondestructively evaluating the surface processing state of a measurement object even in a texture or coarse crystal material having a direction dependency of X-ray diffraction intensity such as a weld metal, and It aims to provide a method.
 本願発明は、二次元X線回折斑点のX線入射中心に対する半径方向のX線強度曲線の半価幅から装置による半価幅を差し引いた後の値と、X線入射中心に対する中心角との、全周範囲での定積分を二次元X線回折パラメータとして求め、予め求めた二次元X線回折パラメータと塑性ひずみ又は硬さのうち少なくともいずれか1つの物理量との関係から測定対象物の表面加工状態を評価することを特徴とする。 In the present invention, the value obtained by subtracting the half width by the apparatus from the half width of the X-ray intensity curve in the radial direction with respect to the X-ray incident center of the two-dimensional X-ray diffraction spot, and the center angle with respect to the X-ray incident center The surface of the object to be measured is obtained from the relationship between the two-dimensional X-ray diffraction parameter obtained in advance and at least one physical quantity of plastic strain or hardness. The processing state is evaluated.
 本願発明によれば、X線回折強度の方向依存性を有する測定対象物であっても、表面加工状態を非破壊的に評価することが可能なシステムおよび方法を提供することが出来る According to the present invention, it is possible to provide a system and method capable of non-destructively evaluating the surface processing state even for a measurement object having the direction dependency of the X-ray diffraction intensity.
本発明による塑性ひずみおよび硬さの評価システムの構成を示す概略図。Schematic which shows the structure of the plastic strain and hardness evaluation system by this invention. 本発明による塑性ひずみおよび硬さの評価システムの構成を示すブロック図。The block diagram which shows the structure of the evaluation system of the plastic strain and hardness by this invention. 測定対象物の塑性ひずみおよび硬さを非破壊的に評価する方法のフロー図。The flowchart of the method of evaluating the plastic strain and hardness of a measurement object nondestructively. 二次元X線回折の入射中心に対する半径方向の半価幅Bを測定する際の光学系を示す模式図。The schematic diagram which shows the optical system at the time of measuring the half value width B of the radial direction with respect to the incident center of two-dimensional X-ray diffraction. 位置を測定するときの光学系を示す模式図。The schematic diagram which shows an optical system when measuring a position. 二次元X線回折器に記録した標準粉末の回折環の模式図Schematic diagram of a standard powder diffraction ring recorded on a two-dimensional X-ray diffractometer イメージングプレート検出器を用いた場合の光学系を示す模式図。The schematic diagram which shows the optical system at the time of using an imaging plate detector. 「半価幅法」により半価幅Bおよび回折強度ピーク位置を求める方法を示す模式図。The schematic diagram which shows the method of calculating | requiring the half value width B and the diffraction intensity peak position by the "half value width method". 二次元X線回折パラメータwの計算方法を示す模式図。The schematic diagram which shows the calculation method of the two-dimensional X-ray-diffraction parameter w. X線入射中心と二次元X線検出器を非対称に配置する場合の光学系を示す模式図。The schematic diagram which shows the optical system in the case of arrange | positioning a X-ray incident center and a two-dimensional X-ray detector asymmetrically. イメージングプレート上に記録されている二次元X線回折の代表写真および画像処理アルゴリズムによる解析方法を示す模式図。The schematic diagram which shows the analysis method by the representative photograph of 2D X-ray diffraction currently recorded on the imaging plate, and an image processing algorithm. 二次元X線回折パラメータwと塑性ひずみεPとの関係を示す相関線図。The correlation diagram which shows the relationship between the two-dimensional X-ray-diffraction parameter w and the plastic distortion | strain (epsilon) P. 二次元X線回折パラメータwとビッカース硬さHVとの関係を示す相関線図。The correlation diagram which shows the relationship between the two-dimensional X-ray-diffraction parameter w and Vickers hardness HV. 本発明の方法で測定した溶接金属板材の二次元X線回折パラメータwと塑性ひずみεPとの関係を示すマスター線図。The master diagram which shows the relationship between the two-dimensional X-ray-diffraction parameter w of the weld metal plate material measured by the method of this invention, and the plastic distortion | strain (epsilon) P. 実施例における本発明の方法で測定した溶接金属板材の二次元X線回折パラメータwとビッカース硬さHVとの関係を示すマスター線図。The master diagram which shows the relationship between the two-dimensional X-ray-diffraction parameter w of the weld metal plate material measured by the method of this invention in an Example, and Vickers hardness HV. 非特許文献2に掲載されているSUS316の溶接熱影響部のSCC進展速度の硬さ依存性を示す測定結果。The measurement result which shows the hardness dependence of the SCC progress rate of the welding heat affected zone of SUS316 published in the nonpatent literature 2.
 本発明では、二次元X線回折パラメータと塑性ひずみ、または硬さとの関係を関数化したマスター線図を予め作成し、このマスター線図を評価基準として塑性ひずみ、または硬さを非破壊的に評価するシステムと方法を提案する。 In the present invention, a master diagram obtained by functionalizing the relationship between the two-dimensional X-ray diffraction parameter and plastic strain or hardness is prepared in advance, and the plastic strain or hardness is determined nondestructively using this master diagram as an evaluation criterion. Propose system and method to evaluate.
 すなわち、本発明では、金属材料試験片の単軸引張試験により導入した塑性ひずみ、または硬さと試験片で得られた二次元X線回折パラメータとの関数関係を構築することにより、二次元X線回折パラメータと塑性ひずみ、または硬さとの関係を示すマスター線図を作成する。二次元X線回折パラメータwは、数式(1)で定義される。 That is, in the present invention, a two-dimensional X-ray is obtained by constructing a plastic strain introduced by a uniaxial tensile test of a metal material test piece, or a functional relationship between hardness and a two-dimensional X-ray diffraction parameter obtained from the test piece. Create a master diagram showing the relationship between diffraction parameters and plastic strain or hardness. The two-dimensional X-ray diffraction parameter w is defined by Equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 つまり、二次元X線回折斑点におけるX線入射中心に対する半径方向のX線強度曲線の半価幅Bから、装置による半価幅B0を差し引いた後の値と、X線入射中心に対する中心角との、全周範囲での定積分を、二次元X線回折パラメータwとする。 That is, the value obtained by subtracting the half-value width B 0 by the apparatus from the half-value width B of the X-ray intensity curve in the radial direction with respect to the X-ray incident center at the two-dimensional X-ray diffraction spot, and the center angle with respect to the X-ray incident center The definite integral over the whole circumference range is defined as a two-dimensional X-ray diffraction parameter w.
 実際に測定対象物を測定するときは、測定対象物の表面から得られたX線回折パラメータをこのマスター線図にプロットすることにより、測定対象物の表面の塑性ひずみ、または硬さを非破壊的に評価することが可能になる。 When actually measuring an object to be measured, the X-ray diffraction parameters obtained from the surface of the object to be measured are plotted on this master diagram, so that the plastic strain or hardness of the surface of the object to be measured is nondestructive. Evaluation becomes possible.
 以下、本発明の実施例1について詳細に説明する。なお、以下の説明では、二次元X線回折パラメータwと塑性ひずみまたは硬さとの対応関係を、最小二乗法で近似して関数で表す。しかし、本発明では、近似方法は最小二乗法に限られず、任意の近似法を用いることができる。また、硬さはビッカース硬さ(HV)のみではなく、ブリネル硬さ(HBS、HBW)やロックウェル硬さ(HRC、HRB)など他の定義の硬さにも適用できる。二次元X線回折パラメータwと塑性ひずみ、または硬さとの対応関係を表す関数は、以下の説明で示すものに限られない。これらの対応関係は、任意の関数形で表すことができる。また、これらの対応関係を定式化できない場合は、点列のデータによって対応関係を表す(点列のデータによって関数を表す)。この場合には、これらの対応関係を示す相関線図やマスター線図を用いて塑性ひずみまたは硬さを評価することができる。本明細書では、点列のデータによって表された対応関係も「関数」と称する。 Hereinafter, Example 1 of the present invention will be described in detail. In the following description, the correspondence between the two-dimensional X-ray diffraction parameter w and the plastic strain or hardness is approximated by the least square method and expressed as a function. However, in the present invention, the approximation method is not limited to the least square method, and an arbitrary approximation method can be used. Further, the hardness is applicable not only to Vickers hardness (HV) but also to other defined hardnesses such as Brinell hardness (HBS, HBW) and Rockwell hardness (HRC, HRB). The function representing the correspondence between the two-dimensional X-ray diffraction parameter w and the plastic strain or hardness is not limited to that shown in the following description. These correspondences can be expressed in an arbitrary function form. When these correspondences cannot be formulated, the correspondence is represented by the point sequence data (the function is represented by the point sequence data). In this case, plastic strain or hardness can be evaluated using a correlation diagram or a master diagram showing these correspondences. In this specification, the correspondence represented by the data of the point sequence is also referred to as “function”.
