JP2017210871A - 車載制御装置 - Google Patents

車載制御装置 Download PDF

Info

Publication number
JP2017210871A
JP2017210871A JP2016102179A JP2016102179A JP2017210871A JP 2017210871 A JP2017210871 A JP 2017210871A JP 2016102179 A JP2016102179 A JP 2016102179A JP 2016102179 A JP2016102179 A JP 2016102179A JP 2017210871 A JP2017210871 A JP 2017210871A
Authority
JP
Japan
Prior art keywords
temperature
power generation
exhaust gas
control device
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016102179A
Other languages
English (en)
Other versions
JP6762755B2 (ja
Inventor
久幸 折田
Hisayuki Orita
久幸 折田
猿渡 匡行
Masayuki Saruwatari
匡行 猿渡
助川 義寛
Yoshihiro Sukegawa
義寛 助川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016102179A priority Critical patent/JP6762755B2/ja
Publication of JP2017210871A publication Critical patent/JP2017210871A/ja
Application granted granted Critical
Publication of JP6762755B2 publication Critical patent/JP6762755B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】エンジン排ガスが有する運動エネルギーを電気エネルギーに変換する回生発電手段と、エンジン排ガスが有する熱エネルギーを電気エネルギーに変換する熱回収手段を制御し、効率よく発電する車載制御装置を提供する。
【解決手段】エンジン排ガスの運動エネルギーを電気エネルギーに変換する回生発電手段21と、エンジン排ガスの熱を電気エネルギーに変換する熱回収手段11を制御する車載制御装置32において、熱回収手段11の温度が所定値未満の場合、熱回収手段11の温度が所定値以上となるように回生発電手段21の発電量を変更する。
【選択図】図2

Description

本発明は、エンジンの排ガスのエネルギーを回収する制御を行う車載制御装置に関する。
燃料を燃焼し、動力を得るエンジンの燃費を向上させる方法として、排ガスのエネルギーを回収し、有効利用する方法がある。排ガスのエネルギーには、運動エネルギーと熱エネルギーがあり、これら二つのエネルギーを回収し、有効利用する方法が特許文献1に記載されている。
運動エネルギーは、回転翼を有する膨張ターボを駆動させることで回収する。回収したエネルギーは、動力として、あるいは電気電力に変換して有効利用する。以下、この膨張ターボを回生ターボと記述する。一方、熱エネルギーは、熱交換器を介して別媒体を加熱し、その媒体の膨張、収縮によって得られる圧力差で膨張機を駆動させ、回収する。膨張機で得た動力は、主に電気電力に変換し、有効利用する。この装置は、熱サイクル装置と呼ばれており、以下、熱サイクル装置の膨張機を熱サイクル膨張機と記述する。
エンジンの下流に回生ターボと熱サイクル装置を設けることが特許文献1に記述されている。
回生ターボの回転軸に連結して熱サイクル膨張機を設け、同軸に発電機を備えることにより、回生ターボと熱サイクル膨張機の両方で発電できるようにしている。
さらに、回生ターボの上流に、もう一つの回生ターボを設け、同じ回転軸に圧縮ターボの回転軸を連結し、燃焼に必要な空気を圧縮し、空気流量を増やす動力として活用することが記述されている。これはターボチャージャーと呼ばれており、以下、この圧縮ターボを過給機と記述する。
