JP2017211393A - Particle separate collecting device and particle separate collecting method - Google Patents

Particle separate collecting device and particle separate collecting method Download PDF

Info

Publication number
JP2017211393A
JP2017211393A JP2017150212A JP2017150212A JP2017211393A JP 2017211393 A JP2017211393 A JP 2017211393A JP 2017150212 A JP2017150212 A JP 2017150212A JP 2017150212 A JP2017150212 A JP 2017150212A JP 2017211393 A JP2017211393 A JP 2017211393A
Authority
JP
Japan
Prior art keywords
light
particles
sorting
particle
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017150212A
Other languages
Japanese (ja)
Other versions
JP6508265B2 (en
Inventor
達巳 伊藤
Tatsumi Ito
達巳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2017150212A priority Critical patent/JP6508265B2/en
Publication of JP2017211393A publication Critical patent/JP2017211393A/en
Application granted granted Critical
Publication of JP6508265B2 publication Critical patent/JP6508265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a technique for separately collecting particles in a microchip efficiently.SOLUTION: There is provided a particle separate collecting device including: a first light irradiation unit for irradiating particles flowing in a flow passage with a first irradiation light; a second light irradiation unit for irradiating the particles with a second irradiation light at a position different from in the case of the first irradiation light; a light detector for detecting light emitted from the particles; and a separate collection controller for calculating a time difference of arrival of the particles to the separate collector leading to the flow passage from the time difference in detection of light derived from the first irradiation light and light derived from the second irradiation light and controlling separate collection of the particles based on the calculated time difference, the flow passage and the separation collection part being located in the microchip.SELECTED DRAWING: Figure 1

Description

本技術は、粒子分取装置及び粒子分取方法に関する。より詳しくは、光学的手法などにより分析した結果に基づいて粒子を分別して回収する技術に関する。   The present technology relates to a particle sorting apparatus and a particle sorting method. More specifically, the present invention relates to a technique for separating and collecting particles based on the result of analysis by an optical method or the like.

従来、細胞、微生物及びリポソームなどの生体関連粒子の分析には、フローサイトメトリー(フローサイトメーター)を用いた光学的測定方法が利用されている。フローサイトメーターは、フローセルやマイクロチップなどに形成された流路内を通流する粒子に光を照射し、個々の粒子から発せられた蛍光や散乱光を検出して、分析する装置である。   Conventionally, an optical measurement method using flow cytometry (flow cytometer) has been used for analysis of biologically relevant particles such as cells, microorganisms and liposomes. A flow cytometer is a device that irradiates particles flowing through a flow channel formed in a flow cell, a microchip, or the like with light and detects and analyzes fluorescence and scattered light emitted from the individual particles.

フローサイトメーターには、分析結果に基づいて、特定の特性を有する粒子のみを分別して回収する機能を備えたものもあり、特に細胞を分取対象とした装置は「セルソータ」と呼ばれている。セルソータの分取方式としては、主に、粒子を含む液滴を帯電させて分離する液滴荷電方式が採用されている(例えば、特許文献1参照。)。液滴荷電方式の装置では、フローセルやマイクロチップなどから排出される流体を液滴化して、その液滴にプラス(+)又はマイナス(−)の電荷を付与し、偏向板などにより進行方向を変更することで所定の容器に回収する。   Some flow cytometers have the function of sorting and collecting only particles with specific characteristics based on the analysis results, and the device that specifically sorts cells is called the “cell sorter”. . As a sorting method of the cell sorter, a droplet charging method is mainly employed in which droplets containing particles are charged and separated (see, for example, Patent Document 1). In a droplet charging system, a fluid discharged from a flow cell, a microchip, or the like is converted into droplets, plus (+) or minus (-) charge is applied to the droplets, and the traveling direction is changed by a deflecting plate or the like. By changing, it collects in a predetermined container.

しかしながら、液滴荷電方式などの液滴を形成する分取方式は、測定環境の変化や液圧変動の影響を受けやすいという問題がある。そこで、従来、マイクロチップ内で分取を行う粒子分取装置も提案されている(特許文献2参照)。この特許文献2に記載の粒子分取装置は、回収対象の粒子をマイクロチップ内の負圧吸引部に吸引して分取するため、液滴化や荷電が不要であり、粒子にダメージを与えることなく、高速でかつ安定して分取を行うことができる。   However, a sorting method such as a droplet charging method has a problem that it is easily affected by a change in measurement environment or a fluctuation in fluid pressure. Therefore, conventionally, a particle sorting apparatus for sorting in a microchip has also been proposed (see Patent Document 2). Since the particle sorting device described in Patent Document 2 draws and collects particles to be collected by a negative pressure suction unit in the microchip, droplet formation and charging are unnecessary, and the particles are damaged. Therefore, it is possible to perform sorting at high speed and stably.

特開2009−145213号公報JP 2009-145213 A 特開2012−127922号公報JP 2012-127922 A

従来の粒子分取装置では、一般に、光検出部での検出時間から一定時間後に回収対象の粒子の取得動作を行うよう制御されている。そして、検出から取得までの時間は、液圧や検出位置から分取位置までの距離などに基づいて、予め設定されている。しかしながら、このように到達時間を固定した制御方法は、粒子の通流速度が変動すると、回収物の純度や取得率が低下するという問題がある。   In the conventional particle sorting apparatus, generally, the acquisition operation of the particles to be collected is controlled after a certain time from the detection time in the light detection unit. The time from detection to acquisition is set in advance based on the fluid pressure or the distance from the detection position to the sorting position. However, the control method in which the arrival time is fixed in this way has a problem that the purity and the acquisition rate of the recovered material are lowered when the flow rate of the particles fluctuates.

一方、特許文献1に記載の装置では、粒子の通流速度の変動による純度低下を防止するため、粒子毎に移動速度を検出し、その移動速度に基づいて各粒子に電荷を付与するタイミングを制御している。しかしながら、荷電液滴方式の場合、各粒子がどの液滴に属するかのみ判断すればよいが、マイクロチップ内で分取を行う装置の場合、近接する粒子それぞれの属性に加え、流体機構的特性を考慮する必要がある。ここで、「粒子の属性」とは、その粒子が分取対象の粒子か否かなどであり、「流体機構的特性」とは、取得動作のパルス信号の立ち上がり時に発生する逆流などである。   On the other hand, in the apparatus described in Patent Document 1, in order to prevent a decrease in purity due to fluctuations in the flow rate of particles, the movement speed is detected for each particle, and the timing for applying an electric charge to each particle based on the movement speed is set. I have control. However, in the case of the charged droplet method, it is only necessary to determine which droplet each particle belongs to. However, in the case of a device that performs sorting in a microchip, in addition to the attributes of each adjacent particle, the characteristics of the fluid mechanism Need to be considered. Here, the “particle attribute” is whether or not the particle is a particle to be sorted, and the “fluid mechanical characteristic” is a reverse flow or the like generated at the rise of the pulse signal of the acquisition operation.

また、荷電液滴方式では液滴に対して制御を行うが、特許文献2に記載されているようなマイクロチップ内で分取を行う装置では、個々の粒子に対して制御を行う必要がある。更に、荷電液滴方式と、マイクロチップ内で分取する方式とでは、取得位置に達するまでの経路や、粒子の到達に影響を与える因子が異なる。以上の理由から、特許文献1に記載の技術を、マイクロチップ内で分取を行う特許文献2に記載の装置に、単純に適用することはできない。   In the charged droplet method, droplets are controlled. However, in an apparatus for sorting in a microchip as described in Patent Document 2, it is necessary to control individual particles. . Furthermore, the charged droplet method and the method of sorting in the microchip differ in the path to reach the acquisition position and the factors that affect the arrival of particles. For the above reasons, the technique described in Patent Document 1 cannot be simply applied to the apparatus described in Patent Document 2 that performs sorting in a microchip.

そこで、本開示は、マイクロチップ内において効率よく粒子を分取することができる粒子分取装置及び粒子分取方法を提供することを主目的とする。   Accordingly, the main object of the present disclosure is to provide a particle sorting device and a particle sorting method that can efficiently sort particles in a microchip.

