JP2017216488A - Linear distortion improvement circuit of DAC - Google Patents

Linear distortion improvement circuit of DAC Download PDF

Info

Publication number
JP2017216488A
JP2017216488A JP2016106881A JP2016106881A JP2017216488A JP 2017216488 A JP2017216488 A JP 2017216488A JP 2016106881 A JP2016106881 A JP 2016106881A JP 2016106881 A JP2016106881 A JP 2016106881A JP 2017216488 A JP2017216488 A JP 2017216488A
Authority
JP
Japan
Prior art keywords
dac
output
input
ain
simulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016106881A
Other languages
Japanese (ja)
Inventor
日下部秀雄
Hideo Kusakabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016106881A priority Critical patent/JP2017216488A/en
Publication of JP2017216488A publication Critical patent/JP2017216488A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that conversion error occurs due to mismatch of output resistance of a logic circuit, wiring resistance, or the resistance constituting a DAC, and the DAC generates linear distortion.SOLUTION: A DAC input is estimated by inputting a DAC input to simulated input multiple regression operation. The estimated DAC input is inputted to simulated DAC multiple regression operation, thus obtaining an estimate of DAC output. The DAC input is changed so that the DAC output estimate becomes a target value, and then the simulated input multiple regression operation and simulated DAC multiple regression operation are executed repeatedly. When the DAC output estimate satisfies the target value by this repetition, this input is employed as the input of the DAC thus improving distortion of the DAC.SELECTED DRAWING: Figure 1

Description

本発明はデジタル/アナログ変換(以下DAC)の直線歪を改善する方法に関するものである。 The present invention relates to a method for improving linear distortion of digital / analog conversion (hereinafter referred to as DAC).

DACを構成する抵抗の不整合、ロジック回路の出力抵抗及び配線抵抗などによりDACは変換誤差があり、この変換誤差によりDACは直線歪(微分非直線性誤差(DNL:Differential Nonlinearity)、積分非直線性誤差(INL:Integral Nonlinearity))を生じる。従来のDACの直線歪を改善する方法の一例について説明する。デジタル入力をDACと補正記憶に入力し、補正用記憶で変換補正され、DACに補正された値を入力することにより直線歪を改善する方法が知られている(例えば、
参照)。
DAC has conversion error due to mismatch of resistors that constitute DAC, output resistance and wiring resistance of logic circuit. DAC causes linear distortion (differential nonlinearity error (DNL), integral nonlinearity) due to this conversion error. (INL: Integral Nonlinearity). An example of a method for improving the linear distortion of a conventional DAC will be described. There is known a method of improving linear distortion by inputting a digital input to a DAC and a correction memory, conversion-corrected by a correction memory, and inputting a corrected value to the DAC (for example,
reference).

更にDACの直線歪を改善する方法として、DACの出力をアナログ/デジタル変換(以下ADC)し、ADCの出力とデジタル入力を演算し、この演算出力とデジタル入力をアドレスとするDAC歪記憶の出力とデジタル入力を加算し、DACに入力することにより直線歪を改善する方法が知られている(例えば、
参照)。
Further, as a method for improving the linear distortion of the DAC, the DAC output is converted from analog to digital (hereinafter referred to as ADC), the ADC output and the digital input are calculated, and the output of the DAC distortion storage using the calculated output and the digital input as an address. And a digital input are added and input to a DAC is known to improve linear distortion (for example,
reference).

類似したDACの直線歪を改善する方法として、DACの模擬DAC重回帰式と目標DACから誤差を計算し、この誤差でDAC入力を増減することにより直線歪を補正する方法が知られている(例えば、
参照)。この直線歪補正は本発明と類似しているが、本発明との違いは従来発明では模擬DAC重回帰式のみで模擬入力重回帰式を行っていないことである。この違いにより実測値と推定値の誤差に大きな差がでる。本発明の模擬入力重回帰式と模擬DAC重回帰式を使った実測値と推定値の誤差pp=10.82uV、従来発明の模擬DAC重回帰式のみの実測値と推定値の誤差pp=7908.6 uVで、本発明の実測値と推定値の誤差は従来発明より731倍改善される。図7は本発明/従来発明の実測値と推定値の誤差の図である。
As a method for improving the linear distortion of a similar DAC, a method is known in which an error is calculated from a simulated DAC multiple regression equation of a DAC and a target DAC, and the linear distortion is corrected by increasing / decreasing the DAC input by this error ( For example,
reference). Although this linear distortion correction is similar to the present invention, the difference from the present invention is that in the conventional invention, only the simulated DAC multiple regression equation is used and the simulated input multiple regression equation is not performed. Due to this difference, a large difference appears in the error between the actually measured value and the estimated value. Error pp of measured value and estimated value using simulated input multiple regression equation and simulated DAC multiple regression equation of the present invention pp = 10.82 uV, error of measured value and estimated value of simulated DAC multiple regression equation of conventional invention only pp = 7908.6 uV Thus, the error between the actually measured value and the estimated value of the present invention is improved 731 times compared to the conventional invention. FIG. 7 is a diagram of errors between actually measured values and estimated values of the present invention / conventional invention.