熱サイクル装置の媒体は水よりも低温で蒸発するフロン媒体を用いることで、熱サイクル装置の発電効率の向上を図るようにしている。
熱サイクル装置には、媒体を輸送するポンプが必要になる。その駆動には電気電力を使用する。熱サイクル膨張機で得る電気電力がポンプを駆動する電気電力より大きい場合、自立運転できる状態と呼ばれており、電気電力を必要とする他の電気機器で有効活用することにより、エンジンの低燃費を図ることができる。一方、ポンプを駆動する電気電力が熱サイクル膨張機で得る電気電力より大きい場合、熱サイクル装置は単に電気電力を消費するものになり、この状態を自立運転できない状態と呼び、熱サイクル装置を停止させることが必要になる。
回生ターボで発電に使用した排ガスは、エネルギーの消失と気体の膨張で温度が低下する。回生ターボによる発電を優先した制御では、回生ターボを常時駆動させると、熱サイクル装置は自立運転できない状態になり易く、熱サイクル装置の発電は抑制される。回生ターボの発電効率よりも熱サイクル装置の発電効率が大きい場合、回生ターボの発電を抑制し、優先して熱サイクル装置で発電する制御が必要になる。
特開昭62-258108号公報
本発明の課題は、エンジン排ガスが有する運動エネルギーを電気エネルギーに変換する回生発電手段と、エンジン排ガスが有する熱エネルギーを電気エネルギーに変換する熱回収手段を有するエンジンシステムにおいて、両者の手段を制御し、効率よく発電する車載制御装置を提供することである。
上記課題を解決する本発明の車載制御装置は、エンジンからの排ガスの運動エネルギーを電気エネルギーに変換する回生発電手段と、エンジンからの排ガスの熱を電気エネルギーに変換する熱回収手段とを制御する車載制御装置において、車載制御装置は、熱回収手段の温度が所定値未満の場合、熱回収手段の温度が所定値以上となるように回生発電手段の発電量を変更するようにした。
熱回収手段は、エンジンからの排ガス経路において回生発電手段の上流に設けられ、熱回収手段の温度が所定値未満の場合の回生発電手段の発電量は、所定値以上の場合の回生発電手段による発電量よりも多くなるように制御するようにした。
熱回収手段は、エンジンからの排ガス経路において回生発電手段の下流に設けられ、熱回収手段の温度が所定値未満の場合の回生発電手段の発電量は、所定値以上の場合の回生発電手段による発電量よりも少なくなるように制御するようにした。
本発明によれば、エンジン排ガスが有する運動エネルギーを電気エネルギーに変換する回生発電手段と、エンジン排ガスが有する熱エネルギーを電気エネルギーに変換する熱回収手段を有するエンジンシステムにおいて、回生発電手段の発電効率よりも熱回収手段の発電効率が高いエンジンシステムを提供し、回生発電手段の制御と熱回収手段の制御を協調制御する方法を提供される。その結果、排ガスが有するエネルギーを効率よく電気エネルギーに変換することができるようになった。
本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の回生ターボと熱サイクル装置のシステム図。 本発明の回生ターボと熱サイクル装置の協調制御方法を説明する図。 本発明の回生ターボと熱サイクル装置の別のシステム図。 本発明の熱サイクル膨張機入口CO2温度と入出力発電電力の関係図。 本発明の回生ターボと熱電変換装置のシステム図。 本発明の熱サイクル装置と回生ターボのシステム図。 本発明の熱サイクル膨張機入口CO2温度と発電効率の関係図。 本発明の熱サイクル装置と回生ターボの協調制御方法を説明する図。 本発明の回生ターボと熱電変換装置のシステム図。
本実施の形態では、自家用の自動車エンジンを対象に、排ガスの運動エネルギーおよび熱エネルギー、それぞれに適した装置で発電する方法を用いて説明するが、大型のトラック、船舶、さらにはエンジン発電装置にも適用することができる。
[実施例1]
図1に本発明の回生ターボと熱サイクル装置のシステム図を示す。本システムが搭載された自家用の自動車は、エンジン2から不図示のトランスミッションを介して車輪に駆動力を伝達して走行する構成を有している。エンジン2は、燃焼室内で空気と燃料の混合気を燃焼させる内燃機関である。エンジン2の吸気経路には、過給機(過給手段)1が取り付けられている。そして、エンジン2の排ガス経路には、回生ターボ3、触媒4、熱サイクル装置11が下流側に向かって順番に取り付けられている。