本開示に係る粒子分取装置は、流路を通流する粒子に励起光を照射する励起光照射部と、前記粒子に前記励起光とは異なる位置で速度検出用光を照射する速度検出用光照射部と、前記粒子から発せられた光を検出する光検出部と、前記励起光に由来する光と前記速度検出用光に由来する光の検出時間差から、各粒子が前記流路に連通する分取部に到達する時間を個別に算出する到達時間算出部と、前記粒子の分取を制御する分取制御部と、を有し、前記流路及び前記分取部はマイクロチップ内に設けられており、前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記到達時間算出部で算出された到達時間
に基づいて、前記粒子を回収するか否かを判断する。
前記分取制御部は、例えば、前後の粒子の到達時間差を算出し、該到達時間差が閾値以下の粒子は、非回収と判断する。
前記速度検出用光は前記励起光と波長が異なるものでもよい。
その場合、前記到達時間算出部は、前記励起光に由来する散乱光と前記速度検出用光に由来する散乱光の検出時間差から各粒子の到達時間を算出することができる。
また、前記励起光照射部は、異なる波長の光を出射する2以上の光源を備えていてもよい。
前記分取部は、前記流路に連通する負圧吸引部を有していてもよい。
その場合、前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記到達時間算出部で算出された到達時間に基づいて、前記負圧吸引部の動作を制御する。
また、前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記到達時間算出部で算出された到達時間に基づいて、前記分取部に前記粒子を回収するタイミングを制御することもできる。
The particle sorting apparatus according to the present disclosure includes an excitation light irradiation unit that irradiates particles flowing through a flow path with excitation light, and a speed detection light that irradiates the particles with speed detection light at a position different from the excitation light. Each particle communicates with the flow path from a light irradiation unit, a light detection unit that detects light emitted from the particle, and a detection time difference between light derived from the excitation light and light derived from the speed detection light. An arrival time calculation unit that individually calculates the time to reach the sorting unit, and a sorting control unit that controls the sorting of the particles, and the flow path and the sorting unit are in the microchip. The sorting control unit determines whether to collect the particles based on the data of each particle detected by the light detection unit and the arrival time calculated by the arrival time calculation unit. to decide.
The sorting control unit calculates, for example, the arrival time difference between the preceding and following particles, and determines that particles having the arrival time difference equal to or less than a threshold value are not collected.
The speed detection light may have a wavelength different from that of the excitation light.
In that case, the arrival time calculation unit can calculate the arrival time of each particle from the detection time difference between the scattered light derived from the excitation light and the scattered light derived from the speed detection light.
The excitation light irradiating unit may include two or more light sources that emit light having different wavelengths.
The sorting unit may include a negative pressure suction unit that communicates with the flow path.
In this case, the sorting control unit controls the operation of the negative pressure suction unit based on the data of each particle detected by the light detection unit and the arrival time calculated by the arrival time calculation unit.
In addition, the sorting control unit determines the timing of collecting the particles in the sorting unit based on the data of each particle detected by the light detection unit and the arrival time calculated by the arrival time calculation unit. It can also be controlled.

本開示に係る粒子分取方法は、マイクロチップ内に設けられた流路を通流する粒子に励起光を照射する励起光照射工程と、前記粒子に前記励起光とは異なる位置で速度検出用光を照射する速度検出用光照射工程と、前記粒子から発せられた光を検出する光検出工程と、前記励起光に由来する光と前記速度検出用光に由来する光の検出時間差から、前記マイクロチップ内に設けられ前記流路に連通する分取部に、各粒子が到達する時間を、個別に算出する到達時間算出工程と、前記光検出工程で検出した各粒子のデータと、前記到達時間算出工程で算出した到達時間に基づいて、前記粒子を回収するか否かを判断する分取制御工程と、を有する。
前記分取制御工程は、前後の粒子の到達時間差を算出し、該到達時間差が閾値以下の粒子は、非回収と判断してもよい。
また、前記速度検出用光として前記励起光とは波長が異なる光を用いることもできる。
その場合、前記到達時間算出工程において、前記励起光に由来する散乱光と前記速度検出用光に由来する散乱光の検出時間差から各粒子の到達時間を算出してもよい。
前記励起光照射工程は、2以上の光源からそれぞれ異なる波長の光を出射することもできる。
一方、前記分取部は前記流路に連通する負圧吸引部を有していてもよく、その場合、前記分取制御工程は、前記光検出工程で検出した各粒子のデータと、前記到達時間算出工程で算出した到達時間に基づいて、前記負圧吸引部の動作を制御する。
また、前記分取制御工程において、前記光検出工程で検出した各粒子のデータと、前記到達時間算出工程で算出した到達時間に基づいて、前記分取部に前記粒子を回収するタイミングを制御することもできる。
The particle sorting method according to the present disclosure includes an excitation light irradiation step of irradiating particles flowing through a flow path provided in a microchip with excitation light, and speed detection at a position different from the excitation light on the particles. From the speed detection light irradiation step of irradiating light, the light detection step of detecting the light emitted from the particles, and the detection time difference between the light derived from the excitation light and the light derived from the speed detection light, The arrival time calculation step of individually calculating the time for each particle to reach the sorting unit provided in the microchip and communicating with the flow path, the data of each particle detected in the light detection step, and the arrival time A fractionation control step of determining whether to collect the particles based on the arrival time calculated in the time calculation step.
The sorting control step may calculate an arrival time difference between the preceding and succeeding particles, and determine that particles having the arrival time difference equal to or less than a threshold value are not collected.
Further, light having a wavelength different from that of the excitation light may be used as the speed detection light.
In that case, in the arrival time calculation step, the arrival time of each particle may be calculated from the detection time difference between the scattered light derived from the excitation light and the scattered light derived from the speed detection light.
In the excitation light irradiation step, light having different wavelengths can be emitted from two or more light sources.
On the other hand, the sorting unit may include a negative pressure suction unit that communicates with the flow path. In this case, the sorting control step includes the data of each particle detected in the light detection step and the arrival of the particles. Based on the arrival time calculated in the time calculation step, the operation of the negative pressure suction unit is controlled.
Further, in the sorting control step, the timing for collecting the particles in the sorting unit is controlled based on the data of each particle detected in the light detection step and the arrival time calculated in the arrival time calculation step. You can also.

本開示によれば、分取制御部で、光検出部で検出された各粒子のデータと、到達時間算出部で算出された到達時間に基づいて、粒子を回収するか否かを判断しているため、粒子の取得性能を向上させることができる。   According to the present disclosure, the sorting control unit determines whether or not to collect particles based on the data of each particle detected by the light detection unit and the arrival time calculated by the arrival time calculation unit. Therefore, the acquisition performance of particles can be improved.

本開示の第1の実施形態に係る粒子分取装置の構成を模式的に示す図である。It is a figure showing typically the composition of the particle sorter concerning a 1st embodiment of this indication. 図1に示す光検出部7での検出データを示す図である。It is a figure which shows the detection data in the photon detection part 7 shown in FIG. 本開示の第1の実施形態の変形例に係る粒子分取装置の到達時間算出部8及び分取制御部9の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the arrival time calculation part 8 and the fractionation control part 9 of the particle | grain fractionation apparatus which concerns on the modification of 1st Embodiment of this indication. A及びBは図3に示すイベント検出回路での処理を示す図である。FIGS. 4A and 4B are diagrams showing processing in the event detection circuit shown in FIG. 3. A及びBは図3に示すゲーティング回路での距離を示す図である。4A and 4B are diagrams showing distances in the gating circuit shown in FIG. 取得優先モードの動作を示す図である。It is a figure which shows operation | movement of acquisition priority mode. A及びBは粒子が近接している場合の検出データを示す図である。A and B are diagrams showing detection data when particles are close to each other. 純度優先モードの動作を示す図である。It is a figure which shows operation | movement of purity priority mode.

以下、本開示を実施するための形態について、添付の図面を参照して詳細に説明する。
なお、本開示は、以下に示す各実施形態に限定されるものではない。また、説明は、以下
の順序で行う。

1.第1の実施の形態
(分取制御部を備える粒子分取装置の例)
2.第1の実施の形態の変形例
(モード切り替え機能を備える粒子分取装置の例)
Hereinafter, modes for carrying out the present disclosure will be described in detail with reference to the accompanying drawings.
In addition, this indication is not limited to each embodiment shown below. The description will be given in the following order.

