JP2017214619A - Steel sheet for container - Google Patents
Steel sheet for container Download PDFInfo
- Publication number
- JP2017214619A JP2017214619A JP2016108922A JP2016108922A JP2017214619A JP 2017214619 A JP2017214619 A JP 2017214619A JP 2016108922 A JP2016108922 A JP 2016108922A JP 2016108922 A JP2016108922 A JP 2016108922A JP 2017214619 A JP2017214619 A JP 2017214619A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- steel
- containers
- steel plate
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 168
- 239000010959 steel Substances 0.000 title claims abstract description 168
- 230000032683 aging Effects 0.000 claims abstract description 23
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 150000001247 metal acetylides Chemical class 0.000 claims description 34
- 239000002245 particle Substances 0.000 claims description 22
- 238000007747 plating Methods 0.000 claims description 14
- 239000010410 layer Substances 0.000 claims description 9
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- 239000011247 coating layer Substances 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims 1
- 238000003483 aging Methods 0.000 abstract description 24
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 19
- 239000006104 solid solution Substances 0.000 abstract description 13
- 229910052748 manganese Inorganic materials 0.000 abstract description 7
- 229910052710 silicon Inorganic materials 0.000 abstract description 6
- 239000000243 solution Substances 0.000 abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 abstract description 3
- 238000000137 annealing Methods 0.000 description 65
- 238000005096 rolling process Methods 0.000 description 38
- 238000000034 method Methods 0.000 description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 28
- 230000000694 effects Effects 0.000 description 22
- 239000000463 material Substances 0.000 description 18
- 239000003921 oil Substances 0.000 description 17
- 235000019198 oils Nutrition 0.000 description 17
- 238000005496 tempering Methods 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 14
- 230000007797 corrosion Effects 0.000 description 13
- 238000005260 corrosion Methods 0.000 description 13
- 239000011651 chromium Substances 0.000 description 12
- 238000005097 cold rolling Methods 0.000 description 11
- 238000005098 hot rolling Methods 0.000 description 10
- 238000002791 soaking Methods 0.000 description 10
- 238000005121 nitriding Methods 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 7
- 229910052758 niobium Inorganic materials 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 229910052720 vanadium Inorganic materials 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 238000009713 electroplating Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000035882 stress Effects 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000009749 continuous casting Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000005029 tin-free steel Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- MODGUXHMLLXODK-UHFFFAOYSA-N [Br].CO Chemical compound [Br].CO MODGUXHMLLXODK-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- HTMDHERCQUESGS-UHFFFAOYSA-N didecyl decanedioate Chemical compound CCCCCCCCCCOC(=O)CCCCCCCCC(=O)OCCCCCCCCCC HTMDHERCQUESGS-UHFFFAOYSA-N 0.000 description 1
- HCQHIEGYGGJLJU-UHFFFAOYSA-N didecyl hexanedioate Chemical compound CCCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCCCCC HCQHIEGYGGJLJU-UHFFFAOYSA-N 0.000 description 1
- WMDDQWGAOSOSAB-UHFFFAOYSA-N didecyl nonanedioate Chemical compound CCCCCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCCCC WMDDQWGAOSOSAB-UHFFFAOYSA-N 0.000 description 1
- HIKZOIYUQFYFBB-UHFFFAOYSA-N didodecyl decanedioate Chemical compound CCCCCCCCCCCCOC(=O)CCCCCCCCC(=O)OCCCCCCCCCCCC HIKZOIYUQFYFBB-UHFFFAOYSA-N 0.000 description 1
- GHKVUVOPHDYRJC-UHFFFAOYSA-N didodecyl hexanedioate Chemical compound CCCCCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCCCCCCC GHKVUVOPHDYRJC-UHFFFAOYSA-N 0.000 description 1
- JTJNOHFRNUDPDF-UHFFFAOYSA-N didodecyl nonanedioate Chemical compound CCCCCCCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCCCCCC JTJNOHFRNUDPDF-UHFFFAOYSA-N 0.000 description 1
- GQIDSVPVVYHXAP-UHFFFAOYSA-N dihexyl decanedioate Chemical compound CCCCCCOC(=O)CCCCCCCCC(=O)OCCCCCC GQIDSVPVVYHXAP-UHFFFAOYSA-N 0.000 description 1
- MJOKHGMXPJXFTG-UHFFFAOYSA-N dihexyl nonanedioate Chemical compound CCCCCCOC(=O)CCCCCCCC(=O)OCCCCCC MJOKHGMXPJXFTG-UHFFFAOYSA-N 0.000 description 1
- VNTXONBESJNLBI-UHFFFAOYSA-N dinonyl decanedioate Chemical compound CCCCCCCCCOC(=O)CCCCCCCCC(=O)OCCCCCCCCC VNTXONBESJNLBI-UHFFFAOYSA-N 0.000 description 1
- WIYAGHSNPUBKDT-UHFFFAOYSA-N dinonyl hexanedioate Chemical compound CCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCCCC WIYAGHSNPUBKDT-UHFFFAOYSA-N 0.000 description 1
- KAKCWCBEABKVPK-UHFFFAOYSA-N dinonyl nonanedioate Chemical compound CCCCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCCC KAKCWCBEABKVPK-UHFFFAOYSA-N 0.000 description 1
- MIMDHDXOBDPUQW-UHFFFAOYSA-N dioctyl decanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCCC(=O)OCCCCCCCC MIMDHDXOBDPUQW-UHFFFAOYSA-N 0.000 description 1
- XWVQUJDBOICHGH-UHFFFAOYSA-N dioctyl nonanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC XWVQUJDBOICHGH-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- OJXOOFXUHZAXLO-UHFFFAOYSA-M magnesium;1-bromo-3-methanidylbenzene;bromide Chemical compound [Mg+2].[Br-].[CH2-]C1=CC=CC(Br)=C1 OJXOOFXUHZAXLO-UHFFFAOYSA-M 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000006902 nitrogenation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000000357 thermal conductivity detection Methods 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、容器用鋼板に関する。本発明は、特に、硬質で加工性に優れ、かつ、時効硬化性を有する容器用鋼板に関するものである。 The present invention relates to a steel plate for containers. The present invention particularly relates to a steel plate for containers that is hard, excellent in workability, and has age-hardening properties.
JIS G3303「ぶりき及びぶりき原板」や、JIS G3315「ティンフリースチール」に規定される鋼板(容器用鋼板、缶用鋼板)は、その用途に要求される硬さに応じて調質度がT−1〜DR−10(番号が大きい程、硬質であることを表す)に分類されている。このうち、調質度がT−1〜T−6の鋼板は、「低炭素鋼一回圧延」法、すなわち、低炭素鋼を一回冷間圧延した後、焼きなまし(再結晶焼鈍)することで、また、調質度がDR−8〜DR−10の鋼板は、「低炭素鋼二回圧延」法、すなわち、上記焼きなまし処理後の鋼板に二回目の冷間圧延をすることで製造すると規定されている。 Steel plates (steel plates for containers and steel plates for cans) specified in JIS G3303 “plates and tinplates” and JIS G3315 “tin-free steels” have a tempering degree according to the hardness required for their use. T-1 to DR-10 (the higher the number, the harder it is). Among these, the steel sheets having a tempering degree of T-1 to T-6 should be annealed (recrystallized annealing) after the cold rolling of the low carbon steel once, that is, the low carbon steel once rolling method. In addition, when the steel sheets having a tempering degree of DR-8 to DR-10 are manufactured by the “low carbon steel twice rolling” method, that is, by performing the second cold rolling on the steel sheet after the annealing treatment. It is prescribed.
上記「低炭素鋼一回圧延」法で製造される容器用鋼板のうち、調質度がT−1〜T−3の鋼板の焼きなまし処理は、バッチ焼鈍炉BAFを用いた「バッチ焼鈍法(ボックス焼鈍)」で、また、調質度がT−4〜T−6の鋼板の焼きなまし処理は、連続焼鈍ラインCALを用いた「連続焼鈍法」で施すのが一般的である。 Among the steel plates for containers produced by the above-mentioned “low rolling carbon steel” method, the annealing treatment of the steel sheets having a tempering degree of T-1 to T-3 is carried out by using a “batch annealing method ( In general, the annealing treatment of steel sheets having a tempering degree of T-4 to T-6 is generally performed by a “continuous annealing method” using a continuous annealing line CAL.
ところで、近年、容器用鋼板の製造工程は、生産性を高める観点から、設備の連続化が進められており、その一環として、処理時間が長いバッチ焼鈍から高温・短時間で処理することができる連続焼鈍への切り替えが進められている。また、容器用鋼板の分野においては、ユーザーにおける材料コストの低減を図る観点から、硬質化(T−1〜T−3からT−4〜T−6への切り替え)による板厚低減(板厚0.20mm未満)が積極的に進められている。その結果、連続焼鈍法で製造する容器用鋼板の比率は、近年、大きく上昇している。 By the way, in recent years, the manufacturing process of steel sheets for containers has been proceeding with continuation of equipment from the viewpoint of increasing productivity, and as part of this, processing can be performed at high temperature and in a short time from batch annealing with a long processing time. Switching to continuous annealing is underway. Also, in the field of steel plates for containers, from the viewpoint of reducing material costs for users, plate thickness reduction (plate thickness) by hardening (switching from T-1 to T-3 to T-4 to T-6) (Less than 0.20 mm) is being actively promoted. As a result, the ratio of steel plates for containers manufactured by a continuous annealing method has increased greatly in recent years.
しかし、硬質化や薄肉化、それに伴う連続焼鈍化は、鋼板の加工性の低下を招く。さらに、板厚の薄い鋼板を連続焼鈍法で製造することは、通板長の延長による生産性の低下を招くだけでなく、急速加熱、急速冷却に伴うヒートバックルや蛇行による板破断等の操業トラブルが発生し易く、安定生産することが難しくなるため、高度の通板技術が必要とされる。一方、バッチ焼鈍から連続焼鈍への切り替えに伴い、バッチ焼鈍炉の生産能力には余裕がある状態が続いている。そこで、より硬質で、加工性に優れる容器用鋼板をバッチ焼鈍で製造する技術の開発が望まれている。 However, the hardening, thinning, and continuous annealing accompanying it cause a decrease in the workability of the steel sheet. Furthermore, manufacturing a thin steel plate by continuous annealing not only causes a decrease in productivity due to the extension of the plate length, but also operations such as heat buckle due to rapid heating and rapid cooling, and plate breakage due to meandering. Since trouble is likely to occur and stable production becomes difficult, advanced threading technology is required. On the other hand, with the switch from batch annealing to continuous annealing, the production capacity of the batch annealing furnace continues to have a margin. Then, development of the technique which manufactures the steel plate for containers which is harder and excellent in workability by batch annealing is desired.