自動車は、空気と燃料をエンジン2に供給し、燃焼させることによって車輪を回転させる動力を得る。エンジン負荷を高くするには、燃料流量を増加させるとともに、過給機1を用い、空気を圧縮することで空気流量を増加させる。その排ガスは、流量が多く、圧力も高い。したがって、排ガス経路の排ガス管内における排ガスの流速は速く、排ガスの運動エネルギーが高い。
回生ターボ3の回転軸と過給機1の回転軸を同一軸で連結し、排ガスの運動エネルギーを利用し、過給機1の動力を得る。これがターボチャージャーである。ターボチャージャーは、エンジン下流の運動エネルギーで、エンジン上流の過給機1の動力を得ることから、エンジン負荷の要求に対して時間的な遅れが生じる。そこで、ターボチャージャーの同一軸上にモーター発電機21を設け、エンジン負荷の要求に対して事前に過給機1を駆動するような制御がなされる。その制御は、例えば、エンジン負荷に合わせてエンジン2を制御する車載制御装置32に含めることで可能になる。さらに、過給機1が必要とする動力以上に回生ターボ3で動力が得られる場合には、モーター発電機21を発電機(回生発電手段)としても作用させる。
回生ターボ3の下流に排ガスを浄化する触媒(排ガス浄化触媒)4が設けられる。触媒4は、排ガス中の窒素酸化物(以下、NOxと記述)、一酸化炭素、炭化水素のガスおよび煤を化学反応により窒素、二酸化炭素および水にする。
熱サイクル装置11は、触媒4の下流に熱交換器5を含めて設けられる。熱交換器5は排ガスの熱エネルギーを媒体に移動させ、回収する装置(熱回収手段)である。例えば、媒体を水とする。熱交換器5は水を蒸発させる蒸発器となる。冷却器13は熱サイクル膨張機12を通過した水蒸気を凝縮させる凝縮器となる。熱サイクル膨張機12は蒸発によって得る高圧と凝縮によって得る低圧との圧力差で駆動し、その動力で発電機15を駆動させ、発電する。冷却器13で液化した水をポンプ14で熱交換器5に輸送する。
熱サイクル装置11は、熱サイクル膨張機12の入口圧力と出口圧力に圧力差がなければ駆動しない。したがって、それらの圧力情報を得る手段が必要になる。熱サイクル膨張機12の入口圧力と出口圧力は、それぞれ温度計(温度計測手段)16および17で計測することができる。これは、熱サイクル膨張機12の入口圧力は温度計16で計測した温度の飽和圧力であり、熱サイクル膨張機12の出口圧力は温度計17で計測した温度の飽和圧力になるからである。
媒体を輸送するポンプ14と冷却器13で電気電力が必要になる。冷却器13として、例えば、自動車に設置されているラジエターと同じとすれば、冷却能力を上げるためにファンが設けられており、そのファンを駆動させるために電気電力が必要になる。
したがって、熱サイクル装置11は、熱サイクル膨張機12で得る電気電力が、ポンプ14の必要とする電気電力と冷却器13の必要とする電気電力との総和よりも大きい場合に駆動させ、小さい場合には停止させる運用が必要になる。以下、その境界、すなわち熱サイクル膨張機12で得る電気電力と、ポンプ14の必要とする電気電力と冷却器13の必要とする電気電力との総和が等しくなる条件を自立運転条件と記述する。
自動車に設置されているラジエターでは、エンジン2によって温められた高温の水を所定の温度に冷却する制御と、所定の温度以下ならラジエターを迂回し、冷却しないようにする制御がなされている。冷却器13もラジエターと同様な制御となる。エンジン起動の初期状態では、水の温度が低く、所定の温度になるまでは冷却しないが、所定の温度以上になった後は、冷却器13内の水温、すなわち温度計17の計測値が一定になるように制御される。
熱サイクル膨張機12入口の水蒸気温度、すなわち温度計16の計測値は、エンジン負荷に合わせてポンプ14で水の循環流量を変化させて制御をする。ここで、熱サイクル装置11の発電効率を、使用する熱エネルギー量に対する発電電力と定義すると、熱サイクル膨張機12入口の媒体温度によって発電効率が大きくなる最適値が存在する。したがって、その最適値に対してポンプ14の出力は制御される。温度計16で計測される温度は、熱サイクル装置11を駆動させるか、停止させるかを判断する自立運転条件となる。以下、自立運転温度と記述する。