 図1(a)は、本発明による塑性ひずみまたは硬さの評価システムの構成を示す概略図である。本発明による塑性ひずみの評価システムは、X線回折装置100と、画像処理と数値計算などの解析を行う画像解析装置110と、各種材料の二次元X線回折パラメータwと塑性ひずみまたは硬さとの関係を表すマスター線図で構築されたデータベース120を備える。 FIG. 1 (a) is a schematic diagram showing the configuration of a plastic strain or hardness evaluation system according to the present invention. The plastic strain evaluation system according to the present invention includes an X-ray diffraction apparatus 100, an image analysis apparatus 110 that performs image processing and numerical calculation, and two-dimensional X-ray diffraction parameters w of various materials and plastic strain or hardness. A database 120 constructed with a master diagram representing the relationship is provided.
 X線回折装置100は、X線管球101と二次元X線検出器102とを有し、測定対象物104の表面にX線を入射し、回折した二次元X線回折斑点を二次元X線検出器102に記録する。 The X-ray diffractometer 100 includes an X-ray tube 101 and a two-dimensional X-ray detector 102, and X-rays are incident on the surface of the measurement object 104 and diffracted two-dimensional X-ray diffraction spots are converted into two-dimensional X-rays. Record in line detector 102.
 画像解析装置110は、測定対象物104の表面で得られた二次元X線回折斑点から、X線入射中心O点に対する半径方向のX線回折強度半価幅Bおよび中心角αを計測する。ある径方向における一次元のX線回折強度ラインプロファイルはX線回折強度曲線111として得られる。 The image analysis apparatus 110 measures the X-ray diffraction intensity half-value width B and the central angle α in the radial direction with respect to the X-ray incident center O point from the two-dimensional X-ray diffraction spots obtained on the surface of the measurement object 104. A one-dimensional X-ray diffraction intensity line profile in a certain radial direction is obtained as an X-ray diffraction intensity curve 111.
 各種材料の二次元X線回折パラメータwと塑性ひずみまたは硬さとの関係を表すマスター線図で構築されたデータベース120における測定対象物104の材質に該当するマスター線図に基づき、測定対象物104の半価幅B、中心角αおよび装置によるX線回折強度半価幅B0を式(1)に代入して求めた二次元X線回折パラメータwから、測定対象物104の塑性ひずみまたは硬さを評価する。 Based on the master diagram corresponding to the material of the measurement object 104 in the database 120 constructed with the master diagram representing the relationship between the two-dimensional X-ray diffraction parameter w of various materials and the plastic strain or hardness, From the two-dimensional X-ray diffraction parameter w obtained by substituting the half-value width B, the central angle α, and the X-ray diffraction intensity half-value width B 0 by the apparatus into the equation (1), the plastic strain or hardness of the measurement object 104 To evaluate.
 図1(b)は、本発明による塑性ひずみまたは硬さの評価システムの構成を示すブロック図である。画像解析装置110は、X線計測装置100の結果よりX線の入射の中心位置を求めるX線入射中心算出部112、X線回折強度の半値幅および中心角を求めるX線回折強度/中心角算出部113、数式(1)で定義される二次元X線回折パラメータを求める二次元X線回折パラメータ算出部114、二次元X線回折パラメータwと塑性ひずみまたは硬さとの関係を表すマスター線図を作成するマスター線図作成部115および塑性ひずみ/硬さ算出部116を備える。また、キーボード等の入力装置118、結果を表示する表示装置119も備えている。 FIG. 1B is a block diagram showing the configuration of a plastic strain or hardness evaluation system according to the present invention. The image analysis apparatus 110 includes an X-ray incidence center calculation unit 112 that obtains the X-ray incidence center position from the result of the X-ray measurement apparatus 100, and an X-ray diffraction intensity / center angle that obtains a half-value width and a center angle of the X-ray diffraction intensity. A calculation unit 113, a two-dimensional X-ray diffraction parameter calculation unit 114 for obtaining a two-dimensional X-ray diffraction parameter defined by Equation (1), a master diagram representing a relationship between the two-dimensional X-ray diffraction parameter w and plastic strain or hardness Are provided with a master diagram creation unit 115 and a plastic strain / hardness calculation unit 116. Further, an input device 118 such as a keyboard and a display device 119 for displaying the results are also provided.
 図2は、本発明の実施形態における、測定対象物の表面加工層の塑性ひずみを、非破壊的に評価する方法のフロー図である。このフロー図は、2つの部分、すなわち「マスター線図の作成」と「実際の測定」とに分けられる。「マスター線図の作成」では、マスター線図を作成し、「実際の測定」では、X線回折法により得たX線回折パラメータと作成したマスター線図とを用いて、測定対象物の塑性ひずみを評価する。マスター線図を作成する方法には複数の方法があるが、図2には、そのうちの1つを示している。以下、図2に示した方法を、「マスター線図を作成する手順」として説明する。
1.マスター線図を作成する手順
 マスター線図を作成する手順として、二次元X線回折パラメータwと塑性ひずみまたは硬さとの相関性を関数化する手順を説明する。マスター線図は、二次元X線回折パラメータwと塑性ひずみまたは硬さとの相関性を関数化したものである。したがって、二次元X線回折パラメータwと塑性ひずみまたは硬さとの関係を求めて、マスター線図を作成する。
(1)装置による半価幅B0の測定
 X線の回折強度の半価幅は、格子ひずみや粒径などを反映するパラメータであるが、半価幅の実測値に測定装置の構造や光学系などに影響される成分も含まれている。そのため、半価幅の実測値Bから装置による半価幅B0を分離する必要がある。装置による半価幅B0を測定するため、無ひずみ状態の測定対象物を利用して、その回折強度の半価幅を装置によるB0とする。ただし、B0の測定値は、入射X線の発散角から影響を受けるため、その測定値は照射領域サイズφおよび照射距離lに依存する。測定対象物の半価幅Bを実測するときと同じ照射領域サイズφおよび照射距離lで装置による半価幅B0を測定しなければならない。汎用性を考慮すれば、予め複数の照射領域サイズφおよび照射距離lで装置による半価幅B0を測定しておくことが好ましい。
FIG. 2 is a flowchart of a method for nondestructively evaluating the plastic strain of the surface processed layer of the measurement object in the embodiment of the present invention. This flow diagram is divided into two parts: “Create Master Diagram” and “Actual Measurement”. In “Create Master Diagram”, create a master diagram, and in “Actual Measurement”, use the X-ray diffraction parameters obtained by the X-ray diffraction method and the created master diagram to determine the plasticity of the measurement object. Evaluate strain. There are a plurality of methods for creating a master diagram, and FIG. 2 shows one of them. Hereinafter, the method illustrated in FIG. 2 will be described as “a procedure for creating a master diagram”.
1. Procedure for Creating Master Diagram A procedure for functionalizing the correlation between the two-dimensional X-ray diffraction parameter w and plastic strain or hardness will be described as a procedure for creating a master diagram. The master diagram is a function of the correlation between the two-dimensional X-ray diffraction parameter w and plastic strain or hardness. Therefore, a master diagram is created by obtaining the relationship between the two-dimensional X-ray diffraction parameter w and plastic strain or hardness.
(1) Measurement of half-value width B 0 by the apparatus The half-value width of the diffraction intensity of X-rays is a parameter that reflects lattice distortion, particle size, etc. Components that are affected by the system are also included. Therefore, it is necessary to separate the half-value width B 0 by the apparatus from the actually measured half-value width B. In order to measure the half-value width B 0 by the apparatus, the half-value width of the diffraction intensity is set to B 0 by the apparatus using a measurement object in an unstrained state. However, since the measured value of B 0 is affected by the divergence angle of incident X-rays, the measured value depends on the irradiation region size φ and the irradiation distance l. The half width B 0 by the apparatus must be measured at the same irradiation area size φ and irradiation distance l as when the half width B of the measurement object is actually measured. In consideration of versatility, it is preferable to measure the half width B 0 by the apparatus in advance with a plurality of irradiation region sizes φ and irradiation distances l.
 なお、図3に半価幅Bを測定する際の光学系模式図を示す。X線を照射するX線管球1、回折X線を検出する二次元X線検出器2、測定対象物4、入射X線6、回折X線7および測定対象物の二次元回折斑点8の関係は図3に示した通りである。本発明は、不連続の回折斑点の中心角αをパラメータとして検出するため、照射領域に囲まれ回折に寄与する結晶数の上限や結晶の方向性が要求される。実際材料の結晶粒径や結晶の方向性に応じて、照射領域サイズφを調整することにより、照射領域に囲まれ回折に寄与する結晶数を数百個以下にすることが望ましい。一般的には照射領域サイズφ2mm以下にするのが推奨される。X線の強度および材料のX線吸収能力を考慮して、X線照射距離lを10~30mmに設定することが好ましい。一般金属の場合は、入射X線の侵入深さは10μm程度である。しかし、X線回折強度は材料による吸収の影響を受ける。また、材料による吸収は、侵入経路長さに依存するため、わずかの侵入経路長さの違いで、X線回折強度が異なる。そのため、二次元X線回折環の円周方向において、全て回折箇所のX線回折強度に対応する材料内部の侵入経路長さを一定にするため、入射X線6を垂直に測定対象物の表面に入射し回折X線7を得えらなければならない。ただし、垂直にX線を入射しない場合でも測定は可能だが、その場合にはX線回折強度の補正が必要になる。 
 図4に入射中心O点の位置を測定するときの光学系模式図に示す。入射中心O点の位置を求めるため、無ひずみ状態の標準粉末試料5が用いられる。ブラッグの条件を満足する結晶からの回折現象を利用して、式(2)に示す関係から、回折面間隔dに対応した回折角θが決められる。そこで、標準粉末試料の場合は、X線波長λおよび標準粉末試料の適切な回折面間隔dから回折角2θ0が既知となる。
In addition, the optical system schematic diagram at the time of measuring the half width B in FIG. 3 is shown. X-ray tube 1 for irradiating X-rays, two-dimensional X-ray detector 2 for detecting diffracted X-rays, measurement object 4, incident X-rays 6, diffracted X-rays 7 and two-dimensional diffraction spots 8 of the measurement object The relationship is as shown in FIG. In the present invention, since the central angle α of the discontinuous diffraction spots is detected as a parameter, the upper limit of the number of crystals that are surrounded by the irradiation region and contributes to diffraction and the crystal orientation are required. It is desirable that the number of crystals that are surrounded by the irradiation region and contribute to diffraction is adjusted to several hundred or less by adjusting the irradiation region size φ in accordance with the crystal grain size and crystal orientation of the actual material. In general, it is recommended that the irradiation area size is 2 mm or less. In consideration of the X-ray intensity and the X-ray absorption ability of the material, the X-ray irradiation distance 1 is preferably set to 10 to 30 mm. In the case of a general metal, the penetration depth of incident X-rays is about 10 μm. However, the X-ray diffraction intensity is affected by absorption by the material. Further, since absorption by the material depends on the penetration path length, the X-ray diffraction intensity varies depending on a slight difference in the penetration path length. For this reason, in the circumferential direction of the two-dimensional X-ray diffraction ring, in order to make the penetration path length inside the material corresponding to the X-ray diffraction intensity of all diffraction points constant, the incident X-ray 6 is perpendicular to the surface of the measurement object. And diffracted X-rays 7 must be obtained. However, measurement is possible even when X-rays are not incident vertically, but in that case, correction of the X-ray diffraction intensity is necessary.