高強度化と薄肉化の両立を図る技術としては、上述した「低炭素鋼二回圧延」法がある。例えば、特許文献1には、低炭素鋼を素材とし、バッチ焼鈍することで、T−1からDR−10までの調質度の鋼板を製造する技術が提案されている。しかし、この方法は、T−4以上の調質度を得るためには、2回目の冷間圧延の圧下率を15%以上とする必要があり、鋼板の延性低下が大きいため、加工性が要求される用途には使用できない。 As a technique for achieving both high strength and thinning, there is the above-mentioned “low carbon steel twice rolling” method. For example, Patent Document 1 proposes a technique for manufacturing a steel sheet having a tempering degree from T-1 to DR-10 by using a low carbon steel as a raw material and performing batch annealing. However, in this method, in order to obtain a refining degree equal to or higher than T-4, it is necessary to set the reduction ratio of the second cold rolling to 15% or more, and because the ductility of the steel sheet is greatly reduced, workability is reduced. It cannot be used for required applications.
また、特許文献2には、質量%で、C:0.018〜0.060%、Mn:0.20〜0.30%、Al:0.020〜0.080%、N:0.003〜0.013%を含有する一次冷延後の鋼板に、600〜700℃の温度範囲で2〜8時間保定するバッチ焼なまし炉による焼鈍(BAF焼鈍)を施し、1〜20%の二次冷延を行うことで、高強度かつ高r値で、エキスパンド成形性に優れる3ピース缶用鋼板を製造する技術が提案されている。 Further, in Patent Document 2, in mass%, C: 0.018 to 0.060%, Mn: 0.20 to 0.30%, Al: 0.020 to 0.080%, N: 0.003 The steel sheet after primary cold rolling containing ~ 0.013% is subjected to annealing in a batch annealing furnace (BAF annealing) held at a temperature range of 600 to 700 ° C for 2 to 8 hours, There has been proposed a technique for producing a steel plate for a three-piece can having high strength, a high r value, and excellent expandability by performing the next cold rolling.
しかしながら、上記特許文献1や特許文献2に提案された技術は、いずれも、二次冷延による生産性の低下やコストの上昇を招くため、容易に採用できないという問題がある。 However, any of the techniques proposed in Patent Document 1 and Patent Document 2 has a problem that it cannot be easily adopted because it causes a decrease in productivity and an increase in cost due to secondary cold rolling.
また、上記技術では、バッチ焼鈍で鋼板を製造しているため、得られる鋼板は基本的に焼付硬化性を有さない。そのため、容器としての強度を確保する観点から、より高い調質度の鋼板が求められたり、板厚の低減が制限されたりするという問題もある。 Moreover, in the said technique, since the steel plate is manufactured by batch annealing, the steel plate obtained does not have bake hardenability fundamentally. Therefore, from the viewpoint of securing strength as a container, there is a problem that a steel sheet with a higher tempering degree is required or reduction of the plate thickness is limited.
本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、硬質で加工性に優れ、時効硬化性を有する容器用鋼板を提供することにある。 The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a container steel plate that is hard and excellent in workability and has age-hardening properties.
発明者らは、上記の課題を解決するべく、素材となる低炭素鋼の成分組成と製造条件に着目して鋭意検討を重ねた。その結果、鋼素材のAl含有量を高めることにより、焼きなまし(バッチ焼鈍)での浸窒を促進してAlNの析出量を高めるとともに固溶N量(固溶窒素量)を所定量以上確保することで、硬質で加工性に優れるとともに時効硬化性を有する容器用鋼板が得られることを見出し、本発明を開発するに至った。 In order to solve the above-mentioned problems, the inventors have made extensive studies by paying attention to the component composition and production conditions of the low-carbon steel as a raw material. As a result, by increasing the Al content of the steel material, nitriding during annealing (batch annealing) is promoted to increase the precipitation amount of AlN and ensure a solid solution N amount (solid solution nitrogen amount) of a predetermined amount or more. Thus, the present inventors have found that a steel plate for containers that is hard and excellent in workability and has age-hardening properties can be obtained, leading to the development of the present invention.
上記知見に基づく本発明は、
[1]C:0.010〜0.050mass%、Si:0.05mass%以下、Mn:0.10〜0.40mass%、P:0.020mass%以下、S:0.020mass%以下、N:0.0060〜0.020mass%、Al:0.040〜0.200mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、固溶N量が0.0050mass%以上であり、平均r値が1.2〜1.4であり、かつ、時効指数が10MPa以上である容器用鋼板。
[2]粒径3.1μm以上の炭化物が面積0.1375mm×0.1375mmあたり30個以上存在し、かつ、前記面積あたりの全炭化物の個数に対する前記粒径3.1μm以上の炭化物の個数の割合が60%以上である[1]に記載の容器用鋼板。
[3]上記成分組成に加えて、さらに、Cr:0.01〜0.10mass%、Ti:0.005〜0.05mass%、Nb:0.005〜0.05mass%、V:0.005〜0.05mass%およびZr:0.005〜0.05mass%のうちから選ばれる1種または2種以上を含有する[1]または[2]に記載の容器用鋼板。
[4]前記[1]〜[3]のいずれかに記載の容器用鋼板の少なくとも片方の表面にSn、Cr、Niから選ばれる1種以上からなるめっき層を有し、該めっき層の片面あたりの付着量が1mg/m2以上である容器用鋼板。
[5]前記[1]〜[4]のいずれかに記載の容器用鋼板の少なくとも片方の表面に塗油層を有し、該塗油層の片面あたりの付着量が1mg/dm2以上である容器用鋼板。
The present invention based on the above findings
[1] C: 0.010 to 0.050 mass%, Si: 0.05 mass% or less, Mn: 0.10 to 0.40 mass%, P: 0.020 mass% or less, S: 0.020 mass% or less, N : 0.0060 to 0.020 mass%, Al: 0.040 to 0.200 mass%, with the balance being composed of Fe and unavoidable impurities, and the amount of solid solution N is 0.0050 mass% or more Yes, a steel plate for containers having an average r value of 1.2 to 1.4 and an aging index of 10 MPa or more.
[2] There are 30 or more carbides having a particle size of 3.1 μm or more per area of 0.1375 mm × 0.1375 mm, and the number of carbides having a particle size of 3.1 μm or more with respect to the total number of carbides per area. The steel plate for containers according to [1], wherein the ratio is 60% or more.
[3] In addition to the above component composition, Cr: 0.01-0.10 mass%, Ti: 0.005-0.05 mass%, Nb: 0.005-0.05 mass%, V: 0.005 Steel plate for containers as described in [1] or [2] containing 1 type (s) or 2 or more types chosen from -0.05 mass% and Zr: 0.005-0.05 mass%.
[4] At least one surface of the steel plate for containers according to any one of [1] to [3] has a plating layer made of one or more selected from Sn, Cr, and Ni, and one side of the plating layer A steel plate for containers having a per unit adhesion amount of 1 mg / m 2 or more.
[5] A container having an oil coating layer on at least one surface of the steel plate for containers according to any one of [1] to [4], and an adhesion amount per one surface of the oil coating layer is 1 mg / dm 2 or more. Steel plate.
本発明によれば、加工性に優れ、しかも、硬質で時効硬化性を有する容器用鋼板を提供することができる。本発明によれば、バッチ焼鈍により製造しても、時効硬化性を有する容器用鋼板を提供することができる。本発明によれば、板厚の低減が制限されず、生産性の低下やコストの上昇が抑えられ、安定して製造することができる容器用鋼板を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is excellent in workability, Furthermore, the steel plate for containers which is hard and has age-hardening property can be provided. ADVANTAGE OF THE INVENTION According to this invention, even if it manufactures by batch annealing, the steel plate for containers which has age-hardening property can be provided. According to the present invention, it is possible to provide a container steel plate that is not limited in reduction of plate thickness, can suppress a decrease in productivity and an increase in cost, and can be stably manufactured.
まず、本発明の基本的技術思想について説明する。 First, the basic technical idea of the present invention will be described.
調質度がT−4以上の容器用鋼板をバッチ焼鈍で製造するときに用いる鋼については、従来、ASTMに規定された、一般の食品容器に用いられるMR型鋼にPを添加したMC型鋼や、上記MR型鋼やMC型鋼にNを添加したN型鋼が知られている(「ぶりきとティンフリー・スチール」東洋鋼鈑株式会社著、アグネ社発行、1974年5月10日、p.21−22)。 About steel used when manufacturing a steel sheet for containers having a tempering degree of T-4 or more by batch annealing, conventionally, an MC type steel in which P is added to an MR type steel used for general food containers as defined in ASTM. N type steels in which N is added to the above MR type steel and MC type steel are known (“Bukiki and Tin Free Steel” by Toyo Kohan Co., Ltd., published by Agne, May 10, 1974, p. 21. -22).
しかし、Pは、鋼の強度や硬さを高める効果が大きい元素であるが、偏析を起こしやすく、また、容器用鋼板に求められる最も重要な特性である耐食性を低下させる元素でもある。そのため、Pを添加した鋼板は現在では用いられていない。 However, P is an element that has a large effect of increasing the strength and hardness of steel, but is easily segregated, and is also an element that lowers corrosion resistance, which is the most important characteristic required for a steel plate for containers. For this reason, steel sheets to which P is added are not currently used.
また、Nは、連続焼鈍で鋼板を製造するときには、僅かな添加で鋼板の硬さを高めることができる有用な元素である。また、Nは、連続焼鈍のように高温から急冷する場合には、フェライト中に過飽和な固溶状態で存在するため、調質圧延後の時効硬化性(焼付硬化性)を高める効果がある。しかし、通常の製鋼設備では、0.015mass%を超える窒素を鋼中に含有させるのは難しい。 Further, N is a useful element that can increase the hardness of the steel sheet with a slight addition when the steel sheet is produced by continuous annealing. Further, N, when rapidly cooled from a high temperature like continuous annealing, is present in a supersaturated solid solution state in ferrite, and therefore has an effect of increasing age-hardening (bake hardenability) after temper rolling. However, it is difficult to contain more than 0.015 mass% of nitrogen in steel with ordinary steelmaking facilities.
