JP6791295B2 - Particle sorting device and particle sorting method - Google Patents

Particle sorting device and particle sorting method Download PDF

Info

Publication number
JP6791295B2
JP6791295B2 JP2019071878A JP2019071878A JP6791295B2 JP 6791295 B2 JP6791295 B2 JP 6791295B2 JP 2019071878 A JP2019071878 A JP 2019071878A JP 2019071878 A JP2019071878 A JP 2019071878A JP 6791295 B2 JP6791295 B2 JP 6791295B2
Authority
JP
Japan
Prior art keywords
light
particles
unit
preparative
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019071878A
Other languages
Japanese (ja)
Other versions
JP2019132853A (en
Inventor
達巳 伊藤
達巳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2019071878A priority Critical patent/JP6791295B2/en
Publication of JP2019132853A publication Critical patent/JP2019132853A/en
Application granted granted Critical
Publication of JP6791295B2 publication Critical patent/JP6791295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本技術は、粒子分取装置及び粒子分取方法に関する。より詳しくは、光学的手法などにより分析した結果に基づいて粒子を分別して回収する技術に関する。 The present technology relates to a particle sorting device and a particle sorting method. More specifically, the present invention relates to a technique for separating and recovering particles based on the results of analysis by an optical method or the like.

従来、細胞、微生物及びリポソームなどの生体関連粒子の分析には、フローサイトメトリー(フローサイトメーター)を用いた光学的測定方法が利用されている。フローサイトメーターは、フローセルやマイクロチップなどに形成された流路内を通流する粒子に光を照射し、個々の粒子から発せられた蛍光や散乱光を検出して、分析する装置である。 Conventionally, an optical measurement method using flow cytometry (flow cytometer) has been used for analysis of biological particles such as cells, microorganisms and liposomes. A flow cytometer is a device that irradiates particles flowing through a flow path formed in a flow cell, a microchip, or the like with light, and detects and analyzes fluorescence or scattered light emitted from each particle.

フローサイトメーターには、分析結果に基づいて、特定の特性を有する粒子のみを分別して回収する機能を備えたものもあり、特に細胞を分取対象とした装置は「セルソータ」と呼ばれている。セルソータの分取方式としては、主に、粒子を含む液滴を帯電させて分離する液滴荷電方式が採用されている(例えば、特許文献1参照。)。液滴荷電方式の装置では、フローセルやマイクロチップなどから排出される流体を液滴化して、その液滴にプラス(+)又はマイナス(−)の電荷を付与し、偏向板などにより進行方向を変更することで所定の容器に回収する。 Some flow cytometers have a function to separate and collect only particles having specific characteristics based on the analysis results, and a device that specifically targets cells is called a "cell sorter". .. As a preparative method for the cell sorter, a droplet charging method for charging and separating droplets containing particles is mainly adopted (see, for example, Patent Document 1). In a droplet charging type device, a fluid discharged from a flow cell or a microchip is atomized, a positive (+) or negative (-) charge is given to the droplet, and a polarizing plate or the like is used to determine the traveling direction. By changing it, it will be collected in the specified container.

しかしながら、液滴荷電方式などの液滴を形成する分取方式は、測定環境の変化や液圧変動の影響を受けやすいという問題がある。そこで、従来、マイクロチップ内で分取を行う粒子分取装置も提案されている(特許文献2参照)。この特許文献2に記載の粒子分取装置は、回収対象の粒子をマイクロチップ内の負圧吸引部に吸引して分取するため、液滴化や荷電が不要であり、粒子にダメージを与えることなく、高速でかつ安定して分取を行うことができる。 However, the preparative method for forming droplets, such as the droplet charging method, has a problem that it is easily affected by changes in the measurement environment and fluctuations in hydraulic pressure. Therefore, conventionally, a particle sorting device that sorts in a microchip has also been proposed (see Patent Document 2). Since the particle sorting device described in Patent Document 2 sucks and sorts the particles to be collected by the negative pressure suction portion in the microchip, it does not require droplet formation or charging and damages the particles. It is possible to perform sorting at high speed and stably without any problem.

特開2009−145213号公報Japanese Unexamined Patent Publication No. 2009-145213 特開2012−127922号公報Japanese Unexamined Patent Publication No. 2012-127922

従来の粒子分取装置では、一般に、光検出部での検出時間から一定時間後に回収対象の粒子の取得動作を行うよう制御されている。そして、検出から取得までの時間は、液圧や検出位置から分取位置までの距離などに基づいて、予め設定されている。しかしながら、このように到達時間を固定した制御方法は、粒子の通流速度が変動すると、回収物の純度や取得率が低下するという問題がある。 In the conventional particle sorting device, generally, the acquisition operation of the particles to be collected is controlled after a certain time from the detection time by the photodetector. The time from detection to acquisition is preset based on the hydraulic pressure, the distance from the detection position to the preparative position, and the like. However, the control method in which the arrival time is fixed in this way has a problem that the purity and acquisition rate of the recovered material decrease when the flow rate of the particles fluctuates.

一方、特許文献1に記載の装置では、粒子の通流速度の変動による純度低下を防止するため、粒子毎に移動速度を検出し、その移動速度に基づいて各粒子に電荷を付与するタイミングを制御している。しかしながら、荷電液滴方式の場合、各粒子がどの液滴に属するかのみ判断すればよいが、マイクロチップ内で分取を行う装置の場合、近接する粒子それぞれの属性に加え、流体機構的特性を考慮する必要がある。ここで、「粒子の属性」とは、その粒子が分取対象の粒子か否かなどであり、「流体機構的特性」とは、取得動作のパルス信号の立ち上がり時に発生する逆流などである。 On the other hand, in the apparatus described in Patent Document 1, in order to prevent a decrease in purity due to fluctuations in the flow rate of particles, a moving speed is detected for each particle, and a timing for applying an electric charge to each particle is determined based on the moving speed. I'm in control. However, in the case of the charged droplet method, it is only necessary to determine which droplet each particle belongs to, but in the case of a device that sorts in a microchip, in addition to the attributes of each adjacent particle, the fluid mechanical characteristics Need to be considered. Here, the "attribute of the particle" is whether or not the particle is a particle to be sorted, and the "fluid mechanism characteristic" is a backflow generated at the rise of the pulse signal of the acquisition operation.

また、荷電液滴方式では液滴に対して制御を行うが、特許文献2に記載されているようなマイクロチップ内で分取を行う装置では、個々の粒子に対して制御を行う必要がある。更に、荷電液滴方式と、マイクロチップ内で分取する方式とでは、取得位置に達するまでの経路や、粒子の到達に影響を与える因子が異なる。以上の理由から、特許文献1に記載の技術を、マイクロチップ内で分取を行う特許文献2に記載の装置に、単純に適用することはできない。 Further, in the charged droplet method, control is performed on droplets, but in a device that performs sorting in a microchip as described in Patent Document 2, it is necessary to control individual particles. .. Furthermore, the path to reach the acquisition position and the factors that affect the arrival of particles differ between the charged droplet method and the method of sorting in a microchip. For the above reasons, the technique described in Patent Document 1 cannot be simply applied to the apparatus described in Patent Document 2 for sorting in a microchip.

そこで、本開示は、マイクロチップ内において効率よく粒子を分取することができる粒子分取装置及び粒子分取方法を提供することを主目的とする。 Therefore, it is a main object of the present disclosure to provide a particle sorting device and a particle sorting method capable of efficiently sorting particles in a microchip.