特開2000−244317(DA変換器)JP 2000-244317 (DA converter) 特開平5−191280JP-A-5-191280 特開2013−118466(DACの直線歪補正回路)JP 2013-118466 (DAC linear distortion correction circuit)

DACの直線歪の原因はロジック回路の出力抵抗、R−2Rラダー10の抵抗の不整合、及びラダーの配線抵抗などが考えられる。この直線歪に最も影響するのはロジック回路の出力抵抗である。図2はDAC(8ビットR−2Rラダー型)の回路図である。ロジック回路13の出力はローレベルとハイレベルにより出力抵抗が異なり、ローレベルの出力抵抗は80Ω、ハイレベルの出力抵抗は100Ωである。スイッチS1は電源V0の電圧AIN(0)がローレベル時に80Ωが選択され、ハイレベル時に100Ωが選択されるスイッチである。同様にスイッチS2〜S8は電源V1〜V7の電圧AIN(1)〜AIN(7)がローレベル時は80Ωが選択され、ハイレベル時は100Ωが選択されるスイッチである。 The cause of the linear distortion of the DAC may be the output resistance of the logic circuit, the mismatch of the resistance of the R-2R ladder 10, and the wiring resistance of the ladder. It is the output resistance of the logic circuit that most affects this linear distortion. FIG. 2 is a circuit diagram of a DAC (8-bit R-2R ladder type). The output resistance of the logic circuit 13 differs depending on the low level and the high level. The low level output resistance is 80Ω, and the high level output resistance is 100Ω. The switch S1 is a switch in which 80Ω is selected when the voltage AIN (0) of the power supply V0 is low level and 100Ω is selected when the voltage AIN (0) is high level. Similarly, the switches S2 to S8 are switches in which 80Ω is selected when the voltages AIN (1) to AIN (7) of the power sources V1 to V7 are at a low level, and 100Ω is selected when the voltages are at a high level.

図2のV0〜V7は0Vと3.3Vを発生する電源で、バイアス電源11は−3.3Vで
ある。電源V0〜V7の電圧をAIN(0)、AIN(1)、・・、AIN(7)であるとして、DAC出力電圧OUTm(実測値)の関係を表1に示す。表1はDAC入力AINとビット展開した電圧値AIN(0)、AIN(1)、・・、AIN(7)を表す。数式2の歪はDAC出力OUTm(実測値)から数式1の回帰式OUTgで減算した電圧値である。

Figure 2017216488
V0 to V7 in FIG. 2 are power supplies that generate 0V and 3.3V, and the bias power supply 11 is −3.3V. Table 1 shows the relationship of the DAC output voltage OUTm (actually measured value) assuming that the voltages of the power sources V0 to V7 are AIN (0), AIN (1),..., AIN (7). Table 1 shows DAC input AIN and bit expanded voltage values AIN (0), AIN (1),..., AIN (7). The distortion in Equation 2 is a voltage value obtained by subtracting the DAC output OUTm (actually measured value) by the regression equation OUTg in Equation 1.