ところで、食缶等に用いられる容器用鋼板は、優れた耐食性が要求されることから、鋼への含有が許容されている成分は少なく、上記PやN以外に鋼を強化(硬質化)する成分として挙げられるのはSiとMnしかない。しかし、SiやMnの添加は、バッチ焼鈍で鋼板表面に濃化し、酸化膜を形成することによって、テンパーカラーと称される外観不良や、それに伴う耐食性の低下を引き起こすため、好ましくない。 By the way, since the steel plate for containers used for food cans etc. is required to have excellent corrosion resistance, there are few components allowed to be contained in steel, and the steel is strengthened (hardened) in addition to the above P and N. Only Si and Mn are listed as components. However, the addition of Si or Mn is not preferable because it concentrates on the surface of the steel sheet by batch annealing and forms an oxide film, thereby causing an appearance defect called temper color and a corresponding decrease in corrosion resistance.
そこで、本発明者らは、容器用鋼板の素材(スラブ)の成分組成に加えて、製造条件にも着目して、鋼板の硬さを高める方法について検討を重ねた。その結果、鋼成分としてAlを従来よりも高めに添加し、焼きなまし(バッチ焼鈍)における浸窒を促進し、鋼板中のN含有量を高めることによってAlNの析出量を高めることで高硬質化を図ることができること、また、上記焼きなまし(バッチ焼鈍)時に鋼板中に浸入し、Alと結合せずに残った固溶N(フリーN)は、時効硬化性を有し、塗装・焼付後の硬さ(調質度)を高める効果を有することを見出し、本発明を開発するに至った。 Then, the present inventors repeated examination about the method of raising the hardness of a steel plate paying attention also to manufacturing conditions in addition to the component composition of the raw material (slab) of the steel plate for containers. As a result, Al is added as a steel component higher than before, nitriding in annealing (batch annealing) is promoted, and the N content in the steel sheet is increased to increase the precipitation amount of AlN, thereby increasing the hardness. In addition, the solid solution N (free N) that has penetrated into the steel plate during the annealing (batch annealing) and remained without being bonded to Al has age-hardening properties, and it can be hardened after painting and baking. As a result, the present invention was developed.
次に、本発明の容器用鋼板の鋼素材の成分組成について説明する。 Next, the component composition of the steel material of the steel plate for containers according to the present invention will be described.
C:0.010〜0.050mass%
Cは、鋼の強度に最も大きな影響を与える元素であり、バッチ焼鈍で十分な硬さ(HR30Tで50以上)を得るためには0.010mass%以上含有させる必要がある。一方、C含有量が0.050mass%を超えると、バッチ焼鈍時に鋼板表面にグラファイトが析出し、調質圧延時に光沢異常を引き起こすおそれがある。よって、C含有量は0.010〜0.050mass%の範囲とする。C含有量は、好ましくは0.020〜0.050mass%の範囲である。C含有量が0.020mass%以上であると、硬さ(調質度)がより高められ、HR30Tで54以上の硬さを得ることができる。C含有量は、より好ましくは0.030〜0.050mass%の範囲である。
C: 0.010-0.050 mass%
C is an element that has the greatest influence on the strength of the steel, and in order to obtain sufficient hardness (50 or more with HR30T) by batch annealing, it is necessary to contain 0.010 mass% or more. On the other hand, if the C content exceeds 0.050 mass%, graphite may precipitate on the surface of the steel plate during batch annealing, which may cause abnormal gloss during temper rolling. Therefore, the C content is in the range of 0.010 to 0.050 mass%. The C content is preferably in the range of 0.020 to 0.050 mass%. When the C content is 0.020 mass% or more, the hardness (tempering degree) is further increased, and a hardness of 54 or more can be obtained with HR30T. The C content is more preferably in the range of 0.030 to 0.050 mass%.
Si:0.05mass%以下
Siは、脱酸材として添加される元素であるが、鋼を固溶強化して硬さを高める元素でもある。しかし、多量に添加すると、スケール性の表面欠陥を引き起こしたり、バッチ焼鈍時に鋼板表面に濃化し、テンパーカラーを発生して外観を損ねたり、めっき性を阻害して耐食性を低下させたりする。よって、本発明では、Siは0.05mass%以下とする。好ましくは0.02mass%以下である。
Si: 0.05 mass% or less Si is an element added as a deoxidizer, but is also an element that increases the hardness by solid solution strengthening of steel. However, if it is added in a large amount, it causes a scale-like surface defect, concentrates on the surface of the steel sheet during batch annealing, generates a temper color, impairs the appearance, or inhibits the plating property and lowers the corrosion resistance. Therefore, in this invention, Si shall be 0.05 mass% or less. Preferably it is 0.02 mass% or less.
Mn:0.10〜0.40mass%
Mnは、Sによる熱間脆性を防止し、熱間加工性を改善する元素である。また、Mnは、固溶強化能があり、結晶粒を微細化し、硬さを高める効果も有する。そこで、本発明では、Mnを0.10mass%以上添加する。一方、Mnは、0.40mass%を超えて過剰に添加すると、バッチ焼鈍時に鋼板表面に濃化してテンパーカラーを発生したり、耐食性を低下させたりする。よって、本発明では0.10〜0.40mass%の範囲とする。好ましくは0.24〜0.35mass%の範囲である。
Mn: 0.10 to 0.40 mass%
Mn is an element that prevents hot brittleness due to S and improves hot workability. Further, Mn has a solid solution strengthening ability, and has an effect of refining crystal grains and increasing hardness. Therefore, in the present invention, 0.10 mass% or more of Mn is added. On the other hand, if Mn exceeds 0.40 mass% and is added excessively, it concentrates on the surface of the steel sheet during batch annealing and generates a temper color or lowers the corrosion resistance. Therefore, in this invention, it is set as the range of 0.10-0.40 mass%. Preferably it is the range of 0.24-0.35 mass%.
P:0.020mass%以下
Pは、鋼中に不可避的に浸入してくる不純物元素であり、また、耐食性を低下させる元素でもあるため、できるだけ低減することが望ましい。よって、本発明では、Pは0.020mass%以下とする。好ましくは0.016mass%以下である。
P: 0.020 mass% or less P is an impurity element that inevitably penetrates into the steel, and is also an element that lowers the corrosion resistance. Therefore, in the present invention, P is 0.020 mass% or less. Preferably it is 0.016 mass% or less.
S:0.020mass%以下
Sは、Pと同様、鋼中に不可避的に浸入してくる不純物元素であり、鋼の熱間加工性を害したり、耐食性を低下させたりする有害元素でもある。よって、本発明では、Sは0.020mass%以下とする。好ましくは0.010mass%以下であり、より好ましくは0.009mass%であり、さらに好ましくは0.005mass%以下である。
S: 0.020 mass% or less S, like P, is an impurity element that inevitably enters the steel, and is also a harmful element that impairs the hot workability of the steel and reduces the corrosion resistance. Therefore, in the present invention, S is 0.020 mass% or less. Preferably it is 0.010 mass% or less, More preferably, it is 0.009 mass%, More preferably, it is 0.005 mass% or less.
Al:0.040〜0.200mass%
Alは、バッチ焼鈍において、鋼中のNおよび浸窒したNとAlNを形成し、析出効果および細粒化効果を介して焼鈍後の鋼板の硬さを高める効果を有する。さらに、発明者らの新規知見によれば、Alは、雰囲気ガス中の窒素の鋼板中への浸入(浸窒)を促進して固溶N量を増大し、時効硬化性を高める作用効果を有する。これらの効果を得るためには、Alを0.040mass%以上含有させる必要がある。しかし、0.200mass%を超える過剰な添加は、上記効果が飽和する他、再結晶温度を高めたり、粒成長を過度に阻害したりする。よって、本発明では、Alは0.040〜0.200mass%の範囲とする。好ましくは0.050〜0.200mass%であり、より好ましくは0.060〜0.100mass%の範囲である。
Al: 0.040-0.200 mass%
Al has the effect of increasing the hardness of the steel sheet after annealing by forming N in the steel and nitriding N and AlN in batch annealing, through precipitation effects and fine graining effects. Furthermore, according to the inventors' new knowledge, Al promotes the penetration (nitrogenation) of nitrogen in the atmospheric gas into the steel sheet to increase the amount of solute N, and has the effect of improving age hardening. Have. In order to acquire these effects, it is necessary to contain 0.040 mass% or more of Al. However, excessive addition exceeding 0.200 mass% saturates the above effect, raises the recrystallization temperature, and excessively inhibits the grain growth. Therefore, in the present invention, Al is in the range of 0.040 to 0.200 mass%. Preferably it is 0.050-0.200 mass%, More preferably, it is the range of 0.060-0.100 mass%.
N:0.0020〜0.0150mass%
Nは、上記Alと結合して微細なAlNを形成し、析出効果と細粒化効果により鋼板の硬さを高める効果がある。また、上記の効果を得るためには、鋼素材中にNを0.0020mass%以上含有させる必要がある。しかし、容器用鋼板の通常の溶製条件において、0.0150mass%を超えるNを安定して鋼素材中に含有させるのは困難である。よって、Nは0.0020〜0.0150mass%の範囲とする。好ましくは0.0030〜0.010mass%の範囲である。
N: 0.0020 to 0.0150 mass%
N combines with the Al to form fine AlN, and has the effect of increasing the hardness of the steel sheet due to the precipitation effect and the fine grain effect. Moreover, in order to acquire said effect, it is necessary to make N contain 0.0020 mass% or more in a steel raw material. However, it is difficult to stably contain N exceeding 0.0150 mass% in the steel material under normal melting conditions of the steel plate for containers. Therefore, N is set to a range of 0.0020 to 0.0150 mass%. Preferably it is the range of 0.0030-0.010 mass%.
