JP2017214269A - Hydrogen production method - Google Patents

Hydrogen production method Download PDF

Info

Publication number
JP2017214269A
JP2017214269A JP2017053962A JP2017053962A JP2017214269A JP 2017214269 A JP2017214269 A JP 2017214269A JP 2017053962 A JP2017053962 A JP 2017053962A JP 2017053962 A JP2017053962 A JP 2017053962A JP 2017214269 A JP2017214269 A JP 2017214269A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
raw material
concentration
supply amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017053962A
Other languages
Japanese (ja)
Other versions
JP6429045B2 (en
Inventor
正之 小室
Masayuki Komuro
正之 小室
隆志 河野
Takashi Kono
隆志 河野
藤井 良基
Yoshimoto Fujii
良基 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017214269A publication Critical patent/JP2017214269A/en
Application granted granted Critical
Publication of JP6429045B2 publication Critical patent/JP6429045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen production method effective for stable operation of a hydrogen production apparatus such as a PSA (Pressure Swing Adsorption) apparatus, even when the concentration or supply quantity of raw material gas fluctuates.SOLUTION: The hydrogen production method for producing hydrogen of a prescribed purity using, as raw material gas, hydrogen-containing gas such as coke oven gas is provided in which the concentration and the supply quantity of the hydrogen-containing gas are obtained, and when any one of the concentration and the supply quantity is reduced to a management lower limit or below, a part of product hydrogen or a hydrogen-containing exhaust gas of a plant using the product hydrogen is added to the raw material gas to increase the hydrogen concentration and the supply quantity of the hydrogen-containing gas to be supplied to a hydrogen production apparatus to a prescribed value or higher.SELECTED DRAWING: Figure 1

Description

本発明は、コークス炉ガス(Cガス)などの副生ガスや石炭ガス化炉により生成されるガス、石油、天然ガス等化石燃料やバイオマス由来の改質ガスなどの水素分を含むガスから高純度の水素ガスを製造する水素製造方法に関する。   The present invention is highly effective from by-product gas such as coke oven gas (C gas), gas generated by a coal gasification furnace, fossil fuel such as petroleum and natural gas, and gas containing hydrogen such as reformed gas derived from biomass. The present invention relates to a hydrogen production method for producing pure hydrogen gas.

副生ガスなど水素分を含むガスから高純度の水素ガスを製造する水素製造装置としてPSA法、深冷分離法、膜分離法、メタネーション法等を利用したものが知られている。例えば水素PSA装置は、PSA法(圧力変動吸着法)を用いて原料ガスから水素を分離濃縮する装置である。この水素PSA装置は、近年では燃料電池等の燃料としての水素を製造する装置として、期待が大きくなっている。通常、原料ガスとしては、石油クラッキングガスや天然ガスを水蒸気改質したガス等を用いることが多い。   As a hydrogen production apparatus for producing high-purity hydrogen gas from a gas containing a hydrogen content such as a by-product gas, one using a PSA method, a cryogenic separation method, a membrane separation method, a methanation method, or the like is known. For example, a hydrogen PSA apparatus is an apparatus that separates and concentrates hydrogen from a raw material gas using a PSA method (pressure fluctuation adsorption method). In recent years, the hydrogen PSA apparatus has been expected to be an apparatus for producing hydrogen as a fuel for fuel cells and the like. Usually, as the raw material gas, petroleum cracking gas, gas obtained by steam reforming natural gas, or the like is often used.

化石燃料からPSA装置を用いて水素や炭酸ガスを製造する方法の例として、特許文献1および特許文献2に開示されたような技術が知られている。特許文献1においては、装置内の水素ガスを水素製造工程にリサイクルする工程を設けることで、効率的な水素回収を実施することが述べられている。特許文献2においては、CO吸着剤の再生洗浄ガスとしてPSA吸着塔のオフガスを用いることで水素リッチな改質ガスを得ることによって,高純度の水素ガスをPSA装置より得る方法について述べられている。   As an example of a method for producing hydrogen and carbon dioxide gas from fossil fuel using a PSA device, techniques disclosed in Patent Document 1 and Patent Document 2 are known. Patent Document 1 states that efficient hydrogen recovery is performed by providing a step of recycling the hydrogen gas in the apparatus to a hydrogen production step. Patent Document 2 describes a method for obtaining high-purity hydrogen gas from a PSA apparatus by obtaining a hydrogen-rich reformed gas by using an off-gas of a PSA adsorption tower as a regeneration cleaning gas for a CO adsorbent. .

一方、製鉄所においては、コークス炉で発生するコークス炉ガス(以下、「Cガス」という)には40〜55vol.%程度の水素ガスが含まれており、Cガスを原料ガスとしてPSA装置により水素を分離濃縮することが行われている。   On the other hand, in steelworks, the coke oven gas (hereinafter referred to as “C gas”) generated in the coke oven is 40 to 55 vol. % Hydrogen gas is contained, and hydrogen is separated and concentrated by a PSA apparatus using C gas as a raw material gas.