Figure 2017216488

DAC入力AINとDAC出力OUTmの回帰式OUTgを数式1に示す。回帰係数は-0.0493811(V/LSB)、回帰定数は6.541027(V)である。DAC出力歪の計算式を数式2に示す。

Figure 2017216488

Figure 2017216488
A regression equation OUTg between the DAC input AIN and the DAC output OUTm is shown in Equation 1. The regression coefficient is -0.0493811 (V / LSB), and the regression constant is 6.541027 (V). The calculation formula of the DAC output distortion is shown in Formula 2.
Figure 2017216488

Figure 2017216488

IN、Y軸はDAC出力の歪で、目盛間隔0.04938Vは1LSBに相当する。DAC入力AINのMSBが切り替わる127から128で歪は最大になる。 The IN and Y axes are DAC output distortion, and the scale interval of 0.04938 V corresponds to 1 LSB. The distortion is maximized at 127 to 128 when the MSB of the DAC input AIN is switched.

本発明は、このような従来のDACの変換誤差(直線歪)を解決しようとするものであり、DACの直線歪の改善を目的とするものである。 The present invention is intended to solve such conversion error (linear distortion) of the conventional DAC, and aims to improve the linear distortion of the DAC.

本発明は上記目的を達成するために図2のロジック回路13を含めたDAC1の入出力を数式で模擬した模擬入力重回帰式演算6に比較演算5の出力AIN+Eを入力し、X(x(0)、・・x(7))を得る。このXを模擬DAC重回帰式演算2に入力し、DAC出力の推定値OUTeを計算する。推定値OUTeが目標DAC演算3(数式3)の目標DAC出力値OUTtになるように比較演算5の出力AIN+Eを修正する。この修正するループを複数回行い、誤差演算4の出力Eが許容値以下になるようにする。許容値以下のAIN+EをDAC1の入力することによりDAC1の直線歪を改善する。

Figure 2017216488
In order to achieve the above object, the present invention inputs the output AIN + E of the comparison operation 5 to the simulated input multiple regression equation operation 6 simulating the input / output of the DAC 1 including the logic circuit 13 of FIG. 0),... X (7)). This X is input to the simulated DAC multiple regression equation calculation 2, and an estimated value OUTe of the DAC output is calculated. The output AIN + E of the comparison operation 5 is corrected so that the estimated value OUTe becomes the target DAC output value OUTt of the target DAC operation 3 (Equation 3). This correction loop is performed a plurality of times so that the output E of the error calculation 4 is less than the allowable value. The linear distortion of the DAC 1 is improved by inputting the AIN + E below the allowable value to the DAC 1.
Figure 2017216488

表2はDAC入力AINと図2のロジック回路13の出力実測電圧Xm(0)、・・Xm(7)とDAC実測出力OUTmを表す。スイッチS1〜S8は電源V0〜V7の電圧AIN(0)〜AIN(7)がローレベル時は80Ωが選択され、ハイレベル時は100Ωが選択されるスイッチである。電圧Xm(0)、・・Xm(7)はDAC1の入力抵抗R8〜R1に接続され、電圧AIN(0)、・・AIN(7)の組み合わせにより相互に影響する。例えば、AIN=0でx(0)=0.000Vであるが、AIN=2ではXm(0)は20.8mVである。このようにXm(0)はAIN(1)〜AIN(7)の影響を受ける。

Figure 2017216488
Table 2 shows the DAC input AIN, the actual output voltage Xm (0),... Xm (7) of the logic circuit 13 in FIG. 2, and the actual DAC output OUTm. The switches S1 to S8 are switches in which 80Ω is selected when the voltages AIN (0) to AIN (7) of the power sources V0 to V7 are low level, and 100Ω is selected when the voltages AIN (0) to AIN (7) are high level. The voltages Xm (0),... Xm (7) are connected to the input resistances R8 to R1 of the DAC1, and affect each other depending on the combination of the voltages AIN (0),. For example, when AIN = 0 and x (0) = 0.000V, when AIN = 2, Xm (0) is 20.8 mV. Thus, Xm (0) is affected by AIN (1) to AIN (7).

Figure 2017216488

模擬入力重回帰式演算6は数式5から数式12によりx(0)〜x(7)を決定する。模擬DAC重回帰式演算2はx(0)〜x(7)の値を数式13に入力し、DAC出力OUTe推定値を得る。
数式4はx(1)〜x(7)を説明変数、x(0)を目的変数とする重回帰式である。x(0)はローレベルとハイレベルがあり、夫々x(0_0)、x(0_1)として数式4の重回帰式を作る。

