TW201310918A - Successive approximation analog to digital converter with capacitor mismatch calibration and method thereof - Google Patents

Successive approximation analog to digital converter with capacitor mismatch calibration and method thereof Download PDF

Info

Publication number
TW201310918A
TW201310918A TW100129503A TW100129503A TW201310918A TW 201310918 A TW201310918 A TW 201310918A TW 100129503 A TW100129503 A TW 100129503A TW 100129503 A TW100129503 A TW 100129503A TW 201310918 A TW201310918 A TW 201310918A
Authority
TW
Taiwan
Prior art keywords
capacitor
capacitance
comparison
correction
analog
Prior art date
Application number
TW100129503A
Other languages
Chinese (zh)
Other versions
TWI462489B (en
Inventor
Jin-Fu Lin
Original Assignee
Himax Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Tech Ltd filed Critical Himax Tech Ltd
Priority to TW100129503A priority Critical patent/TWI462489B/en
Publication of TW201310918A publication Critical patent/TW201310918A/en
Application granted granted Critical
Publication of TWI462489B publication Critical patent/TWI462489B/en

Links

Abstract

A capacitance mismatch calibrating method for a successive approximation register ADC which includes at least one array of capacitors is provided. The method comprises the following steps: firstly, at least two compensating capacitors are configured. A capacitor from the array of capacitors is selected as a capacitor-under-test. Then, the terminal voltages on the terminals of the array of capacitors and on the terminals of the compensating capacitors are determined. A first comparison voltage is outputted based on the determined terminal voltages. Afterwards, a sequence of comparisons is controlled based on the first comparison voltage and a second comparison voltage to output a sequence of corresponding digital bits. Finally, a calibration value is calculated to calibrate the value of the capacitor-under-test according to the digital bits.

Description

校正電容不匹配的逐漸逼近類比至數位轉換器及其方法Gradual approximation analog to digital converter and method for correcting capacitance mismatch

  本發明係有關一種逐漸逼近類比至數位轉換器,特別是關於一種校正電容不匹配之逐漸逼近類比至數位轉換器及其方法。The present invention relates to a gradual approximation analog to digital converter, and more particularly to a gradual approximation analog to digital converter for a correction capacitor mismatch and a method thereof.

  在積體電路中,電容值的匹配度往往是一個重要的設計考量。諸如類比至數位轉換器(analog to digital converter, ADC)及開關電容電路(switch-capacitor circuit),都有可能因為製程偏移所造成的電容不匹配而限制電路的效能,進而造成電路無法發揮原設計的水準。In integrated circuits, the matching of capacitance values is often an important design consideration. Such as analog to digital converter (ADC) and switch-capacitor circuit, it is possible to limit the performance of the circuit due to the capacitance mismatch caused by the process offset, thus causing the circuit to fail to function. The level of design.

  請參考第一圖,係為習知八位元逐漸逼近式類比至數位轉換器(successive approximation register ADC, SAR ADC)之示意圖。如第一圖所示,逐漸逼近式類比至數位轉換器1包含兩組對稱的數位至類比轉換器(digital to analog converter, DAC)11、13,分別由電容陣列(C7-C0)所構成。於操作時,首先,比較器15取樣並比較差動輸入訊號Vip、Vin,且逐漸逼近式控制邏輯電路(SAR)17根據比較器15的比較結果來切換開關S7p、S7n以控制電容C7的接點電位。由於接點電位的改變,兩組數位至類比轉換器11、13會產生新的電位,比較器15之後便依序比較數位至類比轉換器11、13的輸出,由逐漸逼近式控制邏輯電路17根據比較器15的比較結果來解析出相對應的數位位元B1-B8。Please refer to the first figure, which is a schematic diagram of a conventional octet approximation register ADC (SAR ADC). As shown in the first figure, the progressive approximation analog to digital converter 1 comprises two sets of symmetric digital to analog converters (DACs) 11, 13 respectively formed by a capacitor array (C7-C0). In operation, first, the comparator 15 samples and compares the differential input signals Vip, Vin, and the progressive approximation control logic (SAR) 17 switches the switches S 7p , S 7n according to the comparison result of the comparator 15 to control the capacitor C7. Contact potential. Due to the change of the contact potential, the two sets of digital to analog converters 11, 13 will generate a new potential, and the comparator 15 will sequentially compare the digits to the output of the analog converters 11, 13, by the progressive approximation control logic 17 Corresponding digits B1-B8 are parsed based on the comparison result of the comparator 15.

  解析出的數位位元Bi會根據二進制比重的電容Ci來產生數位輸出。請參考第二A圖,以三位元逐漸逼近式類比至數位轉換器為例,在理想電容配對下,電容陣列C3-C0具有二進制比重(weight),其電容值應分別為4C、2C、C、C。解析數位位元B3-B1之後,數位輸出Dout可由公式(1)產生。

Dout = 4*B3+2*B2+B1  ………… (1)
The resolved digit bit Bi will produce a digital output based on the capacitance Ci of the binary specific gravity. Please refer to the second A picture, taking the three-bit progressive approximation analog-to-digital converter as an example. Under the ideal capacitance pairing, the capacitor array C3-C0 has a binary weight, and its capacitance value should be 4C, 2C, respectively. C, C. After parsing the bit bits B3-B1, the digital output Dout can be generated by the formula (1).

Dout = 4*B3+2*B2+B1 ............ (1)

  然而,製程偏移可能會造成電容C3的電容值不等於4C,如第二B圖所示,因此,使用錯誤權重而算出來的輸位輸出就不正確,進而導致原系統無法正常運作。為了降低電容不匹配的問題,通常會加大電容陣列的電容值,但如此一來,會消耗大量功率,並降低整個逐漸逼近式類比至數位轉換器的運作速度。However, the process offset may cause the capacitance value of the capacitor C3 to be not equal to 4C, as shown in the second B diagram. Therefore, the output output calculated using the error weight is incorrect, which may cause the original system to fail to operate normally. In order to reduce the problem of capacitor mismatch, the capacitance value of the capacitor array is usually increased, but this consumes a lot of power and reduces the speed of the entire progressive approximation to the digital converter.

  因此,對於積體電路設計來說,亟需提出一種電路,期能在使用相對較小單位的電容下,對因製程偏移造成的電容不匹配做補償或校正,而使設計電路發揮原有效能與精準度。Therefore, for the integrated circuit design, it is urgent to propose a circuit that can compensate or correct the capacitance mismatch caused by the process offset under the use of a relatively small unit of capacitance, so that the design circuit is effective. Can and accuracy.

  鑑於上述,本發明實施例的目的之一在於提出一種逐漸逼近式類比至數位轉換器,能在使用相對較小單位的電容下,對因製程偏移造成的電容不匹配做補償或校正,進而使設計電路發揮原有效能與精準度。In view of the above, one of the objects of embodiments of the present invention is to provide a gradual approximation analog-to-digital converter capable of compensating or correcting for a capacitance mismatch caused by a process offset using a relatively small unit of capacitance. Make the design circuit use its original performance and precision.