温度計16の位置は熱交換器5と熱サイクル膨張機12の間の媒体温度を計測するようにしているが、この温度は熱交換器5入口の排ガス温度および排ガス流量とも関係性がある。また、排ガス温度と排ガス流量はエンジン負荷と関係性があることから、温度計16は、熱交換器5入口の排ガス温度でも代用することができる。
回生ターボ3および熱サイクル装置11で発電した電気電力は、電力制御装置31に取り込み、バッテリー33の充電、およびその他の電気電力が必要とする箇所へ送り込まれる。回生ターボ3および熱サイクル装置11で発電した電力が自動車で必要とする電気電力より小さい場合、バッテリー33から電気電力を取り出す。バッテリー33の電気容量が少ない場合、エンジン2に付設した発電機22を駆動させ、発電することにより、自動車で必要とする電気電力とバッテリー33を充電する電気電力を得る。
エンジン2に付設した発電機22は燃料を使って駆動する。したがって、回生ターボ3による発電や熱サイクル装置11による発電は、発電機22の駆動を抑制し、エンジン2の燃費向上に寄与する。
ここまで、熱サイクル装置11の作動媒体は水を例として説明したが、バイナリー発電の媒体、すなわち、代替フロン媒体、ペンタンなどの有機系媒体、さらにはアンモニア水の媒体でもよい。
また、これまでの説明は、回生ターボ3と熱サイクル装置11をそれぞれ独立して制御する方法を説明した。ところが、回生ターボ3で発電させた排ガスは、運動エネルギーの消失、気体の膨張、さらには放熱により温度低下する。回生ターボ3の常時駆動は、熱サイクル装置11からすれば排ガスエネルギーが減少した状態で熱エネルギーを回収することになり、温度計16の温度は低下しやすく、自立運転温度以下になりやすくなる。
熱サイクル装置11の発電効率が回生ターボ3による発電効率より高い場合、回生ターボ3による発電を優先するよりは、むしろ熱サイクル装置11での発電を優先させる制御が必要になる。
本実施例では、熱サイクル装置11の温度計16の計測値を車載制御装置32に取り込み、車載制御装置32からモーター発電機21に指令を送ることにより回生ターボ3を制御する協調制御を設けるようにする。本実施例によれば、熱サイクル装置11の温度が所定値未満の場合に、所定値以上となるように回生ターボ3の発電電力を変更する制御を行う。
まず、エンジン起動時は、熱サイクル装置11の温度計16の計測値は常温であり、この温度が自立運転温度になるまで回生ターボ3を駆動させない制御をする。自立運転温度以上になってからの制御は、図2の本発明の回生ターボ3と熱サイクル装置11の協調制御方法図で説明する。図2の左側がエンジン負荷を増加させる加速の場合であり、図2の右側がエンジン負荷を減少させる減速の場合である。図中の実線は本実施例の協調制御であり、破線は独立制御を表している。
加速時において、図2左1段目に示すようなエンジン負荷の増加と、過給機1の駆動開始時点を設定する。エンジン負荷の増加にともない図2左2段目に示すように排ガス温度は上昇する。図2左3段目の破線で示すように、独立制御であれば次第に回生ターボ3の発電電力は上昇する。ここで、同一軸のターボチャージャーにおける過給機1応答の時間遅れは微小とし、無視する。協調制御では実線で示すように回生ターボ3で発電させない制御をする。例えば、車載制御装置32からモーター発電機21に指令を送り、モーター発電機21によって回生ターボ3の回転翼の負荷を下げる制御を行う。これにより、回生ターボ3による排ガスの温度低下を緩和し、排ガスを高温状態のまま、熱サイクル装置11の熱交換器5に導入する。
図2左4段目に示すように、熱サイクル膨張機12入口の媒体温度は、破線で示す独立制御より実線で示す協調制御の方が速く温度上昇する。熱サイクル膨張機12入口の媒体温度が適正温度範囲に到達する。その下限は熱サイクル装置11の発電効率が高くなる下限温度である。図2左3段目の実線で示すように、その時点で回生ターボ3を駆動させ、回生ターボ3による発電を開始させる。
その結果、図2左5段目に示すように、回生ターボ3と熱サイクル装置11の発電電力の総和は、破線で示す独立制御よりも実線で示す協調制御の方が速く増加する。