1. First Embodiment (Example of a particle sorting apparatus including a sorting control unit)
2. Modified example of the first embodiment (Example of a particle sorting apparatus having a mode switching function)

<1.第1の実施の形態>
先ず、本開示の第1の実施形態に係る粒子分取装置について説明する。図1は本開示の第1の実施形態の粒子分取装置の概略構成を示す図である。また、図2は光検出部7での検出データを示す図である。
<1. First Embodiment>
First, the particle sorting apparatus according to the first embodiment of the present disclosure will be described. FIG. 1 is a diagram illustrating a schematic configuration of a particle sorting apparatus according to a first embodiment of the present disclosure. FIG. 2 is a diagram showing detection data in the light detection unit 7.

[装置の全体構成]
図1に示すように、本実施形態の粒子分取装置1は、光学的手法などにより分析した結果に基づいて粒子10を分別して回収するものである。この粒子分取装置1は、例えば、流路1、分取部2、励起光照射部3、速度検出用光照射部4、光検出部7、到達時間算出部8及び分取制御部9などを備えている。
[Overall configuration of the device]
As shown in FIG. 1, the particle sorting device 1 of the present embodiment sorts and collects the particles 10 based on the result of analysis by an optical technique or the like. The particle sorting apparatus 1 includes, for example, a flow path 1, a sorting unit 2, an excitation light irradiation unit 3, a speed detection light irradiation unit 4, a light detection unit 7, an arrival time calculation unit 8, a sorting control unit 9, and the like. It has.

[粒子10について]
本実施形態の粒子分取装置1により分析され、分取される粒子10には、細胞、微生物及びリボゾームなどの生体関連粒子、又はラテックス粒子、ゲル粒子及び工業用粒子などの合成粒子などが広く含まれる。
[Regarding Particle 10]
The particles 10 analyzed and sorted by the particle sorting apparatus 1 of the present embodiment include biologically related particles such as cells, microorganisms and ribosomes, or synthetic particles such as latex particles, gel particles and industrial particles. included.

生体関連粒子には、各種細胞を構成する染色体、リボゾーム、ミトコンドリア、オルガネラ(細胞小器官)などが含まれる。また、細胞には、植物細胞、動物細胞及び血球系細胞などが含まれる。更に、微生物には、大腸菌などの細菌類、タバコモザイクウイルスなどのウイルス類、イースト菌などの菌類などが含まれる。この生体関連粒子には、核酸や蛋白質、これらの複合体などの生体関連高分子も包含され得るものとする。   Biologically relevant particles include chromosomes, ribosomes, mitochondria, organelles (organelles) that constitute various cells. The cells include plant cells, animal cells, blood cells, and the like. Furthermore, microorganisms include bacteria such as Escherichia coli, viruses such as tobacco mosaic virus, and fungi such as yeast. The bio-related particles can include bio-related polymers such as nucleic acids, proteins, and complexes thereof.

一方、工業用粒子としては、例えば有機高分子材料、無機材料又は金属材料などで形成されたものが挙げられる。有機高分子材料としては、ポリスチレン、スチレン・ジビニルベンゼン、ポリメチルメタクリレートなどを使用することができる。また、無機材料としては、ガラス、シリカ及び磁性材料などを使用することができる。金属材料としては、例えば金コロイド及びアルミニウムなどを使用することができる。なお、これら粒子の形状は、一般には球形であるが、非球形であってもよく、また大きさや質量なども特に限定されない。   On the other hand, examples of the industrial particles include those formed of an organic polymer material, an inorganic material, or a metal material. As the organic polymer material, polystyrene, styrene / divinylbenzene, polymethyl methacrylate, or the like can be used. Moreover, as an inorganic material, glass, silica, a magnetic material, etc. can be used. As the metal material, for example, gold colloid and aluminum can be used. The shape of these particles is generally spherical, but may be non-spherical, and the size and mass are not particularly limited.

[流路1]
流路1は、マイクロチップ内に形成されており、分取対象分取対象とする粒子10を含む液体(サンプル液)が導入される。ここで、流路1を備えるマイクロチップは、ガラスや各種プラスチック(PP、PC、COP、PDMSなど)により形成することができる。また、マイクロチップの材質は、励起光照射部3及び速度検出用光照射部4から照射される光に対して透過性を有し、自家蛍光が少なく、波長分散が小さいために光学誤差が少ない材質とすることが望ましい。
[Flow path 1]
The channel 1 is formed in the microchip, and a liquid (sample solution) containing particles 10 to be sorted is introduced. Here, the microchip provided with the flow path 1 can be formed of glass or various plastics (PP, PC, COP, PDMS, etc.). The material of the microchip is transparent to the light irradiated from the excitation light irradiation unit 3 and the speed detection light irradiation unit 4, has less autofluorescence, and has less optical error due to small wavelength dispersion. It is desirable to use a material.

一方、流路1の成形は、ガラス製基板のウェットエッチングやドライエッチングによって、またプラスチック製基板のナノインプリントや射出成型、機械加工によって行うことができる。そして、マイクロチップは、例えば流路1などを成形した基板を、同じ材質又は異なる材質の基板で封止することで形成することができる。   On the other hand, the channel 1 can be formed by wet etching or dry etching of a glass substrate, or by nanoimprinting, injection molding, or machining of a plastic substrate. And a microchip can be formed by sealing the board | substrate which shape | molded the flow path 1 etc. with the board | substrate of the same material or a different material, for example.

なお、図1には、流路1における励起光や速度検出用光が照射される部分のみを示しているが、これより上流側に、粒子10を含むサンプル液が導入されるサンプル液導入流路と、シース液が導入される1対のシース液導入流路が設けられていてもよい。この場合、シース液導入流路は、サンプル液導入流路に両側から合流し、その合流点よりも下流側に流路1が設けられる。そして、流路1内においては、サンプル流の周囲をシース流で囲み、層流を形成した状態で液が通流し、サンプル液中の粒子10は、その通流方向に対して略1列に並んで通流する。   FIG. 1 shows only the portion of the flow path 1 that is irradiated with the excitation light and the speed detection light. However, the sample liquid introduction flow into which the sample liquid containing the particles 10 is introduced upstream of this portion. A path and a pair of sheath liquid introduction channels into which the sheath liquid is introduced may be provided. In this case, the sheath liquid introduction channel joins the sample solution introduction channel from both sides, and the channel 1 is provided on the downstream side of the junction. In the flow channel 1, the sample flow is surrounded by a sheath flow, and the liquid flows in a state of forming a laminar flow, and the particles 10 in the sample liquid are arranged in approximately one row with respect to the flow direction. Run side by side.

[分取部2]
分取部2は、回収対象の粒子10を分取するものであり、マイクロチップ内に形成されている。この分取部2は、流路13の下流側端部に連通し、吸引流路21及び負圧吸引部22などで構成されている。負圧吸引部22は、所定のタイミングで回収対象の微小粒子を吸引することができれば、その構成は特に限定されるものではないが、例えば、アクチュエータ(図示せず)などにより、負圧吸引部22の体積を任意のタイミングで拡張可能な構成とすることができる。
[Sorting part 2]
The sorting unit 2 sorts the particles 10 to be collected and is formed in the microchip. The sorting unit 2 communicates with the downstream end of the flow channel 13 and includes a suction flow channel 21 and a negative pressure suction unit 22. The configuration of the negative pressure suction unit 22 is not particularly limited as long as the fine particles to be collected can be sucked at a predetermined timing. For example, the negative pressure suction unit 22 may be an actuator (not shown) or the like. The volume of 22 can be configured to be expandable at an arbitrary timing.

[励起光照射部3]
励起光照射部3には、レーザ光などの励起光を発生する光源31と、スポット形状を成形する光学系32、ミラー33などが設けられている。そして、例えばマイクロチップ内に形成された流路1内を通流する粒子10に励起光を照射する。なお、図1には光源31が1個の場合を例に示しているが、本開示はこれに限定されるものではなく、2以上の光源31が設けられていてもよく、その場合、各光源31から異なる波長の光を出射してもよい。
[Excitation light irradiation unit 3]
The excitation light irradiation unit 3 is provided with a light source 31 that generates excitation light such as laser light, an optical system 32 that shapes a spot shape, a mirror 33, and the like. Then, for example, the excitation light is irradiated to the particles 10 flowing in the flow channel 1 formed in the microchip. FIG. 1 shows an example where the number of light sources 31 is one, but the present disclosure is not limited to this, and two or more light sources 31 may be provided. Light of different wavelengths may be emitted from the light source 31.