特開2008−247636号公報JP 2008-247636 A 特開2007−15910号公報JP 2007-15910 A

特許文献1、2に開示されているように、PSA装置の原料ガスとして化石燃料からの改質ガスを使用する場合には、原料ガスの成分や使用量が比較的安定した状態で運転することが可能である場合が多いと考えられる。そのため、特許文献1、2に開示された技術によれば、安定した原料ガスが供給できれば水素ガスを比較的安定した品位および発生量で生産することができる。   As disclosed in Patent Documents 1 and 2, when using a reformed gas from fossil fuel as a raw material gas for a PSA device, operation should be performed in a state where the components and amount of the raw material gas are relatively stable. Is considered possible in many cases. Therefore, according to the techniques disclosed in Patent Documents 1 and 2, if stable source gas can be supplied, hydrogen gas can be produced with relatively stable quality and generation amount.

しかし、化石燃料の調達、供給事情の変化や、化石燃料やバイオマス等から改質ガスを得る工程の操業変動により、PSA装置などの水素製造装置への原料ガスの水素濃度や供給量の変動が生じることを完全に防ぐことはできないと考えられる。   However, due to changes in fossil fuel procurement and supply conditions and operational fluctuations in the process of obtaining reformed gas from fossil fuel, biomass, etc., fluctuations in the hydrogen concentration and supply amount of raw material gas to hydrogen production equipment such as PSA equipment It cannot be completely prevented from occurring.

一方、製鉄所で発生するCガスをPSA装置の原料ガスとして使用する場合にも、次のような問題があった。即ち、Cガスの場合は、コークス炉で乾留する石炭の銘柄や、品位の変動、コークス炉の稼動状況などにより、Cガスの発生量やCガス中の水素やその他のガス成分が大きく変動することがある。また、製鉄所内で発生するCガスは所内での燃料としても使用されため、製鉄所内の稼動設備の稼働状況によって、PSA装置へ供給できるCガス量が大きく変動することになる。これらの理由により、製鉄所で発生するCガスを原料ガスとする場合には、特許文献1、2に開示された技術と比べて、PSA装置を安定的に運転することがさらに難しいのが実情であった。   On the other hand, when C gas generated at an ironworks is used as a raw material gas for a PSA apparatus, there are the following problems. In other words, in the case of C gas, the amount of C gas generated, hydrogen in the C gas, and other gas components greatly vary depending on the brand of coal to be carbonized in the coke oven, the change in grade, the operating status of the coke oven, etc. Sometimes. In addition, since the C gas generated in the steel works is also used as fuel in the works, the amount of C gas that can be supplied to the PSA device varies greatly depending on the operating status of the operation equipment in the steel works. For these reasons, when the C gas generated at the steel works is used as the raw material gas, it is more difficult to operate the PSA apparatus more stably than the techniques disclosed in Patent Documents 1 and 2. Met.

このように、水素製造装置で安定した品位、発生量の水素を生産するためには、原料ガスの水素濃度や供給量を安定にすることが必須となるが、一般に原料ガスの水素濃度や供給量の変動を完全に防ぐことはできないのが実情である。   As described above, in order to produce a stable quality and generated amount of hydrogen in a hydrogen production apparatus, it is essential to stabilize the hydrogen concentration and supply amount of the source gas. In reality, it is impossible to completely prevent fluctuations in quantity.

そこで本発明の目的は、原料ガスの濃度や供給量などが変動した場合においても、安定してPSA装置などの水素製造装置を運転する上で有効な、水素製造方法を提案することにある。   Therefore, an object of the present invention is to propose a hydrogen production method that is effective in stably operating a hydrogen production apparatus such as a PSA apparatus even when the concentration or supply amount of the raw material gas fluctuates.

前述した従来技術が抱えている課題について鋭意検討を重ねた結果、発明者らは、製鉄所で発生するCガスを原料ガスとする場合でも、原料ガスとしてのCガスの濃度および供給量の変動に応じて、PSA装置などの水素製造装置が製造した製品水素の一部または製品水素を使用する工場の水素含有排ガスをCガスにリサイクルして供給することで、原料ガスとしてのCガスの水素濃度および供給量を一定にできると共に、水素ガスの製造が安定してできることを突き止めて、本発明を開発した。そして、この方法は、コークス炉ガスを原料ガスとする場合以外でも原料ガスとして化石燃料やバイオマス由来の改質ガスやその他の水素含有ガスを使用する場合にも、同様に適用でき、水素製造装置において水素ガスを極めて安定に製造できることができる。   As a result of intensive studies on the above-mentioned problems of the conventional technology, the inventors have found that even when the C gas generated at the steel works is used as the source gas, the concentration and supply amount of the C gas as the source gas varies. Depending on the situation, hydrogen of C gas as a raw material gas can be supplied by recycling part of product hydrogen produced by hydrogen production equipment such as PSA equipment or hydrogen containing exhaust gas from factories that use product hydrogen to C gas. The present invention was developed by ascertaining that the concentration and supply amount can be made constant and that hydrogen gas can be produced stably. This method can also be applied to the case where fossil fuel, biomass-derived reformed gas or other hydrogen-containing gas is used as the raw material gas, in addition to the case where the coke oven gas is used as the raw material gas. Can produce hydrogen gas very stably.