FIG. 4 is a schematic diagram of an optical system when the position of the incident center O point is measured. In order to obtain the position of the incident center O point, a standard powder sample 5 in an unstrained state is used. Using the diffraction phenomenon from the crystal that satisfies the Bragg condition, the diffraction angle θ corresponding to the diffractive surface interval d is determined from the relationship shown in Equation (2). Therefore, in the case of the standard powder sample, the diffraction angle 2θ 0 is known from the X-ray wavelength λ and the appropriate diffraction surface interval d of the standard powder sample.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図5に二次元X線回折器に記録した標準粉末試料の二次元回折環9の模式図を示す。標準粉末試料の二次元回折環9において、複数最大輝度点を検知して、図中白い線で示す最小二乗法で近似円を決定できる。この近似円の円心Oを入射中心とすると、半径RPが測定できる。 FIG. 5 shows a schematic diagram of the two-dimensional diffraction ring 9 of the standard powder sample recorded in the two-dimensional X-ray diffractometer. In the two-dimensional diffraction ring 9 of the standard powder sample, a plurality of maximum luminance points can be detected, and an approximate circle can be determined by the least square method indicated by a white line in the figure. If the center O of the approximate circle is the incident center, the radius R P can be measured.
 ここで、回折X線の回折角や回折強度を記録するための検出器としては、二次元の位置敏感型比例計数管(PSPC:position sensitive proportional counter)、またはイメージングプレート(IP:imaging plate)を代表とする輝尽性蛍光体を二次元X線検出器に適用した検出器を用いる。これらは、短時間で広い範囲の回折情報を取得できるからである。 Here, as a detector for recording the diffraction angle and diffraction intensity of diffracted X-rays, a two-dimensional position-sensitive proportional counter (PSPC) or imaging plate (IP) is used. A detector in which a representative photostimulable phosphor is applied to a two-dimensional X-ray detector is used. This is because a wide range of diffraction information can be acquired in a short time.
 上記二次元の位置敏感型比例計数管は、検出面においてX線の受光位置が判定できるX線検出器である。回折強度曲線を測定する際に、検出器を走査させる必要はない。さらに、X線エネルギーを電気信号に変換して、画像処理回路により二次元的にX線回折強度を計測することができる。 The two-dimensional position sensitive proportional counter is an X-ray detector that can determine the X-ray receiving position on the detection surface. It is not necessary to scan the detector when measuring the diffraction intensity curve. Further, the X-ray energy can be converted into an electric signal, and the X-ray diffraction intensity can be measured two-dimensionally by the image processing circuit.
 上記イメージングプレートは、輝尽発光体(BaFX:Eu2+、X=Br、I)を塗布したフィルムである。X線をイメージングプレートに照射すると、蛍光体中に準安定な一種の着色中心が形成される。その後、読み取り装置で蛍光体にレーザー光を照射すると、蛍光体に貯えられていたX線エネルギーは、蛍光として放出される。蛍光面上でレーザーを二次元的走査して、発生する蛍光を光電子増倍管で時系列信号として測定すれば、蛍光面上に記録されたX線情報を読み出すことができる。また、イメージングプレートは、可視光で感光させると着色中心が消去されるので、繰り返し使用することが可能である。 The imaging plate is a film coated with a photostimulable luminescent material (BaFX: Eu2 +, X = Br, I). When the imaging plate is irradiated with X-rays, a kind of metastable colored center is formed in the phosphor. Thereafter, when the phosphor is irradiated with laser light by the reading device, the X-ray energy stored in the phosphor is emitted as fluorescence. X-ray information recorded on the fluorescent screen can be read by scanning the laser on the fluorescent screen two-dimensionally and measuring the generated fluorescence as a time-series signal with a photomultiplier tube. The imaging plate can be used repeatedly because the colored center is erased when exposed to visible light.
 位置敏感型二次元X線検出器の場合は、検出器とX線管球が固定式であるため、初期一回の測定で入射中心O点の座標を決めると、実際測定のとき改めて標準粉末を利用して入射中心O点を求める必要がない。一方、測定ごとに取り替える必要のあるイメージングプレート検出器の場合は、毎度測定する際に、測定対象物と同一のイメージングプレートに標準粉末試料の回折環を記録して入射中心O点の座標を測定する必要がある。 In the case of a position-sensitive two-dimensional X-ray detector, the detector and the X-ray tube are fixed. Therefore, if the coordinates of the incident center O point are determined in one initial measurement, the standard powder will be used again during the actual measurement. It is not necessary to obtain the incident center O point using. On the other hand, in the case of an imaging plate detector that needs to be replaced for each measurement, the diffraction center of the standard powder sample is recorded on the same imaging plate as the object to be measured and the coordinates of the incident center O point are measured. There is a need to.
 図6にイメージングプレート二次元X線検出器3を用いた場合の光学系を示す。X線を二回照射することにより、同一イメージングプレートにおいて標準粉末試料と測定対象物の回折環を記録する。 FIG. 6 shows an optical system when the imaging plate two-dimensional X-ray detector 3 is used. By irradiating twice with X-rays, the diffraction rings of the standard powder sample and the measurement object are recorded on the same imaging plate.
 二次元X線検出器上記録された入射中心O点に対する半径方向のX線回折強度Iラインプロファイルは距離sに対するものであるため、回折角度の半価幅Bを求めるため、式(3)に示すように、距離座標sを回折角2θ座標に変換しなければならない。 Since the X-ray diffraction intensity I-line profile in the radial direction with respect to the incident center O point recorded on the two-dimensional X-ray detector is relative to the distance s, the half-value width B of the diffraction angle is obtained by Equation (3). As shown, the distance coordinate s must be converted to a diffraction angle 2θ coordinate.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 回折角2θ座標に対するX線回折強度プロファイル曲線からバックグラウンドを差し引き、X線回折強度曲線の関数近似を行い、半価幅Bを決定する。半価幅Bの求め方は、公知の「半価幅法」または「関数近似法」がある。 The half-value width B is determined by subtracting the background from the X-ray diffraction intensity profile curve with respect to the diffraction angle 2θ coordinate and performing function approximation of the X-ray diffraction intensity curve. The half-value width B is obtained by a known “half-value width method” or “function approximation method”.
 図7に「半価幅法」を示す。測定で得られたX線回折強度プロファイル曲線において、直接にX線回折強度の最大値の半分のレベルにある二点の回折角の差分を半価幅Bとする。 Fig. 7 shows the "half-value width method". In the X-ray diffraction intensity profile curve obtained by the measurement, a half-value width B is a difference between diffraction angles at two points that are directly at a half level of the maximum value of the X-ray diffraction intensity.
 「関数近似法」の場合は、測定で得られたX線回折強度プロファイル曲線に対して、関数近似を行い、その後、半価幅Bを求める。関数近似は、公知のガウス曲線、ローレンツ曲線および擬似Voigt関数のうち、いずれか1つを用いれば良い。 In the case of the “function approximation method”, function approximation is performed on the X-ray diffraction intensity profile curve obtained by measurement, and then the half width B is obtained. For function approximation, any one of known Gaussian curves, Lorentz curves, and pseudo-Voigt functions may be used.
 ガウス曲線で近似したX線回折強度曲線IGは、式(4)で表される。このとき、積分幅B’(積分強度をピーク強度で割った値)を式(5)で求めることもできる。ここで、Jは積分強度、2θΨはピーク位置である。 An X-ray diffraction intensity curve I G approximated by a Gaussian curve is expressed by Expression (4). At this time, the integral width B ′ (a value obtained by dividing the integral intensity by the peak intensity) can also be obtained by Expression (5). Here, J is the integrated intensity, the 2 [Theta] [psi is the peak position.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ローレンツ曲線で近似したX線回折強度曲線ILは、式(6)で表される。このとき、積分幅B’は、式(7)で求められる。ここで、Jは積分強度、2θΨはピーク位置である。 An X-ray diffraction intensity curve I L approximated by a Lorentz curve is expressed by Expression (6). At this time, the integral width B ′ is obtained by Expression (7). Here, J is the integrated intensity, the 2 [Theta] [psi is the peak position.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 擬似Voigt関数で近似したX線回折強度曲線IVは、IGとILを用いて、式(8)で表される。ここで、ηはガウス度を示す。 An X-ray diffraction intensity curve I V approximated by a pseudo-Voigt function is expressed by Expression (8) using I G and I L. Here, η indicates a Gaussian degree.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 また、図5に示す回折強度プロファイルの幅SRは、一般的に式(9)に示す簡易的な関係がある。 Further, the width S R of the diffraction intensity profile shown in FIG. 5 generally has a simple relationship represented by the equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 つまり、式(1)に示す二次元X線回折パラメータwの変数である半価幅Bの代替パラメータとして、積分幅B’または回折強度プロファイルの幅SRも用いられる。 That is, the integration width B ′ or the diffraction intensity profile width S R is also used as an alternative parameter for the half-value width B, which is a variable of the two-dimensional X-ray diffraction parameter w shown in Expression (1).