Figure 2017216488
The simulated input multiple regression equation calculation 6 determines x (0) to x (7) from Equation 5 to Equation 12. In the simulated DAC multiple regression equation calculation 2, the values of x (0) to x (7) are input to Equation 13 to obtain the estimated DAC output OUTe.
Formula 4 is a multiple regression equation with x (1) to x (7) as explanatory variables and x (0) as an objective variable. x (0) has a low level and a high level, and a multiple regression equation of Formula 4 is created as x (0_0) and x (0_1), respectively.
Figure 2017216488

同様に、x(1)はローレベルとハイレベルがあり、夫々x(1_0)、x(1_1)とし、x(7_0)、x(7_1)まで重回帰式を作る。
Similarly, x (1) has a low level and a high level, and x (1_0) and x (1_1) are respectively made, and a multiple regression equation is made up to x (7_0) and x (7_1).

数式5の1行目はAIN(0)が0.5V以下の場合、2、3行はx(0)のローレベルの重回帰式、5,6行はx(0)のハイレベルの重回帰式で、式の右辺のx(0)〜x(7)は演算を簡略するためAIN(0)〜AIN(7)に置き換えた。同様に数式6はx(1)、数式7はx(2)、・・数式12はx(7)の重回帰式である。

Figure 2017216488
Figure 2017216488
Figure 2017216488


Figure 2017216488

Figure 2017216488
Figure 2017216488

Figure 2017216488

Figure 2017216488
In the first line of Formula 5, when AIN (0) is 0.5 V or less, the second and third lines are the multiple regression equations of the low level of x (0), and the fifth and sixth lines are the high level of the regression of x (0). In the regression equation, x (0) to x (7) on the right side of the equation are replaced with AIN (0) to AIN (7) in order to simplify the calculation. Similarly, Equation 6 is a multiple regression equation of x (1), Equation 7 is x (2), and Equation 12 is x (7).

Figure 2017216488
Figure 2017216488
Figure 2017216488


Figure 2017216488

Figure 2017216488
Figure 2017216488

Figure 2017216488

Figure 2017216488

模擬入力重回帰式演算6は数式5〜数式12のx(0)〜x(7)を決め、模擬DAC重回帰式演算2はx(0)〜x(7)を数式13に入力し、DAC出力OUTe推定値を得る。図4のX軸はDAC入力AIN、Y軸は実測値OUTmと推定値OUTeの誤差である。実測値OUTmと推定値OUTeの誤差は最大で10.6uVで、DAC1のLSBは49.4mVであるから1LSBの1/4660である。実測値と推定値の誤差は十分余裕があり、実測値の代わりに数式13の推定値を使っても精度は保たれる。

Figure 2017216488
The simulated input multiple regression equation calculation 6 determines x (0) to x (7) in Equations 5 to 12, and the simulated DAC multiple regression equation calculation 2 inputs x (0) to x (7) into Equation 13, Obtain the DAC output OUTe estimate. The X axis in FIG. 4 is the DAC input AIN, and the Y axis is the error between the actual measurement value OUTm and the estimated value OUTe. The error between the actually measured value OUTm and the estimated value OUTe is 10.6 uV at the maximum, and the LSB of DAC1 is 49.4 mV, which is 1/46660 of 1LSB. The error between the actually measured value and the estimated value has a sufficient margin, and the accuracy is maintained even if the estimated value of Equation 13 is used instead of the actually measured value.

Figure 2017216488

数式13の重回帰式OUTeと数式3の目標DAC出力OUTtと比較し、この差が
許容値以上の場合、入力AIN+Eを数式5〜数式12に入力し、x(0)〜x(7)を得る。数式13の推定出力OUTeと数式3の目標DAC出力OUTtと比較を繰り返し、この差Eが許容値以下の場合にDAC1に入力AIN+Eを入力し、DAC1の出力の歪を改善する。
When the multiple regression equation OUTe of Equation 13 and the target DAC output OUTt of Equation 3 are compared and the difference is greater than or equal to the allowable value, the input AIN + E is input to Equations 5 to 12, and x (0) to x (7) obtain. The comparison between the estimated output OUTe of Expression 13 and the target DAC output OUTt of Expression 3 is repeated, and when this difference E is less than the allowable value, the input AIN + E is input to the DAC 1 to improve the distortion of the output of the DAC 1.