本発明の容器用鋼板の鋼素材は、上記必須とする成分の他には、バッチ焼鈍時における鋼板表面へのグラファイトの析出を抑制する目的で、Cr:0.01〜0.10mass%、Ti:0.005〜0.05mass%、Nb:0.005〜0.05mass%、V:0.005〜0.05mass%およびZr:0.005〜0.05mass%のうちから選ばれる1種または2種以上を含有することができる。特に、Crは、上記効果の他に、バッチ焼鈍における鋼板表面へのグラファイトの析出を抑制し、めっき後の耐食性を向上する効果があるので、添加するのが好ましい。 In addition to the essential components described above, the steel material of the steel plate for containers of the present invention is Cr: 0.01 to 0.10 mass%, Ti for the purpose of suppressing the precipitation of graphite on the steel plate surface during batch annealing. : 0.005 to 0.05 mass%, Nb: 0.005 to 0.05 mass%, V: 0.005 to 0.05 mass%, and Zr: 0.005 to 0.05 mass%, or one kind selected from Two or more kinds can be contained. In particular, Cr has the effect of suppressing the precipitation of graphite on the steel sheet surface during batch annealing and improving the corrosion resistance after plating, in addition to the above effects, so it is preferable to add Cr.
それらの効果は、Crは0.01mass%以上で、Ti、Nb、VおよびZrは、それぞれ0.005mass%以上の含有で得られる。一方、Crの含有量が0.10mass%超、Ti、Nb、VおよびZrの含有量が、それぞれ0.05mass%超であると、バッチ焼鈍時にテンパーカラーが発生し、表面品質や耐食性を損なうおそれがある。よって、Cr、Ti、Nb、VおよびZrを添加する場合には、上記範囲で添加するのが好ましい。より好ましくは、Cr、Ti、Nb、VおよびZrの含有量はそれぞれ、Cr:0.01〜0.05mass%、Ti:0.005〜0.01mass%、Nb:0.005〜0.01mass%、V:0.005〜0.01mass%およびZr:0.005〜0.01mass%の範囲である。 These effects are obtained when Cr is 0.01 mass% or more, and Ti, Nb, V, and Zr are each contained 0.005 mass% or more. On the other hand, if the Cr content exceeds 0.10 mass% and the Ti, Nb, V, and Zr contents exceed 0.05 mass%, temper color is generated during batch annealing, and the surface quality and corrosion resistance are impaired. There is a fear. Therefore, when adding Cr, Ti, Nb, V, and Zr, it is preferable to add in the said range. More preferably, the contents of Cr, Ti, Nb, V, and Zr are Cr: 0.01 to 0.05 mass%, Ti: 0.005 to 0.01 mass%, and Nb: 0.005 to 0.01 mass, respectively. %, V: 0.005 to 0.01 mass% and Zr: 0.005 to 0.01 mass%.
本発明の容器用鋼板の鋼素材における上記成分以外の残部は、Feおよび不可避的不純物である。 The remainder other than the said component in the steel raw material of the steel plate for containers of this invention is Fe and an unavoidable impurity.
次に、本発明の容器用鋼板(製品板)の成分組成について説明する。 Next, the component composition of the steel plate for containers (product plate) of the present invention will be described.
上記に説明した鋼素材中のC、Si、Mn、P、SおよびAlは、通常の容器用鋼板の製造方法、製造条件であれば、鋼素材の組成のまま製品板となる。しかし、本発明において、Nは、バッチ焼鈍時に雰囲気ガス中の窒素が鋼中に浸入(浸窒)することから、必ずしも鋼素材中のNの含有量と製品板中のNの含有量とは一致しない。 If C, Si, Mn, P, S, and Al in the steel material explained above are the manufacturing method and manufacturing conditions of a normal steel plate for containers, it becomes a product plate with the composition of the steel material. However, in the present invention, N is not necessarily the content of N in the steel material and the content of N in the product plate because nitrogen in the atmosphere gas penetrates into the steel (nitriding) during batch annealing. It does not match.
本発明の容器用鋼板において、Nは、0.0060〜0.020mass%である。本発明において、バッチ焼鈍において鋼中に浸入(浸窒)した窒素は、鋼中のフリーAlと結合してAlNを形成し、析出効果と細粒化効果で鋼板の硬さを高める効果がある。また、上記バッチ焼鈍時に鋼板中に浸入し、Alと結合しなかったフリーなN(固溶N)は、容器製造時における塗装焼付工程で炭窒化物を形成して析出し、塗装焼付後の鋼板硬さを高める効果、いわゆる時効硬化能(焼付硬化性)を有する。このような効果を得るために、容器用鋼板(製品板)におけるNの含有量を0.0060mass%以上とする。Nの含有量は、好ましくは0.0080mass%以上であり、より好ましくは0.010mass%以上である。一方、Nの含有量が0.020mass%を超えると、熱間圧延中にスラブ割れを伴い、表面疵が発生するおそれがあるため、Nの含有量は0.020mass%以下とする。好ましくは0.018mass%以下であり、より好ましくは0.016mass%以下である。 In the steel plate for containers of the present invention, N is 0.0060 to 0.020 mass%. In the present invention, nitrogen that has penetrated (nitrogenated) into steel in batch annealing forms an AlN by combining with free Al in the steel, and has the effect of increasing the hardness of the steel sheet by the precipitation effect and the fine graining effect. . In addition, free N (solid solution N) that penetrates into the steel sheet during the batch annealing and does not bond with Al is precipitated by forming carbonitrides in the coating baking process at the time of container manufacture, and after coating baking. It has the effect of increasing the steel sheet hardness, so-called age-hardening ability (bake hardenability). In order to obtain such an effect, the N content in the steel plate for containers (product plate) is set to 0.0060 mass% or more. The N content is preferably 0.0080 mass% or more, more preferably 0.010 mass% or more. On the other hand, if the N content exceeds 0.020 mass%, slab cracking may occur during hot rolling, and surface defects may occur, so the N content is set to 0.020 mass% or less. Preferably it is 0.018 mass% or less, More preferably, it is 0.016 mass% or less.
なお、上記時効硬化能は、本発明では、調質圧延後の鋼板に、210℃×20minの時効処理を施した前後におけるHR30T硬さの上昇量で定義する。
本発明者らの調査研究によれば、上記時効硬化能をHR30T硬さで4以上とするためには、バッチ焼鈍後の鋼板中に0.0050mass%(50massppm)以上の固溶Nが存在することが必要であることが明らかとなっている。よって、本発明では、バッチ焼鈍後の固溶N量を0.0050mass%以上とする。好ましくは0.0055mass%(55massppm)以上であり、より好ましくは0.0059mass%(59massppm)以上であり、さらに好ましくは0.0060mass%(60massppm)以上である。ここで、調質圧延後の硬さが4上昇するということは、調質度が1つ上がることと同じである。即ち、調質圧延後の調質度がT−3の鋼板が、その後の焼付塗装における時効硬化で、調質度がT−4となることを意味する。
In the present invention, the age-hardening ability is defined as an increase in HR30T hardness before and after the temper-rolled steel sheet is subjected to an aging treatment of 210 ° C. × 20 min.
According to the research conducted by the present inventors, in order to make the age-hardening ability 4 or more in terms of HR30T hardness, 0.0050 mass% (50 massppm) or more of solid solution N exists in the steel sheet after batch annealing. It is clear that this is necessary. Therefore, in this invention, the amount of solute N after batch annealing shall be 0.0050 mass% or more. Preferably it is 0.0055 mass% (55 massppm) or more, More preferably, it is 0.0059 mass% (59 massppm) or more, More preferably, it is 0.0060 mass% (60 massppm) or more. Here, increasing the hardness after temper rolling by 4 is the same as increasing the degree of tempering by one. That is, the steel sheet having a tempering degree of T-3 after temper rolling means that the tempering degree becomes T-4 by age hardening in the subsequent baking coating.
粒径3.1μm以上の炭化物の存在密度
本発明の容器用鋼板は、粒径3.1μm以上の炭化物が面積0.1375mm×0.1375mmあたりに30個以上存在する組織を有することが好ましい。また、前記面積あたりの全炭化物の個数に対する前記粒径3.1μm以上の炭化物の個数の割合[(粒径3.1μm以上の炭化物の個数/全炭化物の個数)×100]が60%以上であることが好ましい。これにより、より高強度で、かつ、より加工性に優れる容器用鋼板が得られやすくなる。粒径3.1μm以上の炭化物は、上記面積あたりに40個以上存在することがより好ましい。
Presence density of carbide having a particle size of 3.1 μm or more The steel plate for containers of the present invention preferably has a structure in which 30 or more carbides having a particle size of 3.1 μm or more exist in an area of 0.1375 mm × 0.1375 mm. Further, the ratio of the number of carbides having a particle size of 3.1 μm or more to the total number of carbides per area [(number of carbides having a particle size of 3.1 μm / number of total carbides) × 100] is 60% or more. Preferably there is. Thereby, it becomes easy to obtain the steel plate for containers which is higher in strength and more excellent in workability. More preferably, 40 or more carbides having a particle size of 3.1 μm or more are present per area.
本発明における粒径3.1μm以上の炭化物の個数及び全炭化物の個数に対する前記粒径3.1μm以上の炭化物の個数の割合は、次のように求めたものである。容器用鋼板(板厚1/2における圧延方向断面)に、腐食液(5mass%ピクリン酸アルコール溶液、「ピクラール」)を塗布して十分にエッチング(80℃、60秒)した後、前記腐食液をエタノールで洗い流し、400倍の光学顕微鏡で0.1375mm×0.1375mmの視野中に存在する炭化物を観察し撮影する。そして、撮影した画像から、粒径3.1μm以上の炭化物の個数をカウントする。また、前記画像から全炭化物の個数をカウントし、[(粒径3.1μm以上の炭化物の個数)/(全炭化物の個数)×100]の式より全炭化物の個数に対する粒径3.1μm以上の炭化物の個数の割合を求める。なお、ここで、全炭化物の個数は、前記撮影した画像から視認可能な炭化物の総数(粒径3.1μm以上の炭化物の個数と、粒径3.1μm未満の炭化物の個数の合計)である。また、炭化物の粒径は、炭化物の最小径とし、例えば炭化物の形状が楕円等で短径と長径が存在する場合は、短径の値とする。 In the present invention, the number of carbides having a particle size of 3.1 μm or more and the ratio of the number of carbides having a particle size of 3.1 μm or more to the total number of carbides are determined as follows. A corrosive solution (5 mass% picric acid alcohol solution, “Picral”) is applied to a steel plate for containers (cross section in the rolling direction at a plate thickness of 1/2) and etched sufficiently (80 ° C., 60 seconds). Is washed off with ethanol, and carbides existing in a field of view of 0.1375 mm × 0.1375 mm are observed and photographed with a 400 × optical microscope. Then, the number of carbides having a particle size of 3.1 μm or more is counted from the photographed image. In addition, the number of all carbides is counted from the image, and the particle size is 3.1 μm or more with respect to the number of all carbides according to the formula [(number of carbides having a particle size of 3.1 μm or more) / (number of total carbides) × 100]. The ratio of the number of carbides is determined. Here, the total number of carbides is the total number of carbides visible from the captured image (the total number of carbides having a particle size of 3.1 μm or more and the number of carbides having a particle size of less than 3.1 μm). . The particle size of the carbide is the minimum diameter of the carbide. For example, when the shape of the carbide is an ellipse or the like and the minor axis and the major axis exist, the minor axis value is used.