即ち、本発明のある側面は、原料ガスとして水素含有ガスを用いて、所定純度の水素を製造する水素製造方法において、該水素含有ガスの水素濃度および供給量を求め、その水素濃度および供給量のいずれかがそれぞれの管理下限値以下となったときに、製品水素の一部を前記原料ガス中に供給することにより、水素製造装置に供給する原料ガスとしての前記水素含有ガスの水素濃度および供給量を所定の値以上にすることを特徴とする水素製造方法にある。   That is, according to one aspect of the present invention, in a hydrogen production method for producing hydrogen of a predetermined purity using a hydrogen-containing gas as a raw material gas, the hydrogen concentration and supply amount of the hydrogen-containing gas are determined, and the hydrogen concentration and supply amount are determined. When any one of the above becomes the control lower limit value or less, by supplying a part of the product hydrogen into the source gas, the hydrogen concentration of the hydrogen-containing gas as the source gas supplied to the hydrogen production apparatus and In the hydrogen production method, the supply amount is set to a predetermined value or more.

また、本発明の他の側面は、原料ガスとして水素含有ガスを用いて、所定純度の水素を製造する水素製造方法において、該水素含有ガスの水素濃度および供給量を求め、その水素濃度および供給量のいずれかがそれぞれの管理下限値以下となったときに、製品水素を使用する工場の水素含有排ガスを前記原料ガス中に供給することにより、水素製造装置に供給する原料ガスとしての前記水素含有ガスの水素濃度および供給量を所定の値以上にすることを特徴とする水素製造方法にある。   In another aspect of the present invention, in a hydrogen production method for producing hydrogen of a predetermined purity using a hydrogen-containing gas as a source gas, the hydrogen concentration and supply amount of the hydrogen-containing gas are determined, and the hydrogen concentration and supply The hydrogen as a raw material gas to be supplied to a hydrogen production device by supplying hydrogen-containing exhaust gas from a factory that uses product hydrogen into the raw material gas when any of the amounts becomes lower than the respective control lower limit value. In the hydrogen production method, the hydrogen concentration and supply amount of the contained gas are set to a predetermined value or more.

なお、前記のように構成される本発明の水素製造方法においては、
(1)前記管理下限値とは、水素含有ガスを製造する工程の操業変動によって水素含有ガスの成分および/または発生量が水素製造装置の安定運転に寄与しないレベルの値を意味すること、
(2)前記水素含有ガスの供給量の管理下限値は水素製造装置内の原料ガスを送給する機器が駆動する最低流量であること、
がより好ましい解決手段となるものと考えられる。
In the hydrogen production method of the present invention configured as described above,
(1) The control lower limit value means a value at a level at which the component and / or generation amount of the hydrogen-containing gas does not contribute to stable operation of the hydrogen production apparatus due to operational fluctuations in the process of producing the hydrogen-containing gas.
(2) The control lower limit value of the supply amount of the hydrogen-containing gas is a minimum flow rate driven by a device that feeds the raw material gas in the hydrogen production apparatus,
Is considered to be a more preferable solution.

前述のように構成することで、本発明は、水素製造装置で製造した純度99.999vol.%の製品水素(水素ガス)を、原料ガスとしての水素含有ガス中に混入させるか,水素ガスを水素使用工場で使用した後の80vol.%以上の水素分が含まれる水素含有排ガスを原料ガスとしての水素含有ガス中に混入させるようにしている。このことにより、原料ガスとなる水素含有ガスの水素濃度が低下した場合でも、純度99.999vol.%の製品水素や水素濃度80vol.%以上の水素含有排ガスを原料ガスとしての水素含有ガス中に混入することで、水素PSA装置で用いる原料ガスとしての水素含有ガスの水素濃度を安定的に確保することができるようになった。また、水素製造装置が水素PSA装置の場合は、水素PSA装置を構成する吸着槽の設計仕様圧力を保つために必要となる原料ガス量を安定的に確保することができるようになった。   By configuring as described above, the present invention has a purity of 99.999 vol. % Product hydrogen (hydrogen gas) is mixed into a hydrogen-containing gas as a raw material gas, or 80 vol. A hydrogen-containing exhaust gas containing at least% hydrogen is mixed in a hydrogen-containing gas as a raw material gas. As a result, even when the hydrogen concentration of the hydrogen-containing gas serving as the source gas is reduced, the purity is 99.999 vol. % Product hydrogen and hydrogen concentration 80 vol. It is possible to stably secure the hydrogen concentration of the hydrogen-containing gas as the source gas used in the hydrogen PSA apparatus by mixing at least% hydrogen-containing exhaust gas into the hydrogen-containing gas as the source gas. In addition, when the hydrogen production apparatus is a hydrogen PSA apparatus, it is possible to stably secure the amount of raw material gas necessary for maintaining the design specification pressure of the adsorption tank constituting the hydrogen PSA apparatus.