従来のDACの直線歪補正は補正の記憶を参照してDACの直線歪を補正していたが、近年、DACの高精度化によりビット数が増え、この補正記憶の容量は大きくなり、また、補正記憶に歪補正データを書き込む時間も無視出来なくなってきた。 In the conventional DAC linear distortion correction, the DAC linear distortion is corrected with reference to the correction memory. However, in recent years, the number of bits has increased due to the higher accuracy of the DAC, and the capacity of the correction memory has increased. The time to write distortion correction data in the correction memory can no longer be ignored.

本発明は次の効果が得られる。ロジック回路13の出力抵抗はDAC1の入力x(0)、x(1)、・・、x(7)を変動させ、DACの直線歪に大きな影響を与える。数式5〜12から入力x(0)、x(1)、・・、x(7)の変動を推定する。 The present invention has the following effects. The output resistance of the logic circuit 13 fluctuates the inputs x (0), x (1),..., X (7) of the DAC 1 and greatly affects the linear distortion of the DAC. The fluctuations of the inputs x (0), x (1),..., X (7) are estimated from Expressions 5-12.

数式13に数式5〜12のx(0)〜x(7)を入力し、DACの推定出力OUTeを計算する。 Input x (0) to x (7) of Expressions 5 to 12 to Expression 13 to calculate the estimated output OUTe of the DAC.

計算した上記出力OUTeとDACの目標出力(数式3) OUTtとの差(推定出力-目標出力)を誤差Eとして、DAC入力AIN+誤差EをDAC入力に換算し、DAC入力AIN+Eを数式13に入力し、再度DAC推定出力を計算する。この計算を誤差Eが許容値A以下になるまで繰り返す。誤差が許容値以下のAIN+EをDAC1に入力し、誤差の許容値以下になるDAC出力を得る。 The difference between the calculated output OUTe and the DAC target output (Formula 3) OUTt (estimated output-target output) is set as error E, DAC input AIN + error E is converted to DAC input, and DAC input AIN + E is input into Formula 13 Then, the DAC estimation output is calculated again. This calculation is repeated until the error E becomes equal to or less than the allowable value A. Input AIN + E whose error is less than or equal to the allowable value to DAC1, and obtain a DAC output that is less than or equal to the allowable value of error.

本発明による補正を行うことによりDACのラダー抵抗、オフセット等の調整することなしで容易に高精度のDACが得られる。 By performing the correction according to the present invention, a highly accurate DAC can be easily obtained without adjusting the DAC ladder resistance, offset, and the like.

本発明の実施形態を示す「DACの直線歪改善回路」のブロック回路Block circuit of “DAC linear distortion improvement circuit” showing an embodiment of the present invention DAC(8ビットR−2Rラダー型)の回路図Circuit diagram of DAC (8-bit R-2R ladder type) DAC入力対DAC出力の歪DAC input vs. DAC output distortion 実測値と推定値の誤差Error between measured value and estimated value 補正回数と歪ppNumber of corrections and distortion pp 補正前後のDAC出力の歪Distortion of DAC output before and after correction 本発明/従来発明の実測値と推定値の誤差Error between measured and estimated values of the present invention / conventional invention