以上からなる本発明の容器用鋼板は以下の特性を有する。 The container steel plate of the present invention having the above has the following characteristics.
平均r値:1.2〜1.4
容器用鋼板の平均r値(平均塑性歪比)は、1.2〜1.4である。平均r値が1.2以上であると、加工性、特に、深絞り加工性が良好になる。また、r値が1.4以下であると、深絞り加工による円筒加工後、溶接した缶にエキスパンド加工を施したときの缶の高さの均一性が良好になる。
Average r value: 1.2 to 1.4
The average r value (average plastic strain ratio) of the steel plate for containers is 1.2 to 1.4. When the average r value is 1.2 or more, workability, particularly deep drawing workability, is improved. Further, when the r value is 1.4 or less, the uniformity of the height of the can when the expanded can is applied to the welded can after the cylindrical processing by the deep drawing processing is improved.
本発明における平均r値は、圧延方向に対して0°方向(L方向)、45°方向(D方向)、90°方向(C方向)を引張方向とするJIS5号引張試験片を容器用鋼板から採取し、これらの試験片に10%の単軸引張歪を付与したときの各試験片の幅方向真歪と板厚方向真歪を測定し、これらの測定値から、JIS Z 2254(2008年)の規定に準拠して算出したものである。なお、容器用鋼板の平均r値は、バッチ焼鈍条件(均熱温度、均熱時間)を調整すること等により調整できる。 The average r value in the present invention is a steel plate for containers of JIS No. 5 tensile test specimens having a tensile direction of 0 ° direction (L direction), 45 ° direction (D direction), and 90 ° direction (C direction) with respect to the rolling direction. The specimen was measured for the width direction true strain and the sheet thickness direction true strain when 10% of uniaxial tensile strain was applied to these specimens. From these measured values, JIS Z 2254 (2008) Calculated in accordance with the year). In addition, the average r value of the steel plate for containers can be adjusted by adjusting batch annealing conditions (soaking temperature, soaking time).
時効指数:10MPa以上
本発明の容器用鋼板の時効指数(AI:Aging Index)は、10MPa以上である。すなわち、本発明の容器用鋼板は、時効硬化性を有するものである。時効指数が10MPa以上であることで、塗装・焼付後の硬さ(調質度)が十分に高められる。時効指数は、好ましくは15MPa以上である。一方、時効指数の上限は特に制限されないが、時効指数が大きすぎると耐常温時効性が劣化し加工性が低下する場合があるため、本発明の容器用鋼板の時効指数は、45MPa以下が好ましく、30MPa以下がより好ましい。
Aging index: 10 MPa or more The aging index (AI) of the steel sheet for containers of the present invention is 10 MPa or more. That is, the steel plate for containers of the present invention has age hardenability. When the aging index is 10 MPa or more, the hardness (tempering degree) after painting and baking is sufficiently increased. The aging index is preferably 15 MPa or more. On the other hand, the upper limit of the aging index is not particularly limited, but if the aging index is too large, the room temperature aging resistance may deteriorate and the workability may deteriorate, so the aging index of the steel plate for containers of the present invention is preferably 45 MPa or less. 30 MPa or less is more preferable.
本発明における時効指数は、容器用鋼板の圧延方向を引張方向として採取したJIS5号引張試験片に7.5%の予歪を加えた後、100℃で30分の熱処理を施し、再度引張試験を行って、熱処理前の応力(7.5%予歪付与後の応力)と熱処理後の降伏応力との差から求めたものである。なお、容器用鋼板の時効指数は、バッチ焼鈍条件(均熱温度、均熱時間、雰囲気条件)を調整すること等により調整できる。 The aging index in the present invention is obtained by applying 7.5% pre-strain to a JIS No. 5 tensile test piece taken with the rolling direction of the steel plate for containers as the tensile direction, and then subjecting it to a heat treatment at 100 ° C. for 30 minutes, and again a tensile test. Is obtained from the difference between the stress before heat treatment (stress after 7.5% pre-strain) and the yield stress after heat treatment. In addition, the aging index of the steel plate for containers can be adjusted by adjusting batch annealing conditions (soaking temperature, soaking time, atmospheric conditions).
硬さ
本発明の容器用鋼板の硬さ(時効処理前の硬さ)はHR30Tで、50以上であることが好ましく、54以上であることがより好ましい。調質度としては、T−1以上であることが好ましく、T−2以上であることがより好ましい。
Hardness The hardness (hardness before aging treatment) of the steel plate for containers of the present invention is HR30T, preferably 50 or more, and more preferably 54 or more. The tempering degree is preferably T-1 or more, and more preferably T-2 or more.
時効硬化能
本発明の容器用鋼板の硬さは、時効処理(210℃×20minの時効処理)の前後で、HR30Tで4以上上昇することが好ましく、5以上上昇することがより好ましい。
また、時効処理後の硬さは、強度維持の点から、HR30Tで57以上であることが好ましく、60以上であることがより好ましい。
Age-hardening ability The hardness of the steel plate for containers of the present invention is preferably increased by 4 or more, more preferably increased by 5 or more before and after the aging treatment (aging treatment at 210 ° C for 20 minutes).
Further, the hardness after the aging treatment is preferably 57 or more and more preferably 60 or more in HR30T from the viewpoint of maintaining strength.
板厚
本発明の容器用鋼板の板厚は、特に限定されないが、容器としての強度を確保する点等から、0.10mm以上が好ましく、0.15mm以上がより好ましい。また、コストの低減を図る点等から、0.25mm以下が好ましく、0.22mm以下がより好ましい。
Plate Thickness The plate thickness of the steel plate for containers of the present invention is not particularly limited, but is preferably 0.10 mm or more, more preferably 0.15 mm or more from the viewpoint of ensuring the strength as a container. Moreover, from the point of aiming at cost reduction, 0.25 mm or less is preferable and 0.22 mm or less is more preferable.
次に、本発明の容器用鋼板の製造方法について説明する。 Next, the manufacturing method of the steel plate for containers of this invention is demonstrated.
本発明の容器用鋼板の製造方法としては、上記成分組成を有する鋼素材(スラブ)を、熱間圧延し、冷間圧延し、浸窒処理を伴うバッチ焼鈍し、調質圧延する方法が好ましい。 As a manufacturing method of the steel plate for containers of the present invention, a method of hot rolling, cold rolling, batch annealing with nitriding treatment, and temper rolling the steel material (slab) having the above component composition is preferable. .
(鋼素材)
鋼素材の製造方法については、特に制限はないが、例えば、転炉や電気炉等で鋼を溶製し、取鍋処理や真空脱ガス処理等で上記成分組成を満たす鋼成分に調製した後、連続鋳造法あるいは造塊−分塊圧延法等で鋼素材(スラブ)とする方法が好ましい。なお、成分組成の均一性や、材質の均一性の観点からは、連続鋳造法を用いるのがより好ましい。
(Steel material)
There are no particular restrictions on the method of manufacturing the steel material. For example, after the steel is melted in a converter or an electric furnace, the steel composition is prepared to satisfy the above composition by ladle processing, vacuum degassing processing, etc. A method of forming a steel material (slab) by a continuous casting method or an ingot-bundling rolling method is preferable. In addition, it is more preferable to use the continuous casting method from the viewpoint of the uniformity of the component composition and the uniformity of the material.
(熱間圧延)
上記鋼素材(スラブ)は、その後、熱間圧延して熱延板とするが、上記熱間圧延は、上記スラブを1050〜1300℃の温度に再加熱した後、仕上圧延終了温度をAr3変態点以上として行うのが望ましい。
上記スラブの再加熱温度が1050℃未満では、変形抵抗(圧延負荷)が増大して熱間圧延するのが難しくなったり、上記仕上圧延終了温度を確保することが困難となったりする。一方、スラブの再加熱温度が1300℃を超えると、スケールロスが大きくなったり、表面疵が発生したりするようになるので好ましくない。
(Hot rolling)
Thereafter, the steel material (slab) is hot-rolled to form a hot-rolled sheet. In the hot-rolling, after the slab is reheated to a temperature of 1050 to 1300 ° C., the finish rolling finish temperature is set to Ar 3. It is desirable to carry out at or above the transformation point.
When the reheating temperature of the slab is less than 1050 ° C., deformation resistance (rolling load) increases and it becomes difficult to perform hot rolling, or it becomes difficult to ensure the finish rolling finishing temperature. On the other hand, if the reheating temperature of the slab exceeds 1300 ° C., the scale loss becomes large or surface flaws occur, which is not preferable.
また、熱間圧延における仕上圧延終了温度がAr3変態点未満となると、熱延後の結晶粒が粗大化して、材質不良や形状不良を引き起こすおそれがある。ただし、仕上圧延終了温度が高過ぎると、スケール起因の表面欠陥が発生するようになるので、上限は1000℃程度とするのが好ましい。
なお、上記熱間圧延は、上記仕上圧延終了温度を確保できる限り、連続鋳造後の高温スラブを、再加熱することなく、そのまま連続して行ってもよい。
In addition, when the finish rolling finish temperature in hot rolling is less than the Ar 3 transformation point, the crystal grains after hot rolling are coarsened, which may cause a material defect or a shape defect. However, if the finish rolling finish temperature is too high, surface defects due to scale will occur, so the upper limit is preferably about 1000 ° C.
In addition, as long as the said finish rolling completion temperature can be ensured, the said hot rolling may be continuously performed as it is, without reheating the high temperature slab after continuous casting.