 以上の方法にしたがい、無ひずみ状態の標準粉末を用いれば装置による半価幅B0を測定できる。
(2)引張試験により塑性ひずみの導入
 引張試験の妥当性を考慮するために、試験片の作成および引張試験の条件は、JIS Z2241(1998)の規定にしたがう方が望ましい。また、試験片のバラツキを考慮するためには、同一材料から複数の試験片を製作し、それぞれの試験片においてひずみゲージを設置する。対して、引張試験により塑性ひずみを導入して、ひずみゲージの出力で除荷後の残留ひずみεPを測定する。さらに、各試験片のビッカース硬さHVを測定する。一般的に金属材料の場合は、塑性ひずみの上昇につれて硬さも上昇する。これは、加工硬化と想定される。
  試験片表面の加工履歴もX線回折パラメータに影響を与える。このため、本方法を用いる際には、電解研磨などで表面層を数十μmから数百μmだけ除去してから引張り試験を行なうのが好ましい。
According to the above method, the half width B 0 by the apparatus can be measured by using a standard powder in an unstrained state.
(2) Introduction of plastic strain by tensile test In order to consider the validity of the tensile test, it is preferable that the conditions of the preparation of the test piece and the tensile test comply with the provisions of JIS Z2241 (1998). Moreover, in order to consider the variation of a test piece, several test pieces are manufactured from the same material, and a strain gauge is installed in each test piece. On the other hand, plastic strain is introduced by a tensile test, and the residual strain ε P after unloading is measured by the output of the strain gauge. Furthermore, the Vickers hardness HV of each test piece is measured. In general, in the case of a metal material, the hardness increases as the plastic strain increases. This is assumed to be work hardening.
The processing history of the specimen surface also affects the X-ray diffraction parameters. For this reason, when using this method, it is preferable to perform a tensile test after removing the surface layer by several tens to several hundreds of μm by electrolytic polishing or the like.
 高い塑性ひずみ範囲では、試験片表面の凹凸および高い転位密度がX線回折強度に影響を与えるため、一般的に塑性ひずみが小さい範囲では、半価幅Bおよび回折斑点の中心角αの変化は塑性ひずみに対する敏感性が高い。そのため、塑性ひずみの間隔は、塑性ひずみの小さいレベルにおいては、大きいレベルよりも比較的細かめに設定する方が望ましい。例えば、塑性ひずみが0~10%では1~2%間隔で、10~20%では4~5%間隔で、それぞれ塑性ひずみを試験片に導入する。ただし、材料物性により塑性ひずみの範囲が異なるため、実際の材料に応じて塑性ひずみの間隔を設定することが必要である。また、顕著な回折斑点の中心角αの変化を検出するため、本発明は塑性ひずみによる回折斑点の中心角αの敏感性の高い、集合組織材料や粗大結晶材料の塑性ひずみ評価への応用が望ましい。本願では、集合組織材料とは溶接金属や鋳物等のような、結晶成長に方向性がある材料のことをいい、粗大結晶材料とは、結晶粒界20μm以上の材料をいう。
(3)二次元X線回折パラメータw の計算
 図8に二次元X線回折パラメータwの計算方法を示す。図中の半価幅Bの測定方法は、前述した装置による半価幅B0の測定方法と同様である。なお、回折斑点の中心角αを計測するためには、各回折斑点の円周方向の両端範囲を指定する必要がある。一般的には、回折強度からバックグラウンドを差し引いた範囲を回折斑点の範囲として良いが、溶接金属のような鮮明な回折強度が得られない場合は、例えば、「最大強度の25%以上の強度を持つ箇所を回折斑点とする」のような回折強度にフィルタリングを実施することにより、回折斑点の範囲を指定することもできる。
In the high plastic strain range, the unevenness of the specimen surface and the high dislocation density affect the X-ray diffraction intensity. Therefore, in general, in the range where the plastic strain is small, the change in the half width B and the central angle α of the diffraction spot is High sensitivity to plastic strain. Therefore, it is desirable to set the interval between plastic strains to be relatively fine at a level with a small plastic strain, rather than at a large level. For example, plastic strain is introduced into the test piece at intervals of 1 to 2% when the plastic strain is 0 to 10%, and at intervals of 4 to 5% when 10 to 20%. However, since the plastic strain range varies depending on the material properties, it is necessary to set the plastic strain interval according to the actual material. In addition, in order to detect a change in the central angle α of a remarkable diffraction spot, the present invention can be applied to plastic strain evaluation of a textured material or a coarse crystal material with high sensitivity of the central angle α of the diffraction spot due to plastic strain. desirable. In the present application, the texture material refers to a material having directionality in crystal growth, such as a weld metal or casting, and the coarse crystal material refers to a material having a grain boundary of 20 μm or more.
(3) Calculation of two-dimensional X-ray diffraction parameter w 1 FIG. 8 shows a calculation method of the two-dimensional X-ray diffraction parameter w. The method for measuring the half-value width B in the drawing is the same as the method for measuring the half-value width B 0 using the above-described apparatus. In order to measure the central angle α of the diffraction spots, it is necessary to designate both end ranges in the circumferential direction of each diffraction spot. In general, a range obtained by subtracting the background from the diffraction intensity may be used as the diffraction spot range. However, when a clear diffraction intensity such as a weld metal cannot be obtained, for example, “intensity of 25% or more of the maximum intensity” The range of the diffraction spots can be specified by performing filtering on the diffraction intensity such as “use a spot having a diffraction spot”.
 図8中では、各回折斑点の中心角αiが十分小さい、かつ各回折斑点の半径方向における半価幅Biと仮定すると、二次元X線回折パラメータwは式(10)で計算できる。 In FIG. 8, assuming that the central angle α i of each diffraction spot is sufficiently small and the half-value width B i in the radial direction of each diffraction spot, the two-dimensional X-ray diffraction parameter w can be calculated by Expression (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
(4)二次元X線回折パラメータと塑性ひずみまたは硬さの関数化
 各塑性ひずみεPで得られた二次元X線回折パラメータwにおいて関数近似により、εP=f(w)の関数化を行なう。この関数εP=f(w)を基に、X線回折パラメータと塑性ひずみεPとの関係を表すマスター線図w-εPを作成することができる。
(4) Functionalization of two-dimensional X-ray diffraction parameters and plastic strain or hardness By functional approximation of two-dimensional X-ray diffraction parameters w obtained for each plastic strain ε P , ε P = f (w) is functionalized. Do. Based on this function ε P = f (w), a master diagram w-ε P representing the relationship between the X-ray diffraction parameter and the plastic strain ε P can be created.
 同様に各塑性ひずみεPを導入した後のビッカース硬さHVと二次元X線回折パラメータwにおいて関数近似により、HV=g(w)の関数化を行なう。この関数HV=g(w)を基に、X線回折パラメータとビッカース硬さHVとの関係を表すマスター線図w-HVを作成することができる。
2.塑性ひずみまたは硬さの評価(実際の測定)
 測定対象物の測定により得られた二次元X線回折パラメータwを、マスター線図w-εPおまたはマスター線図w-HVにプロットすることにより、測定対象物の塑性ひずみεPまたはHVを非破壊的に評価することが可能である。
(1)測定対象物の表面において二次元X線回折を測定する。
(2)画像処理プログラムにより二次元X線回折斑点から、半価幅Bおよび中心角αを測定し、式(1)によりwを求める。
(3)求めた二次元X線回折パラメータwを、測定対象物の同材のマスター線図w-εPまたはマスター線図w-HVにプロットすることによって、測定対象物の表面加工層の塑性ひずみεPまたはビッカース硬さHVを非破壊的に見積もることが可能である。
3.評価システム
3.1 二次元X線検出器
 位置敏感型二次元X線検出器、またはイメージングプレートを用いた二次元検出を本システムの二次元X線検出器として利用できる。
Similarly, HV = g (w) is functionalized by function approximation in the Vickers hardness HV and the two-dimensional X-ray diffraction parameter w after introducing each plastic strain ε P. Based on this function HV = g (w), a master diagram w-HV representing the relationship between the X-ray diffraction parameters and the Vickers hardness HV can be created.
2. Evaluation of plastic strain or hardness (actual measurement)
By plotting the two-dimensional X-ray diffraction parameter w obtained by measuring the measurement object on the master diagram w-ε P or the master diagram w-HV, the plastic strain ε P or HV of the measurement object is obtained. It is possible to evaluate non-destructively.
(1) Two-dimensional X-ray diffraction is measured on the surface of the measurement object.
(2) The half-value width B and the central angle α are measured from the two-dimensional X-ray diffraction spots by an image processing program, and w is obtained from the equation (1).
(3) By plotting the obtained two-dimensional X-ray diffraction parameter w on the master diagram w-ε P or master diagram w-HV of the same material of the measurement object, the plasticity of the surface processed layer of the measurement object It is possible to estimate the strain ε P or the Vickers hardness HV nondestructively.
3. Evaluation System 3.1 Two-dimensional X-ray Detector A position-sensitive two-dimensional X-ray detector or two-dimensional detection using an imaging plate can be used as the two-dimensional X-ray detector of this system.