  本發明係揭示一種校正電容不匹配的逐漸逼近類比至數位轉換器(SAR ADC),其包含一第一數位至類比轉換器(DAC)、一逐漸逼近式控制邏輯電路(SAR)、一比較器以及一數位校正電路。第一數位至類比轉換器包含一具二進制權重(weight)的第一電容陣列以及至少二個第一補償電容,其中第一補償電容係二元擴展的(binary scaled)。逐漸逼近式控制邏輯電路用來從第一電容陣列中選擇一電容作為待測電容(capacitor-under-test),而後控制第一電容陣列的電容端點及第一補償電容端點的接點電位,並據以產生第一數位至類比轉換器的一第一比較電壓。比較器耦接於第一數位至類比轉換器及逐漸逼近式控制邏輯電路之間,用來根據第一比較電壓以及一第二比較電壓輸出一比較結果。數位校正電路耦接於逐漸逼近式控制邏輯電路。其中,逐漸逼近式控制邏輯電路根據比較結果來控制一連串之比較,以輸出一連串相對應的數位位元。數位校正電路再根據數位位元來計算出一校正值,以校正待測電容之電容值。The present invention discloses a progressive approximation analog to digital converter (SAR ADC) that corrects a capacitance mismatch, and includes a first digital to analog converter (DAC), a progressive approximation control logic (SAR), and a comparator. And a digital correction circuit. The first digit to analog converter includes a first capacitor array having a binary weight and at least two first compensation capacitors, wherein the first compensation capacitor is binary scaled. The gradual approximation control logic circuit is configured to select a capacitor from the first capacitor array as a capacitor-under-test, and then control a junction end of the first capacitor array and a junction potential of the first compensation capacitor end point. And generating a first comparison voltage of the first digit to the analog converter. The comparator is coupled between the first digit to the analog converter and the gradual approximation control logic circuit for outputting a comparison result according to the first comparison voltage and a second comparison voltage. The digital correction circuit is coupled to the gradual approximation control logic circuit. The progressive approximation control logic controls a series of comparisons according to the comparison result to output a series of corresponding digits. The digital correction circuit then calculates a correction value based on the digits to correct the capacitance of the capacitor to be tested.

  本發明又揭示一種電容不匹配校正方法,其用於一逐漸逼近類比至數位轉換器,其包含至少一電容陣列。所述之校正方法包含以下步驟:首先,配置至少二個補償電容,並從電容陣列中選擇一電容作為待測電容(capacitor-under-test);接著,控制電容陣列的電容端點及補償電容端點的接點電位,並根據所決定的接點電位來輸出一第一比較電壓;之後,根據第一比較電壓以及一第二比較電壓來控制一連串之比較,以輸出一連串相對應的數位位元;最後,根據數位位元來計算出一校正值,以校正待測電容之電容值。The invention further discloses a capacitance mismatch correction method for a progressive approximation analog to digital converter comprising at least one capacitor array. The calibration method includes the following steps: first, configuring at least two compensation capacitors, and selecting a capacitor from the capacitor array as a capacitor-under-test; and then controlling a capacitor end point and a compensation capacitor of the capacitor array a contact potential of the terminal, and outputting a first comparison voltage according to the determined contact potential; thereafter, controlling a series of comparisons according to the first comparison voltage and a second comparison voltage to output a series of corresponding digits Finally, a correction value is calculated according to the digits to correct the capacitance of the capacitor to be tested.

  首先,請參考第三圖,係為本發明一實施例之校正電容不匹配的逐漸逼近類比至數位轉換器(SAR ADC)3之電路圖。如第三圖所示,其包含一第一數位至類比轉換器(DAC)31、一第二數位至類比轉換器33、一比較器35、一逐漸逼近式控制邏輯電路(SAR)37以及一數位校正電路39。第一數位至類比轉換器31包含一第一電容陣列C7-C0以及至少二個第一補償電容C2C、C1C。同樣地,第二數位至類比轉換器33包含一第二電容陣列(C7-C0)以及至少二個第二補償電容C2C、C1C。理想情況下,第一電容陣列C7-C0和第二電容陣列C7-C0的電容值係具二進制權重(weight):C7=2C6=4C5=8C4=16C3=32C2=64C1=64C0。First, please refer to the third figure, which is a circuit diagram of a gradual approximation analog-to-digital converter (SAR ADC) 3 for correcting a capacitance mismatch according to an embodiment of the present invention. As shown in the third figure, it includes a first digit to analog converter (DAC) 31, a second digit to analog converter 33, a comparator 35, a progressive approximation control logic (SAR) 37, and a Digital correction circuit 39. The first digit to analog converter 31 includes a first capacitor array C7-C0 and at least two first compensation capacitors C 2C , C 1C . Similarly, the second digit to analog converter 33 includes a second capacitor array (C7-C0) and at least two second compensation capacitors C2C , C1C . Ideally, the capacitance values of the first capacitor array C7-C0 and the second capacitor array C7-C0 are binary weights: C7=2C6=4C5=8C4=16C3=32C2=64C1=64C0.

  比較器35具有一非反相(正)輸入端與一反相輸入端,分別接收並比較第一數位至類比轉換器31以及第二數位至類比轉換器33的輸出。逐漸逼近式控制邏輯電路37係用來控制電容陣列C7-C0的電容端點及補償電容C2C、C1C端點的接點電位,並根據比較器35的比較結果來解析出相對應的數位位元B1-B8。數位校正電路37係耦接於逐漸逼近式控制邏輯電路37,其對數位位元B1-BN來進行校正及整合,以輸出完整的N位元數位碼(N為ADC的解析度)。The comparator 35 has a non-inverting (positive) input and an inverting input for receiving and comparing the output of the first digit to the analog converter 31 and the second digit to the analog converter 33, respectively. The gradual approximation control logic circuit 37 is used to control the capacitance end point of the capacitor array C7-C0 and the junction potential of the compensation capacitor C 2C and C 1C end points, and parse the corresponding digit according to the comparison result of the comparator 35. Bits B1-B8. The digital correction circuit 37 is coupled to the progressive approximation control circuit 37 for correcting and integrating the bit bits B1-BN to output a complete N-bit digital code (N is the resolution of the ADC).

  為了校正電容不匹配,在正常操作逐漸逼近類比至數位轉換器3之前,須先利用本發明提出的機制來找出電容陣列C7-C0的實際權重,以便日後解析出正確的數位輸出。請參考第四圖,為了方便說明,以第一數位至類比轉換器31中的電容C3-C0為例。ㄧ具體實例中,第一補償電容C2C、C1C可配置於電容C0之後,且其電容值為2C及C。首先,必須先決定一待測電容,例如電容C3,假設電容C3的實際電容值已經偏移成2.5C而非理想值4C,如第四圖所示,利用本發明提出的機制應能對其校正。In order to correct the capacitance mismatch, before the normal operation gradually approaches the analog to digital converter 3, the mechanism proposed by the present invention must be used to find the actual weight of the capacitor array C7-C0 so that the correct digital output can be resolved later. Please refer to the fourth figure. For convenience of description, the capacitance C3-C0 in the first digit to the analog converter 31 is taken as an example. In a specific example, the first compensation capacitors C 2C and C 1C may be disposed after the capacitor C0, and the capacitance values thereof are 2C and C. First, a capacitor to be measured, such as capacitor C3, must be determined first. Assuming that the actual capacitance of capacitor C3 has been shifted to 2.5C instead of ideal 4C, as shown in the fourth figure, the mechanism proposed by the present invention should be able to Correction.