上記熱間圧延のコイル巻取温度は、450〜750℃の範囲とするのが好ましい。コイル巻取温度が450℃未満では、鋼板の形状が悪化するおそれがある。一方、コイル巻取温度が750℃を超えると、鋼板表面に生成するスケールが厚くなり、酸洗性に悪影響を及ぼしたり、鋼板表層の結晶粒を粗大化させたりするので好ましくない。 The coiling temperature of the hot rolling is preferably in the range of 450 to 750 ° C. If the coil winding temperature is less than 450 ° C., the shape of the steel sheet may be deteriorated. On the other hand, when the coil winding temperature exceeds 750 ° C., the scale generated on the steel sheet surface becomes thick, which adversely affects pickling properties and coarsens the crystal grains of the steel sheet surface layer.
(冷間圧延)
上記熱間圧延後の鋼板は、その後、酸洗し、冷間圧延して所定の板厚の冷延板とする。
上記冷間圧延における圧下率は、常法に準じて決定すればよく、特に制限はないが、加工性や異方性を改善する観点から、70〜98%の範囲とするのが好ましい。
(Cold rolling)
The hot-rolled steel sheet is then pickled and cold-rolled to obtain a cold-rolled sheet having a predetermined thickness.
The rolling reduction in the cold rolling may be determined according to a conventional method and is not particularly limited. However, from the viewpoint of improving workability and anisotropy, the rolling reduction is preferably in the range of 70 to 98%.
(バッチ焼鈍)
上記冷間圧延後の鋼板(冷延板)に、その後、600℃以上680℃以下の温度で3〜16hr均熱保持するバッチ焼鈍を施すことが好ましい。バッチ焼鈍を採用することで、バッチ焼鈍時に雰囲気ガス中の窒素を前記鋼板中に良好に浸窒させることができる。浸窒した窒素は、鋼板中のAlと結合し、鋼板中に微細なAlNを析出する。これにより、硬質の容器用鋼板を得ることができる。
(Batch annealing)
Thereafter, it is preferable that the steel sheet (cold rolled sheet) after the cold rolling is subjected to batch annealing that is maintained at a temperature of 600 ° C. or higher and 680 ° C. or lower for 3 to 16 hours. By adopting batch annealing, nitrogen in the atmosphere gas can be satisfactorily nitrogenated in the steel sheet during batch annealing. Nitrogen that has been nitrided combines with Al in the steel sheet, and precipitates fine AlN in the steel sheet. Thereby, a hard steel plate for containers can be obtained.
また、バッチ焼鈍における均熱温度を600℃以上680℃以下とする理由は、600℃未満では、再結晶が不完全となり、組織も不均一となって、均質な材質と優れた加工性を得ることが難しくなるおそれがあるほか、浸窒が十分に進行しないため、析出するAlN量が不足して硬質化が不十分となったり、固溶N量が不足して所定の時効硬化能が得られなくなるからである。一方、均熱温度が680℃を超えると、セメンタイトが粗大化して延性の低下を招くおそれがある。また、鋼板表面へのC、Si、Mn等の濃化や析出が著しくなり、テンパーカラーが発生したり、耐食性を阻害したりする。さらに、焼鈍時に鋼板の焼付きが生じるおそれがある。 In addition, the reason for setting the soaking temperature in batch annealing to 600 ° C. or more and 680 ° C. or less is that if it is less than 600 ° C., recrystallization becomes incomplete and the structure becomes non-uniform, and a homogeneous material and excellent workability are obtained. In addition, since the nitriding does not proceed sufficiently, the amount of precipitated AlN is insufficient and hardening becomes insufficient, or the amount of solute N is insufficient and the prescribed age hardening ability is obtained. It is because it becomes impossible. On the other hand, when the soaking temperature exceeds 680 ° C., the cementite is coarsened and the ductility may be lowered. Moreover, concentration, precipitation, etc. of C, Si, Mn, etc. on the steel plate surface become remarkable, and a temper color is generated or corrosion resistance is hindered. Furthermore, there is a risk that the steel sheet will seize during annealing.
また、均熱時間を3〜16hrとする理由は、3hr未満では再結晶が十分に進行せず、組織も不均一となって、均質な材質と優れた加工性を得ることが難しくなるとともに、浸窒が不十分となり、上記した硬質化が不足したり、所期した時効硬化能が得られなくなるからである。一方、均熱時間が16hrを超えると、結晶粒が粗大化して鋼板が軟質化しやすくなり、所望の硬さの鋼板が得られなくなるからである。バッチ焼鈍におけるより好ましい均熱温度は610〜650℃の範囲である。バッチ焼鈍におけるより好ましい均熱時間は6〜10hrの範囲である。 In addition, the reason for setting the soaking time to 3 to 16 hr is that recrystallization does not proceed sufficiently if the duration is less than 3 hr, the structure becomes non-uniform, and it becomes difficult to obtain a homogeneous material and excellent workability. This is because the nitriding becomes insufficient, the above-mentioned hardening is insufficient, and the desired age-hardening ability cannot be obtained. On the other hand, when the soaking time exceeds 16 hours, the crystal grains become coarse and the steel sheet is easily softened, and a steel sheet having a desired hardness cannot be obtained. A more preferable soaking temperature in the batch annealing is in the range of 610 to 650 ° C. A more preferable soaking time in the batch annealing is in the range of 6 to 10 hr.
ここで、重要なことは、前述したように、このバッチ焼鈍において、焼鈍雰囲気ガス中の窒素を鋼板中に浸窒させ、鋼中のAlと結合させてAlNを析出させるとともに、焼鈍後の鋼板中の固溶N量を0.0050mass%以上として、時効硬化能を確保することである。 Here, as described above, as described above, in this batch annealing, nitrogen in the annealing atmosphere gas is nitrided in the steel plate, and is combined with Al in the steel to precipitate AlN, and the steel plate after annealing. It is to secure the age-hardening ability by setting the solid solution N amount to 0.0050 mass% or more.
上記の浸窒を起こさせるためには、バッチ焼鈍における雰囲気ガスを浸窒性とする必要がある。上記の浸窒性ガスとしては、露点が−20℃以下で、H2:1〜10vol%、N2:50vol%以上を含有し、残部:不活性ガス(0vol%も含む)からなる混合ガスを用いるのが好ましい。 In order to cause the above nitriding, it is necessary to make the atmospheric gas in batch annealing nitriding. Examples of the immersion窒性gas, a dew point is -20 ° C. or less, H 2: 1~10vol%, N 2: containing more than 50 vol%, the balance: mixed gas comprising an inert gas (including 0 vol%) Is preferably used.
(調質圧延)
上記バッチ焼鈍後の鋼板に、形状矯正や表面粗度の付与、機械的特性の改善(降伏伸びの消失、調質度の調整、歪時効性の付与)等を目的として調質圧延(スキンパス)を施し、容器用鋼板とする。
ここで、上記調質圧延の伸び率(圧下率)を0.5%以上2.0%以下の範囲に制限することが好ましい。伸び率が0.5%未満では、上記調質圧延の効果を確実に得ることが難しくなる。一方、調質圧延の伸び率を2.0%超とすると、鋼板の延性低下や異方性の増大を招き、所望の加工性を確保することが難しくなる。なお、硬さ(調質度)を重視し、加工性がそれほど要求されない用途向けの鋼板に対しては、調質圧延の伸び率を上記範囲より高めて製造してもよいことは勿論である。
(Temper rolling)
Temper rolling (skin pass) for the purpose of shape correction, surface roughness, improvement of mechanical properties (disappearance of yield elongation, adjustment of tempering degree, imparting strain aging), etc. to the steel sheet after batch annealing. To make a steel plate for containers.
Here, it is preferable to limit the elongation rate (rolling rate) of the temper rolling to a range of 0.5% or more and 2.0% or less. If the elongation is less than 0.5%, it is difficult to reliably obtain the effect of the temper rolling. On the other hand, when the elongation of temper rolling is more than 2.0%, the ductility of the steel sheet is reduced and the anisotropy is increased, and it becomes difficult to ensure desired workability. Of course, for steel sheets for applications where the hardness (tempering degree) is important and the workability is not so required, the elongation of temper rolling may be made higher than the above range. .
(表面処理)
上記のようにして得た容器用鋼板は、その後、電気めっきライン等に通板して電気めっき処理を施して、例えば、電気錫めっき処理を施してJIS G3303に規定の「ぶりき」や、電解クロム酸処理を施して金属クロムとクロム水和酸化物の2層からなるJIS G3315に規定の「ティンフリースチール」等のめっき層を有する容器用鋼板とすることができる。なお、上記電気めっき処理は、上記電気錫めっき処理や電解クロム酸処理に限定されるものではない。めっき層の種類としては、Sn、Cr、Niから選ばれる1種以上からなるものが好ましい。また、めっき付着量は、特に制限されないが、片面あたり1mg/m2以上とされるのが好ましく、10mg/m2以上とされるのがより好ましい。
(surface treatment)
The container steel plate obtained as described above is then passed through an electroplating line or the like and subjected to an electroplating treatment, for example, an electrotin plating treatment is performed, and `` Grip '' defined in JIS G3303, A steel plate for containers having a plating layer such as “tin-free steel” defined in JIS G3315 comprising two layers of chromium metal and chromium hydrated oxide can be obtained by performing electrolytic chromic acid treatment. The electroplating process is not limited to the electrotin plating process or the electrolytic chromic acid process. As a kind of plating layer, what consists of 1 or more types chosen from Sn, Cr, and Ni is preferable. Moreover, the plating adhesion amount is not particularly limited, but is preferably 1 mg / m 2 or more per side, more preferably 10 mg / m 2 or more.