[速度検出用光照射部4]
速度検出用光照射部4には、速度検出用光を発生する光源41と、スポット形状を成形する光学系42、ミラー43などが設けられている。そして、例えばマイクロチップ内に形成された流路1内を通流する粒子10に、前述した励起光とは異なる位置で速度検出用光を照射する。この速度検出用光は、励起光と同じ波長の光としてもよいが、装置構成の簡素化の観点から、励起光と波長が異なる光を用いることが好ましい。
[Speed detecting light irradiation unit 4]
The speed detection light irradiation unit 4 includes a light source 41 that generates speed detection light, an optical system 42 that shapes a spot shape, a mirror 43, and the like. Then, for example, the velocity detection light is irradiated at a position different from the above-described excitation light onto the particles 10 flowing in the flow channel 1 formed in the microchip. The speed detection light may be light having the same wavelength as the excitation light, but it is preferable to use light having a wavelength different from that of the excitation light from the viewpoint of simplifying the device configuration.

[光検出部7]
光検出部7は、流路1を通流する粒子10から発生する光(散乱光・蛍光など)を検出するものであり、0次光除去部材71、ミラー72a〜72d、光検出器73a〜73dなどで構成されている。光検出器73a〜73dには、例えばPMT(Photo Multiplier Tube)や、CCDやCMOS素子などのエリア撮像素子を用いることができる。
[Photodetection unit 7]
The light detection unit 7 detects light (scattered light, fluorescence, etc.) generated from the particles 10 flowing through the flow path 1, and includes a zero-order light removal member 71, mirrors 72a to 72d, and light detectors 73a to 73a. 73d or the like. As the photodetectors 73a to 73d, for example, a PMT (Photo Multiplier Tube) or an area imaging device such as a CCD or a CMOS device can be used.

光検出部7では、例えば、光検出器73aで励起光に由来する前方散乱光を、光検出器73bで速度検出用光に由来する散乱光を、光検出器73c,73dで蛍光を、それぞれ検出する。なお、光検出部7での検出対象光はこれらに限定されるものではなく、側方散乱光、レイリー散乱やミー散乱などを検出してもよい。そして、光検出部7で検出された光は、電気信号に変換される。   In the light detection unit 7, for example, the forward scattered light derived from the excitation light by the photodetector 73a, the scattered light derived from the speed detection light by the photodetector 73b, the fluorescence by the photodetectors 73c and 73d, respectively. To detect. The light to be detected by the light detection unit 7 is not limited to these, and side scattered light, Rayleigh scattering, Mie scattering, and the like may be detected. Then, the light detected by the light detection unit 7 is converted into an electric signal.

[到達時間算出部8]
励起光に由来する光と速度検出用光に由来する光の検出時間差から、各粒子10が流路に連通する分取部2に到達する時間を個別に算出する。到達時間の算出方法は、特に限定されるものではないが、例えば、図2に示すように、光検出部7で検出された励起光に由来する前方散乱光(Ch1のデータ)と、速度検出用光に由来する前方散乱光(Ch2のデータ)の検出時間差から各粒子10の到達時間を算出する。
[Arrival time calculation unit 8]
From the detection time difference between the light derived from the excitation light and the light derived from the speed detection light, the time for each particle 10 to reach the fractionation unit 2 communicating with the flow path is calculated individually. The method for calculating the arrival time is not particularly limited. For example, as shown in FIG. 2, forward scattered light (Ch1 data) derived from excitation light detected by the light detection unit 7 and speed detection. The arrival time of each particle 10 is calculated from the detection time difference of the forward scattered light (Ch2 data) derived from the working light.

ここで、分取部2への到達時間は、例えば、下記数式1に示す単純な線形近似式により算出することができる。なお、下記数式1におけるL1は励起光照射位置と速度検出用光照射位置との距離、L2は速度検出用光照射位置から分取部2の吸引流路21までの距離である(図1参照)。また、下記数式1におけるT1は励起光に由来する光の検出時間であり、T2は速度検出用光に由来する光の検出時間であり、(T1−T2)はこれらの検出時間差である(図2参照)。   Here, the arrival time at the sorting unit 2 can be calculated by, for example, a simple linear approximation represented by the following formula 1. In the following formula 1, L1 is the distance between the excitation light irradiation position and the speed detection light irradiation position, and L2 is the distance from the speed detection light irradiation position to the suction flow path 21 of the sorting unit 2 (see FIG. 1). ). T1 in the following Equation 1 is a detection time of light derived from excitation light, T2 is a detection time of light derived from speed detection light, and (T1-T2) is a difference between these detection times (FIG. 2).

Figure 2017211393
Figure 2017211393

なお、分取部2への到達時間の算出方法は、上記数式1に示す線形計算方法に限定されるものではなく、多項式近似やルックアップテーブルなど、他の算出方法を用いてもよい。   Note that the method for calculating the arrival time at the sorting unit 2 is not limited to the linear calculation method shown in Equation 1, and other calculation methods such as polynomial approximation and a lookup table may be used.

[分取制御部9]
分取制御部9は、粒子10の分取を制御するものであり、光検出部7で検出された各粒子10のデータと、到達時間算出部8で算出された到達時間に基づいて、粒子10を回収するか否かを判断する。この分取制御部9では、例えば、前後の粒子10の到達時間差を算出し、算出された到達時間差が予め設定された閾値以下の粒子は、「非回収」と判断する。これにより、粒子10が近接して通流している場合に、回収対象の粒子の前後の粒子を巻き込んで取得してしまうことを防止できる。
[Sorting control unit 9]
The sorting control unit 9 controls the sorting of the particles 10, and based on the data of each particle 10 detected by the light detection unit 7 and the arrival time calculated by the arrival time calculation unit 8, the particles It is determined whether or not 10 is to be collected. For example, the sorting control unit 9 calculates the arrival time difference between the front and rear particles 10 and determines that the calculated arrival time difference is equal to or less than a preset threshold value as “non-recovered”. Thereby, when the particle | grains 10 are adjoining and flowing, it can prevent acquiring the particle | grains before and behind the particle | grains of collection | recovery object.

また、分取制御部9は、前述した判断結果に基づいて、例えば、負圧吸引部22の動作を制御するなどして、分取部2に粒子10を回収するタイミングを制御する。これにより、目的とする粒子の取得精度を向上させ、純度や取得率が高い分取を行うことが可能となる。   Further, the sorting control unit 9 controls the timing of collecting the particles 10 in the sorting unit 2 by controlling the operation of the negative pressure suction unit 22 based on the above-described determination result, for example. Thereby, the acquisition accuracy of the target particle | grains can be improved, and it becomes possible to perform fractionation with high purity and an acquisition rate.

[動作]
次に、本実施形態の粒子分取装置の動作について説明する。本実施形態の粒子分取装置により粒子を分取する際は、マイクロチップ内に設けられたサンプルインレットに、分取対象の粒子を含むサンプル液が、シースインレットにシース液が、それぞれ導入される。そして、流路1を通流する粒子10に励起光を照射すると共に、励起光とは異なる位置で粒子10に速度検出用光を照射する。このとき、図1に示すように、励起光及び速度検出用光が1つの集光レンズ5によって集光され、粒子10に照射されてもよいが、それぞれ別の集光レンズで集光されてもよい。
[Operation]
Next, the operation of the particle sorting apparatus of this embodiment will be described. When the particles are sorted by the particle sorting device of this embodiment, the sample liquid containing the particles to be sorted is introduced into the sample inlet provided in the microchip, and the sheath liquid is introduced into the sheath inlet, respectively. . And while irradiating the particle | grains 10 which flow through the flow path 1 with excitation light, the particle | grains 10 are irradiated with the light for speed detection in the position different from excitation light. At this time, as shown in FIG. 1, the excitation light and the speed detection light may be collected by one condenser lens 5 and irradiated on the particles 10, but are condensed by separate condenser lenses. Also good.

次に、検出部7において、各粒子10から発せられた光を検出し、到達時間算出部8において、励起光に由来する光と速度検出用光に由来する光の検出時間差から、分取部2に各粒子10が到達する時間を、個別に算出する。このとき、図1に示すように、励起光に由来する光及び速度検出用光に由来する光が、1つの集光レンズ6によって集光され、検出部7の0次光除去部材71に集光されてもよいが、それぞれ別の集光レンズで集光されてもよい。   Next, the light emitted from each particle 10 is detected in the detection unit 7, and in the arrival time calculation unit 8, from the detection time difference between the light derived from the excitation light and the light derived from the speed detection light, the sorting unit The time for each particle 10 to reach 2 is calculated individually. At this time, as shown in FIG. 1, the light derived from the excitation light and the light derived from the speed detection light are collected by one condenser lens 6 and collected by the zero-order light removing member 71 of the detection unit 7. Although it may be lighted, it may be condensed by a separate condenser lens.

その後、分取制御部9において、検出部7で検出された各粒子10の光学特性データと、到達時間算出部8で算出した分取部2への到達時間とから、粒子10を回収するか否かを判断する。そして、その判断結果に基づいて、分取制御部9は、分取部2に粒子10を回収するタイミングを制御する。例えば、分取部2が流路1に連通する負圧吸引部22を有する場合は、分取制御部9は、負圧吸引部22に設けられたアクチュエータなどの動作を制御する。   Thereafter, the sorting control unit 9 collects the particles 10 from the optical characteristic data of each particle 10 detected by the detection unit 7 and the arrival time to the sorting unit 2 calculated by the arrival time calculation unit 8. Judge whether or not. Based on the determination result, the sorting control unit 9 controls the timing at which the sorting unit 2 collects the particles 10. For example, when the sorting unit 2 includes the negative pressure suction unit 22 that communicates with the flow path 1, the sorting control unit 9 controls the operation of an actuator or the like provided in the negative pressure suction unit 22.

以上詳述したように、本実施形態の粒子分取装置では、個々の粒子について、分取部への到達時間を算出し、各粒子の光学特性データだけでなく、分取部への到達時間も考慮して、粒子を回収するか否かを判断している。これにより、粒子の通流位置や通流状態にかかわらず、高純度又は高取得率で、粒子を分取することが可能となる。その結果、従来の粒子分取装置に比べて取得性能を向上させることができる。   As described above in detail, in the particle sorting apparatus of this embodiment, the arrival time to the sorting unit is calculated for each particle, and not only the optical property data of each particle but also the reaching time to the sorting unit. Whether or not to collect the particles is also determined. This makes it possible to sort the particles with high purity or high acquisition rate regardless of the flow position and flow state of the particles. As a result, the acquisition performance can be improved as compared with the conventional particle sorting apparatus.

また、本実施形態の粒子分取装置は、個々の粒子について到達時間を算出しているため、環境温度変化や供給タンク残量などによる流量変化の影響を受けにくい。これにより、流量制御を高精度に行う必要がなくなるため、低価格の圧力制御デバイスを採用することができ、流路部品管理や組立精度管理を簡素化することが可能となり、製造コストを低減することができる。   In addition, since the particle sorting apparatus of the present embodiment calculates the arrival time for each particle, it is less susceptible to changes in flow rate due to changes in environmental temperature, supply tank remaining amount, and the like. This eliminates the need to control the flow rate with high accuracy, so it is possible to employ a low-cost pressure control device, simplify flow path component management and assembly accuracy management, and reduce manufacturing costs. be able to.

<2.第1の実施の形態の変形例>
次に、本開示の第1の実施形態の変形例に係る粒子分取装置について説明する。本変形例の粒子分取装置では、回収するか否かを判断する際に、「純度」を優先するか、「取得率」を優先するかを、ユーザーが選択可能となっている。
<2. Modification of First Embodiment>
Next, a particle sorting apparatus according to a modified example of the first embodiment of the present disclosure will be described. In the particle sorting apparatus of this modification, the user can select whether to give priority to “purity” or “acquisition rate” when determining whether or not to collect.

図3は本変形例の粒子分取装置の到達時間算出部8及び分取制御部9の回路構成を示すブロック図である。また、図4A及び図4Bはイベント検出回路での処理を示す図であり、図5A及び図5Bはゲーティング回路での距離を示す図である。「純度優先モード」又は「取得率優先モード」での分取は、例えば、図3に示す構成の回路で実現することができる。   FIG. 3 is a block diagram showing a circuit configuration of the arrival time calculation unit 8 and the sorting control unit 9 of the particle sorting device of this modification. 4A and 4B are diagrams showing processing in the event detection circuit, and FIGS. 5A and 5B are diagrams showing distances in the gating circuit. Sorting in the “purity priority mode” or the “acquisition rate priority mode” can be realized by a circuit having the configuration shown in FIG. 3, for example.

[イベント検出回路]
イベント検出回路は、Ch1及びCh2の検出信号でトリガーをかけて各Chの波形を読み込み、図4Aに示す幅、高さ、面積を計算する。そして、励起光に由来する前方散乱光に関するCh1の検出データと、速度検出用光に由来する前方散乱光に関するCh2の検出データについては、波形中心の時間を計算し、検出時間とする。
[Event detection circuit]
The event detection circuit triggers on the detection signals of Ch1 and Ch2, reads the waveform of each Ch, and calculates the width, height, and area shown in FIG. 4A. And about the detection data of Ch1 regarding the forward scattered light derived from the excitation light and the detection data of Ch2 regarding the forward scattered light derived from the speed detection light, the time at the center of the waveform is calculated and set as the detection time.

そして、図4Bに示すように、イベント検出回路では、各粒子10について、時系列に取得されるCh1(励起光に由来する前方散乱光)及びCh2(速度検出用光に由来する前方散乱光)の検出信号を関連付け、各粒子の検出データ(イベント)をパケット化する。パケットは、以降の処理が進むにつれ更新される項目を含み、Flagは基本的に1/0で、各ロジックで判断する取得/非取得に対応する。なお、検出時間は、Ch1及びCh2のトリガー時間を使用することもできる。   As shown in FIG. 4B, in the event detection circuit, Ch1 (forward scattered light derived from excitation light) and Ch2 (forward scattered light derived from speed detection light) acquired in time series for each particle 10. Are detected, and the detection data (event) of each particle is packetized. The packet includes items that are updated as the subsequent processing proceeds, and the Flag is basically 1/0, which corresponds to acquisition / non-acquisition determined by each logic. In addition, the trigger time of Ch1 and Ch2 can also be used for detection time.

[到達時間計算回路]
到達時間計算回路は、Ch1及びCh2の検出時間(T1,T2)を使用して、上記数式1などから到達時間を算出し、それを、イベントパケットの”Sorting Time”とする。
[Arrival time calculation circuit]
The arrival time calculation circuit uses the detection times (T1, T2) of Ch1 and Ch2 to calculate the arrival time from the above equation 1 and the like, and sets it as the “Sorting Time” of the event packet.

[ゲーティング回路]
ゲーティング回路は、予め設定した閾値に基づいて、粒子10の「取得/非取得」を判断し、イベントパケットの”Gate Flag”を設定する。例えば、ゲーティング取得動作開始前に、制御用コンピュータ上のGUIなどで、図5Aに示すヒストグラムチャートや、図5Bに示す2Dチャートなどをプロットし、取得する粒子の集団(目的とする特性を持つ粒子集団)を例えば幾何形状などで括り、指定する。
[Gating circuit]
The gating circuit determines “acquisition / non-acquisition” of the particle 10 based on a preset threshold and sets “Gate Flag” of the event packet. For example, before starting the gating acquisition operation, the histogram chart shown in FIG. 5A or the 2D chart shown in FIG. (Particle group) is specified by, for example, geometric shapes.

なお、「取得/非取得」を判断するパラメータ(閾値)は、各Chで取得された検出データの幅、高さ及び面積のいずれでもよく、これらを組み合わせてもよい。   The parameter (threshold value) for determining “acquisition / non-acquisition” may be any of the width, height, and area of the detection data acquired in each Ch, or a combination thereof.

[出力待ち行列回路]
出力待ち行列回路は、各粒子10の検出データ(イベント)を、分取部到達時間(”Sorting Time”)に基づき、分取部到達順に並べ替える。その後、「純度優先」や「取得率優先」などのユーザーにより選択された分取モードに応じて、「取得/非取得」の判断を行う。そして、その結果に基づいて、”Sort Flag”を設定する。
[Output queuing circuit]
The output queuing circuit rearranges the detection data (event) of each particle 10 in the order of arrival of the sorting part based on the sorting part arrival time ("Sorting Time"). Thereafter, “acquisition / non-acquisition” is determined according to the sorting mode selected by the user, such as “purity priority” or “acquisition rate priority”. Based on the result, “Sort Flag” is set.

粒子10が近接して通流している場合、一回の取得動作で前後の粒子10も巻き込み、複数の粒子10を分取部2に回収してしまう可能性がある。そして、「純度優先モード」と、「取得率優先モード」とでは、この粒子10が近接している場合の「取得/非取得」の判断方法が異なる。図6は取得優先モードの動作を示す図である。また、図7A及び図7Bは粒子が近接している場合の検出データを示す図である。更に、図8は純度優先モードの動作を示す図である。   When the particles 10 are flowing close to each other, there is a possibility that the preceding and following particles 10 are also involved in a single acquisition operation, and the plurality of particles 10 are collected in the sorting unit 2. The “purity priority mode” and the “acquisition rate priority mode” differ in the determination method of “acquisition / non-acquisition” when the particles 10 are close to each other. FIG. 6 is a diagram illustrating the operation in the acquisition priority mode. 7A and 7B are diagrams showing detection data when the particles are close to each other. Further, FIG. 8 is a diagram showing the operation in the purity priority mode.

「取得率優先モード」は、捕獲粒子の純度が下がっても取得粒子数を多くするモードであり、図6に示すように、粒子10が近接して通流している場合でも、分取対象の粒子を回収する。これに対して、「純度優先モード」は、捕獲粒子の純度を高めるモードであり、取得粒子と非取得粒子が近接してきた場合、一緒に捕獲されてしまうことを防止するため、敢えてその取得粒子を「非取得」と判断する。   The “acquisition rate priority mode” is a mode in which the number of acquired particles is increased even when the purity of the trapped particles is lowered. As shown in FIG. 6, even when the particles 10 are flowing close to each other, Collect the particles. On the other hand, the “purity priority mode” is a mode for increasing the purity of the captured particles. When the acquired particles and the non-acquired particles come close to each other, the acquired particles are dared to prevent them from being captured together. Is determined as “non-acquisition”.

特に「純度優先モード」の場合、図8に示すように、後から検出された粒子10の検出データ(イベント)が、前の粒子10と近接している場合、前のイベントの「取得/非取得」も再度判断が必要となる。ここで、図7Aに示すΔT1は、設定値で、ひとつ後の粒子を巻き込む時間である(T1=Tn+ΔT1)。また、ΔT2も設定値で、ひとつ前の粒子を巻き込む時間である(T2=Tn+ΔT2)。   Particularly in the “purity priority mode”, as shown in FIG. 8, when the detection data (event) of the particle 10 detected later is close to the previous particle 10, “Acquisition” also needs to be judged again. Here, ΔT1 shown in FIG. 7A is a set value and is a time for entraining the next particle (T1 = Tn + ΔT1). Further, ΔT2 is also a set value and is a time for entraining the previous particle (T2 = Tn + ΔT2).

[出力タイミング生成回路]
出力タイミング生成回路は、出力待ち行列の最も先に取得するイベントの時刻(Sorting time)を読み出し、Clock Counter値と比較して、その時刻に出力タイミング信号を生成する。
[Output timing generator]
The output timing generation circuit reads the time (Sorting time) of the event acquired first in the output queue, compares it with the Clock Counter value, and generates an output timing signal at that time.

[出力信号生成回路]
出力信号生成回路は、出力タイミング信号を検知し、分取部2のアクチュエーションデバイスを制御する波形信号を出力する。
[Output signal generation circuit]
The output signal generation circuit detects an output timing signal and outputs a waveform signal for controlling the actuation device of the sorting unit 2.

本変形例の粒子分取装置は、回収するか否かを判断する際に、「純度」を優先するか、「取得率」を優先するかを、ユーザーが選択可能となっているため、目的に応じた分取が可能となる。なお、本変形例における上記以外の構成及び効果は、前述した第1の実施形態と同様である。   In the particle sorting apparatus of this modification, the user can select whether to give priority to “purity” or “acquisition rate” when determining whether to collect or not. Sorting according to is possible. The configuration and effects other than those described above in the present modification are the same as those in the first embodiment described above.

また、本開示は、以下のような構成をとることもできる。
(1)
流路を通流する粒子に励起光を照射する励起光照射部と、
前記粒子に前記励起光とは異なる位置で速度検出用光を照射する速度検出用光照射部と、
前記粒子から発せられた光を検出する光検出部と、
前記励起光に由来する光と前記速度検出用光に由来する光の検出時間差から、各粒子が前記流路に連通する分取部に到達する時間を個別に算出する到達時間算出部と、
前記粒子の分取を制御する分取制御部と、を有し、
前記流路及び前記分取部はマイクロチップ内に設けられており、
前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記到達時間算出部で算出された到達時間に基づいて、前記粒子を回収するか否かを判断する粒子分取装置。
(2)
前記分取制御部は、前後の粒子の到達時間差を算出し、該到達時間差が閾値以下の粒子は、非回収と判断する(2)に記載の粒子分取装置。
(3)
前記速度検出用光は前記励起光と波長が異なる(1)又は(2)に記載の粒子分取装置。
(4)
前記到達時間算出部は、前記励起光に由来する散乱光と前記速度検出用光に由来する散乱光の検出時間差から各粒子の到達時間を算出する(3)に記載の粒子分取装置。
(5)
前記励起光照射部は、異なる波長の光を出射する2以上の光源を備える(1)〜(4)のいずれかに記載の粒子分取装置。
(6)
前記分取部は、前記流路に連通する負圧吸引部を有する(1)〜(5)のいずれかに記載の粒子分取装置。
(7)
前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記到達時間算出部で算出された到達時間に基づいて、前記負圧吸引部の動作を制御する(6)に記載の粒子分取装置。
(8)
前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記到達時間算出部で算出された到達時間に基づいて、前記分取部に前記粒子を回収するタイミングを制御する(1)〜(7)のいずれかに記載の粒子分取装置。
(9)
マイクロチップ内に設けられた流路を通流する粒子に励起光を照射する励起光照射工程と、
前記粒子に前記励起光とは異なる位置で速度検出用光を照射する速度検出用光照射工程と、
前記粒子から発せられた光を検出する光検出工程と、
前記励起光に由来する光と前記速度検出用光に由来する光の検出時間差から、前記マイクロチップ内に設けられ前記流路に連通する分取部に、各粒子が到達する時間を、個別に算出する到達時間算出工程と、
前記光検出工程で検出した各粒子のデータと、前記到達時間算出工程で算出した到達時間に基づいて、前記粒子を回収するか否かを判断する分取制御工程と、
を有する粒子分取方法。
(10)
前記分取制御工程は、前後の粒子の到達時間差を算出し、該到達時間差が閾値以下の粒子は、非回収と判断する(9)に記載の粒子分取方法。
(11)
前記速度検出用光として前記励起光とは波長が異なる光を用いる(9)又は(10)に記載の粒子分取方法。
(12)
前記到達時間算出工程は、前記励起光に由来する散乱光と前記速度検出用光に由来する散乱光の検出時間差から各粒子の到達時間を算出する(11)に記載の粒子分取方法。
(13)
前記励起光照射工程は、2以上の光源からそれぞれ異なる波長の光を出射する(9)〜(12)のいずれかに記載の粒子分取方法。
(14)
前記分取部は前記流路に連通する負圧吸引部を有し、
前記分取制御工程は、前記光検出工程で検出した各粒子のデータと、前記到達時間算出工程で算出した到達時間に基づいて、前記負圧吸引部の動作を制御する(9)〜(13)のいずれかに記載の粒子分取方法。
(15)
前記分取制御工程は、前記光検出工程で検出した各粒子のデータと、前記到達時間算出工程で算出した到達時間に基づいて、前記分取部に前記粒子を回収するタイミングを制御する(9)〜(14)のいずれかに記載の粒子分取方法。
In addition, the present disclosure can take the following configurations.
(1)
An excitation light irradiation unit that irradiates particles flowing through the flow path with excitation light;
A speed detection light irradiator that irradiates the particles with speed detection light at a position different from the excitation light;
A light detection unit for detecting light emitted from the particles;
From the detection time difference between the light derived from the excitation light and the light derived from the speed detection light, an arrival time calculation unit that individually calculates the time for each particle to reach the sorting unit communicating with the flow path,
A sorting control unit for controlling the sorting of the particles,
The flow path and the sorting unit are provided in a microchip,
The sorting control unit determines whether or not to collect the particles based on the data of each particle detected by the light detection unit and the arrival time calculated by the arrival time calculation unit. apparatus.
(2)
The said fractionation control part calculates the arrival time difference of the particle | grains before and behind, The particle sorting apparatus as described in (2) which determines that the particle | grains whose arrival time difference is below a threshold value are uncollected.
(3)
The particle sorting apparatus according to (1) or (2), wherein the speed detection light has a wavelength different from that of the excitation light.
(4)
The said arrival time calculation part is a particle sorting apparatus as described in (3) which calculates the arrival time of each particle | grain from the detection time difference of the scattered light derived from the said excitation light and the scattered light derived from the said speed detection light.
(5)
The said excitation light irradiation part is a particle sorting apparatus in any one of (1)-(4) provided with two or more light sources which radiate | emit the light of a different wavelength.
(6)
The said fractionation part is a particle | grain fractionation apparatus in any one of (1)-(5) which has a negative pressure suction part connected to the said flow path.
(7)
The sorting control unit controls the operation of the negative pressure suction unit based on the data of each particle detected by the light detection unit and the arrival time calculated by the arrival time calculation unit (6). The particle sorting apparatus described.
(8)
The sorting control unit controls the timing at which the sorting unit collects the particles based on the data of each particle detected by the light detection unit and the arrival time calculated by the arrival time calculation unit. The particle sorting apparatus according to any one of (1) to (7).
(9)
An excitation light irradiation process for irradiating particles flowing through a channel provided in the microchip with excitation light;
A speed detection light irradiation step of irradiating the particles with speed detection light at a position different from the excitation light;
A light detection step of detecting light emitted from the particles;
From the detection time difference between the light derived from the excitation light and the light derived from the speed detection light, the time for each particle to reach the sorting part provided in the microchip and communicating with the flow path is individually determined. An arrival time calculating step to calculate;
Based on the data of each particle detected in the light detection step and the arrival time calculated in the arrival time calculation step, a sorting control step for determining whether to collect the particles,
A particle sorting method.
(10)
In the sorting control step, the difference in arrival times of the preceding and following particles is calculated, and the particles whose arrival time difference is equal to or less than a threshold value are determined to be non-collected.
(11)
The particle sorting method according to (9) or (10), wherein light having a wavelength different from that of the excitation light is used as the speed detection light.
(12)
The said arrival time calculation process is a particle sorting method as described in (11) which calculates the arrival time of each particle | grain from the detection time difference of the scattered light derived from the said excitation light and the scattered light derived from the said speed detection light.
(13)
The excitation light irradiation step is the particle sorting method according to any one of (9) to (12), in which light having different wavelengths is emitted from two or more light sources.
(14)
The fractionation unit has a negative pressure suction unit communicating with the flow path,
The sorting control step controls the operation of the negative pressure suction unit based on the data of each particle detected in the light detection step and the arrival time calculated in the arrival time calculation step (9) to (13) The particle sorting method according to any one of the above.
(15)
The sorting control step controls the timing of collecting the particles in the sorting unit based on the data of each particle detected in the light detection step and the arrival time calculated in the arrival time calculating step (9 ) To (14).

1 流路
2 分取部
3 励起光照射部
4 速度検出用光照射部
5、6 対物レンズ
7 光検出部
8 到達時間算出部
9 分取制御部
10 粒子
21 吸引流路
22 負圧吸引部
31、41 光源
32、42 光学系
33、43、72a〜72d ミラー
71 0次光除去部材
73a〜73d 光検出器
DESCRIPTION OF SYMBOLS 1 Flow path 2 Sorting part 3 Excitation light irradiation part 4 Speed detection light irradiation part 5, 6 Objective lens 7 Light detection part 8 Arrival time calculation part 9 Sorting control part 10 Particle 21 Suction flow path 22 Negative pressure suction part 31 , 41 Light source 32, 42 Optical system 33, 43, 72a-72d Mirror 71 0th-order light removal member 73a-73d Photodetector

本開示に係る粒子分取装置は、流路を通流する粒子に第一照射光を照射する第一光照射部と、前記粒子に前記第一照射光とは異なる位置で第二照射光を照射する第二光照射部と、前記粒子から発せられた光を検出する光検出部と、前記第一照射光に由来する光と前記第二照射光に由来する光の検出時間差から、前後の粒子が前記流路に連通する分取部に到達する時間差を算出し、分取モードと前記算出された前後の粒子の到達時間差に基づいて、前記粒子の分取を制御する分取制御部と、を少なくとも有し、前記流路及び前記分取部は、マイクロチップ内に設けられる。
前記第二照射光は、前記第一照射光と波長が異なっていてもよい。
本開示に係る粒子分取装置は、前記第一照射光に由来する光と前記第二照射光に由来する光の検出時間差から、各粒子が前記分取部に到達する時間を個別に算出する算出部、を更に有していてもよい。その場合、前記算出部は、前記時間より、前後の粒子が前記分取部に到達する時間差を算出してもよい。
前記粒子は、生体関連粒子であってもよい。
本開示に係る粒子分取装置は、前記粒子を含むサンプル液が導入されるサンプル液導入流路と、シース液が導入される1対のシース液導入流路と、を更に有していてもよい。
前記第一光照射部は、2以上の光源を備えていてもよい。その場合、前記2以上の光源は、それぞれ異なる波長の光を出射してもよい。
前記光検出部は、PMT(Photo Multiplier Tube)、CCD、及びCMOS素子からなる群より選ばれるいずれか1以上のエリア撮像素子から構成されていてもよい。
前記光検出部では、前方散乱光、側方散乱光、レイリー散乱光、及びミー散乱光からなる群より選ばれるいずれか1以上の光を検出してもよい。
前記分取制御部は、ユーザーにより選択された分取モードに応じて、前記粒子を取得又は非取得と判断してもよい。その場合、前記分取制御部は、前記到達時間差が閾値以下の粒子は、非回収と判断してもよい。
前記分取部は、前記流路に連通する負圧吸引部を有していてもよい。その場合、前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記算出部で算出された前記時間に基づいて、前記負圧吸引部の動作を制御してもよい。
前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記算出部で算出された前記時間に基づいて、前記分取部に前記粒子を回収するタイミングを制御してもよい。
The particle sorting device according to the present disclosure includes a first light irradiation unit that irradiates particles flowing through a flow path with first irradiation light, and a second irradiation light on the particles at a position different from the first irradiation light. From the detection time difference between the light emitted from the second irradiation light, the light detection part detecting the light emitted from the particles, the light derived from the first irradiation light and the light derived from the second irradiation light, A time difference for the particles to reach the sorting unit communicating with the flow path, and a sorting control unit for controlling the sorting of the particles based on the sorting mode and the calculated arrival time difference between the preceding and following particles; The flow path and the sorting part are provided in the microchip.
The second irradiation light may have a wavelength different from that of the first irradiation light.
The particle sorting apparatus according to the present disclosure individually calculates the time for each particle to reach the sorting unit from the detection time difference between the light derived from the first irradiation light and the light derived from the second irradiation light. You may further have a calculation part. In that case, the said calculation part may calculate the time difference when the particle | grains before and behind arrive at the said fractionation part from the said time.
The particles may be bio-related particles.
The particle sorting device according to the present disclosure may further include a sample solution introduction channel into which the sample solution containing the particles is introduced, and a pair of sheath solution introduction channels into which the sheath solution is introduced. Good.
The first light irradiation unit may include two or more light sources. In that case, the two or more light sources may emit light of different wavelengths.
The light detection unit may be composed of any one or more area imaging elements selected from the group consisting of a PMT (Photo Multiplier Tube), a CCD, and a CMOS element.
The light detection unit may detect any one or more light selected from the group consisting of forward scattered light, side scattered light, Rayleigh scattered light, and Mie scattered light.
The sorting control unit may determine that the particles are acquired or not acquired according to a sorting mode selected by a user. In that case, the sorting control unit may determine that particles whose arrival time difference is equal to or less than a threshold are not collected.
The sorting unit may include a negative pressure suction unit that communicates with the flow path. In that case, the sorting control unit may control the operation of the negative pressure suction unit based on the data of each particle detected by the light detection unit and the time calculated by the calculation unit. .
The sorting control unit may control timing of collecting the particles in the sorting unit based on the data of each particle detected by the light detection unit and the time calculated by the calculation unit. Good.

本開示に係る粒子分析システムは、流路を通流する粒子に第一照射光を照射する第一光照射部と、前記粒子に前記第一照射光とは異なる位置で第二照射光を照射する第二光照射部と、前記粒子から発せられた光を検出する光検出部と、を少なくとも有する、微小粒子測定装置と、前記第一照射光に由来する光と前記第二照射光に由来する光の検出時間差から、前後の粒子が前記流路に連通する分取部に到達する時間差を算出し、分取モードと前記算出された前後の粒子の到達時間差に基づいて、前記粒子の分取を制御する分取制御部、を少なくとも有する、制御装置と、を少なくとも有し、前記流路及び前記分取部は、マイクロチップ内に設けられる。
また、本開示に係る粒子分取方法は、流路を通流する粒子に第一照射光を照射する第一光照射工程と、前記粒子に前記第一照射光とは異なる位置で第二照射光を照射する第二光照射工程と、前記粒子から発せられた光を検出する光検出工程と、前記第一照射光に由来する光と前記第二照射光に由来する光の検出時間差から、前後の粒子が前記流路に連通する分取部に到達する時間差を算出し、分取モードと前記算出された前後の粒子の到達時間差に基づいて、前記粒子の分取を制御する分取制御工程と、を少なくとも有し、前記流路及び前記分取部は、マイクロチップ内に設けられる。
Particle analysis system according to the present disclosure includes a first light irradiation part for irradiating the first irradiation light to particles passing through the flow channel, the second irradiation light at a position different from the first irradiation light to the particles A fine particle measuring device having at least a second light irradiating unit for irradiating and a light detecting unit for detecting light emitted from the particles, the light derived from the first irradiated light, and the second irradiated light From the difference in detection time of the light derived from, calculate the time difference between the preceding and following particles reaching the sorting part communicating with the flow path, and based on the sorting mode and the calculated arrival time difference between the preceding and following particles, A control device having at least a sorting control unit that controls sorting, and the flow path and the sorting unit are provided in the microchip.
Further, the particle sorting method according to the present disclosure includes a first light irradiation step of irradiating the particles flowing through the flow path with the first irradiation light, and a second irradiation at a position different from the first irradiation light on the particles. From the second light irradiation step of irradiating light, the light detection step of detecting light emitted from the particles, and the detection time difference between the light derived from the first irradiation light and the light derived from the second irradiation light, Sorting control for calculating the time difference between the preceding and following particles reaching the sorting unit communicating with the flow path and controlling the sorting of the particles based on the sorting mode and the calculated arrival time difference between the preceding and following particles And the flow path and the sorting part are provided in the microchip.

Claims (1)

流路を通流する粒子に第一照射光を照射する第一光照射部と、
前記粒子に前記第一照射光とは異なる位置で第二照射光を照射する第二光照射部と、
前記粒子から発せられた光を検出する光検出部と、
前記第一照射光に由来する光と前記第二照射光に由来する光の検出時間差から、前後の粒子が前記流路に連通する分取部に到達する時間差を算出し、分取モードと前記算出された前後の粒子の到達時間差に基づいて、前記粒子の分取を制御する分取制御部と、
を少なくとも有し、
前記流路及び前記分取部は、マイクロチップ内に設けられる、粒子分取装置。
A first light irradiation unit for irradiating the particles flowing through the flow path with the first irradiation light;
A second light irradiation unit that irradiates the particles with second irradiation light at a position different from the first irradiation light;
A light detection unit for detecting light emitted from the particles;
From the detection time difference between the light derived from the first irradiation light and the light derived from the second irradiation light, the time difference between the preceding and following particles reaching the sorting part communicating with the flow path is calculated, and the sorting mode and the Based on the calculated arrival time difference between the before and after particles, a sorting control unit that controls sorting of the particles;
Having at least
The particle sorting apparatus, wherein the flow path and the sorting unit are provided in a microchip.
JP2017150212A 2017-08-02 2017-08-02 PARTICLE SEPARATING DEVICE AND PARTICLE SEPARATING METHOD Active JP6508265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017150212A JP6508265B2 (en) 2017-08-02 2017-08-02 PARTICLE SEPARATING DEVICE AND PARTICLE SEPARATING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017150212A JP6508265B2 (en) 2017-08-02 2017-08-02 PARTICLE SEPARATING DEVICE AND PARTICLE SEPARATING METHOD

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013078212A Division JP6186812B2 (en) 2013-04-04 2013-04-04 Particle sorting apparatus and particle sorting method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019071878A Division JP6791295B2 (en) 2019-04-04 2019-04-04 Particle sorting device and particle sorting method

Publications (2)

Publication Number Publication Date
JP2017211393A true JP2017211393A (en) 2017-11-30
JP6508265B2 JP6508265B2 (en) 2019-05-08

Family

ID=60475458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017150212A Active JP6508265B2 (en) 2017-08-02 2017-08-02 PARTICLE SEPARATING DEVICE AND PARTICLE SEPARATING METHOD

Country Status (1)

Country Link
JP (1) JP6508265B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063305A (en) * 2007-09-04 2009-03-26 Sony Corp Light irradiation device, particulate analyzer, and light irradiation method
JP2009109218A (en) * 2007-10-26 2009-05-21 Sony Corp Optical measuring method and optical measuring device of fine particle
WO2009078307A1 (en) * 2007-12-14 2009-06-25 Bay Bioscience Kabushiki Kaisha Device and method for separating biological particle contained in liquid flow
JP2009162650A (en) * 2008-01-08 2009-07-23 Sony Corp Optical measuring device
JP2010038866A (en) * 2008-08-08 2010-02-18 Sony Corp Microchip, particulate dispensing device, and feed flow method
JP2012127922A (en) * 2010-12-17 2012-07-05 Sony Corp Microchip and microparticle fractional collection apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063305A (en) * 2007-09-04 2009-03-26 Sony Corp Light irradiation device, particulate analyzer, and light irradiation method
JP2009109218A (en) * 2007-10-26 2009-05-21 Sony Corp Optical measuring method and optical measuring device of fine particle
WO2009078307A1 (en) * 2007-12-14 2009-06-25 Bay Bioscience Kabushiki Kaisha Device and method for separating biological particle contained in liquid flow
JP2009162650A (en) * 2008-01-08 2009-07-23 Sony Corp Optical measuring device
JP2010038866A (en) * 2008-08-08 2010-02-18 Sony Corp Microchip, particulate dispensing device, and feed flow method
JP2012127922A (en) * 2010-12-17 2012-07-05 Sony Corp Microchip and microparticle fractional collection apparatus

Also Published As

Publication number Publication date
JP6508265B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP6186812B2 (en) Particle sorting apparatus and particle sorting method
JP6958650B2 (en) Droplet sorting device, droplet sorting method and program
JP6597762B2 (en) Microchip type optical measuring apparatus and optical position adjusting method in the apparatus
JP6447506B2 (en) Particle sorting apparatus and particle sorting method
JP6304034B2 (en) Fine particle sorting device, fine particle sorting method and program
WO2017068822A1 (en) Image processing device, microparticle separation device, and image processing method
US11927524B2 (en) Optimizing method of suction condition of microparticle and microparticle fractionating device
US20200173905A1 (en) Micro particle analyzer and micro particle analysis method
JP2015078927A (en) Particle sorter, particle sorting method and program
US20210372917A1 (en) Method for optimizing microparticle suction conditions, microparticle sorting device, microparticle sorting system, and microparticle sorting program
JP5905317B2 (en) Calibration method and apparatus for fine particle sorting apparatus
JP6237806B2 (en) Fine particle fractionator
JP2022001888A (en) Flow cytometry system, and microparticle analysis method
JP6791295B2 (en) Particle sorting device and particle sorting method
JP6706011B2 (en) Particle sorting device, particle sorting method and program
JP6508265B2 (en) PARTICLE SEPARATING DEVICE AND PARTICLE SEPARATING METHOD
WO2022201959A1 (en) Bioparticle sorting device, and method for adjusting sorting conditions of bioparticle sorting device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R151 Written notification of patent or utility model registration

Ref document number: 6508265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151