図1のDAC目標DAC演算3にDAC入力AINを入力し、DAC出力目標値OUTtを得る。1回目の比較演算5ではE=0が設定され、出力AIN+EはAINである。このAINは模擬入力重回帰式演算6の数式5〜数式12によりx(0)〜x(7)を決定する。模擬DAC重回帰式演算2はx(0)〜x(7)の値を数式13に入力し、DAC出力OUTe推定値を得る。誤差演算4でOUTeとOUTtの差Eを演算し、比較演算5でAIN+Eを演算する。差Eと許容値AがE>AならばAIN+Eを模擬入力重回帰式演算6でx(0)〜x(7)を決め、模擬DAC重回帰式演算2はx(0)〜x(7)の値を数式13に入力し、1回目のDAC出力推定値OUTe1を得る。誤差演算4でOUTe1とOUTtの差E1を演算する。比較演算5でAIN+E1を演算し、差E1と許容値AがE1>AならばAIN+E1を模擬入力重回帰式演算6に入力し、x(0)〜x(7)を決定し、模擬DAC重回帰式演算2に入力し、2回目のDAC出力推定値OUTe2を得る。この繰り返しをE≦Aになるまで行う。E≦AでAIN+Eをロジック回路13に通してDAC1に入力し、DAC出力OUTを得る。 The DAC input AIN is input to the DAC target DAC calculation 3 in FIG. 1 to obtain the DAC output target value OUTt. In the first comparison operation 5, E = 0 is set, and the output AIN + E is AIN. In this AIN, x (0) to x (7) are determined by Equations 5 to 12 of the simulated input multiple regression equation 6. In the simulated DAC multiple regression equation calculation 2, the values of x (0) to x (7) are input to Equation 13 to obtain the estimated DAC output OUTe. The error calculation 4 calculates the difference E between OUTe and OUTt, and the comparison calculation 5 calculates AIN + E. If difference E and allowable value A are E> A, AIN + E is determined as x (0) to x (7) by simulated input multiple regression equation calculation 6, and simulated DAC multiple regression equation calculation 2 is x (0) to x (7 ) Is input to Equation 13 to obtain the first DAC output estimated value OUTe1. In error calculation 4, the difference E1 between OUTe1 and OUTt is calculated. In comparison operation 5, AIN + E1 is calculated. If difference E1 and allowable value A are E1> A, AIN + E1 is input to simulated input multiple regression equation 6, x (0) to x (7) is determined, and simulated DAC weight is determined. Input to the regression equation calculation 2 to obtain the second DAC output estimated value OUTe2. This is repeated until E ≦ A. When E ≦ A, AIN + E is input to the DAC 1 through the logic circuit 13 to obtain the DAC output OUT.

DAC入力AIN=125である時、目標DAC演算3によりDAC出力目標値OUTt=0.148138V、1回目の模擬DAC重回帰式演算2によりDAC出力推定値OUTe1=0.271646Vを得る。OUTe1−OUTt=0.123508V、誤差演算4でOUTe1−OUTtを入力換算(数式14)し、E1=3を得る。 When the DAC input AIN = 125, the DAC output target value OUTt = 0.148138V is obtained by the target DAC calculation 3, and the DAC output estimated value OUTe1 = 0.271646V is obtained by the first simulated DAC multiple regression equation calculation 2. OUTe1-OUTt = 0.123508V, OUTe1-OUTt is input-converted (Equation 14) by error calculation 4, and E1 = 3 is obtained.

許容値A=1とし、差E1と許容値AがE1>Aであるから比較演算5はAIN+E1=128を模擬DAC重回帰式演算2に入力し、DAC出力推定値OUTe2=0.314285Vを得る。OUTe2−OUTt=0.166147V、誤差演算4でOUTe2−OUTtを入力換算(数式14)し、E2=3を得る。 Since the allowable value A = 1 and the difference E1 and the allowable value A are E1> A, the comparison operation 5 inputs AIN + E1 = 128 to the simulated DAC multiple regression equation operation 2 to obtain the DAC output estimated value OUTe2 = 0.314285V. OUTe2-OUTt = 0.166147V, OUTe2-OUTt is input-converted by the error calculation 4 (Formula 14), and E2 = 3 is obtained.

差E2と許容値AがE2>Aであるから比較演算5はAIN+E1+E2=131を模擬DAC重回帰式演算2に入力し、DAC出力推定値OUTe3=0.151628Vを得る。
OUTe3−OUTt=0.00349V、誤差演算4でOUTe3−OUTtを入力換算(数式14)し、E3=0を得る。
Since the difference E2 and the allowable value A are E2> A, the comparison operation 5 inputs AIN + E1 + E2 = 131 to the simulated DAC multiple regression equation operation 2, and obtains the DAC output estimated value OUTe3 = 0.51628V.
OUTe3-OUTt = 0.00349V, and OUTe3-OUTt is input-converted (Equation 14) by error calculation 4 to obtain E3 = 0.

差E3と許容値AがE3≦Aであるから比較演算5はAIN+E1+E2+E3=131をロジック回路13に通してDAC1に入力し、出力OUT=0.151628Vを出力する。

Figure 2017216488
Since the difference E3 and the allowable value A are E3 ≦ A, the comparison operation 5 inputs AIN + E1 + E2 + E3 = 131 through the logic circuit 13 and inputs it to the DAC1, and outputs OUT = 0.151628V.
Figure 2017216488

図5は補正回数と歪pp(peak to peak)を表す。X軸は補正回数、Y軸は歪ppである。図3は1回目の補正で、歪ppは200.5mVである。歪ppは補正回数3回目以降57.8mVpp以下に飽和する(49.4mV/LSB)。 FIG. 5 shows the number of corrections and distortion pp (peak to peak). The X axis is the number of corrections, and the Y axis is the distortion pp. FIG. 3 shows the first correction, and the distortion pp is 200.5 mV. The distortion pp saturates to 57.8 mVpp or lower after the third correction (49.4 mV / LSB).