また、上記のようにして得た容器用鋼板又はめっき層を有する容器用鋼板の表面に油を塗布し、塗油層を有する容器用鋼板としてもよい。塗油層が設けられることで、防錆性がより高められる。前記油としては、特に制限されず、公知の油を用いることができる。前記油としては、例えば、植物油、動物油、鉱物油等の天然油、炭化水素、エステル、アミド等の合成油等が挙げられる。前記油としては合成油が好ましい。合成油のなかでもエステルが好ましい。前記エステルとしては二塩基酸ジエステルが好ましい。前記二塩基酸ジエステルとしては、例えば、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ジノニル、アジピン酸ジデシル、アジピン酸ジドデシル、アゼライン酸ジヘキシル、アゼライン酸ジオクチル、アゼライン酸ジノニル、アゼライン酸ジデシル、アゼライン酸ジドデシル、セバシン酸ジヘキシル、セバシン酸ジオクチル、セバシン酸ジノニル、セバシン酸ジデシル、セバシン酸ジドデシル等が挙げられる。また、塗油層の付着量は、特に制限されないが、片面あたり1mg/dm2以上とされるのが好ましい。油の塗布方法としては、特に制限されず、例えば、静電塗油法、ロールコート法、バーコート法、浸漬法、スプレー法等の公知の方法が挙げられる。 Moreover, it is good also as a steel plate for containers which has an oil coating layer by apply | coating oil to the surface of the steel plate for containers obtained as mentioned above, or the steel plate for containers which has a plating layer. By providing the oil coating layer, rust prevention is further improved. The oil is not particularly limited, and a known oil can be used. Examples of the oil include natural oils such as vegetable oils, animal oils, and mineral oils, and synthetic oils such as hydrocarbons, esters, and amides. The oil is preferably a synthetic oil. Of the synthetic oils, esters are preferred. The ester is preferably a dibasic acid diester. Examples of the dibasic acid diester include dihexyl adipate, dioctyl adipate, dinonyl adipate, didecyl adipate, didodecyl adipate, dihexyl azelate, dioctyl azelate, dinonyl azelate, didecyl azelate, didodecyl azelate, Examples include dihexyl sebacate, dioctyl sebacate, dinonyl sebacate, didecyl sebacate, didodecyl sebacate and the like. Moreover, the adhesion amount of the oil coating layer is not particularly limited, but is preferably 1 mg / dm 2 or more per one side. The method for applying oil is not particularly limited, and examples thereof include known methods such as electrostatic oil coating, roll coating, bar coating, dipping, and spraying.
また、本発明の容器用鋼板は、上記電気めっき処理を施すことなく、塗装を施して塗装鋼板として用いてもよいし、無処理のまま使用してもよく、特に制限はない。 Moreover, the steel plate for containers of the present invention may be used as a coated steel plate without being subjected to the electroplating treatment, or may be used as it is without any treatment, and is not particularly limited.
表1に示したA〜Fの成分組成を有する鋼素材(スラブ)を連続鋳造法で製造し、1150℃の温度に再加熱した後、仕上圧延終了温度FDTを880℃、巻取温度CTを610℃とする熱間圧延により板厚が2.3mmの熱延板とし、酸洗して鋼板表面のスケールを除去した後、1回の冷間圧延で板厚が0.202mm(圧下率91%)の冷延板とした。
次いで、上記冷延板に、バッチ焼鈍炉で表2に示した条件で再結晶焼鈍を施した後、表2に示した伸び率の調質圧延を施して容器用鋼板(原板)とした。その後、前記原板を電気めっきラインETLに通板し、表2に示す片面あたりのめっき付着量の電気めっきを両面に施した後、表2に示す条件で両面に油を塗布して容器用鋼板(製品板)とした。ただし、表2中、No.3の容器用鋼板(原板)にはめっきを施していない。
A steel material (slab) having the composition of A to F shown in Table 1 is manufactured by a continuous casting method, reheated to a temperature of 1150 ° C., finish rolling finish temperature FDT is 880 ° C., and winding temperature CT is A hot-rolled sheet having a thickness of 2.3 mm is formed by hot rolling at 610 ° C., pickled to remove the scale on the surface of the steel sheet, and then the thickness is reduced to 0.202 mm (reduction rate of 91 by one cold rolling). %) Cold-rolled sheet.
Next, the cold-rolled sheet was subjected to recrystallization annealing in a batch annealing furnace under the conditions shown in Table 2, and then subjected to temper rolling with the elongation shown in Table 2 to obtain a steel plate for containers (original plate). Thereafter, the original plate was passed through the electroplating line ETL, and after electroplating with a plating adhesion amount per one side shown in Table 2, oil was applied to both sides under the conditions shown in Table 2, and the steel plate for containers (Product plate). However, in Table 2, No. No. 3 is not plated on the container steel plate (original plate).
斯くして得た製品板からサンプルを採取し、以下の試験に供した。 A sample was taken from the product plate thus obtained and subjected to the following test.
<固溶N量の測定>
上記の各サンプルから分析用試料を採取し、めっき層を除去した後、不活性ガス中で上記試料を加熱・融解して試料中の窒素をN2として抽出・分離した後、熱伝導度検出器で全窒素量(全N量)を定量した。次いで、電解臭素メタノール分解法(湿式N分析)で析出物(窒化物)を形成している窒素量(析出窒素量)を定量した。そして、全窒素量から析出窒素量を差し引いた値を固溶N量とした。
<Measurement of solid solution N amount>
Samples for analysis are collected from each of the above samples, the plating layer is removed, the sample is heated and melted in an inert gas, and nitrogen in the sample is extracted and separated as N 2 , followed by thermal conductivity detection. The total nitrogen amount (total N amount) was quantified with a vessel. Subsequently, the amount of nitrogen (the amount of precipitated nitrogen) forming a precipitate (nitride) was quantified by electrolytic bromine methanol decomposition (wet N analysis). A value obtained by subtracting the amount of precipitated nitrogen from the total amount of nitrogen was defined as a solid solution N amount.
<平均r値の測定>
上記の各サンプルから、圧延方向に対して0°方向(L方向)、45°方向(D方向)、90°方向(C方向)を引張方向とするJIS5号引張試験片を採取し、これらの試験片に10%の単軸引張歪を付与したときの各試験片の幅方向真歪と板厚方向真歪を測定し、これらの測定値から、JIS Z 2254の規定に準拠し下記式にて平均r値を算出した。
平均r値=(rL+2rD+rC)/4
ただし、rL、rD、rCは、それぞれ、圧延方向、圧延方向に対して45°方向、圧延方向に対して90°方向のr値である。
<Measurement of average r value>
From each of the above samples, JIS No. 5 tensile test pieces having a tensile direction of 0 ° direction (L direction), 45 ° direction (D direction), and 90 ° direction (C direction) with respect to the rolling direction were collected. Measure the true strain in the width direction and the true strain in the thickness direction of each test piece when 10% uniaxial tensile strain was applied to the test piece. The average r value was calculated.
Average r value = (r L + 2r D + r C ) / 4
However, r L , r D , and r C are r values in the rolling direction, the 45 ° direction with respect to the rolling direction, and the 90 ° direction with respect to the rolling direction, respectively.
<時効指数(AI)の測定>
上記の各サンプルの圧延方向を引張方向として採取したJIS5号引張試験片に引張試験機にて7.5%の予歪を加えた後、100℃で30分の熱処理を施し、再度引張試験を行って、熱処理前の応力(7.5%予歪付与後の応力)と熱処理後の降伏応力の差から時効指数(AI)を求めた。
<Measurement of aging index (AI)>
After applying 7.5% pre-strain to the JIS No. 5 tensile test piece taken with the rolling direction of each sample as the tensile direction with a tensile tester, heat treatment was performed at 100 ° C. for 30 minutes, and the tensile test was performed again. The aging index (AI) was determined from the difference between the stress before heat treatment (stress after applying 7.5% pre-strain) and the yield stress after heat treatment.
<粒径3.1μm以上の炭化物の個数の測定及び全炭化物の個数に対する粒径3.1μm以上の炭化物の個数の割合の測定>
上記の各サンプル(板厚1/2における圧延方向断面)に、腐食液(5mass%ピクリン酸アルコール溶液、「ピクラール」)を塗布して十分にエッチング(80℃、60秒)した後、前記腐食液をエタノールで洗い流し、400倍の光学顕微鏡で0.1375mm×0.1375mmの視野中に存在する炭化物を観察し、撮影した。そして、撮影した画像から、粒径3.1μm以上の炭化物の個数をカウントした。また、前記画像から全炭化物の個数をカウントし、[(粒径3.1μm以上の炭化物の個数)/(全炭化物の個数)×100]の式より全炭化物に対する粒径3.1μm以上の炭化物の個数の割合を求めた。
これらの測定結果を表2に示した。
<Measurement of the number of carbides having a particle size of 3.1 μm or more and measurement of the ratio of the number of carbides having a particle size of 3.1 μm or more to the total number of carbides>
Each sample (cross section in the rolling direction at a plate thickness of 1/2) is coated with a corrosive solution (5 mass% picric acid alcohol solution, “Picral”) and etched sufficiently (80 ° C., 60 seconds), and then the corrosion. The liquid was washed with ethanol, and the carbides present in the field of view of 0.1375 mm × 0.1375 mm were observed and photographed with a 400 × optical microscope. And the number of carbide | carbonized_materials with a particle size of 3.1 micrometers or more was counted from the image | photographed image. Further, the number of all carbides is counted from the image, and the carbide having a particle size of 3.1 μm or more with respect to all the carbides is calculated from the formula [(number of carbides having a particle size of 3.1 μm or more) / (number of total carbides) × 100]. The ratio of the number of was determined.
The measurement results are shown in Table 2.
<調質圧延後の硬さ評価>
上記の各サンプルの硬さHR30Tを測定し、硬さがHR30Tで50以上を硬さ良(○)、50未満を硬さ不良(×)と評価した。
<Hardness evaluation after temper rolling>
The hardness HR30T of each of the above samples was measured, and when the hardness was HR30T, 50 or higher was evaluated as good hardness (◯) and less than 50 was evaluated as poor hardness (×).
<時効硬化性の評価>
上記の各サンプルについて、210℃×20minの時効処理を施した後の硬さHR30Tを測定し、調質圧延後(時効処理前)の硬さとの差から時効硬化性を評価した。具体的には、HR30T硬さの上昇量が5以上を時効硬化性優(◎)、5未満から3以上を時効硬化性良(○)、3未満を時効硬化性劣(×)と評価し、優(◎)と良(○)を合格とした。
<Evaluation of age hardening>
About each said sample, hardness HR30T after performing aging treatment of 210 degreeC x 20 min was measured, and age-hardening property was evaluated from the difference with the hardness after temper rolling (before aging treatment). Specifically, an HR30T hardness increase of 5 or more was evaluated as age-hardening excellent (◎), less than 5 to 3 or more as age-hardening good (◯), and less than 3 as age-hardening inferior (×). Excellent (◎) and Good (○) were accepted.