Cガスを原料ガスとして本発明の水素製造方法を実施する水素PSA装置の一例を示す図である。It is a figure which shows an example of the hydrogen PSA apparatus which implements the hydrogen manufacturing method of this invention using C gas as source gas. Cガスを原料ガスとして本発明の水素製造方法を実施する水素PSA装置の他の例を示す図である。It is a figure which shows the other example of the hydrogen PSA apparatus which implements the hydrogen manufacturing method of this invention using C gas as source gas.

図1は、Cガスを原料ガスとして本発明の水素製造方法を実施する水素PSA装置の一例を示す図である。図1に示す例において、水素PSA装置1は、原料としてのCガスを圧縮するための圧縮機11と、圧縮機11を通過した原料ガスとしてのCガスを冷却するための冷却器12と、冷却器12を通過した原料ガスとしてのCガスから水素以外の他の成分を吸着して除去する吸着槽13と、吸着槽13を通過した原料ガスとしてのCガスからさらに酸素を除去するための脱酸搭14と、脱酸搭14から得られる製品水素を外部へ供給するための水素本管15と、から主に構成されている。なお、図1では、水素PSA装置1を用いた本発明に係る水素製造方法の一例を実施するため、脱酸搭14から得られる製品水素を原料としてのCガス中にリサイクルして供給するための、バルブ22−1、22−2を有する水素配管22が設けられている。   FIG. 1 is a diagram showing an example of a hydrogen PSA apparatus for carrying out the hydrogen production method of the present invention using C gas as a source gas. In the example shown in FIG. 1, the hydrogen PSA apparatus 1 includes a compressor 11 for compressing C gas as a raw material, a cooler 12 for cooling C gas as raw material gas that has passed through the compressor 11, An adsorption tank 13 for adsorbing and removing components other than hydrogen from the C gas as the raw material gas that has passed through the cooler 12, and further for removing oxygen from the C gas as the raw material gas that has passed through the adsorption tank 13 It is mainly composed of a deoxidation tower 14 and a hydrogen main pipe 15 for supplying product hydrogen obtained from the deoxidation tower 14 to the outside. In FIG. 1, in order to implement an example of the hydrogen production method according to the present invention using the hydrogen PSA device 1, product hydrogen obtained from the deoxidation tower 14 is recycled and supplied into C gas as a raw material. The hydrogen pipe 22 having the valves 22-1 and 22-2 is provided.

図1に示す装置構成に基づく、本発明の水素製造方法は、図示しないセンサーにより、原料としてのCガスの水素濃度および供給量を求め、求めたCガスの水素濃度および供給量のいずれかがそれぞれの管理下限値以下となったときに、製品水素の一部を、バルブ22−1、22−2を有する水素配管22を介して、原料ガスであるCガス中に供給し、水素PSA装置1に供給する原料ガスとしてのCガスの水素濃度および供給量をそれぞれ所定の値以上に維持する方法である。   The hydrogen production method of the present invention based on the apparatus configuration shown in FIG. 1 obtains the hydrogen concentration and supply amount of C gas as a raw material by a sensor (not shown), and any of the obtained hydrogen concentration and supply amount of C gas is obtained. When the control lower limit value is reached, a part of the product hydrogen is supplied into the C gas as the raw material gas via the hydrogen pipe 22 having the valves 22-1 and 22-2, and the hydrogen PSA device This is a method of maintaining the hydrogen concentration and supply amount of C gas as the source gas supplied to 1 at a predetermined value or more.

ここで、Cガス中の水素濃度および供給量の管理下限値は、コークス炉の操業変動によってコークス炉ガスの成分および/または発生量がPSA装置の安定運転に寄与しないレベルの値を意味する。具体的には、Cガス中の水素濃度の管理下限値は、PSA装置の規模や製造する製品水素の要求量などによって個々に定められるが、原料としてのCガスの通常の水素濃度が50%程度であり、一例として、45vol.%とすることができる。また、Cガスの供給量の管理下限値についても、PSA装置の規模や製造する製品水素の要求量などによって個々に定められるが、一例としてPSA装置内の原料ガスを圧縮する圧縮機が駆動する最低流量とすることが好ましい。   Here, the control lower limit value of the hydrogen concentration in C gas and the supply amount means a value at which the component and / or generation amount of the coke oven gas does not contribute to the stable operation of the PSA device due to operation fluctuation of the coke oven. Specifically, the control lower limit value of the hydrogen concentration in the C gas is individually determined by the scale of the PSA device, the required amount of product hydrogen to be manufactured, etc., but the normal hydrogen concentration of the C gas as a raw material is 50%. As an example, 45 vol. %. Also, the control lower limit value of the supply amount of C gas is individually determined depending on the scale of the PSA device, the required amount of product hydrogen to be manufactured, and the like. As an example, a compressor that compresses the raw material gas in the PSA device is driven. A minimum flow rate is preferred.