  在一取樣階段(sample phase)時,逐漸逼近式控制邏輯電路37重置(reset)第一電容陣列C7-C0及第一補償電容C2C、C1C為一共模電壓Vcm,並藉由連接開關來控制電容(待測電容)C3耦接於一正參考電壓VR。第二數位至類比轉換器33的電容C7-C0及補償電容C2C、C1C係與第一數位至類比轉換器31對稱地運作,因此第二數位至類比轉換器33的電容(待測電容)C3係被控制來耦接於一負參考電壓(-VR)。In a sample phase, the progressive approximation control logic circuit 37 resets the first capacitor array C7-C0 and the first compensation capacitors C 2C and C 1C to a common mode voltage V cm and is connected by The switch controls the capacitor (the capacitor to be tested) C3 is coupled to a positive reference voltage VR. The capacitance of the second digit to the analog converter 33, C7-C0 and the compensation capacitors C2C , C1C , operate symmetrically with the first digit to the analog converter 31, so the capacitance of the second digit to the analog converter 33 (capacitance to be measured) The C3 is controlled to be coupled to a negative reference voltage (-VR).

  完成取樣階段後,請參考第五A-五F圖,之後便進入一連串的比較階段。在第一次比較階段時,逐漸逼近式控制邏輯電路37控制電容C3耦接於共模電壓Vcm。由於接點電位的改變,重新分配後的電荷,在比較器35的非反相輸入端會產生新的電位(第一比較電壓Com_ip)。此階段的第一比較電壓Com_ip等於2.5C*(Vcm-VR)/Ctot。簡單來說,共模電壓Vcm會被設為0值,而後使得第一比較電壓Com_ip變成 -2.5C*VR/Ctot,這邊的Ctot表示全部電容C7-C0及補償電容C2C、C1C之電容值。由於目前的第一比較電壓Com_ip為負值(意即,目前的第一比較電壓Com_ip小於反相輸入端的比較電壓(第二比較電壓)),則比較器35輸出的比較結果為邏輯0。其中,逐漸逼近式控制邏輯電路37也控制第二數位至類比轉換器33的第二電容陣列C7-C0端點及補償電容C2C、C1C端點的接點電位,以據此產生第二數位至類比轉換器33的第二比較電壓。在取樣階段和連續的比較階段中,第二數位至類比轉換器33都會與第一數位至類比轉換器31對稱地運作。After completing the sampling phase, please refer to the fifth A-five F map, and then enter a series of comparison stages. In the first comparison phase, the gradually approaching control logic circuit 37 controls the capacitor C3 to be coupled to the common mode voltage Vcm . Due to the change in junction potential, the redistributed charge produces a new potential (first comparison voltage Com_ip) at the non-inverting input of comparator 35. The first comparison voltage Com_ip at this stage is equal to 2.5C*(V cm -VR)/C tot . In short, the common mode voltage V cm is set to a value of 0, and then the first comparison voltage Com_ip becomes -2.5C*VR/C tot , where C tot represents all capacitors C7-C0 and compensation capacitor C 2C , C 1C capacitance value. Since the current first comparison voltage Com_ip is a negative value (that is, the current first comparison voltage Com_ip is smaller than the comparison voltage of the inverting input terminal (second comparison voltage)), the comparison result output by the comparator 35 is logic 0. Wherein, the gradual approximation control logic circuit 37 also controls the second digit to the junction of the second capacitor array C7-C0 of the analog converter 33 and the junction potential of the compensation capacitors C 2C and C 1C to generate a second The second comparison voltage of the digital to analog converter 33. In the sampling phase and the successive comparison phase, the second digit to analog converter 33 operates symmetrically with the first digit to analog converter 31.

  為了控制第一比較電壓Com_ip和第二比較電壓的差距能逐漸逼近0,逐漸逼近式控制邏輯電路37會依序根據上階段的比較結果來控制電容的接點電位。因此,進入第二次比較階段時,逐漸逼近式控制邏輯電路37控制電容C2耦接於正的參考電壓VR,以提高第一比較電壓Com_ip。此階段的第一比較電壓Com_ip等於(-2.5C*VR+2*VR)/Ctot,其間,第二數位至類比轉換器33的電容C2被控制耦接於負參考電壓(-VR),且比較器35的反向輸入端的第二比較電壓會等於0.5C*VR/Ctot。由於目前第一比較電壓Com_ip為負值(意即,目前的第一比較電壓Com_ip小於反相輸入端的比較電壓(第二比較電壓)),則比較器35輸出的比較結果為邏輯0,逐漸逼近式控制邏輯電路37根據此比較結果解析出的數位位元B1之值為0。In order to control the difference between the first comparison voltage Com_ip and the second comparison voltage to gradually approach 0, the gradual approximation control logic circuit 37 sequentially controls the junction potential of the capacitor according to the comparison result of the previous stage. Therefore, when entering the second comparison phase, the gradually approaching control logic circuit 37 controls the capacitor C2 to be coupled to the positive reference voltage VR to increase the first comparison voltage Com_ip. The first comparison voltage Com_ip at this stage is equal to (-2.5C*VR+2*VR)/C tot , during which the capacitance of the second digit to the analog converter 33 is controlled to be coupled to the negative reference voltage (-VR). And the second comparison voltage at the inverting input of comparator 35 will be equal to 0.5 C*VR/C tot . Since the first comparison voltage Com_ip is currently a negative value (that is, the current first comparison voltage Com_ip is smaller than the comparison voltage of the inverting input terminal (second comparison voltage)), the comparison result output by the comparator 35 is logic 0, gradually approaching The value of the bit B1 parsed by the type control logic circuit 37 based on the comparison result is zero.

  接著,進入第三次比較階段,由於上階段的第一比較電壓Com_ip仍為負值,逐漸逼近式控制邏輯電路37控制電容C1耦接於正的參考電壓VR,以提高第一比較電壓Com_ip。此階段的比較第一電壓Com_ip等於(-0.5C*VR+1*VR)/Ctot,其間,第二數位至類比轉換器33的電容C1被控制耦接於負參考電壓(-VR),且比較器35的反向輸入端的第二比較電壓會等於-0.5C*VR/Ctot。此階段的第一比較電壓Com_ip為正值(意即,目前的第一比較電壓Com_ip大於反相輸入端的第二比較電壓),因此比較器35輸出的比較結果為邏輯1,且逐漸逼近式控制邏輯電路37解析出的數位位元B2之值為1。Then, entering the third comparison phase, since the first comparison voltage Com_ip of the upper stage is still negative, the gradually approaching control logic circuit 37 controls the capacitor C1 to be coupled to the positive reference voltage VR to increase the first comparison voltage Com_ip. The comparison first voltage Com_ip at this stage is equal to (-0.5C*VR+1*VR)/C tot , during which the capacitance C1 of the second digit to the analog converter 33 is controlled to be coupled to the negative reference voltage (-VR). And the second comparison voltage at the inverting input of comparator 35 will be equal to -0.5C*VR/C tot . The first comparison voltage Com_ip at this stage is a positive value (that is, the current first comparison voltage Com_ip is greater than the second comparison voltage of the inverting input terminal), so the comparison result output by the comparator 35 is logic 1, and the gradual approximation control The value of the bit B2 parsed by the logic circuit 37 is 1.

  上階段的第一比較電壓Com_ip為正值,因此在第四次比較階段時,逐漸逼近式控制邏輯電路37控制電容C0耦接於負的參考電壓VR,以降低比較電壓第一Com_ip。此階段的第一比較電壓Com_ip等於(0.5C*VR-1*VR)/Ctot,其間,第二數位至類比轉換器33的電容C0被控制耦接於正參考電壓VR,且比較器35的反向輸入端的第二比較電壓會等於0.5C*VR/Ctot。此階段的第一比較電壓Com_ip為負值(意即,目前的第一比較電壓Com_ip小於反相輸入端的第二比較電壓),因此比較器35輸出的比較結果為邏輯0,且逐漸逼近式控制邏輯電路37根據此比較結果解析出的數位位元B3之值為0。The first comparison voltage Com_ip of the previous stage is a positive value, so in the fourth comparison phase, the gradual approximation control logic circuit 37 controls the capacitor C0 to be coupled to the negative reference voltage VR to lower the comparison voltage first Com_ip. The first comparison voltage Com_ip at this stage is equal to (0.5C*VR-1*VR)/C tot , during which the capacitance C0 of the second digit to the analog converter 33 is controlled to be coupled to the positive reference voltage VR, and the comparator 35 The second comparison voltage at the inverting input will be equal to 0.5C*VR/C tot . The first comparison voltage Com_ip at this stage is a negative value (that is, the current first comparison voltage Com_ip is smaller than the second comparison voltage of the inverting input terminal), so the comparison result output by the comparator 35 is logic 0, and the gradual approximation control The value of the bit B3 parsed by the logic circuit 37 based on the comparison result is zero.

  同樣地,在第五次比較階段時,逐漸逼近式控制邏輯電路37控制補償電容C2C耦接於正的參考電壓VR,以提高第一比較電壓Com_ip。此階段的第一比較電壓Com_ip等於(-0.5C*VR+2*VR)/Ctot),其間,第二數位至類比轉換器33的補償電容C2C被控制耦接於負參考電壓(-VR),且比較器35的反向輸入端的第二比較電壓會等於-1.5C*VR/Ctot。此階段的第ㄧ比較電壓Com_ip為正值(意即,目前的第一比較電壓Com_ip大於反相輸入端的第二比較電壓),因此比較器35輸出的比較結果為邏輯1,且逐漸逼近式控制邏輯電路37解析出的數位位元B4之值為1。Similarly, in the fifth comparison phase, the gradual approximation control logic circuit 37 controls the compensation capacitor C 2C to be coupled to the positive reference voltage VR to increase the first comparison voltage Com_ip. The first comparison voltage Com_ip at this stage is equal to (-0.5C*VR+2*VR)/C tot ), during which the compensation capacitance C 2C of the second digit to the analog converter 33 is controlled to be coupled to the negative reference voltage (- VR), and the second comparison voltage at the inverting input of comparator 35 will be equal to -1.5C*VR/C tot . The third comparison voltage Com_ip at this stage is positive (that is, the current first comparison voltage Com_ip is greater than the second comparison voltage of the inverting input), so the comparison result of the comparator 35 output is logic 1, and the gradual approximation control The value of the bit B4 parsed by the logic circuit 37 is 1.

  最後,在第六次比較階段時,逐漸逼近式控制邏輯電路37控制補償電容C1C耦接於負的參考電壓VR,以降低第一比較電壓Com_ip。此階段的第一比較電壓Com_ip等於(1.5C*VR-1*VR)/Ctot,其間,第二數位至類比轉換器33的補償電容C1C被控制耦接於正參考電壓VR,且比較器35的反向輸入端的第二比較電壓會等於-0.5C*VR/Ctot。此階段的第ㄧ比較電壓Com_ip為正值(意即,目前的第一比較電壓Com_ip大於反相輸入端的第二比較電壓),因此比較器35輸出的比較結果為邏輯1,且逐漸逼近式控制邏輯電路37根據此比較結果解析出的數位位元B5之值為1。Finally, in the sixth comparison phase, the gradual approximation control logic circuit 37 controls the compensation capacitor C 1C to be coupled to the negative reference voltage VR to lower the first comparison voltage Com_ip. The first comparison voltage Com_ip at this stage is equal to (1.5C*VR-1*VR)/C tot , during which the compensation capacitance C 1C of the second digit to analog converter 33 is controlled to be coupled to the positive reference voltage VR and compared The second comparison voltage at the inverting input of the device 35 will be equal to -0.5 C*VR/C tot . The third comparison voltage Com_ip at this stage is positive (that is, the current first comparison voltage Com_ip is greater than the second comparison voltage of the inverting input), so the comparison result of the comparator 35 output is logic 1, and the gradual approximation control The value of the bit B5 parsed by the logic circuit 37 based on the comparison result is 1.

  經過上述一連串之比較,逐漸逼近式控制邏輯電路37解析出一連串相對應的數位位元B5-B1,如第六圖所示。數位校正電路39根據以下判斷公式(2)、(3)來計算出一校正值(index),以校正電容C3之電容值。

If B4=B5=!B3e index=-(2*B1+B2) …… (2)
If B1=B2=!B3e index=-(2*B4+B5) …… (3)
After a series of comparisons, the progressive approximation control logic circuit 37 parses a series of corresponding digits B5-B1, as shown in the sixth figure. The digital correction circuit 39 calculates a correction value (index) based on the following judgment formulas (2), (3) to correct the capacitance value of the capacitance C3.

If B4=B5=!B3e index=-(2*B1+B2) ...... (2)
If B1=B2=!B3e index=-(2*B4+B5) ...... (3)

  本發明實施例提出的範例係符合判斷規則(2),因此計算出的校正值index為(-1)。數位校正電路39便將電容C3之理想電容值(=4C)加上校正值index (=-1C),便獲得電容C3實際(或預估)之電容值(4C-1C=3C)。如此一來,數位校正電路39便可利用公式(4)將解析出的數位位元Bi乘以校正後的電容之權重來產生數位輸出Dout。值得一提的是,某些情況下,校正過的電容值會與實際電容值有0.5C的誤差,但整體來說還是提升了電路的精準度。

Dout=3*B3+2*B2+B1 …… (4)
The example proposed by the embodiment of the present invention conforms to the judgment rule (2), and thus the calculated correction value index is (-1). The digital correction circuit 39 adds the ideal capacitance value (= 4C) of the capacitor C3 to the correction value index (= -1 C) to obtain the actual (or estimated) capacitance value of the capacitor C3 (4C - 1 C = 3 C). In this way, the digital correction circuit 39 can multiply the analyzed digital bit Bi by the weight of the corrected capacitance by using equation (4) to generate the digital output Dout. It is worth mentioning that in some cases, the corrected capacitance value will have an error of 0.5C with the actual capacitance value, but overall the accuracy of the circuit is improved.

Dout=3*B3+2*B2+B1 ...... (4)

  校正電容C3之電容值後,可重複上述校正步驟對電容C4進行校正,如此從較小電容值的電容依序往較大電容值的電容進行校正,直到所有電容都校正完為止,以便獲得各電容的校正值。電容的校正值會被用來獲得電容本身的實際權重。因此,數位校正電路便可根據相對應之電容的實際權重(電容值)來獲得較為正確的數位輸出Dout。實作上,校正機制係於逐漸逼近類比至數位轉換器3轉換類比訊號為數位碼之前被執行。After correcting the capacitance value of the capacitor C3, the above calibration step can be repeated to correct the capacitor C4, so that the capacitance of the smaller capacitance value is sequentially corrected to the capacitance of the larger capacitance value until all the capacitors are corrected, so as to obtain each The correction value of the capacitor. The corrected value of the capacitor is used to obtain the actual weight of the capacitor itself. Therefore, the digital correction circuit can obtain a more accurate digital output Dout according to the actual weight (capacitance value) of the corresponding capacitor. In practice, the correction mechanism is performed before the analogy to digital converter 3 converts the analog signal to a digital code.

  一具體實施例中,補償電容C2C、C1C係二元擴展的(binary scaled),且補償電容C2C、C1C的數量愈多,待測電容的校正範圍愈大。例如,若設置2個補償電容,則校正值index的範圍在-4到4之間;而若設置5個補償電容,則校正值index的範圍在–(25-1)to到(25-1)之間,以此類推。In a specific embodiment, the compensation capacitors C 2C and C 1C are binary scaled, and the more the compensation capacitors C 2C and C 1C are, the larger the correction range of the capacitor to be tested is. For example, if two compensation capacitors are set, the correction value index ranges from -4 to 4; and if five compensation capacitors are set, the correction value index ranges from –(2 5 -1)to to (2 5 Between -1), and so on.

  最後,請參考第七圖,係為本發明實施例之電容不匹配校正方法之流程圖。值得注意的是,為了精簡說明,第七圖僅顯示第一數位至類比轉換器31的操作流程,而第二數位至類比轉換器33會如同上述來與第一數位至類比轉換器31對稱地運作。本方法是用於第三圖的逐漸逼近類比至數位轉換器3,其於電容陣列C7-C0之後額外增設了補償電容C2C、C1CFinally, please refer to the seventh figure, which is a flowchart of the capacitor mismatch correction method according to an embodiment of the present invention. It should be noted that, for the sake of streamlining the description, the seventh figure only shows the operation flow of the first digit to analog converter 31, and the second digit to analog converter 33 is symmetric with the first digit to analog converter 31 as described above. Operation. The method is for the gradual approximation analog to digital converter 3 of the third figure, which additionally adds compensation capacitors C 2C , C 1C after the capacitor array C7-C0.

  首先,步驟S701中,從電容陣列C7-C0中決定須校正的第一個待測電容,如電容C3。接著,進入取樣階段,逐漸逼近式控制邏輯電路37重置電容陣列C7-C0及補償電容C2C、C1C至共模電壓Vcm,並控制待測電容耦接於正參考電壓VR(步驟S703)。之後,在步驟S705中,進入一連串比較階段,其中,在第一次比較階段時,逐漸逼近式控制邏輯電路37控制待測電容耦接於共模電壓Vcm,數位至類比轉換器31根據所決定的接點電位來輸出第一比較電壓Com_ip(步驟S707)。First, in step S701, the first capacitor to be tested, such as capacitor C3, to be corrected is determined from the capacitor array C7-C0. Then, entering the sampling phase, the gradually approaching control logic circuit 37 resets the capacitor array C7-C0 and the compensation capacitors C 2C and C 1C to the common mode voltage V cm , and controls the capacitance to be tested to be coupled to the positive reference voltage VR (step S703). ). Then, in step S705, a series of comparison stages is entered, wherein, in the first comparison phase, the gradual approximation control logic circuit 37 controls the capacitance to be tested to be coupled to the common mode voltage Vcm , and the digital to analog converter 31 is The determined contact potential outputs the first comparison voltage Com_ip (step S707).

  步驟S709中,比較器35判斷第一比較電壓Com_ip是否為正值,若是,則輸出比較結果為邏輯1,且逐漸逼近式控制邏輯電路37控制待測電容的下一個電容(C2)耦接於正的參考電壓(步驟S711)。若比較器35判斷第一比較電壓Com_ip為負值,則輸出比較結果為邏輯0,且逐漸逼近式控制邏輯電路37控制下一個電容(C2)耦接於負的參考電壓(-VR)(步驟S713)。In step S709, the comparator 35 determines whether the first comparison voltage Com_ip is a positive value, and if so, the output comparison result is logic 1, and the gradual approximation control logic circuit 37 controls the next capacitor (C2) of the capacitor to be tested to be coupled to A positive reference voltage (step S711). If the comparator 35 determines that the first comparison voltage Com_ip is a negative value, the output comparison result is logic 0, and the gradual approximation control logic circuit 37 controls the next capacitor (C2) to be coupled to the negative reference voltage (-VR) (step S713).

  步驟S715中,判斷是否已完成所有比較階段。若否,則回到步驟S707繼續進行比較。若已完成一連串的比較階段,逐漸逼近式控制邏輯電路37便根據每次的比較結果來輸出相對應的數位位元B1-B5(步驟S717)。步驟S719中,數位校正電路39根據公式(2)、(3)利用解析出來的數位位元B1-B5來計算出用來校正待測電容之電容值的校正值index。In step S715, it is judged whether or not all comparison phases have been completed. If no, the process returns to step S707 to continue the comparison. If a series of comparison phases have been completed, the progressive approximation control logic circuit 37 outputs the corresponding digit bits B1-B5 based on the comparison result each time (step S717). In step S719, the digit correction circuit 39 calculates the correction value index for correcting the capacitance value of the capacitance to be measured by using the parsed digits B1-B5 according to the equations (2) and (3).

  步驟S721中,判斷是否所有電容值大於第一個待測電容之電容都校正完。若否,則於步驟S723中,選出下一個待測電容(即C4),並回到步驟S703,重複上述校正操作,直到所有電容都完成校正為止。當所有電容都完成校正,於步驟S725中,數位校正電路39便將每個待測電容之電容值加上相對應之校正值index來獲得每個待測電容的權重。最後,步驟S727中,數位校正電路39將解析出來的數位位元B1-BN乘以校正後的電容之權重來獲得類比/數位轉換期間的數位輸出Dout。In step S721, it is determined whether all capacitors having a larger capacitance value than the first capacitor to be tested are corrected. If not, in step S723, the next capacitor to be tested (ie, C4) is selected, and the process returns to step S703, and the above-mentioned correction operation is repeated until all the capacitors are corrected. When all the capacitors are corrected, in step S725, the digit correction circuit 39 adds the capacitance value of each capacitor to be tested to the corresponding correction value index to obtain the weight of each capacitor to be tested. Finally, in step S727, the digit correction circuit 39 multiplies the parsed digits B1-BN by the weight of the corrected capacitance to obtain the digit output Dout during the analog/digital conversion.

  根據上述實施例,本發明所提出的校正電容不匹配之逐漸逼近類比至數位轉換器及其方法,係於數位至類比轉換器中增設小電容值的補償電容,並利用本發明提出的機制來找出電容陣列的實際權重,進而對因製程偏移造成的電容不匹配做補償或校正,並使設計電路發揮原有效能與精準度。According to the above embodiment, the calibration capacitor mismatching gradually approximating the analog-to-digital converter and the method thereof are based on adding a small capacitance value compensation capacitor to the digital-to-analog converter, and using the mechanism proposed by the present invention. Find the actual weight of the capacitor array, and then compensate or correct the capacitance mismatch caused by the process offset, and make the design circuit play the original performance and accuracy.

  以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其它未脫離發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍內。The above description is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention; all other equivalent changes or modifications which are not departing from the spirit of the invention should be included in the following Within the scope of the patent application.

習知Conventional knowledge

1...逐漸逼近類比至數位轉換器1. . . Gradually approximating analog to digital converters

11...第一數位至類比轉換器11. . . First digit to analog converter

13...第二數位至類比轉換器13. . . Second digit to analog converter

C7-C0...電容陣列C7-C0. . . Capacitor array

VR...正參考電壓VR. . . Positive reference voltage

Vcm...共模電壓Vcm. . . Common mode voltage

15...比較器15. . . Comparators

17...逐漸逼近式控制邏輯電路17. . . Gradual approximation control logic

B1-B8...數位位元B1-B8. . . Digit

S7p,S6p,S5p,S4p,S3p,S2p,S1p,S0p...開關S 7p , S 6p , S 5p , S 4p , S 3p , S 2p , S 1p , S 0p . . . switch

S7n,S6n,S5n,S4n,S3n,S2n,S1n,S0n...開關S 7n , S 6n , S 5n , S 4n , S 3n , S 2n , S 1n , S 0n . . . switch

本發明this invention

3...逐漸逼近類比至數位轉換器3. . . Gradually approximating analog to digital converters

31...第一數位至類比轉換器31. . . First digit to analog converter

33...第二數位至類比轉換器33. . . Second digit to analog converter

C7-C0...電容陣列C7-C0. . . Capacitor array

C2C、C1C...補償電容C 2C , C 1C . . . Compensation capacitor

VR...正參考電壓VR. . . Positive reference voltage

Vcm...共模電壓Vcm. . . Common mode voltage

35...比較器35. . . Comparators

37...逐漸逼近式控制邏輯電路37. . . Gradual approximation control logic

39...數位校正電路39. . . Digital correction circuit

B1-B8...數位位元B1-B8. . . Digit

Dout...數位輸出Dout. . . Digital output

S7p,S6p,S5p,S4p,S3p,S2p,S1p,S0p...開關S 7p , S 6p , S 5p , S 4p , S 3p , S 2p , S 1p , S 0p . . . switch

S7n,S6n,S5n,S4n,S3n,S2n,S1n,S0n...開關S 7n , S 6n , S 5n , S 4n , S 3n , S 2n , S 1n , S 0n . . . switch

S701-S727...步驟S701-S727. . . step

第一圖係為習知八位元逐漸逼近式類比至數位轉換器(SAR ADC)之示意圖。
第二A圖係為習知具理想電容配對的電容陣列之電路圖。
第二B圖係為習知電容不配對的電容陣列之電路圖。
第三圖係為本發明一實施例之校正電容不匹配的逐漸逼近類比至數位轉換器之電路圖。
第四圖係為本發明一實施例之校正電容不匹配的逐漸逼近類比至數位轉換器在取樣階段時之操作示意圖。
第五A至第五F圖係為本發明一實施例之校正電容不匹配的逐漸逼近類比至數位轉換器在比較階段之操作示意圖。
第六圖顯示解析出的數位位元。
第七圖顯示本發明實施例之電容不匹配校正方法之流程圖。
The first figure is a schematic diagram of a conventional octet gradual approximation analog to digital converter (SAR ADC).
The second A diagram is a circuit diagram of a conventional capacitor array with ideal capacitance pairing.
The second B diagram is a circuit diagram of a capacitor array in which the conventional capacitors are not paired.
The third figure is a circuit diagram of a gradual approximation analog to digital converter of a correction capacitor mismatch according to an embodiment of the present invention.
The fourth figure is a schematic diagram of the operation of the progressive approximation analog capacitor to the digital converter in the sampling phase according to an embodiment of the present invention.
The fifth to fifth F diagrams are schematic diagrams of the operation of the gradual approximation analog-to-digital converter of the correction capacitor mismatch in the comparison phase according to an embodiment of the present invention.
The sixth graph shows the resolved digits.
FIG. 7 is a flow chart showing a method for correcting a capacitance mismatch according to an embodiment of the present invention.

3...逐漸逼近類比至數位轉換器3. . . Gradually approximating analog to digital converters

31...第一數位至類比轉換器31. . . First digit to analog converter

33...第二數位至類比轉換器33. . . Second digit to analog converter

C7-C0...電容陣列C7-C0. . . Capacitor array

C2C、C1C...補償電容C 2C , C 1C . . . Compensation capacitor

VR...正參考電壓VR. . . Positive reference voltage

Vcm...共模電壓Vcm. . . Common mode voltage

35...比較器35. . . Comparators

37...逐漸逼近式控制邏輯電路37. . . Gradual approximation control logic

39...數位校正電路39. . . Digital correction circuit

B1-B8...數位位元B1-B8. . . Digit

Dout...數位輸出Dout. . . Digital output

S7p,S6p,S5p,S4p,S3p,S2p,S1p,S0p...開關S 7p , S 6p , S 5p , S 4p , S 3p , S 2p , S 1p , S 0p . . . switch

S7n,S6n,S5n,S4n,S3n,S2n,S1n,S0n...開關S 7n , S 6n , S 5n , S 4n , S 3n , S 2n , S 1n , S 0n . . . switch

Claims (15)

一種校正電容不匹配的逐漸逼近類比至數位轉換器(SAR ADC),包含:
一第一數位至類比轉換器(DAC),包含一第一電容陣列以及至少二個第一補償電容,其中該第一電容陣列的電容值具二進制權重(weight),且該些第一補償電容係二元擴展的(binary scaled);
一逐漸逼近式控制邏輯電路(SAR),用來從該第一電容陣列中選擇一電容作為一待測電容(capacitor-under-test),而後控制該第一電容陣列的電容端點及該些第一補償電容端點的接點電位,並據以產生該第一數位至類比轉換器的一第一比較電壓;
一比較器,耦接於該第一數位至類比轉換器及該逐漸逼近式控制邏輯電路之間,該比較器根據該第一比較電壓以及一第二比較電壓輸出一比較結果;及
一數位校正電路,耦接於該逐漸逼近式控制邏輯電路;
其中,該逐漸逼近式控制邏輯電路根據該比較結果來控制一連串之比較,以輸出一連串相對應的數位位元,該數位校正電路根據該些數位位元來計算出一校正值,以校正該待測電容之電容值。

A gradual approximation analog-to-digital converter (SAR ADC) that corrects for capacitor mismatch and includes:
a first digital to analog converter (DAC) comprising a first capacitor array and at least two first compensation capacitors, wherein the capacitance value of the first capacitor array has a binary weight, and the first compensation capacitors Binary scaled;
a progressive approximation control logic (SAR) for selecting a capacitor from the first capacitor array as a capacitor-under-test, and then controlling a capacitance end point of the first capacitor array and the a first compensation capacitor terminal contact potential, and accordingly generating the first digit to a first comparison voltage of the analog converter;
a comparator coupled between the first digit to the analog converter and the progressive approximation control logic circuit, the comparator outputting a comparison result according to the first comparison voltage and a second comparison voltage; and a digital correction a circuit coupled to the gradual approximation control logic circuit;
The progressive approximation control logic circuit controls a series of comparisons according to the comparison result to output a series of corresponding digits, and the digit correction circuit calculates a correction value according to the digits to correct the to-be-corrected Measure the capacitance of the capacitor.

如申請專利範圍第1項所述之校正電容不匹配的逐漸逼近類比至數位轉換器,其中在一取樣階段(sample phase)時,該逐漸逼近式控制邏輯電路重置該第一電容陣列及該些第一補償電容為一共模電壓,並控制該待測電容耦接於一第一參考電壓。

A progressive approximation analog to digital converter of a correction capacitor mismatch as described in claim 1 wherein the gradual approximation control logic resets the first capacitor array and the sample phase The first compensation capacitor is a common mode voltage, and the capacitor to be tested is coupled to a first reference voltage.

如申請專利範圍第2項所述之校正電容不匹配的逐漸逼近類比至數位轉換器,其中在一連串比較階段時,該逐漸逼近式控制邏輯電路根據該比較結果來控制電容的接點電位,以控制該第一比較電壓及該第二比較電壓之間的差距逐漸逼近0。

The gradual approximation analog to digital converter of the correction capacitor mismatch according to claim 2, wherein the gradual approximation control logic controls the junction potential of the capacitor according to the comparison result in a series of comparison phases, The gap between the first comparison voltage and the second comparison voltage is controlled to gradually approach zero.

如申請專利範圍第3項所述之校正電容不匹配的逐漸逼近類比至數位轉換器,其中在該一連串比較階段時,該逐漸逼近式控制邏輯電路基於該比較器輸出的該比較結果來控制下一個電容耦接於該第一參考電壓或一第二參考電壓。

A progressive approximation analog to digital converter of a correction capacitor mismatch as described in claim 3, wherein the gradual approximation control logic controls the comparison based on the comparison output of the comparator during the series of comparison phases A capacitor is coupled to the first reference voltage or a second reference voltage.

如申請專利範圍第4項所述之校正電容不匹配的逐漸逼近類比至數位轉換器,其中在第一次比較階段時,該逐漸逼近式控制邏輯電路控制該待測電容耦接於該共模電壓。

The gradual approximation analog-to-digital converter of the correction capacitor mismatch as described in claim 4, wherein the gradual approximation control logic circuit controls the capacitance to be tested to be coupled to the common mode during the first comparison phase Voltage.

如申請專利範圍第5項所述之校正電容不匹配的逐漸逼近類比至數位轉換器,其中該數位校正電路判斷若B4=B5=!B3,則計算該校正值=-(2*B1+B2),或判斷若B1=B2=!B3,則計算該校正值=(2*B4+B5),其中B1-B5係為該數位位元。

The gradual approximation analog to the digital converter of the correction capacitor mismatch as described in claim 5, wherein the digital correction circuit determines that if B4=B5=!B3, the correction value is calculated=-(2*B1+B2 And, if it is judged that B1 = B2 = ! B3, the correction value = (2 * B4 + B5) is calculated, where B1 - B5 are the digits.

如申請專利範圍第6項所述之校正電容不匹配的逐漸逼近類比至數位轉換器,其中該數位校正電路將待測電容之理想電容值加上該校正值來獲得該待測電容之電容值之權重。

The gradual approximation analog to digital converter of the correction capacitor mismatch according to claim 6 of the patent application scope, wherein the digital correction circuit adds the ideal capacitance value of the capacitor to be tested to the correction value to obtain the capacitance value of the capacitor to be tested. The weight.

如申請專利範圍第7項所述之校正電容不匹配的逐漸逼近類比至數位轉換器,係從較小電容值的電容依序往較大電容值的電容進行校正,且該數位校正電路將該些數位位元乘以每一校正後的電容之權重來獲得類比/數位轉換期間的一數位輸出。

The gradual approximation analog to digital converter of the correction capacitor mismatch as described in claim 7 is corrected from the capacitance of the smaller capacitance value to the capacitance of the larger capacitance value, and the digital correction circuit will These digits are multiplied by the weight of each corrected capacitance to obtain a digital output during the analog/digital conversion.

如申請專利範圍第3項所述之校正電容不匹配的逐漸逼近類比至數位轉換器,更包含:
一第二數位至類比轉換器(DAC),包含一第二電容陣列以及至少二個第二補償電容,其中該第二電容陣列的電容值具二進制權重(weight);
其中,該逐漸逼近式控制邏輯電路控制該第二電容陣列的電容端點及該些第二補償電容端點的接點電位,並據以產生該第二數位至類比轉換器的該第二比較電壓,且在該取樣階段及該一連串比較階段時,該第二數位至類比轉換器係與該第一數位至類比轉換器對稱地運作。

The gradual approximation analog-to-digital converter of the correction capacitor mismatch as described in claim 3 of the patent application includes:
a second digit to analog converter (DAC), comprising a second capacitor array and at least two second compensation capacitors, wherein the capacitance value of the second capacitor array has a binary weight;
The gradual approximation control logic circuit controls a junction end of the capacitance end of the second capacitor array and the second compensation capacitor end point, and accordingly generates the second comparison of the second digit to the analog converter The voltage, and during the sampling phase and the series of comparison phases, the second digit to analog converter operates symmetrically with the first digit to analog converter.

一種電容不匹配校正方法,係用於一逐漸逼近類比至數位轉換器,該逐漸逼近類比至數位轉換器包含至少一電容陣列,該方法包含:
配制至少二個補償電容;
從該電容陣列中選擇一電容作為一待測電容(capacitor-under-test);
控制該電容陣列的電容端點及該些補償電容端點的接點電位;
根據所決定的接點電位來輸出一第一比較電壓;
根據該第一比較電壓以及一第二比較電壓輸出一比較結果;
根據該比較結果來控制一連串之比較,以輸出一連串相對應的數位位元;及
根據該些數位位元來計算出一校正值,以校正該待測電容之電容值。

A capacitance mismatch correction method for gradually approximating an analog to digital converter, the gradual approximation analog to digital converter comprising at least one capacitor array, the method comprising:
Forming at least two compensation capacitors;
Selecting a capacitor from the capacitor array as a capacitor-under-test;
Controlling a capacitance end of the capacitor array and a junction potential of the compensation capacitor terminals;
Outputting a first comparison voltage according to the determined contact potential;
Outputting a comparison result according to the first comparison voltage and a second comparison voltage;
Controlling a series of comparisons according to the comparison result to output a series of corresponding digits; and calculating a correction value according to the digits to correct the capacitance of the capacitor to be tested.

如申請專利範圍第10項所述之電容不匹配校正方法,其中於控制接點電位之步驟中包含:
在一取樣階段時,重置該電容陣列及該些補償電容為一共模電壓,並控制該待測電容耦接於一第一參考電壓;及
在一連串比較階段時,根據該比較結果來控制電容的接點電位,以控制該第一比較電壓及該第二比較電壓之間的差距逐漸逼近0。

The method for correcting a capacitance mismatch according to claim 10, wherein the step of controlling the potential of the contact comprises:
During a sampling phase, the capacitor array and the compensation capacitors are reset to a common mode voltage, and the capacitor to be tested is coupled to a first reference voltage; and in a series of comparison stages, the capacitor is controlled according to the comparison result. The junction potential is controlled to gradually approach the difference between the first comparison voltage and the second comparison voltage.

如申請專利範圍第11項所述之電容不匹配校正方法,其中於根據該第一比較電壓以及該第二比較電壓輸出該比較結果之步驟中包含:
判斷若該第一比較電壓大於該第二比較電壓,則輸出之該比較結果為邏輯1;及
判斷若該第一比較電壓小於該第二比較電壓,則輸出之該比較結果為邏輯0。

The capacitor mismatch correction method according to claim 11, wherein the step of outputting the comparison result according to the first comparison voltage and the second comparison voltage includes:
Determining that if the first comparison voltage is greater than the second comparison voltage, the comparison result of the output is logic 1; and determining that if the first comparison voltage is less than the second comparison voltage, the comparison result of the output is logic 0.

如申請專利範圍第12項所述之電容不匹配校正方法,其中於控制該一連串之比較之步驟中包含:
基於該比較結果控制該待測電容的下一個電容耦接於該第一參考電壓或一第二參考電壓;

The method for correcting a capacitance mismatch according to claim 12, wherein the step of controlling the series of comparisons comprises:
Controlling, according to the comparison result, a next capacitor of the capacitor to be tested is coupled to the first reference voltage or a second reference voltage;

如申請專利範圍第13項所述之電容不匹配校正方法,其中於計算出該校正值之步驟中包含:
判斷若B4=B5=!B3,則計算該校正值=-(2*B1+B2);
判斷若B1=B2=!B3,則計算該校正值=(2*B4+B5);及
將待測電容之理想電容值加上該校正值來獲得該待測電容的權重;
其中B1-B5係為該數位位元。

The capacitor mismatch correction method according to claim 13, wherein the step of calculating the correction value includes:
If it is judged that B4=B5=!B3, the correction value is calculated=-(2*B1+B2);
Determining if the B1=B2=!B3, calculating the correction value=(2*B4+B5); and adding the ideal capacitance value of the capacitance to be tested to the correction value to obtain the weight of the capacitance to be tested;
Where B1-B5 are the digits.

如申請專利範圍第14項所述之電容不匹配校正方法,更包含:
從較小電容值的電容依序往較大電容值的電容進行校正;及
將該些數位位元乘以每一校正後的電容之權重來獲得一數位輸出。
The capacitor mismatch correction method described in claim 14 of the patent application scope further includes:
The capacitance from the smaller capacitance value is sequentially corrected to the capacitance of the larger capacitance value; and the digits are multiplied by the weight of each corrected capacitance to obtain a digital output.
TW100129503A 2011-08-18 2011-08-18 Successive approximation analog to digital converter with capacitor mismatch calibration and method thereof TWI462489B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100129503A TWI462489B (en) 2011-08-18 2011-08-18 Successive approximation analog to digital converter with capacitor mismatch calibration and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100129503A TWI462489B (en) 2011-08-18 2011-08-18 Successive approximation analog to digital converter with capacitor mismatch calibration and method thereof

Publications (2)

Publication Number Publication Date
TW201310918A true TW201310918A (en) 2013-03-01
TWI462489B TWI462489B (en) 2014-11-21

Family

ID=48482143

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100129503A TWI462489B (en) 2011-08-18 2011-08-18 Successive approximation analog to digital converter with capacitor mismatch calibration and method thereof

Country Status (1)

Country Link
TW (1) TWI462489B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572144B (en) * 2015-11-25 2017-02-21 瑞昱半導體股份有限公司 Method and digital correction circuit for adaptive regulating coding mode
TWI657666B (en) * 2017-10-31 2019-04-21 聯陽半導體股份有限公司 Analog-to-digital converter and calibration method thereof and callbration apparatus
CN111064468A (en) * 2018-10-17 2020-04-24 创意电子股份有限公司 Calibration method and calibration system
TWI717958B (en) * 2019-12-31 2021-02-01 財團法人工業技術研究院 Successive approximation register analog-to-digital converter with calibration function and calibration method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665875B (en) * 2018-02-13 2019-07-11 新唐科技股份有限公司 Digital background calibration circuit
TWI717900B (en) * 2019-11-14 2021-02-01 財團法人成大研究發展基金會 Sar adc and a reference ripple suppression circuit adaptable thereto
TWI774575B (en) * 2021-10-04 2022-08-11 瑞昱半導體股份有限公司 Calibration device for digital-to-analog conversion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4652214B2 (en) * 2005-11-18 2011-03-16 富士通セミコンダクター株式会社 Analog to digital converter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572144B (en) * 2015-11-25 2017-02-21 瑞昱半導體股份有限公司 Method and digital correction circuit for adaptive regulating coding mode
TWI657666B (en) * 2017-10-31 2019-04-21 聯陽半導體股份有限公司 Analog-to-digital converter and calibration method thereof and callbration apparatus
CN109728815A (en) * 2017-10-31 2019-05-07 联阳半导体股份有限公司 Analog-to-digital converter and its bearing calibration and calibration equipment
US10333539B2 (en) 2017-10-31 2019-06-25 Ite Tech. Inc. Analog-to-digital converter and calibration method thereof and calibration apparatus
CN111064468A (en) * 2018-10-17 2020-04-24 创意电子股份有限公司 Calibration method and calibration system
CN111064468B (en) * 2018-10-17 2023-04-07 创意电子股份有限公司 Calibration method and calibration system
TWI717958B (en) * 2019-12-31 2021-02-01 財團法人工業技術研究院 Successive approximation register analog-to-digital converter with calibration function and calibration method thereof
US11424757B2 (en) 2019-12-31 2022-08-23 Industrial Technology Research Institute Successive approximation register analog-to-digital converter with calibration function and calibration method thereof

Also Published As

Publication number Publication date
TWI462489B (en) 2014-11-21

Similar Documents

Publication Publication Date Title
US8451151B2 (en) Successive approximation analog to digital converter with capacitor mismatch calibration and method thereof
TWI462489B (en) Successive approximation analog to digital converter with capacitor mismatch calibration and method thereof
US7880650B2 (en) Method and apparatus for testing data converter
EP3059867B1 (en) Circuit and method for dac mismatch error detection and correction in an adc
US7876254B2 (en) Data conversion circuitry having successive approximation circuitry and method therefor
US10581443B2 (en) Method and apparatus for offset correction in SAR ADC with reduced capacitor array DAC
EP2686960B1 (en) Adc calibration
US9362938B2 (en) Error measurement and calibration of analog to digital converters
US7755521B1 (en) A-D convert apparatus, D-A convert apparatus and adjustment method
US7868796B2 (en) Self-calibrating data conversion circuitry and method therefor
US7733258B2 (en) Data conversion circuitry for converting analog signals to digital signals and vice-versa and method therefor
US7868795B2 (en) Data conversion circuitry with an extra successive approximation step and method therefor
US8902092B2 (en) Analog-digital conversion circuit and method
EP3565122A1 (en) Accuracy enhancement techniques for adcs
CN102970038B (en) The unmatched approaching simulation gradually of corrective capacity is to digital quantizer and method thereof
JP2009118488A (en) Da conversion device and ad conversion device
JP6469496B2 (en) Semiconductor device and analog-digital conversion circuit calibration method
US20110285563A1 (en) Pipelined analog-to-digital converter and sub-converter stage
TW201424273A (en) Digital-to-analog converter circuit and weight errorestimation/calibration method thereof
US20230198535A1 (en) Calibration method of capacitor array type successive approximation register analog-to-digital converter
CN112600557A (en) Pipeline ADC digital domain gain calibration method
US10897261B1 (en) Analog-to-digital converter with a supplementary digital-to-analog converter for offset and gain error measurements
CN117674852A (en) Successive approximation analog-to-digital converter and control method