図6は補正前後のDAC1出力歪を表す。X軸はAIN、Y軸は歪(0.0247V/div)である。補正前の歪は灰色で0.2005Vppで(図3と同じ)、補正後の歪は黒色で0.0603Vppに改善される。
FIG. 6 shows the DAC1 output distortion before and after correction. The X axis is AIN, and the Y axis is strain (0.0247 V / div). The distortion before correction is gray and is 0.2005 Vpp (same as FIG. 3), and the distortion after correction is black and is improved to 0.0603 Vpp.

模擬入力重回帰式演算6の入力AIN+Eはビット展開され、ローレベルとハイレベルを選択し、x(0)〜x(7)を演算(数式4〜数式12)するが、市販DAC、シリアル入力DAC等でx(0)〜x(7)電圧を測定できない場合はX=AINと置き、x(0)〜x(7)の値を「1」又は「0」の説明変数、DAC出力OUTeを目的変数とし、この重回帰式を模擬DAC演算式(数式13)として演算することも可能である。
The input AIN + E of the simulated input multiple regression equation calculation 6 is bit-expanded, selects the low level and the high level, and calculates x (0) to x (7) (Equation 4 to Equation 12). When x (0) to x (7) voltage cannot be measured by DAC or the like, X = AIN is set, and the values of x (0) to x (7) are explanatory variables of “1” or “0”, DAC output OUTe Can be calculated as a simulated DAC calculation formula (Formula 13).

本発明は、通信機器、計測機器、音響機器、自動テスト装置、電子ビーム描画装置の偏向システム等の分野における高精度のデジタル信号をアナログ信号に変換するDA変換器に関し、特に、DA変換の高精度化を容易にするものである。 The present invention relates to a DA converter that converts a high-precision digital signal into an analog signal in the fields of communication equipment, measuring equipment, acoustic equipment, automatic test equipment, deflection systems for electron beam lithography equipment, and the like. This facilitates accuracy.

1 DAC
2 模擬DAC重回帰式演算
3 目標DAC演算
4 誤差演算
5 比較演算
6 模擬入力重回帰式演算
10 R−2Rラダー
11 バイアス電源
12 OPアンプ
13 ロジック回路



1 DAC
2 Simulated DAC multiple regression equation calculation 3 Target DAC calculation 4 Error calculation 5 Comparison calculation 6 Simulated input multiple regression equation calculation 10 R-2R ladder 11 Bias power supply 12 OP amplifier 13 Logic circuit



Claims (1)