図2は、Cガスを原料ガスとして本発明の水素製造方法を実施する水素PSA装置の他の例を示す図である。図2に示す例においても、図1に示す例と同様に、水素PSA装置1は、原料としてのCガスを圧縮するための圧縮機11と、圧縮機11を通過した原料ガスとしてのCガスを冷却するための冷却器12と、冷却器12を通過した原料ガスとしてのCガスから水素以外の他の成分を吸着して除去する吸着槽13と、吸着槽13を通過した原料ガスとしてのCガスからさらに酸素を除去するための脱酸搭14と、脱酸搭14から得られる製品水素を外部へ供給するための水素本管15と、から構成されている。図1に示す例と異なり、図2に示す例では、水素PSA装置1を用いた本発明に係る水素製造方法の他の例を実施するため、一例として製品水素を利用する鉄粉工場31を利用し、鉄粉工場31からの水素含有排ガスをCガスにリサイクルして供給するための、水素配管32およびバルブ33を有する水素配管34が設けられている。   FIG. 2 is a diagram showing another example of a hydrogen PSA apparatus for carrying out the hydrogen production method of the present invention using C gas as a source gas. Also in the example shown in FIG. 2, as in the example shown in FIG. 1, the hydrogen PSA apparatus 1 includes a compressor 11 for compressing C gas as a raw material and C gas as raw material gas that has passed through the compressor 11. A cooling device 12 for cooling the gas, an adsorption tank 13 for adsorbing and removing components other than hydrogen from the C gas as the raw material gas that has passed through the cooling device 12, and a raw material gas that has passed through the adsorption tank 13 A deoxidizing tower 14 for further removing oxygen from the C gas and a hydrogen main pipe 15 for supplying product hydrogen obtained from the deoxidizing tower 14 to the outside. Unlike the example shown in FIG. 1, in the example shown in FIG. 2, an iron powder factory 31 that uses product hydrogen is used as an example to implement another example of the hydrogen production method according to the present invention using the hydrogen PSA device 1. A hydrogen pipe 32 having a hydrogen pipe 32 and a valve 33 is provided to recycle and supply the hydrogen-containing exhaust gas from the iron powder factory 31 to C gas.

図2に示す装置構成に基づく、本発明の水素製造方法は、図示しないセンサーにより、原料としてのCガスの水素濃度および供給量を求め、求めたCガスの水素濃度および供給量のいずれかがそれぞれの管理下限値以下となるときに、鉄粉工場31からの水素含有排ガスを、バルブ33を有する水素配管34を介して、原料としてのCガス中に供給し、水素PSA装置1に供給する原料ガスとしてのCガスの水素濃度および供給量をそれぞれの所定の値以上に維持する方法である。   In the hydrogen production method of the present invention based on the apparatus configuration shown in FIG. 2, the hydrogen concentration and supply amount of C gas as a raw material are obtained by a sensor (not shown), and any one of the obtained hydrogen concentration and supply amount of C gas is obtained. When the control lower limit value is not reached, the hydrogen-containing exhaust gas from the iron powder factory 31 is supplied into the C gas as the raw material via the hydrogen pipe 34 having the valve 33 and supplied to the hydrogen PSA device 1. This is a method of maintaining the hydrogen concentration and supply amount of C gas as a raw material gas at a predetermined value or more.

図1、2では、原料ガスとしてCガスを使用する例を示したが、化石燃料やバイオマス由来の改質ガス等の水素含有ガスを原料ガスとする場合も、それら原料ガスの供給に変動が生じた場合に、同様に安定した水素製造を継続することができる。   1 and 2 show an example in which C gas is used as the source gas. However, even when hydrogen-containing gas such as fossil fuel or biomass-derived reformed gas is used as the source gas, the supply of the source gas varies. If this occurs, stable hydrogen production can be continued as well.

<実施例1>
図1に示す装置構成により、本発明に係る水素製造方法の一例を実施した。図1の装置構成において、Cガスの水素濃度および供給量のいずれかが、それぞれの管理下限値(水素濃度45vol.%)以下となったときに、水素PSA装置1にて製造された純度99.999vol.%の製品水素の一部を、バルブ22−1、22−2を有する水素配管22を介して、原料となるCガスに供給した。
<Example 1>
An example of the hydrogen production method according to the present invention was carried out with the apparatus configuration shown in FIG. In the apparatus configuration of FIG. 1, the purity of 99 produced in the hydrogen PSA apparatus 1 when either the hydrogen concentration or the supply amount of the C gas is less than the respective control lower limit value (hydrogen concentration 45 vol.%). 999 vol. % Of the product hydrogen was supplied to C gas as a raw material through a hydrogen pipe 22 having valves 22-1 and 22-2.