<耐錆性の評価>
上記の各サンプルから40mm×80mmの耐食試験片を採取し、乾燥状態(温度25℃、相対湿度50%)と湿潤状態(温度50℃、相対湿度98%)を30分ごとに繰り返す乾湿繰り返し試験を96時間実施し、試験片表面に発生した点錆の個数から耐錆性を評価した。具体的には、試験片の片面当たりの点錆の発生個数が50個以下を耐錆性良(○)、51個以上を耐錆性不良(×)と評価し、良(○)を合格とした。
<Evaluation of rust resistance>
A 40 mm x 80 mm corrosion-resistant test piece is taken from each of the above samples, and a dry / wet repeat test that repeats a dry state (temperature 25 ° C., relative humidity 50%) and a wet state (temperature 50 ° C., relative humidity 98%) every 30 minutes. Was conducted for 96 hours, and the rust resistance was evaluated from the number of spot rust generated on the surface of the test piece. Specifically, if the number of spot rust occurrences on one side of the test piece is 50 or less, it is evaluated as good rust resistance (○), and 51 or more is evaluated as poor rust resistance (×), and passes (good). It was.
<加工性の評価>
上記の各サンプルから、直径100mmφの円形ブランクを200枚ずつ打ち抜き、2ピース缶の缶胴の絞り加工を模擬した加工を各200回行い、破断発生率から加工性を評価した。具体的には、絞り率が0.6の1次絞り後、絞り率が0.75の2次絞り加工を行い、上記絞り加工における破断発生率(%)[(破断数/全加工数)×100]が0.5%未満を加工性が良(○)、0.5%以上を加工性が不良(×)と評価し、良(○)を合格とした。
<Evaluation of workability>
From each of the above samples, 200 blank blanks having a diameter of 100 mmφ were punched 200 times each, and 200 times each of the processes that simulated drawing of the can body of a two-piece can were performed, and the workability was evaluated from the rate of occurrence of breakage. Specifically, after the primary drawing with a drawing ratio of 0.6, the secondary drawing with a drawing ratio of 0.75 is performed, and the fracture occurrence rate (%) in the drawing process ((number of breaks / total number of processes)). When x100] is less than 0.5%, the workability is good (◯), and 0.5% or more is evaluated as poor workability (x).
これらの評価試験の結果を表3に示した。 The results of these evaluation tests are shown in Table 3.
この結果から、本発明例の鋼板は、HR30Tが50以上で、かつ、加工性や耐食性に優れ、しかも、優れた時効硬化性を有していることがわかる。本発明例の鋼板は、バッチ焼鈍で製造しても、優れた時効硬化性を有している。 From this result, it can be seen that the steel plate of the present invention has an HR30T of 50 or more, excellent workability and corrosion resistance, and excellent age-hardening properties. The steel sheet of the present invention has excellent age-hardening properties even when manufactured by batch annealing.
本発明の鋼板は、容器用として好適であるが、これに限定されるものではなく、例えば、家電製品や電子機器、家屋の部材用等にも用いることができる。 The steel plate of the present invention is suitable for containers, but is not limited to this, and can be used, for example, for home appliances, electronic devices, and house members.
Claims (5)
Si:0.05mass%以下、
Mn:0.10〜0.40mass%、
P:0.020mass%以下、
S:0.020mass%以下、
N:0.0060〜0.020mass%、
Al:0.040〜0.200mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
固溶N量が0.0050mass%以上であり、
平均r値が1.2〜1.4であり、かつ、時効指数が10MPa以上である容器用鋼板。 C: 0.010 to 0.050 mass%,
Si: 0.05 mass% or less,
Mn: 0.10 to 0.40 mass%,
P: 0.020 mass% or less,
S: 0.020 mass% or less,
N: 0.0060-0.020 mass%,
Al: 0.040-0.200 mass% is contained, and the balance has a component composition consisting of Fe and inevitable impurities,
The amount of solute N is 0.0050 mass% or more,
A steel plate for containers having an average r value of 1.2 to 1.4 and an aging index of 10 MPa or more.
Cr:0.01〜0.10mass%、
Ti:0.005〜0.05mass%、
Nb:0.005〜0.05mass%、
V:0.005〜0.05mass%および
Zr:0.005〜0.05mass%のうちから選ばれる1種または2種以上を含有する請求項1または2に記載の容器用鋼板。 In addition to the above component composition,
Cr: 0.01-0.10 mass%,
Ti: 0.005-0.05 mass%,
Nb: 0.005 to 0.05 mass%,
The steel plate for containers according to claim 1 or 2, comprising one or more selected from V: 0.005 to 0.05 mass% and Zr: 0.005 to 0.05 mass%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016108922A JP6515294B2 (en) | 2016-05-31 | 2016-05-31 | Container steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016108922A JP6515294B2 (en) | 2016-05-31 | 2016-05-31 | Container steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017214619A true JP2017214619A (en) | 2017-12-07 |
JP6515294B2 JP6515294B2 (en) | 2019-05-22 |
Family
ID=60576588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016108922A Active JP6515294B2 (en) | 2016-05-31 | 2016-05-31 | Container steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6515294B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018181451A1 (en) * | 2017-03-31 | 2018-10-04 | Jfeスチール株式会社 | Steel sheet, method for producing same, crown cap, and drawn and redrawn (drd) can |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02267242A (en) * | 1989-04-07 | 1990-11-01 | Nippon Steel Corp | Low-carbon aluminum killed cold-rolled steel sheet with excellent workability, roughness and earring properties, and method for producing the same |
JPH04350146A (en) * | 1991-05-27 | 1992-12-04 | Kawasaki Steel Corp | Steel plate for two piece can |
JPH1180889A (en) * | 1997-09-04 | 1999-03-26 | Kawasaki Steel Corp | Hot rolled steel sheet for drum can, its production and high strength drum can made of steel |
JP2008208399A (en) * | 2007-02-23 | 2008-09-11 | Jfe Steel Kk | Thin-wall cold-rolled steel sheet for drum and manufacturing method therefor |
JP2010202927A (en) * | 2009-03-03 | 2010-09-16 | Nippon Steel Corp | Annealing method enabling to prevent tempering color |
JP2013019027A (en) * | 2011-07-12 | 2013-01-31 | Jfe Steel Corp | Steel sheet for high-strength can excellent in flange processibility, and method for production thereof |
JP2015147230A (en) * | 2014-02-05 | 2015-08-20 | Jfeスチール株式会社 | Lubrication device and lubrication method |
-
2016
- 2016-05-31 JP JP2016108922A patent/JP6515294B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02267242A (en) * | 1989-04-07 | 1990-11-01 | Nippon Steel Corp | Low-carbon aluminum killed cold-rolled steel sheet with excellent workability, roughness and earring properties, and method for producing the same |
JPH04350146A (en) * | 1991-05-27 | 1992-12-04 | Kawasaki Steel Corp | Steel plate for two piece can |
JPH1180889A (en) * | 1997-09-04 | 1999-03-26 | Kawasaki Steel Corp | Hot rolled steel sheet for drum can, its production and high strength drum can made of steel |
JP2008208399A (en) * | 2007-02-23 | 2008-09-11 | Jfe Steel Kk | Thin-wall cold-rolled steel sheet for drum and manufacturing method therefor |
JP2010202927A (en) * | 2009-03-03 | 2010-09-16 | Nippon Steel Corp | Annealing method enabling to prevent tempering color |
JP2013019027A (en) * | 2011-07-12 | 2013-01-31 | Jfe Steel Corp | Steel sheet for high-strength can excellent in flange processibility, and method for production thereof |
JP2015147230A (en) * | 2014-02-05 | 2015-08-20 | Jfeスチール株式会社 | Lubrication device and lubrication method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018181451A1 (en) * | 2017-03-31 | 2018-10-04 | Jfeスチール株式会社 | Steel sheet, method for producing same, crown cap, and drawn and redrawn (drd) can |
JP6468405B1 (en) * | 2017-03-31 | 2019-02-13 | Jfeスチール株式会社 | Steel plate and manufacturing method thereof, crown and DRD can |
Also Published As
Publication number | Publication date |
---|---|
JP6515294B2 (en) | 2019-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11131011B2 (en) | Hot-rolled or cold-rolled steel plate | |
CN102712973B (en) | The high tensile steel plate that formability is excellent and manufacture method thereof | |
JP5549307B2 (en) | Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same | |
US8389128B2 (en) | High tensile-strength galvanized steel sheet and process for manufacturing high tensile-strength galvanized steel sheet | |
CN111527224B (en) | High-strength steel sheet and method for producing same | |
US20110076177A1 (en) | High-strength steel sheet for cans and method for manufacturing the same | |
US11850821B2 (en) | Hot-pressed member, cold-rolled steel sheet for hot-pressed member, and method for producing the same | |
US10294542B2 (en) | Method for producing high-strength galvanized steel sheet and high-strength galvannealed steel sheet | |
WO2016013145A1 (en) | High-strength hot-dip zinc-coated steel sheet and method for producing same | |
WO2017029814A1 (en) | High-strength steel sheet and production method for same | |
KR101994914B1 (en) | Steel sheet for can and method for manufacturing the same | |
KR101264537B1 (en) | Method for manufacturing steel plate for can-making | |
JPWO2020148948A1 (en) | High-strength galvanized steel sheet and its manufacturing method | |
TWI428453B (en) | Steel plate for can and manufacturing method thereof | |
JP4752522B2 (en) | Manufacturing method of high strength cold-rolled steel sheet for deep drawing | |
AU2017227455B2 (en) | Steel Sheet for Can and Method for Manufacturing the Same | |
JP6198011B2 (en) | Manufacturing method of steel plate for hard container | |
JP6123958B1 (en) | High strength steel plate and manufacturing method thereof | |
JP5397263B2 (en) | High tensile cold-rolled steel sheet and method for producing the same | |
JPWO2016157760A1 (en) | Steel plate for can and manufacturing method thereof | |
JP5919812B2 (en) | High strength thin steel sheet with excellent formability and method for producing the same | |
JP6515294B2 (en) | Container steel sheet | |
JP3596037B2 (en) | Manufacturing method of steel plate for can-making | |
KR102587650B1 (en) | Steel sheet for cans and method of producing same | |
JPH07228921A (en) | Production of starting sheet for surface treated steel sheet, excellent in workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171221 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20180502 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20180509 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190226 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190327 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190311 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6515294 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |