JP2019128272A - Estimation method of tensioning force of tendon in ground anchor - Google Patents

Estimation method of tensioning force of tendon in ground anchor Download PDF

Info

Publication number
JP2019128272A
JP2019128272A JP2018010435A JP2018010435A JP2019128272A JP 2019128272 A JP2019128272 A JP 2019128272A JP 2018010435 A JP2018010435 A JP 2018010435A JP 2018010435 A JP2018010435 A JP 2018010435A JP 2019128272 A JP2019128272 A JP 2019128272A
Authority
JP
Japan
Prior art keywords
fixing member
tension
ground anchor
residual stress
tendon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018010435A
Other languages
Japanese (ja)
Inventor
聡 田山
Satoshi Tayama
聡 田山
尚器 徳田
Naoki Tokuda
尚器 徳田
豊和 村上
Toyokazu Murakami
豊和 村上
太郎 藤巴
Taro Fujitomo
太郎 藤巴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishinihon Kosoku Doro Eng Kansai Kk
West Nippon Expressway Co Ltd
Nishinihon Kosoku Doro Engineering Kansai KK
Original Assignee
Nishinihon Kosoku Doro Eng Kansai Kk
West Nippon Expressway Co Ltd
Nishinihon Kosoku Doro Engineering Kansai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishinihon Kosoku Doro Eng Kansai Kk, West Nippon Expressway Co Ltd, Nishinihon Kosoku Doro Engineering Kansai KK filed Critical Nishinihon Kosoku Doro Eng Kansai Kk
Priority to JP2018010435A priority Critical patent/JP2019128272A/en
Publication of JP2019128272A publication Critical patent/JP2019128272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To provide a method which can estimate a tensioning force working to a tendon of a ground anchor more easily in a spot where the ground anchor is provided.SOLUTION: A method estimating a tensioning force working to a tendon of a ground anchor having the tendon fastened by a fixing member located on a compression plate arranged to a pressed body with a condition that the end is projected includes: (1) a step measuring residual stress of the fixing member fastening the tendon to the compression plate; and (2) a step calculating the tensioning force corresponding to the measured residual stress on the basis of a calibration curve obtained previously indicating a correlation relationship between the residual stress and the tensioning force.SELECTED DRAWING: Figure 2

Description

本発明は、既に施工されているグラウンドアンカーにおいて、その緊張材の緊張力を推定する方法に関する。   The present invention relates to a method for estimating a tension force of a tension material in a ground anchor that has already been constructed.

山の斜面等の法面において地すべりや崩壊が発生するのを防止する技術として、グラウンドアンカーが広く採用されている。グラウンドアンカーは、地盤に埋設されたアンカー体と地表面上に位置する受圧体との間に位置する緊張材の引張力としての緊張力を利用して地盤を安定さるシステムである。   Ground anchors are widely used as a technique for preventing landslides and collapse on slopes such as mountain slopes. The ground anchor is a system that stabilizes the ground using tension as tension of a tendon located between an anchor body embedded in the ground and a pressure receiver located on the ground surface.

図1に、グラウンドアンカーを模式的に断面図にて示す。緊張材10の一方の端部分12が例えばグラウトにより地盤中に形成されたアンカー体14に結合され、他方の端部分16が地表面18から突出している。地表面18上には受圧体20および支圧板22が設けられ、緊張材10はこれらを貫通して外向きに突出している。   FIG. 1 schematically shows the ground anchor in a sectional view. One end portion 12 of the tendon 10 is coupled to an anchor body 14 formed in the ground by, for example, grout, and the other end portion 16 projects from the ground surface 18. A pressure receiving body 20 and a bearing plate 22 are provided on the ground surface 18, and the tendon 10 protrudes outward through them.

グラウンドアンカーを施工するに際して、緊張材10は、引張手段(例えばジャッキ)により引っ張られた状態、即ち、緊張力が作用した状態で、支圧板22上に位置する定着部材24(例えばナット)によって固定されている。その結果、受圧体20とアンカー体14との間で緊張材10に作用している緊張力によって地盤が安定する。尚、図示するように、緊張材10の端部26は、作用する緊張力を十分に保持するために、定着部材24から露出した状態で保持されている。   When installing a ground anchor, the tension member 10 is fixed by a fixing member 24 (for example, a nut) located on the bearing plate 22 in a state of being pulled by a tension means (for example, jack), that is, in a state of tension applied. Has been. As a result, the ground is stabilized by the tension acting on the tendon 10 between the pressure receiving body 20 and the anchor body 14. As shown in the figure, the end portion 26 of the tension member 10 is held in a state of being exposed from the fixing member 24 in order to sufficiently retain the acting tension force.

グラウンドアンカーの施工後は、時間の経過と共に、緊張材10の端部分の定着部材24への固着状態が、緊張材および定着部材の周辺環境への露出による腐食、地盤の振動、また、周辺環境の温度変化による緊張材の伸縮等によって変化し、その結果、緊張材の引っ張り状況が変化する可能性があり、施工時の緊張力が保持されているとは限らない。そのため、施工後もグラウンドアンカーの健全度、具体的には、緊張材10における緩みや過緊張、断線などの緊張状態の変化、定着部材24における固着状態の変化、緊張材10の腐食等による劣化や損傷の発生等を適宜把握して、グラウンドアンカーの機能を適切に管理する必要がある。   After the construction of the ground anchor, the adhesion of the end portion of the tendon 10 to the fixing member 24 causes corrosion of the tendon and the fixing member to the surrounding environment, vibration of the ground, and surrounding environment with the passage of time. As a result, there is a possibility that the tensioning state of the tendon changes and the tension during construction is not always maintained. Therefore, even after construction, the soundness of the ground anchor, specifically, a change in tension state such as loosening or over-tensioning or breaking in the tension member 10, a change in adhesion state in the fixing member 24, deterioration due to corrosion of the tension member 10, etc. It is necessary to properly manage the function of the ground anchor by appropriately grasping the occurrence of damage and damage.

従来から、緊張材10の地上への露出部分、支圧板等の状態を肉眼で確認する目視検査、緊張材10を引っ張ることによって緊張材10の緊張力を評価するリフトオフ試験等が行われている。   Heretofore, visual inspections for visually confirming the state of exposed portions of the tendon 10 on the ground, the pressure bearing plate, etc., and lift-off tests to evaluate the tense force of the tendon 10 by pulling the tendon 10 have been conducted. .

目視検査では、緊張材10の錆や支圧板22の浮きの発生を確認するに留まるため、グラウンドアンカーの機能に直結する緊張材10の緊張力を適切に評価することができない。また、定着部材24の固着状態の悪化や、地中の緊張材10やアンカー体14の劣化や損傷についても評価することができない。   Since visual inspection only confirms the occurrence of rusting of the tendon 10 and floating of the bearing plate 22, the tension of the tendon 10 directly linked to the function of the ground anchor can not be properly evaluated. In addition, it is not possible to evaluate the deterioration of the fixing state of the fixing member 24 and the deterioration and damage of the tension material 10 and the anchor body 14 in the ground.

また、リフトオフ試験では、センターホール型ジャッキや小型・軽量ジャッキを用いるので、そのような機器の設置、落下防止対策を施す必要がある。そのため、法面に施行された多数のグラウンドアンカーの緊張材の緊張力を測定するには多くの時間を要し、作業量も膨大となる。また、地盤の性質、経年変化のために、リフトオフすると、アンカー体14が抜けたり、また、緊張材10が破断する恐れがある。   In the lift-off test, center hole type jacks and small / lightweight jacks are used, so it is necessary to install such equipment and take measures to prevent falling. For this reason, it takes a lot of time to measure the tension of the tension members of a large number of ground anchors that are enforced on the slope, and the amount of work is enormous. In addition, due to the nature of the ground and aging, when the lift is turned off, the anchor body 14 may come off, and the tension member 10 may break.

このような問題点を考慮して、非破壊的にグラウンドアンカーの健全度を評価する方法として、特許文献1および特許文献2では振動周波数に基づいてグラウンドアンカーの健全度を評価することが提案されている。これらの技術は、実験室レベルでは十分な精度で評価できるものの、現場における測定では、未だ十分な精度で評価されているとは言えず、更なる改善が望まれていた。   In consideration of such problems, as a method for nondestructively evaluating the ground anchor health, Patent Document 1 and Patent Document 2 propose to evaluate the ground anchor health based on the vibration frequency. ing. Although these techniques can be evaluated with sufficient accuracy at the laboratory level, it cannot be said that they have been evaluated with sufficient accuracy in field measurements, and further improvements have been desired.

また、特許文献3には、グラウンドアンカーを外部から打撃することによって得られる振動特性に基づいてグラウンドアンカーの健全度を評価する方法が開示され、この方法は、データベース構築工程、健全度評価数式モデル構築工程および健全度評価工程を含む。この方法で健全度を評価した場合、高精度で緊張力を推定できるが、これらの工程を実施するのは必ずしも容易ではない。   Patent Document 3 discloses a method for evaluating the soundness of a ground anchor based on vibration characteristics obtained by hitting the ground anchor from the outside. This method includes a database construction step, a soundness evaluation formula model. Includes the construction process and the soundness evaluation process. When the soundness level is evaluated by this method, the tension can be estimated with high accuracy, but it is not always easy to perform these steps.

特開2001−074706号公報Japanese Patent Laid-Open No. 2001-074706 特開2003−121278号公報JP 2003-121278 A 特開2017−194275号公報JP, 2017-194275, A

そこで、グラウンドアンカーが設置された現場において、グラウンドアンカーの緊張材に作用する緊張力をより簡便に推定できる方法を提供することが望まれている。   Therefore, it is desirable to provide a method that can more easily estimate the tension acting on the tendon of the ground anchor at the site where the ground anchor is installed.

発明者らは、グラウンドアンカーの緊張材に作用する緊張力をより簡便に推定できる方法について種々検討を重ねた結果、グラウンドアンカーの定着部材に作用している残留応力と緊張材に作用する引張力、従って、緊張力とが相関関係にあること、そして、その相関関係を用いると、定着部材に作用している残留応力を測定し、それを用いて緊張材に作用する引張力、従って、緊張力を簡便に推定できることを見出し、本発明を完成するに到った。   The inventors conducted various studies on a method capable of estimating the tension acting on the tendon of the ground anchor more simply, and as a result, the residual stress acting on the fixing member of the ground anchor and the tension acting on the tendon Therefore, there is a correlation with the tension force, and when the correlation is used, the residual stress acting on the fixing member is measured, and the tensile force acting on the tension member using the tension is measured. It has been found that the force can be easily estimated, and the present invention has been completed.

従って、本発明は、受圧体に設けた支圧板上に位置する定着部材によって、端部が突出した状態で締結された緊張材を有して成るグラウンドアンカーにおいて、緊張材に作用する緊張力を推定する方法を提供する。この方法は、
(1)緊張材を支圧板に締結する定着部材の残留応力を測定する工程、および
(2)残留応力と緊張力との相関関係を示す、予め求めた検量線に基づいて、測定された残留応力に対応する緊張力を求める工程
を含むことを特徴とする。
Therefore, the present invention provides the tension force acting on the tension member in the ground anchor having the tension member fastened with the end portion protruding by the fixing member positioned on the bearing plate provided on the pressure receiving body. Provide a way to estimate. This method
(1) a step of measuring the residual stress of the fixing member that fastens the tension member to the bearing plate; and (2) a residual measured based on a calibration curve obtained in advance showing a correlation between the residual stress and the tension force. And determining a tension corresponding to the stress.

本発明の方法において用いる「検量線」は、次のようにして得ることができる:
(a)グラウンドアンカーモデルの準備
実際に緊張力を測定すべきグラウンドアンカーは、通常、既に法面等に施工された後の状態にあり、これは、所定の仕様に基づいて施工されている。従って、現場のグラウンドアンカーは、所定の各要素(即ち、所定のアンカー体、受圧体、所定の支圧板、定着部材および緊張材)を用いて設置されている。このグラウンドアンカーを構成する要素と同じ要素を用いて、同様にグラウンドアンカーを構成し、これをグラウンドアンカーモデルとする。
The "calibration curve" used in the method of the present invention can be obtained as follows:
(A) Preparation of ground anchor model The ground anchor for which the tension force is actually measured is normally in a state after being already applied on a slope or the like, and this is applied based on a predetermined specification. Therefore, the ground anchor in the field is installed using predetermined elements (that is, a predetermined anchor body, a pressure receiving body, a predetermined bearing plate, a fixing member, and a tension member). A ground anchor is similarly constructed using the same elements as those constituting the ground anchor, and this is used as a ground anchor model.

従って、グラウンドアンカーモデルでは、緊張力を測定すべきグラウンドアンカーを構成する要素、即ち、受圧体、その上に設けた支持板、その上に設けた定着部材によって、これらを貫通して端部が突出する状態で緊張材が受圧体に取り付けられた状態にある。具体的には、図1に示すグラウンドアンカーにおいて地盤30が存在しない状態のものをグラウンドアンカーモデルとして準備する。尚、緊張材10に引張力を加えることができる限り、アンカー体14は、緊張材10の端部分12に図示するように設けても、あるいは設けなくてもよい。   Therefore, in the ground anchor model, the end of the ground anchor is measured by the elements constituting the ground anchor whose tension is to be measured, that is, the pressure receiving body, the support plate provided thereon, and the fixing member provided thereon. The tendon is attached to the pressure receiving body in a projecting state. Specifically, the ground anchor shown in FIG. 1 in a state where the ground 30 does not exist is prepared as a ground anchor model. As long as a tensile force can be applied to the tendon 10, the anchor body 14 may or may not be provided at the end portion 12 of the tendon 10 as illustrated.

(b)グラウンドアンカーモデルを用いた検量線の取得
次に、上述のモデルを用いて、例えば引張力試験機を用いて、所定の引張力x1(従って、緊張力x1)を緊張材に作用させ、その時に測定される、定着部材の側面における残留応力y1を測定する。そして、異なる引張力x2(従って、緊張力x2)を緊張材に作用させ、その時に測定される定着部材の側面における残留応力y2を測定する。作用させる異なる引張力は、少なくとも異なる2つ、好ましくは異なる3つまたはそれ以上、例えば異なる4つの引張力を作用させてその時の残留応力をそれぞれ測定する。異なる引張力の数は、2以上であれば、特に限定されるものではない。基本的には、数が多いほど、緊張力の推定精度が向上する。
(B) Acquisition of calibration curve using ground anchor model Next, using the above-described model, for example, a tensile force tester is used to apply a predetermined tensile force x1 (hence, tension force x1) to the tension material. Then, measure the residual stress y1 on the side surface of the fixing member, which is measured at that time. Then, different tensile force x2 (hence, tension force x2) is applied to the tension member, and the residual stress y2 on the side surface of the fixing member measured at that time is measured. The different tensile forces to be applied are at least two different, preferably three or more different, for example, four different tensile forces, and the respective residual stresses are measured. The number of different tensile forces is not particularly limited as long as it is two or more. Basically, the greater the number, the better the estimation accuracy of the tension.

このようにして、作用させた引張力(x)と測定された残留応力(y)との関係を例えばx−y座標にプロットしてグラフを描き、これを相関関係として予め得ておく。別の態様では、グラフの代わりに、xとyとの関係を示す数式、特に近似式の形で相関関係として得ておくこともできる。数式を得るに際して、例えば、数学的な種々の手法、種々の関数の使用、最小二乗法の使用を用いてもよい。このようにして予め求めておいた、引張力と残留応力との相関関係を示すグラフ、数式等を本明細書では「検量線」と呼ぶ。   In this way, the relationship between the applied tensile force (x) and the measured residual stress (y) is plotted on, for example, xy coordinates, a graph is drawn, and this is obtained in advance as a correlation. In another embodiment, instead of a graph, it is possible to obtain correlation as an equation representing the relationship between x and y, particularly in the form of an approximation. In obtaining the mathematical expression, for example, various mathematical methods, use of various functions, and use of the least square method may be used. In this specification, a graph, a mathematical expression or the like indicating the correlation between the tensile force and the residual stress, which is obtained in advance in this manner, is referred to as a "calibration curve".

このようにして得られた検量線に基づいて、次のようにして現場にて施工済のグラウンドアンカーにおける緊張力を推定する:
緊張力を推定すべきグラウンドアンカーを設置した現場において、緊張材が突出している定着部材の側面における残留応力を測定して(即ち、上記工程(1)を実施して)、次に、予め求めておいた検量線、即ち、残留応力と引張力との相関関係に基づいて、測定された残留応力に対応する、緊張材に作用する引張力を求め、これを緊張材に作用する緊張力の推定値として得る(即ち、上記工程(2)を実施する)。
Based on the calibration curve thus obtained, the tension on the ground anchor already constructed on site is estimated as follows:
At the site where the ground anchor for which the tension force is to be estimated is installed, the residual stress on the side surface of the fixing member from which the tension material protrudes is measured (that is, the above step (1) is performed), and then obtained in advance. Based on the calibration curve, that is, the correlation between the residual stress and the tensile force, the tensile force acting on the tendon corresponding to the measured residual stress is obtained, and this is used to determine the tensile force acting on the tendon. Obtained as an estimated value (ie, carry out step (2) above).

尚、上述のように、モデルを使用して相関する2種類の値の関係を検量線として予め得ておいて、実際の測定に際して、一方の測定値からそれに対応する他方の値を推定すること自体はしばしば行われていることであり、その内容は「検量線に基づいて求める」との記載により当業者であれば容易に理解できる。   In addition, as described above, a relationship between two types of values that are correlated using a model is obtained in advance as a calibration curve, and in actual measurement, the other value corresponding to the measured value is estimated from one measured value. As such, which is often performed, the contents can be easily understood by those skilled in the art from the description “determine based on a standard curve”.

本発明の緊張力の推定方法は、端部が定着部材の端面から外向きに突出した状態で緊張材が定着されているグラウンドアンカーに関して用いることができる。従って、例えば定着部材は、ナット型グラウンドアンカーに用いるもの(例えばSEEE工法、OPSアンカー、EGS工法、NM工法、CFRP工法、STAR工法等に用いるもの)、くさびまたはくさび・ナット併用型グラウンドアンカーに用いるもの(例えばSSL工法、VSL工法、SHS工法、KTB工法、スーパーフローテック工法、EHD工法、SuperMC工法等に用いるもの)のような通常使用されている全てのタイプの工法のグラウンドアンカーに適用できる。   The tension force estimating method of the present invention can be used for a ground anchor in which a tension material is fixed in a state where the end portion protrudes outward from the end surface of the fixing member. Thus, for example, the fixing member is used for a nut type ground anchor (for example, used for SEEE method, OPS anchor, EGS method, NM method, CFRP method, STAR method etc.), wedge or wedge / nut combined type ground anchor The present invention can be applied to ground anchors of all types of commonly used methods such as those used for the SSL method, VSL method, SHS method, KTB method, Super Flowtech method, EHD method, SuperMC method, etc.

定着部材の側面における残留応力を測定する方法は、いずれの適当な既知の方法で実施してもよいが、非破壊的に測定できる必要がある。例えば、X線、磁気、光を用いて測定する方法を用いてもよい。   The method of measuring the residual stress on the side of the fixing member may be carried out by any suitable known method, but it needs to be able to be measured nondestructively. For example, a method of measurement using X-rays, magnetism, light may be used.

特に好ましい測定方法は、X線回折現象を利用するX線回折応力測定法である。この測定方法では、定着部材の側面の所定箇所にX線を照射し、回折されるX線を検出して残留応力を推定する。残留応力に応じて定着部材を構成する金属面における格子面間隔が変わることをX線回折現象を利用して測定するこの方法は自体公知である。この方法を用いて残留応力を測定する装置が、パルステック工業株式会社から残留応力X線測定装置(製品名:μ−X360)として市販されている。このような装置は、X線を使用して金属やセラミックなどに内在する残留応力を非破壊で測定でき、小型・軽量であり、高速・高精度な測定が可能である。従って、グラウンドアンカーを設置した現場でも定着部材の残留応力を測定できるので、本発明の方法で用いるのに好適である。   A particularly preferred measurement method is the X-ray diffraction stress measurement method utilizing the X-ray diffraction phenomenon. In this measurement method, X-rays are irradiated to a predetermined location on the side surface of the fixing member, and diffracted X-rays are detected to estimate residual stress. This method of measuring the lattice spacing on the metal surface of the fixing member depending on the residual stress using X-ray diffraction is known per se. An apparatus for measuring residual stress using this method is commercially available from Pulstec Industrial Co., Ltd. as a residual stress X-ray measuring apparatus (product name: μ-X360). Such an apparatus can measure the residual stress inherent in metal, ceramic, etc. using X-rays in a nondestructive manner, is small and lightweight, and can measure at high speed and high accuracy. Therefore, since the residual stress of the fixing member can be measured even at the site where the ground anchor is installed, it is suitable for use in the method of the present invention.

本発明の方法において、現場のグラウンドアンカーの定着部材の残留応力を測定するに際して、定着部材の表面上に存在する酸化膜等は、測定に悪影響を及ぼす場合がある。これを抑制するために、必要に応じて、測定に先立って定着部材のX線照射箇所を電解研磨することが好ましい。   In the method of the present invention, when measuring the residual stress of the fixing member of the ground anchor in the field, the oxide film or the like existing on the surface of the fixing member may adversely affect the measurement. In order to suppress this, it is preferable to electropolish the X-ray irradiated portion of the fixing member prior to measurement, if necessary.

本発明の方法によって、既に施工されているグラウンドアンカーの緊張材に作用している緊張力を現場で簡便に推定することができる。   By the method of the present invention, the tension acting on the tendon of the ground anchor that has already been installed can be easily estimated on site.

グラウンドアンカーの構造およびそれを構成する要素を模式的に示す断面図である。It is sectional drawing which shows typically the structure of a ground anchor, and the element which comprises it. ナット型グラウンドアンカーモデルを用いて得られた、残留応力と引張力、従って、緊張力との相関関係を示す検量線としてのグラフである。It is a graph as a calibration curve which shows correlation with residual stress and tension, and therefore tension, obtained using a nut type ground anchor model. くさび型グラウンドアンカーモデルを用いて得られた、残留応力と引張力、従って、緊張力との相関関係を示す検量線としてのグラフである。It is a graph as a calibration curve which shows correlation with residual stress and tension, and therefore tension, obtained using a wedge type ground anchor model. ナット型グラウンドアンカーモデルを構成する要素の詳細を模式的に示す。The detail of the element which comprises a nut type ground anchor model is shown typically. くさび型グラウンドアンカーモデルを構成する要素の詳細を模式的に示す。The detail of the element which comprises a wedge-shaped ground anchor model is shown typically.

本発明の方法では、予め検量線を準備しておく必要がある。そのために、緊張力を測定すべき緊張材を有する現場のグラウンドアンカーの構成要素と実質的に同一の要素で構成されたグラウンドアンカーモデルを上述のように準備する。   In the method of the present invention, it is necessary to prepare a calibration curve in advance. For this purpose, a ground anchor model is prepared as described above, which is composed of substantially the same elements as those of the ground anchor in the field having the tendon to be measured for tension.

次に、引張力試験機を用いてグラウンドアンカーモデルの緊張材に所定の引張力を加え、その時に定着部材に生じる残留応力を測定する。更に、異なる引張力を加え、その時に定着部材に生じる残留応力を測定する。   Next, a predetermined tensile force is applied to the tendon of the ground anchor model using a tensile force tester, and the residual stress generated in the fixing member at that time is measured. Furthermore, different tensile forces are applied, and the residual stress that occurs in the fixing member at that time is measured.

より詳しくは、図1に示す現場のグラウンドアンカーと同じ要素を用いて、受圧体、支持板、定着部材およびそれに取り付けられた緊張材から構成したグラウンドアンカーモデルに、引張力試験機を用いて、緊張材に引張力(x)を加える。即ち、図1において受圧体を固定した状態で緊張材に引張力を加え(即ち、図1において緊張材を下向きに引っ張り)、その時に加えた引張力に対応して定着部材の側面に生じる残留応力(y)を測定する。このようにして、種々(少なくとも異なる2つ)の引張力を加え、その時の残留応力を測定する。これらの測定結果に基づいて、引張力(従って、緊張力)と残留応力との相関関係を示す検量線を例えばグラフとして得る。   More specifically, using the same elements as the on-site ground anchor shown in FIG. 1, using a tensile force tester on a ground anchor model composed of a pressure receiver, a support plate, a fixing member and a tendon attached thereto, Apply tension (x) to the tendon. That is, in FIG. 1, while the pressure receiving member is fixed, a tensile force is applied to the tendon (that is, the tendon is pulled downward in FIG. 1), and residuals generated on the side of the fixing member corresponding to the tensile force applied at that time. Measure the stress (y). In this manner, various (at least two different) tensile forces are applied, and the residual stress at that time is measured. Based on these measurement results, a calibration curve indicating the correlation between tensile force (and hence tension) and residual stress is obtained as a graph, for example.

次に、施工済みグラウンドアンカーの定着部材の側面の所定箇所における残留応力を実際に現場で測定し、測定値(y3)を得る。上述のようにして得られた検量線に基づいて、測定値(y3)に対応する引張力、即ち、緊張力x3を得る。この緊張力x3が現場のグラウンドアンカーにおける緊張材に作用している緊張力の推定値に相当する。   Next, the residual stress at a predetermined location on the side surface of the fixing member of the ground anchor that has been installed is actually measured on site to obtain a measurement value (y3). Based on the calibration curve obtained as described above, a tensile force corresponding to the measured value (y3), that is, a tension force x3 is obtained. This tension force x3 corresponds to the estimated value of the tension force acting on the tension material in the ground anchor at the site.

(ナット型グラウンドアンカーの相関関係)
定着部材がナットの形態であるナット型グラウンドアンカーモデルについて、上述のようにして種々の引張力を緊張材に作用させた時に定着部材の側面に測定された残留応力の結果、即ち、引張力と残留応力との相関関係を図2のグラフに示す。
(Correlation of nut type ground anchor)
For a nut-type ground anchor model in which the anchoring member is in the form of a nut, as a result of the residual stress measured on the side of the anchoring member when various tensions are applied to the tendon as described above, The correlation with the residual stress is shown in the graph of FIG.

この測定に用いたグラウンドアンカーモデルは、次の要素を用いて構成した。
モデルのグラウンドアンカーの緊張材としてSEEEアンカー(多重PC鋼より線φ33.3mm 7×φ11.1)を使用した。定着部材としてナット(S45C)を用い、支圧板(SS材 縦280mm×横280mm 厚さ36mm)と組み合わせて現場のグラウンドアンカーを再現した。尚、現場のグラウンドアンカーでは地表面上に受圧体が存在するが、このモデルでは緊張材に作用する引張力は定着部材に全て伝達されることから、受圧体を省略した構成としている。このアンカーモデルを構成する要素の詳細を図4に模式的に示す。
The ground anchor model used for this measurement was constructed using the following elements.
A SEEE anchor (multi-PC steel strand φ33.3 mm 7 × φ11.1) was used as a tension material for the model ground anchor. A nut (S45C) was used as a fixing member, and a ground anchor in the field was reproduced in combination with a bearing plate (SS material length 280 mm × width 280 mm, thickness 36 mm). The ground anchor at the site has a pressure receiving body on the ground surface. However, in this model, the tensile force acting on the tension material is all transmitted to the fixing member, so that the pressure receiving body is omitted. The details of the elements constituting this anchor model are schematically shown in FIG.

この測定において、3種の異なる引張力(100kN、200kN、400kN)を緊張材に加え、定着部材(全高h(図1参照):45mm)の異なる4箇所で残留応力を測定した。具体的には、以下の箇所で測定した:
(a)支圧板と定着部材との境界面(図1では支圧板に接触する定着部材の端面、即ち、下端)から5mm離れた箇所(即ち、境界面から定着部材の全高の11.1%離れた位置)
(b)支圧板と定着部材との境界面から10mm離れた箇所(即ち、境界面から定着部材の全高の22.2%離れた位置)
(c)支圧板と定着部材との境界面から15mm離れた箇所(即ち、境界面から定着部材の全高の33.3%離れた位置)
(d)支圧板と定着部材との境界面から20mm離れた箇所(即ち、境界面から定着部材の全高の44.4%離れた位置)
In this measurement, three different tensile forces (100 kN, 200 kN, and 400 kN) were applied to the tendon, and the residual stress was measured at four different locations on the fixing member (total height h (see FIG. 1): 45 mm). Specifically, the following points were measured:
(A) A location 5 mm away from the boundary surface between the bearing plate and the fixing member (in FIG. 1, the end surface of the fixing member contacting the bearing plate, ie, the lower end) (that is, 11.1% of the total height of the fixing member from the boundary surface) Position away)
(B) A location 10 mm away from the boundary surface between the bearing plate and the fixing member (that is, a position away from the boundary surface by 22.2% of the total height of the fixing member).
(C) A location 15 mm away from the boundary surface between the bearing plate and the fixing member (that is, a position away from the boundary surface by 33.3% of the total height of the fixing member)
(D) A location 20 mm away from the boundary surface between the pressure bearing plate and the fixing member (that is, a position 44.4% of the total height of the fixing member away from the boundary surface).

尚、本明細書において、「全高(h)」とは、定着部材の両端面間の距離を意味し、より具体的には、支圧板に接触する、定着部材の端面と緊張材の端部が外向きに突出する、定着部材の端面との間の距離を意味する。   In the present specification, the “total height (h)” means a distance between both end faces of the fixing member, and more specifically, an end face of the fixing member and an end part of the tension member that are in contact with the bearing plate. Means the distance between the end surface of the fixing member, which protrudes outward.

図2のグラフから明らかなように、いずれの箇所で測定しても、加える引張力が大きくなるほど、定着部材に作用する残留応力が大きくなること、即ち、引張力と残留応力との間には相関関係があることが分かった。グラフの代わりに、例えば、得られた結果に基づいて適当な近似法を用いて数式y=fn(x)(但し、fnは関数を表す)により相関関係を表してもよい。   As apparent from the graph of FIG. 2, the residual stress acting on the fixing member increases as the applied tensile force increases, regardless of the measurement at any location, that is, between the tensile force and the residual stress. It turns out that there is a correlation. Instead of the graph, for example, the correlation may be expressed by an equation y = fn (x) (where fn represents a function) using an appropriate approximation method based on the obtained result.

測定箇所に関しては、境界面から20mm離れた箇所(境界面から測定箇所までの距離が定着部材の全高の約44%の箇所)、即ち、境界面から遠い箇所における測定は、境界面により近い他の箇所における測定との比較では、感度が若干劣るが、実用上は問題無いと判断できる。これらを考慮すると、ナット型グラウンドアンカーの場合、境界面から測定箇所までの距離が定着部材の全高の約5%〜約40%の箇所で測定するのが好ましく、境界面から測定箇所までの距離が定着部材の全高の約10%〜約35%の箇所、例えば10%〜30%、特に10%〜25%の箇所で測定するのがより好ましい。ナット型グラウンドアンカーの場合、定着部材の全高(h)は、通常、35mm〜60mm程度であるので、全高45mmの定着部材を用いた結果に基づく上述の割合は、ナット型の定着部材を用いたグラウンドアンカーにも一般的に当て嵌まると推定される。   Regarding the measurement location, measurement at a location 20 mm away from the boundary surface (a location where the distance from the boundary surface to the measurement location is about 44% of the total height of the fixing member), that is, measurement at a location far from the boundary surface is closer to the boundary surface. Although the sensitivity is slightly inferior to the measurement at the point, it can be determined that there is no problem in practical use. Considering these, in the case of a nut-type ground anchor, it is preferable to measure at a location where the distance from the boundary surface to the measurement location is about 5% to about 40% of the total height of the fixing member, and the distance from the boundary surface to the measurement location. It is more preferable to measure at about 10% to about 35% of the total height of the fixing member, for example 10% to 30%, particularly 10% to 25%. In the case of a nut type ground anchor, the total height (h) of the fixing member is usually about 35 mm to 60 mm. Therefore, the above-mentioned ratio based on the result of using the fixing member having a total height of 45 mm is based on the nut type fixing member. It is estimated that the same applies to ground anchors.

次に、上述のグラウンドアンカーモデルと同じ要素を用いて現場で既に施工されたグラウンドアンカーの定着部材の所定箇所(例えば境界面から10mm離れたの箇所)における残留応力を測定し、この測定値をy3=60MPaとする。定着部材の測定箇所を考慮して図2のグラフの破線曲線としての検量線に基づいて、測定された残留応力(60MPa)に対応する引張力(x3)は、図2のグラフ中の下向きの破線矢印で示すように、約260kNと推定できる。   Next, using the same elements as the above ground anchor model, the residual stress at a predetermined location (for example, a location 10 mm away from the boundary surface) of the fixing member of the ground anchor that has already been constructed in the field is measured, and this measured value is obtained. It is assumed that y3 = 60 MPa. The tensile force (x3) corresponding to the measured residual stress (60 MPa) based on the calibration curve as the broken curve in the graph of FIG. As indicated by the broken arrows, it can be estimated to be about 260 kN.

(くさび型グラウンドアンカーの相関関係)
定着部材がくさびの形態であるくさび型グラウンドアンカーモデルについて、上述のようにして種々の引張力を緊張材に作用させた時に定着部材の側面に測定された残留応力の結果、即ち、引張力と残留応力との相関関係を図3のグラフに示す。
(Correlation of wedge-shaped ground anchors)
For a wedge-shaped ground anchor model in which the anchoring member is in the form of a wedge, as a result of the residual stresses measured on the flanks of the anchoring member when various tensions are applied to the tendon as described above, The correlation with the residual stress is shown in the graph of FIG.

この測定に用いたグラウンドアンカーモデルは、次の要素を用いて構成した
モデルのグラウンドアンカーの緊張材として荷重調整が可能なVSLアンカーERタイプ(多重PC鋼より線 7×φ12.7)を使用した。定着部材としてリングナット(S45C)を用い、支圧板(SS材 縦275mm×横275mm 厚さ40mm)およびアンカーヘッド(S45C)と組み合わせて現場のグラウンドアンカーを再現した。尚、現場のグラウンドアンカーでは地表面上に受圧体が存在するが、このモデルでは緊張材に作用する引張力は定着部材に全て伝達されることから、受圧体を省略した構成としている。このアンカーモデルを構成する要素の詳細を図5に模式的に示す。
The ground anchor model used for this measurement was a VSL anchor ER type (multi-PC steel strand 7 × φ12.7) capable of load adjustment as a tension material of the model ground anchor constructed using the following elements. . A ring nut (S45C) was used as a fixing member, and a ground anchor in the field was reproduced in combination with a bearing plate (SS material length 275 mm × width 275 mm thickness 40 mm) and an anchor head (S45C). The ground anchor at the site has a pressure receiving body on the ground surface. However, in this model, the tensile force acting on the tension material is all transmitted to the fixing member, so that the pressure receiving body is omitted. Details of the elements constituting this anchor model are schematically shown in FIG.

ナット型グラウンドアンカーの場合と同様に、加える引張力が大きくなるほど、定着部材に作用する残留応力が大きくなること、即ち、引張力と残留応力との間には相関関係があることが分かる。グラフの代わりに、得られた結果から適当な近似法を用いて数式により相関関係を表してもよい。尚、このグラウンドアンカーにおいても、定着部材の高さは80mmであった。   As in the case of the nut-type ground anchor, it can be seen that as the applied tensile force increases, the residual stress acting on the fixing member increases, that is, there is a correlation between the tensile force and the residual stress. Instead of the graph, the correlation may be expressed by an equation using an appropriate approximation method from the obtained result. Also in this ground anchor, the height of the fixing member was 80 mm.

この測定において、5種の異なる引張力(100kN、200kN、400kN、600kN、800kN)を緊張材に加え、定着部材(全高:50mm)の異なる4箇所で残留応力を測定した。具体的には、以下の箇所で測定した:
(a)支圧板と定着部材との境界面から5mm離れた箇所(即ち、境界面から定着部材の全高の6.25%離れた位置)
(b)支圧板と定着部材との境界面から10mm離れた箇所(即ち、境界面から定着部材の全高の12.5%離れた位置)
(c)支圧板と定着部材との境界面から15mm離れた箇所(即ち、境界面から定着部材の全高の18.75%離れた位置)
(d)支圧板と定着部材との境界面から20mm離れた箇所(即ち、境界面から定着部材の全高の25%離れた位置)
In this measurement, five different tensile forces (100 kN, 200 kN, 400 kN, 600 kN, and 800 kN) were applied to the tension material, and the residual stress was measured at four different locations on the fixing member (total height: 50 mm). Specifically, the following points were measured:
(A) A location 5 mm away from the boundary surface between the bearing plate and the fixing member (that is, a position away from the boundary surface by 6.25% of the total height of the fixing member)
(B) A location 10 mm away from the boundary surface between the bearing plate and the fixing member (that is, a position 12.5% away from the boundary surface of the total height of the fixing member).
(C) A location 15 mm away from the boundary surface between the bearing plate and the fixing member (that is, a position away from the boundary surface by 18.75% of the total height of the fixing member)
(D) A location that is 20 mm away from the boundary surface between the bearing plate and the fixing member (that is, a location that is 25% of the total height of the fixing member from the boundary surface).

図3から明らかなように、いずれの測定箇所においても相関関係があることが分かった。但し、相関関係は、境界面から10mmの箇所(即ち、境界面から定着部材の全高の12.5%離れた位置)で測定する場合および15mmの箇所(即ち、境界面から定着部材の全高の18.75%離れた位置)で測定する場合の方が、境界面から20mm離れた箇所(即ち、境界面から定着部材の全高の25%離れた位置)で測定する場合および境界面に近い箇所(即ち、境界面から5mm離れた箇所)で測定する場合よりも感度が一層良いと判断できる。   As is clear from FIG. 3, it was found that there is a correlation at any of the measurement points. However, when the correlation is measured at a location 10 mm from the boundary surface (ie, a position 12.5% away from the total height of the fixing member) and at a location 15 mm (ie, the total height of the fixing member from the boundary surface). 18. When measuring at a position 75% away) When measuring at a location 20 mm away from the boundary surface (ie, at a location 25% away from the total height of the fixing member) and a location closer to the boundary surface It can be determined that the sensitivity is better than in the case of measurement at a position 5 mm away from the interface.

従って、くさび型グラウンドアンカーの場合でも、境界面から測定箇所までの距離が定着部材の全高の約5%〜約30%の箇所で測定するのが好ましく、境界面から測定箇所までの距離が定着部材の全高の約10%〜約35%の箇所、特に約10%〜30%の箇所、例えば約10%〜約25%、特に約10%〜20%の箇所で測定するのがより好ましい。くさび型グラウンドアンカーの場合、定着部材の全高(h)は、通常、50mm〜100mm程度であるので、全高80mmの定着部材を用いた結果に基づく上述の割合は、くさび型の定着部材を用いたグラウンドアンカーにも一般的に当て嵌まると推定される。   Therefore, even in the case of a wedge type ground anchor, it is preferable to measure at a location where the distance from the boundary surface to the measurement location is about 5% to about 30% of the total height of the fixing member, and the distance from the boundary surface to the measurement location is fixed. It is more preferable to measure at about 10% to about 35% of the total height of the member, especially about 10% to 30%, for example about 10% to about 25%, especially about 10% to 20%. In the case of a wedge-shaped ground anchor, since the total height (h) of the fixing member is usually about 50 mm to 100 mm, the above ratio based on the result of using a fixing member with a total height of 80 mm uses a wedge-shaped fixing member It is estimated that the same applies to ground anchors.