通常、コークス炉の操業状況に応じてCガス組成は変化し、Cガス中の水素濃度も変化する。Cガス中の水素濃度が徐々に低下していった場合、製品水素中の不純物濃度が上昇するため、不純物を吸着槽13で除去できるように圧縮機流量を順次に減量させて調整を行なう。吸着槽13内の圧力は吸着・再生を行なうために圧力を保持しなければならないが、圧縮機流量を減量させると圧力保持が困難となるため、製品水素純度を維持するためには、装置停止する必要があった(例えば、製品水素の水素濃度が45vol.%以下の場合に不純物上昇で装置停止)。   Usually, the C gas composition changes according to the operation status of the coke oven, and the hydrogen concentration in the C gas also changes. When the hydrogen concentration in the C gas gradually decreases, the impurity concentration in the product hydrogen increases. Therefore, the compressor flow rate is reduced in order so that the impurities can be removed by the adsorption tank 13, and adjustment is performed. The pressure in the adsorption tank 13 must be maintained in order to perform adsorption and regeneration. However, if the compressor flow rate is reduced, it becomes difficult to maintain the pressure. (For example, when the hydrogen concentration of product hydrogen is 45 vol.

この実施例1では、Cガス中の水素濃度が管理下限値以下に低下した際に、製品水素の一部(本例では製造量500Nm/hに対し200Nm/h)を原料としてのCガスに戻したところ、水素PSA装置の原料ガスとして使用するCガス中の水素濃度を3vol.%上昇させることが出きた。その結果、原料ガスとしてのCガスの水素濃度が低下した場合(本例では水素濃度45vol.%以下)でも、純度99.999vol.%の製品水素の製造が可能となった。 In Example 1, when the hydrogen concentration in the C gas drops below the management lower limit value, C of some products hydrogen (200 Nm 3 / h to production volume 500 Nm 3 / h in this example) as a starting material When the gas was returned, the hydrogen concentration in the C gas used as the raw material gas for the hydrogen PSA apparatus was 3 vol. % Came out. As a result, even when the hydrogen concentration of the C gas as the source gas is lowered (in this example, the hydrogen concentration is 45 vol.% Or less), the purity is 99.999 vol. % Of product hydrogen can be produced.

<実施例2>
図2に示す装置構成により、本発明に係る水素製造方法の他の例を実施した。図2の装置構成において、Cガスの水素濃度および供給量のいずれかがそれぞれの管理下限値(水素濃度45vol.%)以下となったときに、鉄粉工場31からの水素含有排ガスを、バルブ33を有する水素配管34を介して、原料としてのCガス中に供給した。
<Example 2>
Another example of the hydrogen production method according to the present invention was carried out with the apparatus configuration shown in FIG. In the apparatus configuration of FIG. 2, when any of the hydrogen concentration and supply amount of C gas is below the respective control lower limit value (hydrogen concentration 45 vol.%), The hydrogen-containing exhaust gas from the iron powder factory 31 is It was supplied into C gas as a raw material through a hydrogen pipe 34 having 33.

実施例1においては、水素PSA装置1に供給するCガス中の水素濃度を上昇させるために自らの装置で製造した製品水素を使用していたが、製品水素の一部を取り出すため、結果的に本管に流れる製品水素の流量の減少を招く場合があった。この問題を解消するため、実施例2においては,使用する工場(鉄粉工場31)で発生する水素含有排ガスには水素分が80vol.%以上含まれることから、この水素含有排ガスをCガス中に供給することとした。   In Example 1, the product hydrogen produced by its own device was used to increase the hydrogen concentration in the C gas supplied to the hydrogen PSA device 1, but a part of the product hydrogen was taken out. In some cases, the flow rate of product hydrogen flowing into the main pipe was reduced. In order to solve this problem, in Example 2, the hydrogen content of the hydrogen-containing exhaust gas generated in the factory (iron powder factory 31) used is 80 vol. The hydrogen-containing exhaust gas is supplied into the C gas because it is contained in an amount of at least%.

その結果,原料となるCガス中の水素濃度が低下した場合(本例では水素濃度45vol.%以下)においても、水素PSA装置1にて水素を製造するために必要な水素濃度を確保でき、水素製造量の低下を抑止できた。   As a result, even when the hydrogen concentration in the raw material C gas is reduced (in this example, the hydrogen concentration is 45 vol.% Or less), the hydrogen concentration necessary for producing hydrogen in the hydrogen PSA device 1 can be secured, The decrease in hydrogen production was suppressed.

本発明の水素製造方法は、原料ガスとしてCガスを使用した場合でも、所定純度の水素を安定して製造することができるため、製鉄所内で高純度の水素を利用する他の装置にも適用が可能である。また、水素製造装置として、水素PSA装置以外の深冷分離法、膜分離法、メタネーション法等を利用した装置を用いることも可能である。さらに、原料ガスを石炭ガス化炉により生成される水素分を含むガスや石油、天然ガス等化石燃料やバイオマス由来の改質ガスなどの水素分を含むガスとする場合についても有効である。   The hydrogen production method of the present invention can stably produce hydrogen of a predetermined purity even when C gas is used as a raw material gas, and therefore can be applied to other apparatuses that use high-purity hydrogen in steelworks. Is possible. In addition, as a hydrogen production apparatus, an apparatus using a cryogenic separation method, a membrane separation method, a methanation method, or the like other than the hydrogen PSA apparatus can be used. Furthermore, it is also effective when the raw material gas is a gas containing a hydrogen content, such as a gas containing a hydrogen content generated by a coal gasification furnace, a fossil fuel such as petroleum or natural gas, or a reformed gas derived from biomass.

1 水素PSA装置
11 圧縮機
12 冷却器
13 吸着槽
14 脱酸搭
15 水素本管
22−1、22−2 バルブ
22 水素配管
31 鉄粉工場
32、34 水素配管
33 バルブ
DESCRIPTION OF SYMBOLS 1 Hydrogen PSA apparatus 11 Compressor 12 Cooler 13 Adsorption tank 14 Deoxidation tower 15 Hydrogen main pipe 22-1, 22-2 Valve 22 Hydrogen piping 31 Iron powder factory 32, 34 Hydrogen piping 33 Valve

Claims (4)

原料ガスとして水素含有ガスを用いて、所定純度の水素を製造する水素製造方法において、該水素含有ガスの水素濃度および供給量を求め、その水素濃度および供給量のいずれかがそれぞれの管理下限値以下となったときに、製品水素の一部を前記原料ガス中に供給することにより、水素製造装置に供給する原料ガスとしての前記水素含有ガスの水素濃度および供給量を所定の値以上にすることを特徴とする水素製造方法。   In a hydrogen production method for producing hydrogen of a predetermined purity using a hydrogen-containing gas as a raw material gas, the hydrogen concentration and supply amount of the hydrogen-containing gas are determined, and any one of the hydrogen concentration and supply amount is a lower control limit value. By supplying a part of the product hydrogen into the raw material gas when it becomes below, the hydrogen concentration and supply amount of the hydrogen-containing gas as the raw material gas supplied to the hydrogen production device are set to a predetermined value or more. A method for producing hydrogen. 原料ガスとして水素含有ガスを用いて、所定純度の水素を製造する水素製造方法において、該水素含有ガスの水素濃度および供給量を求め、その水素濃度および供給量のいずれかがそれぞれの管理下限値以下となったときに、製品水素を使用する工場の水素含有排ガスを前記原料ガス中に供給することにより、水素製造装置に供給する原料ガスとしての前記水素含有ガスの水素濃度および供給量を所定の値以上にすることを特徴とする水素製造方法。   In a hydrogen production method for producing hydrogen of a predetermined purity using a hydrogen-containing gas as a raw material gas, the hydrogen concentration and supply amount of the hydrogen-containing gas are determined, and any one of the hydrogen concentration and supply amount is a lower control limit value. By supplying the hydrogen-containing exhaust gas from a factory that uses product hydrogen into the raw material gas when the hydrogen gas concentration becomes the following, the hydrogen concentration and supply amount of the hydrogen-containing gas as the raw material gas supplied to the hydrogen production device are predetermined. A method for producing hydrogen, characterized by having a value equal to or greater than. 前記管理下限値とは、水素含有ガスを製造する工程の操業変動によって水後含有ガスの成分および/または発生量が水素製造装置の安定運転に寄与しないレベルの値を意味することを特徴とする請求項1または2に記載の水素製造方法。   The control lower limit value means a value at a level at which the component and / or generation amount of the after-water-containing gas does not contribute to stable operation of the hydrogen production apparatus due to operational fluctuations in the process of producing the hydrogen-containing gas. The method for producing hydrogen according to claim 1 or 2. 前記水素含有ガスの供給量の管理下限値は、水素製造装置内の原料ガスを送給する機器が駆動する最低流量であることを特徴とする請求項1〜3のいずれか1項に記載の水素製造方法。   The control lower limit value of the supply amount of the hydrogen-containing gas is a minimum flow rate that is driven by an apparatus that feeds the raw material gas in the hydrogen production apparatus. Hydrogen production method.
JP2017053962A 2016-05-26 2017-03-21 Hydrogen production method Active JP6429045B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016104877 2016-05-26
JP2016104877 2016-05-26

Publications (2)

Publication Number Publication Date
JP2017214269A true JP2017214269A (en) 2017-12-07
JP6429045B2 JP6429045B2 (en) 2018-11-28

Family

ID=60576517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017053962A Active JP6429045B2 (en) 2016-05-26 2017-03-21 Hydrogen production method

Country Status (1)

Country Link
JP (1) JP6429045B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100714A (en) * 2018-10-26 2020-05-05 苏州盖沃净化科技有限公司 Production of H by combining coke oven gas with blast furnace gas or/and converter gas2Method and device for preparing/CO raw material gas

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113134A (en) * 1999-10-20 2001-04-24 Tokyo Gas Co Ltd Method for cleaning waste gas containing nox
JP2002003864A (en) * 2000-06-22 2002-01-09 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for producing gas by using coal, or the like, as raw material
JP2003012304A (en) * 2001-06-28 2003-01-15 Kawasaki Steel Corp Refining method for gas containing hydrogen and its apparatus
JP2005314485A (en) * 2004-04-27 2005-11-10 Nippon Steel Corp Method for separating and recovering high-concentration hydrogen gas from coke oven gas
JP2008524107A (en) * 2004-12-17 2008-07-10 テキサコ ディベラップメント コーポレイション Apparatus and method for hydrogen production
JP2012157812A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Gas separation method and apparatus
JP2015529618A (en) * 2012-07-17 2015-10-08 武▲漢凱▼迪工程技▲術▼研究▲総▼院有限公司 Fischer-Tropsch synthetic exhaust gas comprehensive utilization method with low carbon emission
JP2017041309A (en) * 2015-08-17 2017-02-23 三菱日立パワーシステムズ株式会社 Power generating system and operating method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113134A (en) * 1999-10-20 2001-04-24 Tokyo Gas Co Ltd Method for cleaning waste gas containing nox
JP2002003864A (en) * 2000-06-22 2002-01-09 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for producing gas by using coal, or the like, as raw material
JP2003012304A (en) * 2001-06-28 2003-01-15 Kawasaki Steel Corp Refining method for gas containing hydrogen and its apparatus
JP2005314485A (en) * 2004-04-27 2005-11-10 Nippon Steel Corp Method for separating and recovering high-concentration hydrogen gas from coke oven gas
JP2008524107A (en) * 2004-12-17 2008-07-10 テキサコ ディベラップメント コーポレイション Apparatus and method for hydrogen production
JP2012157812A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Gas separation method and apparatus
JP2015529618A (en) * 2012-07-17 2015-10-08 武▲漢凱▼迪工程技▲術▼研究▲総▼院有限公司 Fischer-Tropsch synthetic exhaust gas comprehensive utilization method with low carbon emission
JP2017041309A (en) * 2015-08-17 2017-02-23 三菱日立パワーシステムズ株式会社 Power generating system and operating method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100714A (en) * 2018-10-26 2020-05-05 苏州盖沃净化科技有限公司 Production of H by combining coke oven gas with blast furnace gas or/and converter gas2Method and device for preparing/CO raw material gas

Also Published As

Publication number Publication date
JP6429045B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
US8752390B2 (en) Method and apparatus for producing power and hydrogen
Voss Applications of pressure swing adsorption technology
TWI648390B (en) Method of producing syngas in operations combined with metallurgical equipment
JP2010138051A (en) Method of coproducing methanol and ammonia
JP6593754B2 (en) Hydrogen generator and fuel cell system
CN110869314A (en) Process for producing ammonia synthesis gas
TW201529860A (en) Plant complex for steel production and method for operating the plant complex
US9938594B2 (en) Methods and systems for producing direct reduced iron and steel mill fuel gas using coke oven gas and basic oxygen furnace gas
KR102263022B1 (en) Method for producing hydrogen from hydrogen psa off-gas of coke oven gas
US9772109B2 (en) Process for enabling carbon-capture from conventional steam methane reformer
JP6429045B2 (en) Hydrogen production method
JP2012241104A (en) Coal gasification system
JPWO2014181860A1 (en) Method for separating methane and nitrogen
CN109477683B (en) Process for separating synthesis gas
JP2010173985A (en) Method and facility for manufacturing hydrocarbon fuel
US20060236697A1 (en) Configuration and process for shift conversion
KR20180026258A (en) Method for producing reducing gas from by-product gas of ironmaking process and the device
JP2007209868A (en) Stable operation method of pressure swing adsorption device
US11235974B2 (en) Process and plant for producing synthesis gas with variable composition
JP5535818B2 (en) Biomass gasification gas purification system and method, methanol production system and method
EP4157945A1 (en) Circular carbon process
JP5384798B2 (en) Method for producing liquefiable storage fuel from by-product gas of steelworks
US11066300B2 (en) Method of operating a syngas plant for a wide range of hydrogen and co co-production
JP2017206402A (en) Hydrogen gas production method and biogas hydrogenation facility
JP6077169B1 (en) Method for producing hydrogen gas and biogas hydrogenation facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181016

R150 Certificate of patent or registration of utility model

Ref document number: 6429045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250