本開示に係る粒子分取装置は、マイクロチップ内に設けられた流路を通流する粒子に、前記流路の第一位置で第一光ビームを照射し、前記流路の第二位置で第二光ビームを照射する光照射部と、前記第一光ビームを照射することより前記粒子から発する第一の光と前記第二光ビームを照射することより前記粒子から発する第二の光を検出する光検出部と、前記流路と連通し、アクチュエータを有する分取部と、前記第一の光と前記第二の光の検出時間差と、分取モードに基づいて、前記粒子は分取対象であるか否かを判定し、前記判定の結果に基づいて、前記アクチュエータを制御する分取制御部と、を有する。
前記アクチュエータは、前記判定の結果に基づいて、分取対象である前記粒子と分取対象でない前記粒子の回収先を変更してもよい。この場合、前記分取部は、前記流路に連通する吸引流路と吸引部により構成されていてもよい。また、この場合、前記アクチュエータは、前記吸引部の体積を任意のタイミングで拡張可能であってもよく、前記変更は、前記吸引部の体積を拡張したことに基づいていてもよい。更に、この場合、前記吸引部の体積を拡張したことにより吸引部に負圧を生成してもよい。
前記分取モードは、ユーザーにより選択可能であってもよい。
また、前記分取モードは、純度を優先した純度優先モード、又は取得率を優先した取得率優先モードのいずれかであってもよい。
前記第二光ビームは、前記第一光ビームと波長が異なっていてもよく、同じであってもよい。
本開示に係る粒子分取装置は、前記第一の光と前記第二の光の検出時間差から、前記粒子が前記分取部に到達する時間を算出する算出部、を更に有していてもよい。この場合、前記分取制御部は、前記光検出部で検出されたデータと、前記算出部で算出された前記時間に基づいて、前記アクチュエータを制御してもよい。また、この場合、前記算出部は、前記検出時間差から、前後の粒子が前記分取部に到達する到達時間差を算出してもよい。
前記粒子は、生体関連粒子であってもよい。
本開示に係る粒子分取装置は、前記粒子を含むサンプル液が導入されるサンプル液導入流路と、シース液が導入される1対のシース液導入流路と、を更に有していてもよい。
前記光検出部は、PMT(Photo Multiplier Tube)、CCD、及びCMOS素子からなる群より選ばれるいずれか1以上のエリア撮像素子から構成されていてもよい。
前記光検出部では、前方散乱光、側方散乱光、レイリー散乱光、及びミー散乱光からなる群より選ばれるいずれか1以上の光を検出してもよい。
In the particle sorting device according to the present disclosure, particles flowing through a flow path provided in a microchip are irradiated with a first light beam at the first position of the flow path, and at the second position of the flow path. A light irradiation unit that irradiates a second light beam, a first light emitted from the particles by irradiating the first light beam, and a second light emitted from the particles by irradiating the second light beam. The particles are sorted based on the light detection unit to be detected, the sorting unit communicating with the flow path and having an actuator, the detection time difference between the first light and the second light, and the sorting mode. It has a preparative control unit that determines whether or not it is a target and controls the actuator based on the result of the determination.
The actuator may change the collection destination of the particles to be sorted and the particles not to be sorted based on the result of the determination. In this case, the preparative section may be composed of a suction flow path and a suction section that communicate with the flow path. Further, in this case, the actuator may be able to expand the volume of the suction portion at an arbitrary timing, and the change may be based on expanding the volume of the suction portion. Further, in this case, a negative pressure may be generated in the suction portion by expanding the volume of the suction portion.
The preparative mode may be selectable by the user.
Further, the preparative mode may be either a purity priority mode in which purity is prioritized or an acquisition rate priority mode in which acquisition rate is prioritized.
The wavelength of the second light beam may be different from that of the first light beam, or may be the same.
Even if the particle preparative apparatus according to the present disclosure further includes a calculation unit that calculates the time for the particles to reach the preparative unit from the detection time difference between the first light and the second light. Good. In this case, the preparative control unit may control the actuator based on the data detected by the light detection unit and the time calculated by the calculation unit. Further, in this case, the calculation unit may calculate the arrival time difference at which the particles before and after reach the preparative unit from the detection time difference.
The particles may be biologically related particles.
Even if the particle sorting device according to the present disclosure further has a sample liquid introduction flow path into which the sample liquid containing the particles is introduced and a pair of sheath liquid introduction flow paths into which the sheath liquid is introduced. Good.
The photodetector may be composed of any one or more area image pickup devices selected from the group consisting of PMT (Photo Multiplier Tube), CCD, and CMOS elements.
The light detection unit may detect any one or more lights selected from the group consisting of forward scattered light, side scattered light, Rayleigh scattered light, and Mie scattered light.

本開示に係る粒子分析システムは、マイクロチップ内に設けられた流路を通流する粒子に、前記流路の第一位置で第一光ビームを照射し、前記流路の第二位置で第二光ビームを照射する光照射部と、前記第一光ビームを照射することより前記粒子から発する第一の光と前記第二光ビームを照射することより前記粒子から発する第二の光を検出する光検出部と、前記流路と連通し、アクチュエータを有する分取部と、を有する粒子分取装置と、前記第一の光と前記第二の光の検出時間差と、分取モードに基づいて、前記粒子は分取対象であるか否かを判定し、前記判定の結果に基づいて、前記アクチュエータを制御する分取制御部、を有する、制御装置と、を有する。
また、本開示に係る粒子分取方法は、マイクロチップ内に設けられた流路を通流する粒子に、前記流路の第一位置で第一光ビームを照射し、前記流路の第二位置で第二光ビームを照射する光照射工程と、前記第一光ビームを照射することより前記粒子から発する第一の光と前記第二光ビームを照射することより前記粒子から発する第二の光を検出する光検出工程と、前記流路と連通し、アクチュエータを有する分取部に基づく分取工程と、前記第一の光と前記第二の光の検出時間差と、分取モードに基づいて、前記粒子は分取対象であるか否かを判定し、前記判定の結果に基づいて、前記アクチュエータを制御する分取制御工程と、を行う。
In the particle analysis system according to the present disclosure, the particles passing through the flow path provided in the microchip are irradiated with the first light beam at the first position of the flow path, and the second position of the flow path is the second. A light irradiation unit that irradiates a two-light beam, a first light emitted from the particles by irradiating the first light beam, and a second light emitted from the particles by irradiating the second light beam are detected. Based on a particle preparative device having a light detection unit, a preparative unit that communicates with the flow path and has an actuator, a detection time difference between the first light and the second light, and a preparative mode. The particle has a control device having a preparative control unit that determines whether or not the particle is a preparative target and controls the actuator based on the result of the determination.
Further, in the particle sorting method according to the present disclosure, the particles flowing through the flow path provided in the microchip are irradiated with the first light beam at the first position of the flow path, and the second light beam of the flow path is irradiated. A light irradiation step of irradiating a second light beam at a position, a first light emitted from the particles by irradiating the first light beam, and a second light emitted from the particles by irradiating the second light beam. Based on a light detection step of detecting light, a preparative step based on a preparative unit that communicates with the flow path and has an actuator, a detection time difference between the first light and the second light, and a preparative mode. Then, it is determined whether or not the particles are to be sorted, and based on the result of the determination, the sorting control step of controlling the actuator is performed.

本開示によれば、分取制御部で、光検出部で検出された各粒子のデータと、到達時間算出部で算出された到達時間に基づいて、粒子を回収するか否かを判断しているため、粒子の取得性能を向上させることができる。 According to the present disclosure, the preparative control unit determines whether or not to collect the particles based on the data of each particle detected by the light detection unit and the arrival time calculated by the arrival time calculation unit. Therefore, the acquisition performance of particles can be improved.

本開示の第1の実施形態に係る粒子分取装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the particle sorting apparatus which concerns on 1st Embodiment of this disclosure. 図1に示す光検出部7での検出データを示す図である。It is a figure which shows the detection data by the photodetector 7 shown in FIG. 本開示の第1の実施形態の変形例に係る粒子分取装置の到達時間算出部8及び分取制御部9の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the arrival time calculation unit 8 and the separation control unit 9 of the particle preparative apparatus which concerns on the modification of 1st Embodiment of this disclosure. A及びBは図3に示すイベント検出回路での処理を示す図である。A and B are diagrams showing processing in the event detection circuit shown in FIG. A及びBは図3に示すゲーティング回路での距離を示す図である。A and B are diagrams showing the distances in the gating circuit shown in FIG. 取得優先モードの動作を示す図である。It is a figure which shows the operation of the acquisition priority mode. A及びBは粒子が近接している場合の検出データを示す図である。A and B are diagrams showing detection data when particles are in close proximity. 純度優先モードの動作を示す図である。It is a figure which shows the operation of the purity priority mode.

以下、本開示を実施するための形態について、添付の図面を参照して詳細に説明する。
なお、本開示は、以下に示す各実施形態に限定されるものではない。また、説明は、以下
の順序で行う。

1.第1の実施の形態
(分取制御部を備える粒子分取装置の例)
2.第1の実施の形態の変形例
(モード切り替え機能を備える粒子分取装置の例)
Hereinafter, embodiments for carrying out the present disclosure will be described in detail with reference to the accompanying drawings.
The present disclosure is not limited to each of the following embodiments. The description will be given in the following order.

1. 1. First Embodiment (Example of a particle sorting device including a sorting control unit)
2. 2. Modification example of the first embodiment (example of a particle sorting device provided with a mode switching function)

<1.第1の実施の形態>
先ず、本開示の第1の実施形態に係る粒子分取装置について説明する。図1は本開示の第1の実施形態の粒子分取装置の概略構成を示す図である。また、図2は光検出部7での検出データを示す図である。
<1. First Embodiment>
First, the particle sorting device according to the first embodiment of the present disclosure will be described. FIG. 1 is a diagram showing a schematic configuration of a particle sorting device according to the first embodiment of the present disclosure. Further, FIG. 2 is a diagram showing detection data by the photodetector 7.

[装置の全体構成]
図1に示すように、本実施形態の粒子分取装置1は、光学的手法などにより分析した結果に基づいて粒子10を分別して回収するものである。この粒子分取装置1は、例えば、流路1、分取部2、励起光照射部3、速度検出用光照射部4、光検出部7、到達時間算出部8及び分取制御部9などを備えている。
[Overall configuration of device]
As shown in FIG. 1, the particle sorting device 1 of the present embodiment separates and recovers the particles 10 based on the results of analysis by an optical method or the like. The particle sorting device 1 includes, for example, a flow path 1, a sorting unit 2, an excitation light irradiation unit 3, a velocity detection light irradiation unit 4, a light detection unit 7, an arrival time calculation unit 8, a distribution control unit 9, and the like. Is equipped with.

[粒子10について]
本実施形態の粒子分取装置1により分析され、分取される粒子10には、細胞、微生物及びリボゾームなどの生体関連粒子、又はラテックス粒子、ゲル粒子及び工業用粒子などの合成粒子などが広く含まれる。
[About particle 10]
The particles 10 analyzed and sorted by the particle sorting device 1 of the present embodiment include a wide range of biological particles such as cells, microorganisms and ribosomes, or synthetic particles such as latex particles, gel particles and industrial particles. included.

生体関連粒子には、各種細胞を構成する染色体、リボゾーム、ミトコンドリア、オルガネラ(細胞小器官)などが含まれる。また、細胞には、植物細胞、動物細胞及び血球系細胞などが含まれる。更に、微生物には、大腸菌などの細菌類、タバコモザイクウイルスなどのウイルス類、イースト菌などの菌類などが含まれる。この生体関連粒子には、核酸や蛋白質、これらの複合体などの生体関連高分子も包含され得るものとする。 Biological particles include chromosomes, ribosomes, mitochondria, organelles (organelles), etc. that make up various cells. In addition, cells include plant cells, animal cells, blood cell lineage cells and the like. Further, the microorganisms include bacteria such as Escherichia coli, viruses such as tobacco mosaic virus, and fungi such as yeast. The bio-related particles may also include bio-related macromolecules such as nucleic acids, proteins, and complexes thereof.

一方、工業用粒子としては、例えば有機高分子材料、無機材料又は金属材料などで形成されたものが挙げられる。有機高分子材料としては、ポリスチレン、スチレン・ジビニルベンゼン、ポリメチルメタクリレートなどを使用することができる。また、無機材料としては、ガラス、シリカ及び磁性材料などを使用することができる。金属材料としては、例えば金コロイド及びアルミニウムなどを使用することができる。なお、これら粒子の形状は、一般には球形であるが、非球形であってもよく、また大きさや質量なども特に限定されない。 On the other hand, examples of industrial particles include those formed of an organic polymer material, an inorganic material, a metal material, or the like. As the organic polymer material, polystyrene, styrene / divinylbenzene, polymethylmethacrylate and the like can be used. Further, as the inorganic material, glass, silica, a magnetic material and the like can be used. As the metal material, for example, gold colloid and aluminum can be used. The shape of these particles is generally spherical, but may be non-spherical, and the size and mass are not particularly limited.

[流路1]
流路1は、マイクロチップ内に形成されており、分取対象分取対象とする粒子10を含む液体(サンプル液)が導入される。ここで、流路1を備えるマイクロチップは、ガラスや各種プラスチック(PP、PC、COP、PDMSなど)により形成することができる。また、マイクロチップの材質は、励起光照射部3及び速度検出用光照射部4から照射される光に対して透過性を有し、自家蛍光が少なく、波長分散が小さいために光学誤差が少ない材質とすることが望ましい。
[Flow path 1]
The flow path 1 is formed in the microchip, and a liquid (sample liquid) containing the particles 10 to be sorted is introduced. Here, the microchip provided with the flow path 1 can be formed of glass or various plastics (PP, PC, COP, PDMS, etc.). Further, the material of the microchip has transparency to the light emitted from the excitation light irradiation unit 3 and the speed detection light irradiation unit 4, has less autofluorescence, and has less optical error because the wavelength dispersion is small. It is desirable to use the material.

一方、流路1の成形は、ガラス製基板のウェットエッチングやドライエッチングによって、またプラスチック製基板のナノインプリントや射出成型、機械加工によって行うことができる。そして、マイクロチップは、例えば流路1などを成形した基板を、同じ材質又は異なる材質の基板で封止することで形成することができる。 On the other hand, the flow path 1 can be formed by wet etching or dry etching of a glass substrate, or by nanoimprinting, injection molding, or machining of a plastic substrate. Then, the microchip can be formed by sealing a substrate on which, for example, a flow path 1 or the like is formed, with substrates of the same material or different materials.

なお、図1には、流路1における励起光や速度検出用光が照射される部分のみを示しているが、これより上流側に、粒子10を含むサンプル液が導入されるサンプル液導入流路と、シース液が導入される1対のシース液導入流路が設けられていてもよい。この場合、シース液導入流路は、サンプル液導入流路に両側から合流し、その合流点よりも下流側に流路1が設けられる。そして、流路1内においては、サンプル流の周囲をシース流で囲み、層流を形成した状態で液が通流し、サンプル液中の粒子10は、その通流方向に対して略1列に並んで通流する。 Note that FIG. 1 shows only the portion of the flow path 1 that is irradiated with the excitation light or the velocity detection light, but the sample liquid introduction flow in which the sample liquid containing the particles 10 is introduced upstream of this. A path and a pair of sheath liquid introduction channels into which the sheath liquid is introduced may be provided. In this case, the sheath liquid introduction flow path joins the sample liquid introduction flow path from both sides, and the flow path 1 is provided on the downstream side of the confluence point. Then, in the flow path 1, the sample flow is surrounded by a sheath flow, and the liquid flows in a state where a laminar flow is formed, and the particles 10 in the sample liquid are arranged in substantially one row with respect to the flow direction. Flow side by side.

[分取部2]
分取部2は、回収対象の粒子10を分取するものであり、マイクロチップ内に形成されている。この分取部2は、流路13の下流側端部に連通し、吸引流路21及び負圧吸引部22などで構成されている。負圧吸引部22は、所定のタイミングで回収対象の微小粒子を吸引することができれば、その構成は特に限定されるものではないが、例えば、アクチュエータ(図示せず)などにより、負圧吸引部22の体積を任意のタイミングで拡張可能な構成とすることができる。
[Preparation section 2]
The sorting unit 2 sorts the particles 10 to be collected, and is formed in the microchip. The preparative portion 2 communicates with the downstream end portion of the flow path 13, and is composed of a suction flow path 21, a negative pressure suction portion 22, and the like. The structure of the negative pressure suction unit 22 is not particularly limited as long as it can suck the fine particles to be collected at a predetermined timing, but the negative pressure suction unit 22 is, for example, by an actuator (not shown) or the like. The volume of 22 can be expanded at any time.

[励起光照射部3]
励起光照射部3には、レーザ光などの励起光を発生する光源31と、スポット形状を成形する光学系32、ミラー33などが設けられている。そして、例えばマイクロチップ内に形成された流路1内を通流する粒子10に励起光を照射する。なお、図1には光源31が1個の場合を例に示しているが、本開示はこれに限定されるものではなく、2以上の光源31が設けられていてもよく、その場合、各光源31から異なる波長の光を出射してもよい。
[Excitation light irradiation unit 3]
The excitation light irradiation unit 3 is provided with a light source 31 that generates excitation light such as laser light, an optical system 32 that forms a spot shape, a mirror 33, and the like. Then, for example, the particles 10 flowing through the flow path 1 formed in the microchip are irradiated with the excitation light. Although FIG. 1 shows an example in which one light source 31 is used, the present disclosure is not limited to this, and two or more light sources 31 may be provided. In that case, each light source 31 may be provided. Light of different wavelengths may be emitted from the light source 31.

[速度検出用光照射部4]
速度検出用光照射部4には、速度検出用光を発生する光源41と、スポット形状を成形する光学系42、ミラー43などが設けられている。そして、例えばマイクロチップ内に形成された流路1内を通流する粒子10に、前述した励起光とは異なる位置で速度検出用光を照射する。この速度検出用光は、励起光と同じ波長の光としてもよいが、装置構成の簡素化の観点から、励起光と波長が異なる光を用いることが好ましい。
[Light irradiation unit 4 for speed detection]
The speed detection light irradiation unit 4 is provided with a light source 41 that generates speed detection light, an optical system 42 that forms a spot shape, a mirror 43, and the like. Then, for example, the particles 10 flowing through the flow path 1 formed in the microchip are irradiated with the velocity detection light at a position different from the excitation light described above. The speed detection light may be light having the same wavelength as the excitation light, but from the viewpoint of simplifying the device configuration, it is preferable to use light having a wavelength different from that of the excitation light.

[光検出部7]
光検出部7は、流路1を通流する粒子10から発生する光(散乱光・蛍光など)を検出するものであり、0次光除去部材71、ミラー72a〜72d、光検出器73a〜73dなどで構成されている。光検出器73a〜73dには、例えばPMT(Photo Multiplier Tube)や、CCDやCMOS素子などのエリア撮像素子を用いることができる。
[Light detection unit 7]
The light detection unit 7 detects light (scattered light, fluorescence, etc.) generated from the particles 10 passing through the flow path 1, and is a 0th-order light removing member 71, mirrors 72a to 72d, and photodetectors 73a to. It is composed of 73d and the like. For the photodetectors 73a to 73d, for example, a PMT (Photo Multiplier Tube) or an area image sensor such as a CCD or CMOS element can be used.

光検出部7では、例えば、光検出器73aで励起光に由来する前方散乱光を、光検出器73bで速度検出用光に由来する散乱光を、光検出器73c,73dで蛍光を、それぞれ検出する。なお、光検出部7での検出対象光はこれらに限定されるものではなく、側方散乱光、レイリー散乱やミー散乱などを検出してもよい。そして、光検出部7で検出された光は、電気信号に変換される。 In the photodetector 7, for example, the photodetector 73a emits forward scattered light derived from excitation light, the photodetector 73b emits scattered light derived from velocity detection light, and the photodetectors 73c and 73d emit fluorescence, respectively. To detect. The light to be detected by the photodetector 7 is not limited to these, and may detect lateral scattered light, Rayleigh scattering, Mie scattering, and the like. Then, the light detected by the photodetector 7 is converted into an electric signal.

[到達時間算出部8]
励起光に由来する光と速度検出用光に由来する光の検出時間差から、各粒子10が流路に連通する分取部2に到達する時間を個別に算出する。到達時間の算出方法は、特に限定されるものではないが、例えば、図2に示すように、光検出部7で検出された励起光に由来する前方散乱光(Ch1のデータ)と、速度検出用光に由来する前方散乱光(Ch2のデータ)の検出時間差から各粒子10の到達時間を算出する。
[Arrival time calculation unit 8]
From the detection time difference between the light derived from the excitation light and the light derived from the velocity detection light, the time for each particle 10 to reach the preparative unit 2 communicating with the flow path is individually calculated. The method of calculating the arrival time is not particularly limited, but for example, as shown in FIG. 2, the forward scattered light (Ch1 data) derived from the excitation light detected by the light detection unit 7 and the speed detection. The arrival time of each particle 10 is calculated from the detection time difference of the forward scattered light (Ch2 data) derived from the light.

ここで、分取部2への到達時間は、例えば、下記数式1に示す単純な線形近似式により算出することができる。なお、下記数式1におけるL1は励起光照射位置と速度検出用光照射位置との距離、L2は速度検出用光照射位置から分取部2の吸引流路21までの距離である(図1参照)。また、下記数式1におけるT1は励起光に由来する光の検出時間であり、T2は速度検出用光に由来する光の検出時間であり、(T1−T2)はこれらの検出時間差である(図2参照)。 Here, the arrival time at the preparative unit 2 can be calculated by, for example, a simple linear approximation formula shown in the following mathematical formula 1. In the following mathematical formula 1, L1 is the distance between the excitation light irradiation position and the speed detection light irradiation position, and L2 is the distance from the speed detection light irradiation position to the suction flow path 21 of the preparative unit 2 (see FIG. 1). ). Further, T1 in the following mathematical formula 1 is the detection time of the light derived from the excitation light, T2 is the detection time of the light derived from the velocity detection light, and (T1-T2) is the difference between these detection times (FIG. 2).

なお、分取部2への到達時間の算出方法は、上記数式1に示す線形計算方法に限定されるものではなく、多項式近似やルックアップテーブルなど、他の算出方法を用いてもよい。 The calculation method of the arrival time to the preparative unit 2 is not limited to the linear calculation method shown in the above equation 1, and other calculation methods such as polynomial approximation and look-up table may be used.

[分取制御部9]
分取制御部9は、粒子10の分取を制御するものであり、光検出部7で検出された各粒子10のデータと、到達時間算出部8で算出された到達時間に基づいて、粒子10を回収するか否かを判断する。この分取制御部9では、例えば、前後の粒子10の到達時間差を算出し、算出された到達時間差が予め設定された閾値以下の粒子は、「非回収」と判断する。これにより、粒子10が近接して通流している場合に、回収対象の粒子の前後の粒子を巻き込んで取得してしまうことを防止できる。
[Preparation control unit 9]
The preparative control unit 9 controls the preparative of the particles 10, and the particles are based on the data of each particle 10 detected by the light detection unit 7 and the arrival time calculated by the arrival time calculation unit 8. It is determined whether or not to collect 10. The preparative control unit 9 calculates, for example, the arrival time difference between the front and rear particles 10, and determines that the particles whose calculated arrival time difference is equal to or less than a preset threshold value are “non-collected”. As a result, when the particles 10 are flowing in close proximity to each other, it is possible to prevent the particles before and after the particles to be collected from being caught and acquired.

また、分取制御部9は、前述した判断結果に基づいて、例えば、負圧吸引部22の動作を制御するなどして、分取部2に粒子10を回収するタイミングを制御する。これにより、目的とする粒子の取得精度を向上させ、純度や取得率が高い分取を行うことが可能となる。 Further, the preparative control unit 9 controls the timing of collecting the particles 10 by the preparative unit 2 by controlling the operation of the negative pressure suction unit 22, for example, based on the above-mentioned determination result. As a result, it is possible to improve the acquisition accuracy of the target particles and perform a fractionation with high purity and acquisition rate.

[動作]
次に、本実施形態の粒子分取装置の動作について説明する。本実施形態の粒子分取装置により粒子を分取する際は、マイクロチップ内に設けられたサンプルインレットに、分取対象の粒子を含むサンプル液が、シースインレットにシース液が、それぞれ導入される。そして、流路1を通流する粒子10に励起光を照射すると共に、励起光とは異なる位置で粒子10に速度検出用光を照射する。このとき、図1に示すように、励起光及び速度検出用光が1つの集光レンズ5によって集光され、粒子10に照射されてもよいが、それぞれ別の集光レンズで集光されてもよい。
[motion]
Next, the operation of the particle sorting device of this embodiment will be described. When the particles are sorted by the particle sorting device of the present embodiment, the sample liquid containing the particles to be sorted is introduced into the sample inlet provided in the microchip, and the sheath liquid is introduced into the sheath inlet. .. Then, the particles 10 passing through the flow path 1 are irradiated with the excitation light, and the particles 10 are irradiated with the velocity detection light at a position different from the excitation light. At this time, as shown in FIG. 1, the excitation light and the velocity detection light may be condensed by one condenser lens 5 and irradiated to the particles 10, but they are condensed by different condenser lenses. May be good.

次に、検出部7において、各粒子10から発せられた光を検出し、到達時間算出部8において、励起光に由来する光と速度検出用光に由来する光の検出時間差から、分取部2に各粒子10が到達する時間を、個別に算出する。このとき、図1に示すように、励起光に由来する光及び速度検出用光に由来する光が、1つの集光レンズ6によって集光され、検出部7の0次光除去部材71に集光されてもよいが、それぞれ別の集光レンズで集光されてもよい。 Next, the detection unit 7 detects the light emitted from each particle 10, and the arrival time calculation unit 8 determines the detection time difference between the light derived from the excitation light and the light derived from the velocity detection light. The time for each particle 10 to reach 2 is calculated individually. At this time, as shown in FIG. 1, the light derived from the excitation light and the light derived from the speed detection light are collected by one condensing lens 6 and collected by the 0th order light removing member 71 of the detection unit 7. It may be illuminated, but it may be condensed by different condenser lenses.

その後、分取制御部9において、検出部7で検出された各粒子10の光学特性データと、到達時間算出部8で算出した分取部2への到達時間とから、粒子10を回収するか否かを判断する。そして、その判断結果に基づいて、分取制御部9は、分取部2に粒子10を回収するタイミングを制御する。例えば、分取部2が流路1に連通する負圧吸引部22を有する場合は、分取制御部9は、負圧吸引部22に設けられたアクチュエータなどの動作を制御する。 After that, the preparative control unit 9 collects the particles 10 from the optical characteristic data of each particle 10 detected by the detection unit 7 and the arrival time at the preparative unit 2 calculated by the arrival time calculation unit 8. Judge whether or not. Then, based on the determination result, the preparative control unit 9 controls the timing of collecting the particles 10 in the preparative unit 2. For example, when the preparative unit 2 has a negative pressure suction unit 22 communicating with the flow path 1, the preparative control unit 9 controls the operation of an actuator or the like provided in the negative pressure suction unit 22.

以上詳述したように、本実施形態の粒子分取装置では、個々の粒子について、分取部への到達時間を算出し、各粒子の光学特性データだけでなく、分取部への到達時間も考慮して、粒子を回収するか否かを判断している。これにより、粒子の通流位置や通流状態にかかわらず、高純度又は高取得率で、粒子を分取することが可能となる。その結果、従来の粒子分取装置に比べて取得性能を向上させることができる。 As described in detail above, in the particle preparative apparatus of the present embodiment, the arrival time to the preparative part is calculated for each particle, and not only the optical characteristic data of each particle but also the arrival time to the preparative part is calculated. In consideration of the above, it is decided whether or not to collect the particles. This makes it possible to separate the particles with high purity or high acquisition rate regardless of the flow position and the flow state of the particles. As a result, the acquisition performance can be improved as compared with the conventional particle sorting device.

また、本実施形態の粒子分取装置は、個々の粒子について到達時間を算出しているため、環境温度変化や供給タンク残量などによる流量変化の影響を受けにくい。これにより、流量制御を高精度に行う必要がなくなるため、低価格の圧力制御デバイスを採用することができ、流路部品管理や組立精度管理を簡素化することが可能となり、製造コストを低減することができる。 Further, since the particle sorting device of the present embodiment calculates the arrival time for each particle, it is not easily affected by the change in the flow rate due to the change in the environmental temperature or the remaining amount of the supply tank. As a result, it is not necessary to perform flow rate control with high accuracy, so that a low-priced pressure control device can be adopted, it is possible to simplify flow path component management and assembly accuracy control, and the manufacturing cost is reduced. be able to.

<2.第1の実施の形態の変形例>
次に、本開示の第1の実施形態の変形例に係る粒子分取装置について説明する。本変形例の粒子分取装置では、回収するか否かを判断する際に、「純度」を優先するか、「取得率」を優先するかを、ユーザーが選択可能となっている。
<2. Modification example of the first embodiment>
Next, the particle sorting device according to the modified example of the first embodiment of the present disclosure will be described. In the particle sorting device of this modification, the user can select whether to prioritize "purity" or "acquisition rate" when deciding whether or not to collect the particles.

図3は本変形例の粒子分取装置の到達時間算出部8及び分取制御部9の回路構成を示すブロック図である。また、図4A及び図4Bはイベント検出回路での処理を示す図であり、図5A及び図5Bはゲーティング回路での距離を示す図である。「純度優先モード」又は「取得率優先モード」での分取は、例えば、図3に示す構成の回路で実現することができる。 FIG. 3 is a block diagram showing a circuit configuration of an arrival time calculation unit 8 and a preparative control unit 9 of the particle preparative apparatus of this modification. Further, FIGS. 4A and 4B are diagrams showing processing in the event detection circuit, and FIGS. 5A and 5B are diagrams showing distances in the gating circuit. Sorting in the "purity priority mode" or the "acquisition rate priority mode" can be realized by, for example, the circuit having the configuration shown in FIG.

[イベント検出回路]
イベント検出回路は、Ch1及びCh2の検出信号でトリガーをかけて各Chの波形を読み込み、図4Aに示す幅、高さ、面積を計算する。そして、励起光に由来する前方散乱光に関するCh1の検出データと、速度検出用光に由来する前方散乱光に関するCh2の検出データについては、波形中心の時間を計算し、検出時間とする。
[Event detection circuit]
The event detection circuit triggers with the detection signals of Ch1 and Ch2 to read the waveform of each Ch, and calculates the width, height, and area shown in FIG. 4A. Then, for the Ch1 detection data regarding the forward scattered light derived from the excitation light and the Ch2 detection data regarding the forward scattered light derived from the velocity detection light, the time at the center of the waveform is calculated and used as the detection time.

そして、図4Bに示すように、イベント検出回路では、各粒子10について、時系列に取得されるCh1(励起光に由来する前方散乱光)及びCh2(速度検出用光に由来する前方散乱光)の検出信号を関連付け、各粒子の検出データ(イベント)をパケット化する。パケットは、以降の処理が進むにつれ更新される項目を含み、Flagは基本的に1/0で、各ロジックで判断する取得/非取得に対応する。なお、検出時間は、Ch1及びCh2のトリガー時間を使用することもできる。 Then, as shown in FIG. 4B, in the event detection circuit, for each particle 10, Ch1 (forward scattered light derived from excitation light) and Ch2 (forward scattered light derived from velocity detection light) acquired in time series. The detection signal of each particle is associated and the detection data (event) of each particle is packetized. The packet includes items that are updated as the subsequent processing progresses, and the Flag is basically 1/0, which corresponds to acquisition / non-acquisition determined by each logic. As the detection time, the trigger times of Ch1 and Ch2 can also be used.

[到達時間計算回路]
到達時間計算回路は、Ch1及びCh2の検出時間(T1,T2)を使用して、上記数式1などから到達時間を算出し、それを、イベントパケットの”Sorting Time”とする。
[Arrival time calculation circuit]
The arrival time calculation circuit uses the detection times (T1 and T2) of Ch1 and Ch2 to calculate the arrival time from the above equation 1 and the like, and sets it as the "Sorting Time" of the event packet.

[ゲーティング回路]
ゲーティング回路は、予め設定した閾値に基づいて、粒子10の「取得/非取得」を判断し、イベントパケットの”Gate Flag”を設定する。例えば、ゲーティング取得動作開始前に、制御用コンピュータ上のGUIなどで、図5Aに示すヒストグラムチャートや、図5Bに示す2Dチャートなどをプロットし、取得する粒子の集団(目的とする特性を持つ粒子集団)を例えば幾何形状などで括り、指定する。
[Gating circuit]
The gating circuit determines "acquisition / non-acquisition" of the particle 10 based on a preset threshold value, and sets the "Gate Flag" of the event packet. For example, before the start of the gating acquisition operation, the histogram chart shown in FIG. 5A, the 2D chart shown in FIG. 5B, and the like are plotted with a GUI on a control computer, and a group of particles to be acquired (having the desired characteristics) (Particle group) is specified by enclosing it in a geometric shape, for example.

なお、「取得/非取得」を判断するパラメータ(閾値)は、各Chで取得された検出データの幅、高さ及び面積のいずれでもよく、これらを組み合わせてもよい。 The parameter (threshold value) for determining "acquisition / non-acquisition" may be any of the width, height, and area of the detection data acquired in each Ch, and these may be combined.

[出力待ち行列回路]
出力待ち行列回路は、各粒子10の検出データ(イベント)を、分取部到達時間(”Sorting Time”)に基づき、分取部到達順に並べ替える。その後、「純度優先」や「取得率優先」などのユーザーにより選択された分取モードに応じて、「取得/非取得」の判断を行う。そして、その結果に基づいて、”Sort Flag”を設定する。
[Output queue circuit]
The output queue circuit sorts the detection data (events) of each particle 10 in the order of arrival at the preparative unit based on the arrival time at the preparative unit (“Sorting Time”). After that, "acquisition / non-acquisition" is determined according to the sorting mode selected by the user such as "purity priority" or "acquisition rate priority". Then, based on the result, "Sort Flag" is set.

粒子10が近接して通流している場合、一回の取得動作で前後の粒子10も巻き込み、複数の粒子10を分取部2に回収してしまう可能性がある。そして、「純度優先モード」と、「取得率優先モード」とでは、この粒子10が近接している場合の「取得/非取得」の判断方法が異なる。図6は取得優先モードの動作を示す図である。また、図7A及び図7Bは粒子が近接している場合の検出データを示す図である。更に、図8は純度優先モードの動作を示す図である。 When the particles 10 are flowing in close proximity to each other, the front and rear particles 10 may be involved in one acquisition operation, and the plurality of particles 10 may be collected in the preparative unit 2. The "purity priority mode" and the "acquisition rate priority mode" differ in the method of determining "acquisition / non-acquisition" when the particles 10 are in close proximity to each other. FIG. 6 is a diagram showing the operation of the acquisition priority mode. Further, FIGS. 7A and 7B are diagrams showing detection data when particles are in close proximity to each other. Further, FIG. 8 is a diagram showing the operation of the purity priority mode.

「取得率優先モード」は、捕獲粒子の純度が下がっても取得粒子数を多くするモードであり、図6に示すように、粒子10が近接して通流している場合でも、分取対象の粒子を回収する。これに対して、「純度優先モード」は、捕獲粒子の純度を高めるモードであり、取得粒子と非取得粒子が近接してきた場合、一緒に捕獲されてしまうことを防止するため、敢えてその取得粒子を「非取得」と判断する。 The "acquisition rate priority mode" is a mode in which the number of acquired particles is increased even if the purity of the captured particles decreases, and as shown in FIG. 6, even when the particles 10 are flowing in close proximity to each other, the particles are to be sorted. Collect the particles. On the other hand, the "purity priority mode" is a mode for increasing the purity of the captured particles, and when the acquired particles and the non-acquired particles come close to each other, the acquired particles are intentionally captured in order to prevent them from being captured together. Is judged as "non-acquisition".

特に「純度優先モード」の場合、図8に示すように、後から検出された粒子10の検出データ(イベント)が、前の粒子10と近接している場合、前のイベントの「取得/非取得」も再度判断が必要となる。ここで、図7Aに示すΔT1は、設定値で、ひとつ後の粒子を巻き込む時間である(T1=Tn+ΔT1)。また、ΔT2も設定値で、ひとつ前の粒子を巻き込む時間である(T2=Tn+ΔT2)。 In particular, in the "purity priority mode", as shown in FIG. 8, when the detection data (event) of the particle 10 detected later is close to the previous particle 10, the "acquisition / non-acquisition" of the previous event "Acquisition" also needs to be judged again. Here, ΔT1 shown in FIG. 7A is a set value and is the time for entraining the next particle (T1 = Tn + ΔT1). In addition, ΔT2 is also a set value, which is the time for involving the previous particle (T2 = Tn + ΔT2).

[出力タイミング生成回路]
出力タイミング生成回路は、出力待ち行列の最も先に取得するイベントの時刻(Sorting time)を読み出し、Clock Counter値と比較して、その時刻に出力タイミング信号を生成する。
[Output timing generation circuit]
The output timing generation circuit reads the time (Sorting time) of the event acquired first in the output queue, compares it with the Clock Counter value, and generates an output timing signal at that time.

[出力信号生成回路]
出力信号生成回路は、出力タイミング信号を検知し、分取部2のアクチュエーションデバイスを制御する波形信号を出力する。
[Output signal generation circuit]
The output signal generation circuit detects the output timing signal and outputs a waveform signal that controls the actuation device of the preparative unit 2.

本変形例の粒子分取装置は、回収するか否かを判断する際に、「純度」を優先するか、「取得率」を優先するかを、ユーザーが選択可能となっているため、目的に応じた分取が可能となる。なお、本変形例における上記以外の構成及び効果は、前述した第1の実施形態と同様である。 The purpose of the particle sorting device of this modification is that the user can select whether to prioritize "purity" or "acquisition rate" when deciding whether or not to collect the particles. It is possible to sort according to. The configurations and effects other than the above in this modification are the same as those in the first embodiment described above.

また、本開示は、以下のような構成をとることもできる。
(1)
流路を通流する粒子に励起光を照射する励起光照射部と、
前記粒子に前記励起光とは異なる位置で速度検出用光を照射する速度検出用光照射部と、
前記粒子から発せられた光を検出する光検出部と、
前記励起光に由来する光と前記速度検出用光に由来する光の検出時間差から、各粒子が前記流路に連通する分取部に到達する時間を個別に算出する到達時間算出部と、
前記粒子の分取を制御する分取制御部と、を有し、
前記流路及び前記分取部はマイクロチップ内に設けられており、
前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記到達時間算出部で算出された到達時間に基づいて、前記粒子を回収するか否かを判断する粒子分取装置。
(2)
前記分取制御部は、前後の粒子の到達時間差を算出し、該到達時間差が閾値以下の粒子は、非回収と判断する(2)に記載の粒子分取装置。
(3)
前記速度検出用光は前記励起光と波長が異なる(1)又は(2)に記載の粒子分取装置。
(4)
前記到達時間算出部は、前記励起光に由来する散乱光と前記速度検出用光に由来する散乱光の検出時間差から各粒子の到達時間を算出する(3)に記載の粒子分取装置。
(5)
前記励起光照射部は、異なる波長の光を出射する2以上の光源を備える(1)〜(4)のいずれかに記載の粒子分取装置。
(6)
前記分取部は、前記流路に連通する負圧吸引部を有する(1)〜(5)のいずれかに記載の粒子分取装置。
(7)
前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記到達時間算出部で算出された到達時間に基づいて、前記負圧吸引部の動作を制御する(6)に記載の粒子分取装置。
(8)
前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記到達時間算出部で算出された到達時間に基づいて、前記分取部に前記粒子を回収するタイミングを制御する(1)〜(7)のいずれかに記載の粒子分取装置。
(9)
マイクロチップ内に設けられた流路を通流する粒子に励起光を照射する励起光照射工程と、
前記粒子に前記励起光とは異なる位置で速度検出用光を照射する速度検出用光照射工程と、
前記粒子から発せられた光を検出する光検出工程と、
前記励起光に由来する光と前記速度検出用光に由来する光の検出時間差から、前記マイクロチップ内に設けられ前記流路に連通する分取部に、各粒子が到達する時間を、個別に算出する到達時間算出工程と、
前記光検出工程で検出した各粒子のデータと、前記到達時間算出工程で算出した到達時間に基づいて、前記粒子を回収するか否かを判断する分取制御工程と、
を有する粒子分取方法。
(10)
前記分取制御工程は、前後の粒子の到達時間差を算出し、該到達時間差が閾値以下の粒子は、非回収と判断する(9)に記載の粒子分取方法。
(11)
前記速度検出用光として前記励起光とは波長が異なる光を用いる(9)又は(10)に記載の粒子分取方法。
(12)
前記到達時間算出工程は、前記励起光に由来する散乱光と前記速度検出用光に由来する散乱光の検出時間差から各粒子の到達時間を算出する(11)に記載の粒子分取方法。
(13)
前記励起光照射工程は、2以上の光源からそれぞれ異なる波長の光を出射する(9)〜(12)のいずれかに記載の粒子分取方法。
(14)
前記分取部は前記流路に連通する負圧吸引部を有し、
前記分取制御工程は、前記光検出工程で検出した各粒子のデータと、前記到達時間算出工程で算出した到達時間に基づいて、前記負圧吸引部の動作を制御する(9)〜(13)のいずれかに記載の粒子分取方法。
(15)
前記分取制御工程は、前記光検出工程で検出した各粒子のデータと、前記到達時間算出工程で算出した到達時間に基づいて、前記分取部に前記粒子を回収するタイミングを制御する(9)〜(14)のいずれかに記載の粒子分取方法。
The present disclosure may also have the following structure.
(1)
An excitation light irradiation unit that irradiates particles passing through the flow path with excitation light,
A speed detection light irradiation unit that irradiates the particles with speed detection light at a position different from the excitation light.
A photodetector that detects the light emitted from the particles,
An arrival time calculation unit that individually calculates the time for each particle to reach the preparative unit communicating with the flow path from the detection time difference between the light derived from the excitation light and the light derived from the velocity detection light.
It has a preparative control unit that controls the preparative of the particles.
The flow path and the preparative portion are provided in the microchip, and the flow path and the preparative portion are provided in the microchip.
The preparative control unit determines whether or not to collect the particles based on the data of each particle detected by the light detection unit and the arrival time calculated by the arrival time calculation unit. apparatus.
(2)
The particle sorting device according to (2), wherein the preparative control unit calculates the arrival time difference between the front and rear particles, and determines that the particles whose arrival time difference is equal to or less than the threshold value are not collected.
(3)
The particle sorting device according to (1) or (2), wherein the velocity detection light has a wavelength different from that of the excitation light.
(4)
The particle sorting device according to (3), wherein the arrival time calculation unit calculates the arrival time of each particle from the detection time difference between the scattered light derived from the excitation light and the scattered light derived from the velocity detection light.
(5)
The particle sorting device according to any one of (1) to (4), wherein the excitation light irradiation unit includes two or more light sources that emit light having different wavelengths.
(6)
The particle sorting device according to any one of (1) to (5), wherein the sorting unit has a negative pressure suction unit communicating with the flow path.
(7)
The preparative control unit controls the operation of the negative pressure suction unit based on the data of each particle detected by the light detection unit and the arrival time calculated by the arrival time calculation unit (6). The described particle sorter.
(8)
The preparative control unit controls the timing of collecting the particles in the preparative unit based on the data of each particle detected by the light detection unit and the arrival time calculated by the arrival time calculation unit. The particle sorting device according to any one of (1) to (7).
(9)
An excitation light irradiation step of irradiating particles passing through a flow path provided in a microchip with excitation light,
A speed detection light irradiation step of irradiating the particles with speed detection light at a position different from the excitation light,
A photodetection step that detects the light emitted from the particles, and
From the detection time difference between the light derived from the excitation light and the light derived from the velocity detection light, the time for each particle to reach the preparative portion provided in the microchip and communicating with the flow path is individually determined. The arrival time calculation process to be calculated and
A preparative control step for determining whether or not to recover the particles based on the data of each particle detected in the light detection step and the arrival time calculated in the arrival time calculation step.
Particle sorting method having.
(10)
The particle preparative method according to (9), wherein the preparative control step calculates the arrival time difference between the particles before and after, and determines that the particles whose arrival time difference is equal to or less than the threshold value are not collected.
(11)
The particle sorting method according to (9) or (10), wherein light having a wavelength different from that of the excitation light is used as the velocity detection light.
(12)
The particle sorting method according to (11), wherein the arrival time calculation step calculates the arrival time of each particle from the detection time difference between the scattered light derived from the excitation light and the scattered light derived from the velocity detection light.
(13)
The particle sorting method according to any one of (9) to (12), wherein the excitation light irradiation step emits light having different wavelengths from two or more light sources.
(14)
The preparative unit has a negative pressure suction unit that communicates with the flow path.
The preparative control step controls the operation of the negative pressure suction unit based on the data of each particle detected in the light detection step and the arrival time calculated in the arrival time calculation step (9) to (13). ) Is described in any of the above.
(15)
The preparative control step controls the timing of collecting the particles in the preparative unit based on the data of each particle detected in the light detection step and the arrival time calculated in the arrival time calculation step (9). ) To (14).

1 流路
2 分取部
3 励起光照射部
4 速度検出用光照射部
5、6 対物レンズ
7 光検出部
8 到達時間算出部
9 分取制御部
10 粒子
21 吸引流路
22 負圧吸引部
31、41 光源
32、42 光学系
33、43、72a〜72d ミラー
71 0次光除去部材
73a〜73d 光検出器
1 Flow path 2 Prescription unit 3 Excitation light irradiation unit 4 Speed detection light irradiation unit 5, 6 Objective lens 7 Light detection unit 8 Arrival time calculation unit 9 Prescription control unit 10 Particles 21 Suction flow path 22 Negative pressure suction unit 31 , 41 Light source 32, 42 Optical system 33, 43, 72a to 72d Mirror 71 10th order light removal member 73a to 73d Photodetector

Claims (19)

マイクロチップ内に設けられた流路を通流する粒子に、前記流路の第一位置で第一光ビームを照射し、前記流路の第二位置で第二光ビームを照射する光照射部と、
前記第一光ビームを照射することより前記粒子から発する第一の光と前記第二光ビームを照射することより前記粒子から発する第二の光を検出する光検出部と、
前記流路と連通し、アクチュエータ駆動より圧力変化する圧力変化部を有する分取部と、
前記第一の光と前記第二の光の検出時間差に基づく前後の粒子が前記分取部に到達する時間差と、分取モードに基づいて、前記粒子は分取対象であるか否かを判定し、前記判定の結果に基づいて、前記アクチュエータを制御する分取制御部と、
を有し、
前記圧力変化部は、前記マイクロチップ内に設けられた、粒子分取装置。
A light irradiation unit that irradiates particles flowing through a flow path provided in a microchip with a first light beam at a first position of the flow path and a second light beam at a second position of the flow path. When,
A photodetector that detects the first light emitted from the particles by irradiating the first light beam and the second light emitted from the particles by irradiating the second light beam.
A preparative unit that communicates with the flow path and has a pressure changing unit that changes pressure from the actuator drive.
Based on the detection time difference between the first light and the second light, it is determined whether or not the particles are to be sorted based on the time difference between the particles before and after reaching the sorting portion and the sorting mode. Then, based on the result of the determination, the preparative control unit that controls the actuator and
Have a,
The pressure changing unit is a particle sorting device provided in the microchip .
前記アクチュエータは、前記判定の結果に基づいて、分取対象である前記粒子と分取対象でない前記粒子の回収先を変更する、請求項1に記載の粒子分取装置。 The particle sorting device according to claim 1, wherein the actuator changes the collection destination of the particles to be sorted and the particles not to be sorted based on the result of the determination. 前記分取部は、前記流路に連通する吸引流路と吸引部により構成される、請求項1に記載の粒子分取装置。 The particle sorting device according to claim 1, wherein the preparative unit is composed of a suction flow path communicating with the flow path and a suction unit. 前記アクチュエータは、前記吸引部の体積を任意のタイミングで拡張可能である、請求項3に記載の粒子分取装置。 The particle sorting device according to claim 3, wherein the actuator can expand the volume of the suction portion at an arbitrary timing. 前記変更は、前記吸引部の体積を拡張したことに基づく、請求項4に記載の粒子分取装置。 The particle sorting device according to claim 4, wherein the modification is based on expanding the volume of the suction unit. 前記吸引部の体積を拡張したことより吸引部に負圧を生成する、請求項5に記載の粒子分取装置。 The particle sorting device according to claim 5, wherein a negative pressure is generated in the suction portion by expanding the volume of the suction portion. 前記分取モードは、ユーザーにより選択可能である、請求項1から6のいずれか一項に記載の粒子分取装置。 The particle sorting device according to any one of claims 1 to 6, wherein the sorting mode can be selected by the user. 前記分取モードは、純度を優先した純度優先モード、又は取得率を優先した取得率優先モードのいずれかである、請求項1から7のいずれか一項に記載の粒子分取装置。 The particle sorting device according to any one of claims 1 to 7, wherein the preparative mode is either a purity priority mode in which purity is prioritized or an acquisition rate priority mode in which acquisition rate is prioritized. 前記第二光ビームは、前記第一光ビームと波長が異なる、請求項1から8のいずれか一項に記載の粒子分取装置。 The particle sorting device according to any one of claims 1 to 8, wherein the second light beam has a wavelength different from that of the first light beam. 前記第二光ビームは、前記第一光ビームと波長が同じである、請求項1から8のいずれか一項に記載の粒子分取装置。 The particle sorting device according to any one of claims 1 to 8, wherein the second light beam has the same wavelength as the first light beam. 前記第一の光と前記第二の光の検出時間差から、前記粒子が前記分取部に到達する時間を算出する算出部、
を更に有する、請求項1から10のいずれか一項に記載の粒子分取装置。
A calculation unit that calculates the time for the particles to reach the preparative unit from the detection time difference between the first light and the second light.
The particle sorting device according to any one of claims 1 to 10, further comprising.
前記分取制御部は、前記光検出部で検出されたデータと、前記算出部で算出された前記時間に基づいて、前記アクチュエータを制御する、請求項11に記載の粒子分取装置。 The particle sorting device according to claim 11, wherein the preparative control unit controls the actuator based on the data detected by the light detection unit and the time calculated by the calculation unit. 前記算出部は、前記検出時間差から、前後の粒子が前記分取部に到達する到達時間差を算出する、請求項11又は12に記載の粒子分取装置。 The particle sorting device according to claim 11 or 12, wherein the calculation unit calculates the arrival time difference at which the particles before and after reach the preparative unit from the detection time difference. 前記粒子は、生体関連粒子である、請求項1から13のいずれか一項に記載の粒子分取装置。 The particle sorting device according to any one of claims 1 to 13, wherein the particles are biologically related particles. 前記粒子を含むサンプル液が導入されるサンプル液導入流路と、
シース液が導入される1対のシース液導入流路と、
を更に有する、請求項1から14のいずれか一項に記載の粒子分取装置。
The sample liquid introduction flow path into which the sample liquid containing the particles is introduced, and
A pair of sheath liquid introduction channels into which the sheath liquid is introduced, and
The particle sorting device according to any one of claims 1 to 14, further comprising.
前記光検出部は、PMT(Photo Multiplier Tube)、CCD、及びCMOS素子からなる群より選ばれるいずれか1以上のエリア撮像素子から構成される、請求項1から15のいずれか一項に記載の粒子分取装置。 The method according to any one of claims 1 to 15, wherein the photodetector is composed of any one or more area image pickup elements selected from the group consisting of a PMT (Photo Multiplier Tube), a CCD, and a CMOS element. Particle sorting device. 前記光検出部では、前方散乱光、側方散乱光、レイリー散乱光、及びミー散乱光からなる群より選ばれるいずれか1以上の光を検出する、請求項1から16のいずれか一項に記載の粒子分取装置。 The light detection unit detects any one or more lights selected from the group consisting of forward scattered light, side scattered light, Rayleigh scattered light, and Mie scattered light, according to any one of claims 1 to 16. The particle sorting device described. マイクロチップ内に設けられた流路を通流する粒子に、前記流路の第一位置で第一光ビームを照射し、前記流路の第二位置で第二光ビームを照射する光照射部と、前記第一光ビームを照射することより前記粒子から発する第一の光と前記第二光ビームを照射することより前記粒子から発する第二の光を検出する光検出部と、前記流路と連通し、アクチュエータ駆動より圧力変化する圧力変化部を有する分取部と、を有する粒子分取装置と、
前記第一の光と前記第二の光の検出時間差に基づく前後の粒子が前記分取部に到達する時間差と、分取モードに基づいて、前記粒子は分取対象であるか否かを判定し、前記判定の結果に基づいて、前記アクチュエータを制御する分取制御部、を有する、制御装置と、
を有し、
前記圧力変化部は、前記マイクロチップ内に設けられた、粒子分析システム。
A light irradiation unit that irradiates particles flowing through a flow path provided in a microchip with a first light beam at a first position of the flow path and a second light beam at a second position of the flow path. A light detection unit that detects the first light emitted from the particles by irradiating the first light beam and the second light emitted from the particles by irradiating the second light beam, and the flow path. A particle preparative device having a preparative portion having a pressure changing portion that changes pressure from an actuator drive,
Based on the detection time difference between the first light and the second light, it is determined whether or not the particles are to be sorted based on the time difference between the particles before and after reaching the sorting portion and the sorting mode. A control device having a preparative control unit that controls the actuator based on the result of the determination.
Have a,
The pressure change unit is a particle analysis system provided in the microchip .
マイクロチップ内に設けられた流路を通流する粒子に、前記流路の第一位置で第一光ビームを照射し、前記流路の第二位置で第二光ビームを照射する光照射工程と、
前記第一光ビームを照射することより前記粒子から発する第一の光と前記第二光ビームを照射することより前記粒子から発する第二の光を検出する光検出工程と、
前記流路と連通し、アクチュエータ駆動より圧力変化する圧力変化部を有する分取部に基づく分取工程と、
前記第一の光と前記第二の光の検出時間差に基づく前後の粒子が前記分取部に到達する時間差と、分取モードに基づいて、前記粒子は分取対象であるか否かを判定し、前記判定の結果に基づいて、前記アクチュエータを制御する分取制御工程と、
を行い、
前記圧力変化部は、前記マイクロチップ内に設けられた、粒子分取方法。
A light irradiation step of irradiating particles flowing through a flow path provided in a microchip with a first light beam at the first position of the flow path and irradiating a second light beam at the second position of the flow path. When,
A light detection step of detecting a first light emitted from the particles by irradiating the first light beam and a second light emitted from the particles by irradiating the second light beam.
A preparative step based on a preparative section that has a pressure changing section that communicates with the flow path and changes the pressure from the actuator drive.
Based on the detection time difference between the first light and the second light, it is determined whether or not the particles are to be sorted based on the time difference between the particles before and after reaching the sorting portion and the sorting mode. Then, based on the result of the determination, the preparative control step of controlling the actuator and the preparative control step
The stomach line,
The pressure changing portion is a particle sorting method provided in the microchip .
JP2019071878A 2019-04-04 2019-04-04 Particle sorting device and particle sorting method Active JP6791295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019071878A JP6791295B2 (en) 2019-04-04 2019-04-04 Particle sorting device and particle sorting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019071878A JP6791295B2 (en) 2019-04-04 2019-04-04 Particle sorting device and particle sorting method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017150212A Division JP6508265B2 (en) 2017-08-02 2017-08-02 PARTICLE SEPARATING DEVICE AND PARTICLE SEPARATING METHOD

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020141943A Division JP2020190575A (en) 2020-08-25 2020-08-25 Particle sorting apparatus and method

Publications (2)

Publication Number Publication Date
JP2019132853A JP2019132853A (en) 2019-08-08
JP6791295B2 true JP6791295B2 (en) 2020-11-25

Family

ID=67546085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019071878A Active JP6791295B2 (en) 2019-04-04 2019-04-04 Particle sorting device and particle sorting method

Country Status (1)

Country Link
JP (1) JP6791295B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3569267B2 (en) * 2002-03-27 2004-09-22 コニカミノルタホールディングス株式会社 Fluid transport system
JP4509154B2 (en) * 2007-09-04 2010-07-21 ソニー株式会社 Light irradiation apparatus, particle analysis apparatus, and light irradiation method
JP4389991B2 (en) * 2007-10-26 2009-12-24 ソニー株式会社 Method and apparatus for optical measurement of fine particles
JP4990746B2 (en) * 2007-12-14 2012-08-01 ベイバイオサイエンス株式会社 Apparatus and method for separating biological particles contained in a liquid flow
JP2009162650A (en) * 2008-01-08 2009-07-23 Sony Corp Optical measuring device
JP2010038866A (en) * 2008-08-08 2010-02-18 Sony Corp Microchip, particulate dispensing device, and feed flow method
WO2010104993A2 (en) * 2009-03-10 2010-09-16 The Regents Of The University Of California Fluidic flow cytometry devices and particle sensing based on signal-encoding
JP5720233B2 (en) * 2010-12-17 2015-05-20 ソニー株式会社 Microchip and fine particle sorting device

Also Published As

Publication number Publication date
JP2019132853A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP6186812B2 (en) Particle sorting apparatus and particle sorting method
JP6958650B2 (en) Droplet sorting device, droplet sorting method and program
JP6597762B2 (en) Microchip type optical measuring apparatus and optical position adjusting method in the apparatus
JP6304034B2 (en) Fine particle sorting device, fine particle sorting method and program
JP6447506B2 (en) Particle sorting apparatus and particle sorting method
WO2017068822A1 (en) Image processing device, microparticle separation device, and image processing method
US11927524B2 (en) Optimizing method of suction condition of microparticle and microparticle fractionating device
US20210372917A1 (en) Method for optimizing microparticle suction conditions, microparticle sorting device, microparticle sorting system, and microparticle sorting program
JP5905317B2 (en) Calibration method and apparatus for fine particle sorting apparatus
JP6237806B2 (en) Fine particle fractionator
JP2022001888A (en) Flow cytometry system, and microparticle analysis method
JP6791295B2 (en) Particle sorting device and particle sorting method
JP6706011B2 (en) Particle sorting device, particle sorting method and program
JP6508265B2 (en) PARTICLE SEPARATING DEVICE AND PARTICLE SEPARATING METHOD
WO2022201959A1 (en) Bioparticle sorting device, and method for adjusting sorting conditions of bioparticle sorting device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200825

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200825

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200902

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R151 Written notification of patent or utility model registration

Ref document number: 6791295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151