次に、上述のくさび型グラウンドアンカーモデルと同じ要素を用いて現場で既に施工されたグラウンドアンカーの定着部材の所定箇所(例えば境界面から10mm離れたの箇所)における残留応力を測定し、この測定値をy4=150MPaとする。定着部材の測定箇所を考慮して図2のグラフの破線曲線としての検量線に基づいて、測定された残留応力(150MPa)に対応する引張力(x4)は、図3のグラフ中の下向きの破線矢印で示すように、約770kNと推定できる。   Next, using the same elements as the above-mentioned wedge-shaped ground anchor model, measure the residual stress at a predetermined location (for example, a location 10 mm away from the boundary surface) of the fixing member of the ground anchor already installed in the field. The value is y4 = 150 MPa. The tensile force (x4) corresponding to the residual stress (150 MPa) measured based on the calibration curve as a broken line curve of the graph of FIG. 2 in consideration of the measurement point of the fixing member is the downward direction in the graph of FIG. As indicated by the dashed arrow, it can be estimated to be about 770 kN.

図2および図3の結果を考慮すると、残留応力測定は、支圧板と定着部材との境界面付近で実施するのが特に好ましいとは必ずしも言えず、また、境界面から遠く離れた箇所(境界面から例えば定着部材の全高の50%以上離れた箇所)で実施するのもそれほど好ましくはないと推定される。これを考慮すると、残留応力に対する感度の点から、全高が約35mm〜約100mmの定着部材を用いるグラウンドアンカーにおいて、一般的には境界面から約4mm〜約22mmの範囲で離れた箇所で実施するのが好ましく、また、境界面から約8mm〜約18mmの範囲で離れた箇所で実施するのが特に好ましいと判断できる。従って、これらの範囲の中間的な範囲、例えば境界面から約10mm〜約15mmの範囲で離れた箇所で実施するのが実用的に好ましいと判断できる。   Considering the results shown in FIGS. 2 and 3, it is not necessarily preferable that the residual stress measurement be performed near the boundary surface between the bearing plate and the fixing member, and a location far away from the boundary surface (boundary From the surface, for example, it is estimated that it is not so preferable to be carried out at a point separated by 50% or more of the total height of the fixing member. In consideration of this, in terms of sensitivity to residual stress, in a ground anchor using a fixing member having an overall height of about 35 mm to about 100 mm, it is generally performed at a location away from the boundary surface within a range of about 4 mm to about 22 mm. It can be determined that it is particularly preferable to carry out at a location separated by about 8 mm to about 18 mm from the interface. Therefore, it can be judged that it is practically preferable to carry out at an intermediate range between these ranges, for example, at a place away from the boundary surface within a range of about 10 mm to about 15 mm.

これらを考慮すると、グラウンドアンカーにおいて、特に好ましい態様では、境界面から測定箇所までの距離が定着部材の全高の約10%〜約30%の箇所で測定するのが好ましく、境界面から測定箇所までの距離が定着部材の全高の約10%〜約25%の箇所で残留応力を測定するのがより好ましい、例えば境界面から測定箇所までの距離が境界面から定着部材の全高の約20%の箇所で測定するのが特に好ましい。   In consideration of these, in the ground anchor, in a particularly preferable aspect, the distance from the boundary surface to the measurement location is preferably measured at a location where the distance from the boundary surface to the measurement location is about 10% to about 30% of the total height of the fixing member. It is more preferable to measure the residual stress at a position where the distance of the fixing member is about 10% to about 25% of the total height of the fixing member. For example, the distance from the boundary surface to the measuring position is about 20% of the total height of the fixing member. It is particularly preferable to measure at a point.

本発明の方法は、既に施工したグラウンドアンカーの緊張材に作用する緊張力を測定する現在実施されている方法と比較して、非常に簡便に緊張力を推定できる。   The method of the present invention can estimate the tension force in a very simple manner as compared with the currently practiced method for measuring the tension force acting on the tension material of the ground anchor that has already been constructed.

10 緊張材
12 端部分
14 アンカー体
16 端部分
18 地表面
20 受圧体
22 支圧板
24 定着部材
26 端部
30 地盤
DESCRIPTION OF SYMBOLS 10 Tensile material 12 End part 14 Anchor body 16 End part 18 Ground surface 20 Pressure receiving body 22 Supporting plate 24 Fixing member 26 End part 30 Ground

Claims (9)

受圧体に設けた支圧板上に位置する定着部材によって、端部が突出した状態で締結された緊張材を有して成るグラウンドアンカーにおいて、緊張材に作用する緊張力を推定する方法であって、
(1)緊張材を支圧板に締結する定着部材の残留応力を測定する工程、および
(2)残留応力と緊張力との相関関係を示す、予め求めた検量線に基づいて、測定された残留応力に対応する緊張力を求める工程
を含むことを特徴とする緊張力推定方法。
A method for estimating the tension acting on a tendon in a ground anchor comprising a tendon fastened in a state in which the end projects from the fixing member by a fixing member located on a bearing plate provided on a pressure receiving body. ,
(1) a step of measuring the residual stress of the fixing member that fastens the tension member to the bearing plate; and (2) a residual measured based on a calibration curve obtained in advance showing a correlation between the residual stress and the tension force. A method for estimating tension according to claim 1, comprising the step of determining tension corresponding to stress.
検量線は、残留応力と緊張力との相関関係を示すものであって、
該グラウンドアンカーと同一のアンカーモデルにおいて、引張力試験機を用いて緊張材に所定の緊張力を加え、その時に定着部材の残留応力を測定することを、少なくとも2つ値の異なる所定の緊張力に対して得て、加える所定の緊張力と測定される残留応力との相関を該相関関係として得る請求項1に記載の緊張力推定方法。
The calibration curve shows the correlation between residual stress and tension and
In the same anchor model as the ground anchor, a predetermined tension force is applied to the tension member using a tensile force tester, and the residual stress of the fixing member is measured at that time. The tension | tensile_strength estimation method of Claim 1 which obtains correlation with respect to the predetermined | prescribed tension | tensile_strength obtained and applied and the residual stress measured as this correlation.
残留応力の測定は、X線回折現象を利用するX線回折応力測定法を用いて定着部材の側面に関して実施することを特徴とする請求項1または2に記載の緊張力推定方法。   The method according to claim 1 or 2, wherein the measurement of the residual stress is performed on the side of the fixing member using an X-ray diffraction stress measurement method using an X-ray diffraction phenomenon. X線回折応力測定法を適用する定着部材の側面は、支圧板に接触する定着部材の端面から、定着部材の全高の10%〜30%離れた領域であることを特徴とする請求項3に記載の緊張力推定方法。   The side surface of the fixing member to which the X-ray diffraction stress measurement method is applied is a region that is 10% to 30% of the total height of the fixing member from the end surface of the fixing member that contacts the bearing plate. The tension estimation method described. X線回折応力測定法を適用する定着部材の側面は、支圧板に接触する定着部材の端面から、定着部材の全高の10%〜25%離れた領域であることを特徴とする請求項4に記載の緊張力推定方法。   The side surface of the fixing member to which the X-ray diffraction stress measurement method is applied is a region that is 10% to 25% of the total height of the fixing member from the end surface of the fixing member in contact with the bearing plate. Tension estimation method described. 支圧板に接触する定着部材の端面から4mm〜22mm離れた領域の定着部材の側面の残留応力を測定することを特徴とする請求項3に記載の緊張力推定方法。   4. The method according to claim 3, further comprising: measuring a residual stress of the side surface of the fixing member in a region 4 mm to 22 mm away from the end surface of the fixing member contacting the bearing plate. 支圧板に接触する定着部材の端面から8mm〜18mm離れた領域の定着部材の側面の残留応力を測定することを特徴とする請求項6に記載の緊張力推定方法。   The method according to claim 6, wherein the residual stress of the side surface of the fixing member in a region 8 to 18 mm away from the end surface of the fixing member in contact with the bearing plate is measured. 定着部材は、ナット型グラウンドアンカーを構成する要素である請求項1〜7のいずれかに記載の緊張力推定方法。   The tension | tensile_strength estimation method in any one of Claims 1-7 with which a fixing member is an element which comprises a nut type ground anchor. 定着部材は、くさび型グラウンドアンカーまたはくさび・ナット併用型グラウンドアンカーを構成する要素である請求項1〜7のいずれかに記載の緊張力推定方法。   The tension force estimation method according to any one of claims 1 to 7, wherein the fixing member is an element constituting a wedge-shaped ground anchor or a combined wedge-nut-type ground anchor.
JP2018010435A 2018-01-25 2018-01-25 Estimation method of tensioning force of tendon in ground anchor Pending JP2019128272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018010435A JP2019128272A (en) 2018-01-25 2018-01-25 Estimation method of tensioning force of tendon in ground anchor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018010435A JP2019128272A (en) 2018-01-25 2018-01-25 Estimation method of tensioning force of tendon in ground anchor

Publications (1)

Publication Number Publication Date
JP2019128272A true JP2019128272A (en) 2019-08-01

Family

ID=67473078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018010435A Pending JP2019128272A (en) 2018-01-25 2018-01-25 Estimation method of tensioning force of tendon in ground anchor

Country Status (1)

Country Link
JP (1) JP2019128272A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173935A (en) * 2000-09-29 2002-06-21 Mitsubishi Heavy Ind Ltd Tension evaluation method for tension material, and interposing member used for tension evaluation of tension material
JP2007155475A (en) * 2005-12-05 2007-06-21 Shikoku Electric Power Co Inc Tension detecting method for tendon
EP1980712A1 (en) * 2007-04-13 2008-10-15 Lipsker & Partners Engineering Services (1975) Ltd Load cell for ground anchors
JP2010181277A (en) * 2009-02-05 2010-08-19 Kansai Electric Power Co Inc:The Method of measuring axial force of tensioning material
JP2017218839A (en) * 2016-06-09 2017-12-14 積水化学工業株式会社 Pressure receiving structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173935A (en) * 2000-09-29 2002-06-21 Mitsubishi Heavy Ind Ltd Tension evaluation method for tension material, and interposing member used for tension evaluation of tension material
JP2007155475A (en) * 2005-12-05 2007-06-21 Shikoku Electric Power Co Inc Tension detecting method for tendon
EP1980712A1 (en) * 2007-04-13 2008-10-15 Lipsker & Partners Engineering Services (1975) Ltd Load cell for ground anchors
JP2010181277A (en) * 2009-02-05 2010-08-19 Kansai Electric Power Co Inc:The Method of measuring axial force of tensioning material
JP2017218839A (en) * 2016-06-09 2017-12-14 積水化学工業株式会社 Pressure receiving structure

Similar Documents

Publication Publication Date Title
US9222865B2 (en) Fatigue assessment
US6192758B1 (en) Structure safety inspection
Schumacher et al. Estimating operating load conditions on reinforced concrete highway bridges with b-value analysis from acoustic emission monitoring
RU2548631C1 (en) Test method of soil foundation with pile with grill
JP2010223957A (en) Fatigue limit identification system, fatigue breakdown area identifying method, and fatigue limit identifying method
JP4862708B2 (en) Deterioration degree diagnosis method, deterioration degree diagnosis device, and deterioration diagnosis program
JP6681776B2 (en) Ground anchor soundness evaluation method and soundness evaluation system
JP4912673B2 (en) Tensile force detection method for tendons
JP2018013361A (en) Tensile force measurement device, tensile force measurement method, and tensile force measurement program
JP2019128272A (en) Estimation method of tensioning force of tendon in ground anchor
JP2004316093A (en) Fixed section structure of tendon and stress measuring method for tendon
JP5897199B1 (en) Anchor bolt soundness evaluation judgment method
JP2007057325A (en) Remaining lifetime prediction method
JP6069126B2 (en) Evaluation method of fatigue crack growth inhibition effect
JP3312298B2 (en) How to measure stress intensity factor
Tamrakar et al. In situ ultrasonic method for estimating residual tension of wedge fix type anchors
Shrama et al. Detection of cracking in mild steel fatigue specimens using acoustic emission and digital image correlation
JP2008051513A (en) Evaluation method of stress corrosion crack developing speed
Civjan et al. Method to evaluate remaining prestress in damaged prestressed bridge girders
JP6709713B2 (en) Method for inspecting floating and peeling of concrete structure and method for repairing concrete structure
Rinn Principles and challenges of static load tests (‘pull-testing’) for estimating uprooting safety
JP2010112942A (en) Method for monitoring of steel structure
US20210231556A1 (en) Method for Estimating Steel Rupture Starting Point, Device for Estimating Steel Rupture Starting Point, and Program for Estimating Steel Rupture Starting Point
JP2017207441A (en) Evaluation method and evaluation system of degradation state of metallic structure
JP6283439B1 (en) Ground anchor tension measuring device and tension measuring method

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221004