 位置敏感型二次元X線検出器の場合は、検出器とX線管球が固定式であるため、無ひずみ状態の標準粉末試料を用いて初期一回の測定で入射中心O点の座標を決めれば、実際測定する時に再び無ひずみ状態の標準粉末試料を測定する必要がない。 In the case of a position-sensitive two-dimensional X-ray detector, the detector and the X-ray tube are fixed, so the coordinates of the incident center O point can be determined by one initial measurement using an unstrained standard powder sample. If it is determined, there is no need to measure a standard powder sample in an unstrained state again when actually measuring.
 イメージングプレートを用いた二次元X線検出器は、位置敏感型二次元X線検出器より安価で製作しやすいが、取り替え式の構造を持つ場合は、毎度測定対象物と同一のイメージングプレートに標準粉末試料の回折環を記録して入射中心O点の座標を測定する必要がある。 A two-dimensional X-ray detector using an imaging plate is cheaper and easier to manufacture than a position-sensitive two-dimensional X-ray detector, but if it has a replaceable structure, it is standard on the same imaging plate as the measurement object each time. It is necessary to record the diffraction ring of the powder sample and measure the coordinates of the incident center O point.
 また、実際測定環境の幾何条件(例えば、狭隘な場所)に応じて、二次元X線回折環の一部のみ測定できるように、X線入射中心と二次元X線検出器を非対称の配置で構成する非対称型二次元X線検出器10を用いることも可能である。ただし、この場合は、全周中心角範囲2πで得られたマスター線図w-εPまたはw-HVを利用するときに、実際に測定した二次元X線回折パラメータwを、測定対象物の回折斑点の中心角αの積分範囲が全周中心角範囲2πに占める割合で割ることにより補正する必要がある。例えば、図9の場合は、測定対象物の回折斑点の中心角αの積分範囲はπであるため、全周中心角範囲2πで得られたマスター線図にプロットするときに、w実測値の2倍で補正する。
3.2 画像処理アルゴリズム
 精度の高い測定を実現するため、回折斑点の中心角αの積分範囲でなるべく多くの半径方向における半価幅Bを測定する必要がある。例えば、αを1(deg)間隔での微小中心角に対応する半価幅Bを測定する。このような大量な測定を効率的に演算するための画像処理アルゴリズムが必要である。また、バックグラウンドを除去するために、X線回折強度にフィルタリング機能も望ましい。
4.実用性
 本発明は、二次元X線回折パラメータを用いて、測定対象物の塑性ひずみまたは硬さを測定することにより、表面加工度を非破壊的に評価する。このため、本評価方法は、破壊によるサンプリングが不可能な実構造物や完成品への適用が可能である。また、測定した二次元X線回折パラメータを、評価基準として予め用意した二次元X線回折パラメータと塑性ひずみまたは硬さとの関係を表す関数に代入するだけで、塑性ひずみまたは硬さを評価できる。このため、測定場所での迅速な表面加工度の評価が期待され、量産製品のバラツキを考慮した大量測定にも利用できる。
In addition, the X-ray incident center and the two-dimensional X-ray detector are arranged asymmetrically so that only a part of the two-dimensional X-ray diffraction ring can be measured according to the geometric conditions of the actual measurement environment (for example, a narrow place). It is also possible to use the asymmetric type two-dimensional X-ray detector 10 which comprises. However, in this case, when using the master diagram w-ε P or w-HV obtained in the whole circumference central angle range 2π, the actually measured two-dimensional X-ray diffraction parameter w is changed to It is necessary to correct by dividing the integral range of the central angle α of the diffraction spots by the ratio of the entire peripheral central angle range 2π. For example, in the case of FIG. 9, since the integration range of the central angle α of the diffraction spot of the measurement object is π, when plotting on the master diagram obtained in the entire circumference central angle range 2π, Correct by 2 times.
3.2 Image Processing Algorithm In order to realize highly accurate measurement, it is necessary to measure the half-value width B in as many radial directions as possible within the integration range of the central angle α of the diffraction spots. For example, the half-value width B corresponding to the minute center angle at intervals of 1 (deg) is measured for α. An image processing algorithm for efficiently calculating such a large amount of measurement is required. Also, a filtering function is desirable for X-ray diffraction intensity in order to remove background.
4). Practicality In the present invention, the degree of surface processing is evaluated nondestructively by measuring the plastic strain or hardness of a measurement object using a two-dimensional X-ray diffraction parameter. Therefore, this evaluation method can be applied to actual structures and finished products that cannot be sampled due to destruction. Also, the plastic strain or hardness can be evaluated simply by substituting the measured two-dimensional X-ray diffraction parameter into a function representing the relationship between the two-dimensional X-ray diffraction parameter prepared in advance as an evaluation criterion and the plastic strain or hardness. For this reason, prompt evaluation of the degree of surface processing at the measurement location is expected, and it can be used for mass measurement in consideration of variations in mass-produced products.
 また、表面加工度が大きいほどSCC発生感受性が高い材料(例えば、SUS316Lのような非鋭敏化オーステナイトステンレス鋼)のSCC発生感受性評価への応用も期待される。 Further, as the degree of surface processing increases, application of the material having higher SCC generation sensitivity (for example, non-sensitized austenitic stainless steel such as SUS316L) to the SCC generation sensitivity evaluation is also expected.
 本実施例2では、グラインダーを施工したNi基溶接金属DNiCrFe-1J(JIS Z 3224)の測定対象物において、塑性ひずみおよび硬さを測定した。 In Example 2, plastic strain and hardness were measured on a measurement object of a Ni-based weld metal DNiCrFe-1J (JIS Z 3224) on which a grinder was applied.
 マスター線図の作成として、Ni基溶接金属DNiCrFe-1Jから、複数の引張試験片を製作した。表面仕上げにより残量した表面加工層を除去するために、電解研磨で表面から50μm深さまで研磨した後、870℃で2時間の応力緩和熱処理を実施した。引張試験はJIS Z 2241(1998)の規格にしたがって引張試験を行い、0%、0.5%、1.0%、1.8%、3.8%、6.0%、10.0%、14.7%、19.8%、24.8%および29.6%の塑性ひずみεPをそれぞれ導入した。引張試験後、硬さ測定機でビッカースビッカース硬さHVを測定した。硬さ測定の負荷荷重は1kgfで、負荷時間が20secである。表1にそれぞれの試験片におけるビッカース硬さHVの値を示す。 As a master diagram, a plurality of tensile test pieces were manufactured from the Ni-base weld metal DNiCrFe-1J. In order to remove the remaining surface processed layer by the surface finishing, the surface was polished by electrolytic polishing to a depth of 50 μm and then subjected to stress relaxation heat treatment at 870 ° C. for 2 hours. The tensile test is performed according to the standard of JIS Z 2241 (1998), and is 0%, 0.5%, 1.0%, 1.8%, 3.8%, 6.0%, 10.0% 14.7%, 19.8%, 24.8% and 29.6% of plastic strain ε P were introduced, respectively. After the tensile test, the Vickers Vickers hardness HV was measured with a hardness measuring machine. The load for hardness measurement is 1 kgf, and the load time is 20 sec. Table 1 shows the value of Vickers hardness HV in each test piece.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 図6に測定の光学系の模式図を示す。二次元X線検出器にはイメージングプレートを用いた。X線照射領域φ=1mm、照射距離l=20mm、照射時間を10minにした。X線管球はMnで、出力は17kV、1.5mAである。Mn_Kαの特性X線波長を利用して、λは2.10314×10-10mである。Ni基合金の回折面は(311)面で、回折角のピークいちの理論値2θΨ=163.575(deg)である。照射試験後のイメージングプレートは、GEヘルスケア・ジャパン株式会社製の画像解析装置Typhoon FLA9000でX線回折パターンを読み取った。解像度は25μm/Pixelである。X線入射中心O点を求めるために、完全焼鈍を実施したCu粉末を標準粉末試料として引張試験片の表面に塗布して、引張試験片と同一イメージングプレートに二次元回折環を記録した。Cu粉末は(311)面で、回折角のピーク位置2θ0=149.518(deg)である。 FIG. 6 shows a schematic diagram of the measurement optical system. An imaging plate was used for the two-dimensional X-ray detector. X-ray irradiation region φ = 1 mm, irradiation distance 1 = 20 mm, and irradiation time were 10 min. The X-ray tube is Mn, and the output is 17 kV and 1.5 mA. Using the characteristic X-ray wavelength of Mn_Kα, λ is 2.10314 × 10 −10 m. The diffraction surface of the Ni-based alloy is the (311) plane, and the theoretical value 2θ Ψ = 163.575 (deg) of the peak of the diffraction angle. The imaging plate after the irradiation test was read with an X-ray diffraction pattern using an image analysis apparatus Typhoon FLA9000 manufactured by GE Healthcare Japan. The resolution is 25 μm / Pixel. In order to obtain the X-ray incident center O point, Cu powder subjected to complete annealing was applied as a standard powder sample to the surface of a tensile test piece, and a two-dimensional diffraction ring was recorded on the same imaging plate as the tensile test piece. The Cu powder has a (311) plane and a diffraction angle peak position 2θ 0 = 149.518 (deg).
 まず、εP=0%の試験片を利用して、装置による半価幅B0を測定した。半価幅B0は2.27(deg)である。 First, the half width B 0 by the apparatus was measured using a test piece with ε P = 0%. The half width B 0 is 2.27 (deg).