デジタルAIN{AIN(N−1)、・・、AIN(0)}(N:0、1、・・ )を入力とし、アナログ値OUTを出力するNビットDACに於いて、
入力ビットパターンで変動するAINの電圧をX{X(N−1)、・・、X(0)}の数式で模擬する模擬入力重回帰式演算手段と
該模擬入力重回帰式演算手段の演算で得られたX{X(N−1)、・・、X(0)}を入力とするDAC出力OUTeを数式で模擬する模擬DAC重回帰式演算手段と
該NビットDACの入力AINと目標DAC出力OUTtがOUTt=比例係数*AINで表される目標DAC演算手段と
該模擬DAC重回帰式演算手段のDAC出力OUTeと該目標DAC演算手段出力OUTtを減算する減算手段と
該減算手段出力Eと許容値を比較する比較手段と
該減算手段出力Eが許容値を超えた場合、
該比較手段出力AIN+Eを該模擬入力重回帰式演算手段に入力し、その出力Xを該模擬DAC重回帰式演算手段に入力し、その出力と該目標DAC演算手段出力を該減算手段に入力し、その出力を該比較手段に入力を繰り返し、該比較手段が許容値以下になるまで繰り返すループ手段と
該ループ手段で該減算手段出力が許容値以下の時、該NビットDACに該比較手段出力AIN+Eを入力することを特徴とするDACの直線歪改善回路
In an N-bit DAC that receives a digital AIN {AIN (N−1),..., AIN (0)} (N: 0, 1,...) And outputs an analog value OUT,
Simulated input multiple regression equation computing means for simulating the voltage of AIN that fluctuates according to the input bit pattern with the formula of X {X (N−1),..., X (0)}, and computation of the simulated input multiple regression equation computing means Simulated DAC multiple regression equation calculation means for simulating the DAC output OUTe having X {X (N-1),..., X (0)} obtained in step S1 as an expression, the input AIN of the N-bit DAC and the target The target DAC calculating means in which the DAC output OUTt is expressed by OUTt = proportional coefficient * AIN, the subtracting means for subtracting the DAC output OUTe of the simulated DAC multiple regression equation calculating means and the target DAC calculating means output OUTt, and the subtracting means output E When the comparison means for comparing the allowable value with the subtracting means output E exceeds the allowable value,
The comparison means output AIN + E is input to the simulated input multiple regression equation calculating means, the output X is input to the simulated DAC multiple regression equation calculating means, and the output and the target DAC calculating means output are input to the subtracting means. When the output of the subtracting means is not more than the allowable value in the loop means and the loop means, the output of the comparing means is repeated to the N-bit DAC. A linear distortion improving circuit for DAC characterized by inputting AIN + E
JP2016106881A 2016-05-30 2016-05-30 Linear distortion improvement circuit of DAC Pending JP2017216488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016106881A JP2017216488A (en) 2016-05-30 2016-05-30 Linear distortion improvement circuit of DAC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016106881A JP2017216488A (en) 2016-05-30 2016-05-30 Linear distortion improvement circuit of DAC

Publications (1)

Publication Number Publication Date
JP2017216488A true JP2017216488A (en) 2017-12-07

Family

ID=60577328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016106881A Pending JP2017216488A (en) 2016-05-30 2016-05-30 Linear distortion improvement circuit of DAC

Country Status (1)

Country Link
JP (1) JP2017216488A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018127554A1 (en) 2017-11-09 2019-05-23 Tdk Corporation MAGNETIC SENSOR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018127554A1 (en) 2017-11-09 2019-05-23 Tdk Corporation MAGNETIC SENSOR
DE102018127554B4 (en) 2017-11-09 2024-02-08 Tdk Corporation MAGNETIC SENSOR

Similar Documents

Publication Publication Date Title
US10483995B1 (en) Calibration of radix errors using Least-Significant-Bit (LSB) averaging in a Successive-Approximation Register Analog-Digital Converter (SAR-ADC) during a fully self-calibrating routine
US6489905B1 (en) Segmented DAC calibration circuitry and methodology
US9071261B2 (en) Accuracy enhancement techniques for ADCs
US9362937B1 (en) Method of calibrating a SAR A/D converter and SAR-A/D converter implementing said method
US8836554B2 (en) Digital-to-analog converter (DAC) circuit and weight error estimation/calibration method thereof
JP6102521B2 (en) SAR analog-digital conversion method and SAR analog-digital conversion circuit
US9432041B2 (en) Method of calibrating a thermometer-code SAR A/D converter and thermometer-code SAR-A/D converter implementing said method
TW201415809A (en) Integrated non-linearity (INL) and differential non-linearity (DNL) correction techniques for digital-to-analog converters (DACs)
WO2016119133A1 (en) Jitter circuit used in high-precision analogue-to-digital converter
JP6469496B2 (en) Semiconductor device and analog-digital conversion circuit calibration method
RU2442279C1 (en) Analog-digital converter and its calibration
TW201310918A (en) Successive approximation analog to digital converter with capacitor mismatch calibration and method thereof
JP2015128203A (en) Semiconductor device
CN103490780B (en) Device and method for executing background calibration of comparator
JP2017216488A (en) Linear distortion improvement circuit of DAC
US10218371B1 (en) Cost effective DAC linearization system
TW202015345A (en) Digital to analog converter device and calibration method
JP6486237B2 (en) AD converter
JP2004222274A (en) Analog / digital converter and electronic circuit
US5631649A (en) Digital-to-analog converter test method and apparatus
JPH06112824A (en) Interpolation type a/d converter
JP2013118466A (en) Circuit for correcting linear distortion of dac
Olleta et al. A dynamic element matching approach to ADC testing
JPS5913418A (en) Signal processor
JP3351167B2 (en) Battery voltage measurement device