 ついで、各試験片の二次元X線回折パラメータwを求める。図10(a)に代表例として、εP=0%およびεP=6.0%の試験片の二次元X線回折環を示す(輝度を反転処理した)。溶接金属は集合組織や粗大結晶を有するため、不連続な二次元X線回折が現れている。図10(b)に画像処理アルゴリズムによる解析方法を示す。Cu粉末の二次元X線回折環において最大輝度点を検出して、画像処理アルゴリズムにより、最小二乗法でCu粉末の二次元X線回折環の近似円(図10(b)中の黒い破線)を求め、この近似円の円心OをX線入射中心とした。O点に対する中心角αを1(deg)間隔で0~360 (deg)の全円周範囲において、前述した求める方法により半径方向の半価幅Bを求めた。回折強度からバックグラウンドを差し引くため、最大強度の25%以上の強度を持つ箇所を解析範囲とするように、回折強度にフィルタリングを実施した。図10(b)中の白実線は、フィルタリングにより抽出した解析範囲中の最大輝度位置Pを示す。解析範囲での回折斑点中心角α合計は、εP=0%の試験片は62 (deg)であるが、εP=6.0%の試験片は154(deg)である。塑性ひずみの上昇につれて、中心角の増加が顕著に現れている。以上の解析から、式(11)によりwが計算される。ここのBαは中心角αにおける半径方向の半価幅である。nは判定係数であり、解析範囲内の場合はn=1、解析範囲外の場合はn=0と定義される。計算されたwの単位はdeg2である。 Next, a two-dimensional X-ray diffraction parameter w of each test piece is obtained. As a representative example, FIG. 10A shows a two-dimensional X-ray diffraction ring of a test piece with ε P = 0% and ε P = 6.0% (intensity is inverted). Since the weld metal has a texture and coarse crystals, discontinuous two-dimensional X-ray diffraction appears. FIG. 10B shows an analysis method using an image processing algorithm. The maximum luminance point is detected in the two-dimensional X-ray diffraction ring of the Cu powder, and an approximate circle of the two-dimensional X-ray diffraction ring of the Cu powder by the least square method by the image processing algorithm (black broken line in FIG. 10B) And the center O of this approximate circle was taken as the X-ray incident center. The full width at half maximum B in the radial direction was determined by the above-described method in the entire circumferential range of 0 to 360 (deg) with the central angle α with respect to the point O being 1 (deg). In order to subtract the background from the diffraction intensity, filtering was performed on the diffraction intensity so that a portion having an intensity of 25% or more of the maximum intensity was an analysis range. A solid white line in FIG. 10B indicates the maximum luminance position P in the analysis range extracted by filtering. The total diffraction spot central angle α in the analysis range is 62 (deg) for the test piece with ε P = 0%, but 154 (deg) for the test piece with ε P = 6.0%. As the plastic strain increases, the increase in the central angle is noticeable. From the above analysis, w is calculated by Equation (11). Here, B α is the half width in the radial direction at the central angle α. n is a determination coefficient, and is defined as n = 1 when within the analysis range, and n = 0 when outside the analysis range. The calculated unit of w is deg 2 .
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 図11および図12に、それぞれ本実施例で測定した二次元X線回折パラメータwと塑性ひずみεPおよびビッカース硬さHVの相関線図を示す。二次元X線回折パラメータwと塑性ひずみεPの関係を表す関数は、最小二乗法で、εP=0.0014w2 -0.0468w+0.8836に近似した。二次元X線回折パラメータwとビッカース硬さHVの関係を表す関数は、最小二乗法で、HV=0.0024w2 +0.2866w+211.07に近似した。以上の関数をマスター線図とする。 FIG. 11 and FIG. 12 show correlation diagrams of the two-dimensional X-ray diffraction parameter w, the plastic strain ε P and the Vickers hardness HV measured in this example, respectively. A function representing the relationship between the two-dimensional X-ray diffraction parameter w and the plastic strain ε P was approximated to ε P = 0.0014w 2 −0.0468w + 0.8836 by the least square method. A function representing the relationship between the two-dimensional X-ray diffraction parameter w and the Vickers hardness HV was approximated to HV = 0.024 w 2 + 0.2866w + 211.07 by the least square method. The above function is a master diagram.
 マスター線図を作成した後、試験片と同じ材料の溶接金属板材を測定対象物よして実際の測定を実施した。溶接金属板材において応力緩和熱処理して、圧延率10%で冷間圧延を施した。冷間圧延後の表面のビッカース硬さHV=268(N/mm2)である。 After creating the master diagram, actual measurement was carried out using a weld metal sheet made of the same material as the test piece, using the object to be measured. The weld metal sheet was subjected to stress relaxation heat treatment and cold rolled at a rolling rate of 10%. The surface Vickers hardness HV = 268 (N / mm 2 ) after cold rolling.
 溶接金属板材において、前述した方法で二次元X線回折パラメータwを測定したその結果は、w=102 (deg2)である。 In the welded metal sheet, the result of measuring the two-dimensional X-ray diffraction parameter w by the method described above is w = 102 (deg 2 ).
 図13は、wと塑性ひずみεPのマスター線図であり、二次元X線回折パラメータwと塑性ひずみεPの関係はεP=0.0014w2-0.0468w+0.8836で表されている。図13より、w=102(deg2)に対する塑性ひずみεP=10.7%であり、10%の圧延率に近い値で評価できた。 Figure 13 is a master diagram of w and plastic strain epsilon P, the relationship of the two-dimensional X-ray diffraction parameters w and plastic strain epsilon P is represented by ε P = 0.0014w 2 -0.0468w + 0.8836 . From FIG. 13, the plastic strain ε P = 10.7% with respect to w = 102 (deg 2 ), which was evaluated at a value close to a rolling rate of 10%.
 図14は、wとビッカース硬さHVのマスター線図であり、二次元X線回折パラメータwとビッカース硬さHVの関係はHV=0.0024w2+0.2866w+211.07で表されている。図14より、w=102(deg2)に対するビッカース硬さHV=265(N/mm2)であり、HV=268の実測値に近い値で評価できた。 FIG. 14 is a master diagram of w and the Vickers hardness HV, and the relationship between the two-dimensional X-ray diffraction parameter w and the Vickers hardness HV is represented by HV = 0.024 w 2 + 0.2866w + 211.07. Than 14, a w = 102 Vickers hardness HV = 265 for (deg 2) (N / mm 2), could be evaluated by a value close to the measured value of HV = 268.
 以上の測定結果から、本発明による非破壊的な塑性ひずみおよび硬さの評価システムおよび評価方法の有効性を示すことができた。 From the above measurement results, the effectiveness of the nondestructive plastic strain and hardness evaluation system and evaluation method according to the present invention could be shown.
 なお、従来の研究により、応力腐食環境で高い材料表面加工度がSCC発生感受性や進展速度を促進する傾向が認識されている。非特許文献1の図15に掲載されているオーステナイト系ステンレス鋼SUS316の溶接熱影響部のSCC進展速度の硬さ依存性を示す。冷間圧延したSUS316は、硬さの上昇とともにSCC進展速度が速くなる傾向を示しており、硬さまたは冷間加工率をパラメータとして、材料のSCC特性を評価できることを示唆している。以上の研究成果から、冷間圧延率、塑性ひずみまたは硬さをSCC評価パラメータとすれば、本発明による塑性ひずみおよび硬さの評価システムおよび評価方法は、破壊によるサンプリングが不可能な実構造物や完成品における表面仕上げ状況の管理、および応力腐食環境での応力腐食割れ(SCC)の発生感受性の評価の一環として、簡便に利用できる。 In addition, according to conventional research, a tendency that a high degree of material surface processing in a stress corrosion environment promotes SCC generation sensitivity and progress rate is recognized. The hardness dependence of the SCC progress rate of the welding heat affected zone of the austenitic stainless steel SUS316 published in FIG. Cold-rolled SUS316 shows a tendency for the SCC progress rate to increase as the hardness increases, suggesting that the SCC characteristics of the material can be evaluated using the hardness or the cold working rate as a parameter. From the above research results, if the cold rolling rate, plastic strain or hardness is used as the SCC evaluation parameters, the plastic strain and hardness evaluation system and evaluation method according to the present invention is an actual structure that cannot be sampled by fracture. Or as a part of the evaluation of the susceptibility to the occurrence of stress corrosion cracking (SCC) in a stress corrosion environment.
1…X線管球
2…二次元X線検出器
3…イメージングプレート二次元X線検出器
4…測定対象物
5…標準粉末試料
6…入射X線
7…回折X線
8…測定対象物の二次元回折斑点
9…標準粉末試料の二次元回折環
10…非対称型二次元X線検出器
100…X線回折装置
101…X線管球
102…二次元X線検出器
104…測定対象物
110…画像解析装置
111…X線回折強度曲線
112…X線入射中心算出部
113…X線回折強度/中心角算出部
114…二次元X線回折パラメータ算出部
115…マスター線図作成部
116…塑性ひずみ/硬さ算出部
118…入力装置
119…表示装置
120…マスター線図で構築されたデータベース
w…二次元X線回折パラメータ
εP…塑性ひずみ
HV…ビッカース硬さ
I…X線回折強度
O…X線の入射中心位置
s…二次元回折環における入射中心位置Oに対する半径方向上の距離
P…標準粉末試料の二次元回折環の近似円の半径
l…X線照射距離
α…二次元回折環における入射中心位置Oに対する中心角
B…半価幅
B’…積分幅
R…二次元X線回折リングの半径方向の幅
P…X線回折強度曲線における最大強度の位置
Ψ…回折面法線と試料表面法線のなす角
2θ…回折角
2θΨ…X線回折強度のピーク位置
2θ0…標準粉末試料の回折角
d…回折面の格子間隔
DESCRIPTION OF SYMBOLS 1 ... X-ray tube 2 ... Two-dimensional X-ray detector 3 ... Imaging plate two-dimensional X-ray detector 4 ... Measurement object 5 ... Standard powder sample 6 ... Incident X-ray 7 ... Diffraction X-ray 8 ... Measurement object Two-dimensional diffraction spot 9 ... Two-dimensional diffraction ring 10 of standard powder sample ... Asymmetric type two-dimensional X-ray detector 100 ... X-ray diffraction apparatus 101 ... X-ray tube 102 ... Two-dimensional X-ray detector 104 ... Measurement object 110 Image analyzer 111 X-ray diffraction intensity curve 112 X-ray incident center calculation unit 113 X-ray diffraction intensity / center angle calculation unit 114 Two-dimensional X-ray diffraction parameter calculation unit 115 Master diagram creation unit 116 Plasticity Strain / hardness calculation unit 118 ... input device 119 ... display device 120 ... database w constructed by master diagram ... two-dimensional X-ray diffraction parameter ε P ... plastic strain HV ... Vickers hardness I ... X-ray diffraction intensity O ... X-ray incident center position s ... Center with respect to the incident center position O at the distance R P ... radius l ... X-ray irradiation distance alpha ... two-dimensional diffraction rings of the approximate circle of a two-dimensional diffraction rings standard powder sample on the radial direction with respect to the incident center position O in the two-dimensional diffraction rings Angle B ... Half-value width B '... Integration width S R ... Radial width P of the two-dimensional X-ray diffraction ring P ... Maximum intensity position in the X-ray diffraction intensity curve ψ ... Diffraction plane normal and sample surface normal Angle 2θ ... Diffraction angle 2θ ψ X-ray diffraction intensity peak position 2θ 0 ... Diffraction angle d of standard powder sample ... Diffraction plane lattice spacing

Claims (7)

  1.  測定対象物の表面にX線を入射するX線照射装置と、
     回折した前記X線を検出する二次元X線検出器と、
     予め求めた二次元X線回折パラメータと塑性ひずみ又は硬さのうち少なくともいずれか1つの物理量との関係についてのデータを有する記憶装置と、
     画像解析装置は、前記二次元X線検出器で検出したX線の回折角と回折強度からX線回折強度曲線を得るとともに、二次元X線回折斑点のX線入射中心に対する半径方向のX線強度曲線の半価幅から装置による半価幅を差し引いた後の値と、X線入射中心に対する中心角との、全周範囲での定積分を、二次元X線回折パラメータとして求める二次元X線回折パラメータ算出部と、
     前記測定対象物の二次元X線回折パラメータから、塑性ひずみおよび硬さのうち、少なくともいずれか1つの物理量を求める算出部を備えたことを特徴とする表面加工状態の評価システム。
    An X-ray irradiation apparatus for injecting X-rays onto the surface of the measurement object;
    A two-dimensional X-ray detector for detecting the diffracted X-ray;
    A storage device having data on the relationship between a two-dimensional X-ray diffraction parameter determined in advance and at least one physical quantity of plastic strain or hardness;
    The image analysis apparatus obtains an X-ray diffraction intensity curve from the X-ray diffraction angle and diffraction intensity detected by the two-dimensional X-ray detector, and X-rays in the radial direction with respect to the X-ray incident center of the two-dimensional X-ray diffraction spot A two-dimensional X-ray that obtains a definite integral over the entire circumference of the half-width of the intensity curve after subtracting the half-width by the apparatus and the central angle with respect to the X-ray incident center as a two-dimensional X-ray diffraction parameter A line diffraction parameter calculation unit;
    An evaluation system for a surface processing state, comprising: a calculation unit that obtains at least one physical quantity of plastic strain and hardness from a two-dimensional X-ray diffraction parameter of the measurement object.
  2.  請求項1に記載の表面加工状態の評価システムにおいて、
     前記二次元X線検出器は輝尽性蛍光体を用いたイメージングプレートであり、
     前記測定対象物表面には標準試料粉末が付着されていることを特徴とする表面加工状態の評価システム。
    In the surface processing state evaluation system according to claim 1,
    The two-dimensional X-ray detector is an imaging plate using a stimulable phosphor,
    A surface processing state evaluation system, characterized in that a standard sample powder is adhered to the surface of the measurement object.
  3.  請求項1に記載の表面加工状態の評価システムにおいて、
     前記二次元X線検出器は位置敏感型検出器であることを特徴とする表面加工状態の評価システム。
    In the surface processing state evaluation system according to claim 1,
    The two-dimensional X-ray detector is a position sensitive detector.
  4.  X線を測定対象物の表面に入射させ、
     回折したX線を平板状に設置されたX線検出器に記録し、
     前記二次元X線回折斑点におけるX線入射中心に対する半径方向のX線強度曲線の半価幅から装置による半価幅を差し引いた後の値と、X線入射中心に対する中心角との、全周範囲での定積分を、二次元X線回折パラメータとして求め、
     前記二次元X線回折パラメータと塑性ひずみ又は硬さのうち少なくともいずれか1つの物理量との関係を利用して、二次元X線回折パラメータの測定値より、塑性ひずみ又は硬さのうち少なくともいずれか1つの物理量を評価することを特徴とする表面加工状態の評価方法。
    Make X-rays incident on the surface of the measurement object,
    Record the diffracted X-rays on a flat-plate X-ray detector,
    The total perimeter of the value obtained by subtracting the half width by the device from the half width of the X-ray intensity curve in the radial direction with respect to the X-ray incident center at the two-dimensional X-ray diffraction spot and the center angle with respect to the X-ray incident center Find the definite integral over the range as a two-dimensional X-ray diffraction parameter,
    Using the relationship between the two-dimensional X-ray diffraction parameter and at least one physical quantity of plastic strain or hardness, the measured value of the two-dimensional X-ray diffraction parameter is used to determine at least one of plastic strain or hardness. A method for evaluating a surface processing state, wherein one physical quantity is evaluated.
  5.  請求項4に記載の表面加工状態の評価方法において、
     前記二次元X線検出器が輝尽性蛍光体を用いたイメージングプレートであり
     標準試料粉末を測定対象物表面に付着させ、その標準試料粉末の回折環からX線入射中心および照射距離を求めることを特徴とする表面加工状態の評価方法。
    In the evaluation method of the surface processing state of Claim 4,
    The two-dimensional X-ray detector is an imaging plate using a photostimulable phosphor. A standard sample powder is attached to the surface of a measurement object, and an X-ray incident center and irradiation distance are obtained from a diffraction ring of the standard sample powder. A method for evaluating a surface processing state characterized by the following.
  6.  請求項4に記載の表面加工状態の評価方法において、
     前記二次元X線検出器は位置敏感型検出器であることを特徴とする表面加工状態の評価方法。
    In the evaluation method of the surface processing state of Claim 4,
    The two-dimensional X-ray detector is a position sensitive detector.
  7.  請求項1乃至3に記載の表面加工状態の評価システムを用いて、
     塑性ひずみまたは硬さのうち、少なくともいずれか1つの物理量をSCC感受性の評価基準とする、非鋭敏化材の応力腐食割れ感受性評価方法。
    Using the surface processing state evaluation system according to claim 1,
    A stress corrosion cracking susceptibility evaluation method for a non-sensitized material, wherein at least one physical quantity of plastic strain or hardness is used as an evaluation standard for SCC sensitivity.
PCT/JP2012/083549 2012-12-26 2012-12-26 System and method for evaluating state of processed surface WO2014102919A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2012/083549 WO2014102919A1 (en) 2012-12-26 2012-12-26 System and method for evaluating state of processed surface
JP2014553927A JP5989135B2 (en) 2012-12-26 2012-12-26 Surface processing state evaluation system and evaluation method
TW102142061A TWI515426B (en) 2012-12-26 2013-11-19 Evaluation system and evaluation method of machined surface condition, the stress corrosion cracking susceptibility evaluation method of non-sensitized material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/083549 WO2014102919A1 (en) 2012-12-26 2012-12-26 System and method for evaluating state of processed surface

Publications (1)

Publication Number Publication Date
WO2014102919A1 true WO2014102919A1 (en) 2014-07-03

Family

ID=51020078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083549 WO2014102919A1 (en) 2012-12-26 2012-12-26 System and method for evaluating state of processed surface

Country Status (3)

Country Link
JP (1) JP5989135B2 (en)
TW (1) TWI515426B (en)
WO (1) WO2014102919A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145862A (en) * 2014-02-04 2015-08-13 パルステック工業株式会社 X-ray diffraction measurement device and method for detecting x-ray incidence angle in x-ray diffraction measurement device
JP2016042050A (en) * 2014-08-18 2016-03-31 石川県 Surface hardness evaluation method using x-ray diffractometer, and x-ray diffraction measuring apparatus
JP2016109600A (en) * 2014-12-09 2016-06-20 パルステック工業株式会社 X-ray diffraction measurement system
JP2017101929A (en) * 2015-11-30 2017-06-08 パルステック工業株式会社 X-ray diffraction measurement device and x-ray diffraction measurement method
JP6372731B1 (en) * 2017-07-03 2018-08-15 パルステック工業株式会社 X-ray diffraction measurement device
JP2020094874A (en) * 2018-12-11 2020-06-18 パルステック工業株式会社 X-ray diffraction measuring device
CN113176285A (en) * 2021-04-23 2021-07-27 中国兵器工业第五九研究所 Nondestructive testing method for residual stress in short-wavelength characteristic X-ray
TWI810923B (en) * 2022-05-05 2023-08-01 中國鋼鐵股份有限公司 Methods for evaluating weldability of galvanized steel component and forming galvanized steel connected part

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195934A (en) * 1989-12-25 1991-08-27 Nippon Steel Corp Evaluator for application characteristic of environment resisting structural material
JP2001311706A (en) * 2000-04-28 2001-11-09 Rigaku Corp X-ray diffraction device
JP2004340898A (en) * 2003-05-19 2004-12-02 Toshiba Corp Structural material qualitative evaluation system and structural material qualitative evaluation method
JP4276106B2 (en) * 2004-02-24 2009-06-10 財団法人鉄道総合技術研究所 X-ray diffraction apparatus and X-ray diffraction system
JP2012007935A (en) * 2010-06-23 2012-01-12 Sumitomo Electric Ind Ltd X-ray diffraction apparatus
JP2012122737A (en) * 2010-12-06 2012-06-28 Hitachi-Ge Nuclear Energy Ltd X-ray diffraction device
JP2012251775A (en) * 2011-05-31 2012-12-20 Pulstec Industrial Co Ltd X-ray diffraction measurement device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3626965B2 (en) * 1999-03-12 2005-03-09 株式会社リガク X-ray apparatus and X-ray measurement method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195934A (en) * 1989-12-25 1991-08-27 Nippon Steel Corp Evaluator for application characteristic of environment resisting structural material
JP2001311706A (en) * 2000-04-28 2001-11-09 Rigaku Corp X-ray diffraction device
JP2004340898A (en) * 2003-05-19 2004-12-02 Toshiba Corp Structural material qualitative evaluation system and structural material qualitative evaluation method
JP4276106B2 (en) * 2004-02-24 2009-06-10 財団法人鉄道総合技術研究所 X-ray diffraction apparatus and X-ray diffraction system
JP2012007935A (en) * 2010-06-23 2012-01-12 Sumitomo Electric Ind Ltd X-ray diffraction apparatus
JP2012122737A (en) * 2010-12-06 2012-06-28 Hitachi-Ge Nuclear Energy Ltd X-ray diffraction device
JP2012251775A (en) * 2011-05-31 2012-12-20 Pulstec Industrial Co Ltd X-ray diffraction measurement device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145862A (en) * 2014-02-04 2015-08-13 パルステック工業株式会社 X-ray diffraction measurement device and method for detecting x-ray incidence angle in x-ray diffraction measurement device
JP2016042050A (en) * 2014-08-18 2016-03-31 石川県 Surface hardness evaluation method using x-ray diffractometer, and x-ray diffraction measuring apparatus
JP2016109600A (en) * 2014-12-09 2016-06-20 パルステック工業株式会社 X-ray diffraction measurement system
JP2017101929A (en) * 2015-11-30 2017-06-08 パルステック工業株式会社 X-ray diffraction measurement device and x-ray diffraction measurement method
JP6372731B1 (en) * 2017-07-03 2018-08-15 パルステック工業株式会社 X-ray diffraction measurement device
JP2019012051A (en) * 2017-07-03 2019-01-24 パルステック工業株式会社 X-ray diffraction measuring device
JP2020094874A (en) * 2018-12-11 2020-06-18 パルステック工業株式会社 X-ray diffraction measuring device
CN113176285A (en) * 2021-04-23 2021-07-27 中国兵器工业第五九研究所 Nondestructive testing method for residual stress in short-wavelength characteristic X-ray
CN113176285B (en) * 2021-04-23 2023-12-15 中国兵器工业第五九研究所 Nondestructive testing method for residual stress in short-wavelength characteristic X-ray
TWI810923B (en) * 2022-05-05 2023-08-01 中國鋼鐵股份有限公司 Methods for evaluating weldability of galvanized steel component and forming galvanized steel connected part

Also Published As

Publication number Publication date
JPWO2014102919A1 (en) 2017-01-12
TWI515426B (en) 2016-01-01
JP5989135B2 (en) 2016-09-07
TW201435337A (en) 2014-09-16

Similar Documents

Publication Publication Date Title
JP5989135B2 (en) Surface processing state evaluation system and evaluation method
Tanaka The cosα method for X-ray residual stress measurement using two-dimensional detector
Turnbull et al. Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure
JP2013083574A (en) Evaluation system of plastic strain and evaluation method thereof
Kamaya Assessment of local deformation using EBSD: Quantification of accuracy of measurement and definition of local gradient
JP5339253B2 (en) X-ray stress measurement method
Ramadhan et al. Mapping residual strain induced by cold working and by laser shock peening using neutron transmission spectroscopy
JP5713357B2 (en) X-ray stress measurement method and apparatus
Guo et al. Quantitative optical fluorescence microprobe measurements of stresses around indentations in Al2O3 and Al2O3/SiC nanocomposites: The influence of depth resolution and specimen translucency
Schajer et al. Why is it so challenging to measure residual stresses?
Nilsson et al. Nonlinear ultrasonic characteristics of a corroded steel plate
Su et al. Residual stress relaxation by bending fatigue in induction-hardened gear studied by neutron Bragg edge transmission imaging and X-ray diffraction
Lee et al. Comparison of X-ray residual stress measurements for rolled steels
JP2012018114A (en) Method for predicting formation of rolling fatigue crack, rolling fatigue damage evaluation system, method for determining fatigue layer removal timing, and method for determining removal depth
Frolova et al. Identification of zones of local hydrogen embrittlement of metals by the acoustoelastic effect
JP2010243189A (en) Device and method for analyzing carbon component in steel by image processing of spark test
Meadows et al. International round-robin on stress corrosion crack initiation of alloy 600 material in pressurized water reactor primary water
Jothilakshmi et al. Assessment of intergranular corrosion attack in austenitic stainless steel using ultrasonic measurements
Zhang Unveiling microstructure-property correlations in nuclear materials with high-energy synchrotron X-ray techniques
Suzuki et al. Evaluation of internal stresses using rotating-slit and 2D detector
Tremsin et al. Investigation of microstructure within metal welds by energy resolved neutron imaging
Coelho et al. Through-thickness texture profiling by energy dispersive synchrotron diffraction
Essex et al. Utilizing EBSD to validate and understand NDE techniques
Hossain et al. Benchmark measurement of residual stresses in a 7449 aluminium alloy using deep-hole and incremental centre-hole drilling methods
Johnson et al. Quantitative stress measurements near blocked slip bands in austenitic stainless steel using high resolution electron backscatter diffraction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12891258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553927

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12891258

Country of ref document: EP

Kind code of ref document: A1