一方、減速時においては、図2右1段目に示すようなエンジン負荷の減少と、過給機1の停止時点を設定する。エンジン負荷の減少にともない図2右2段目に示すようにエンジン出口の排ガス温度が減少する。図2右3段目の破線で示すように、独立制御であれば次第に回生ターボ3の発電電力は減少する。協調制御では実線で示すように急激に回生ターボ3で発電を低下させる制御をする。例えば、車載制御装置32からモーター発電機21に指令を送り、モーター発電機21によって回生ターボ3の回転翼の負荷を下げる制御を行う。これにより、回生ターボ3による排ガスの温度低下を緩和し、排ガスを温度が高い状態のまま、下流側の熱サイクル装置11の熱交換器に導入する。
図2右4段目に示すように、熱サイクル膨張機12入口の媒体温度は、破線で示す独立制御より実線で示す協調制御の方が遅く温度低下する。熱サイクル膨張機12入口の媒体温度が適正温度範囲の下限に到達する。図2右3段目の実線で示すように、その時点で回生ターボ3による発電を停止させる。
その結果、図2右5段目に示すように、回生ターボ3と熱サイクル装置11の発電電力の総和は、破線で示す独立制御よりも実線で示す協調制御の方が遅く減少する。
本実施例によれば、熱サイクル装置11は、エンジン2からの排ガス経路において回生ターボ3の下流に設けられており、熱サイクル装置11の温度が所定値未満の場合の回生ターボ3の発電量は、熱サイクル装置11の温度が所定値以上の場合の回生ターボ3による発電量よりも少なくなるように制御される。したがって、回生ターボ3よりも発電効率の高い熱サイクル装置11での発電を優先させることができ、効率よく発電することができる。
[実施例2]
図3に本発明の回生ターボと熱サイクル装置の別のシステム図を示す。
実施例1の図2で説明したように、過給機1の駆動、停止と、回生ターボ3の駆動、停止は時間的に一致しない。したがって、過給機1と回生ターボ3の回転軸は必ずしも同一軸で連結されていなくてもよい。そこで、過給機1の回転軸には電気電力で駆動するモーター26を連結し、回生ターボ3の回転軸には発電機(回生発電手段)23を連結し、それぞれ分離するようにした。回転軸が同一軸で連結する場合、過給機1と回生ターボ3は互いに接近した位置に配置しなければならないが、分離することで配置の自由度が増す。
過給機1のモーター26が必要とする電気電力と、回生ターボ3の発電機23で得た電気電力は電力制御装置31で制御するようにした。
排ガスを浄化する触媒4は、回生ターボ3の直下に設けられており、排ガス中の窒素酸化物(以下、NOxと記述)、一酸化炭素、炭化水素のガスおよび煤を化学反応により窒素、二酸化炭素および水にする。その反応温度は触媒の種類によって異なるが、概ね400℃以上の温度が必要になる。したがって、エンジン起動の初期段階では、触媒温度を急激に上昇させ、エンジン2が駆動している間は触媒温度を反応温度以上に維持する運用が必要になる。
回生ターボ3で発電に用いられた排ガスは温度低下することから、触媒温度を計測する温度計41を設け、その計測値を監視し、その温度が反応温度以下ならば回生ターボ3の発電電力を減少させ、あるいは発電させない制御をする。
その方法として、回生ターボ3の直上から分岐し、回生ターボ3を迂回するバイパス経路を設けた。バルブ24および25で回生ターボ3を通過する排ガス流量を減少させる、あるいは通過させないようにする。本実施例では、回生ターボ3の発電量調整機構として、回生ターボ3をバイパスするバイパス経路を設け、触媒4の温度が所定の温度未満の場合に、排ガスをバイパス経路に通過させて、回生ターボ3の発電電力を減少させる制御、あるいは回生ターボ3に発電させない制御をする。
また、発電機23の磁界強度を弱める(磁界強度を下げる)方法でもよい。回生ターボ3は排ガスが通過する個所に回転翼構造を有し、その回転翼軸に発電機23を接続することで発電する。発電機23は、コイルに電流を加えることで磁界を発生させ、その回転によって誘導起電力を発生させる。したがって、発電機23に与える電流を減少させれば、磁界強度は弱く、発電電力を抑えることができ、回転翼の負荷を下げることができる。
実施例1で説明したように、図2のような制御は回生ターボ3の発電効率よりも熱サイクル装置11の発電効率が大きい場合に有効になる。そこで、高発電効率の熱サイクル装置11が必要になる。
媒体が低温であれば発電効率は低くが、高温になると高くなる。しかしながら、熱サイクル膨張機12入口の媒体温度を高温にすると熱交換器5における回収熱量は相反して減少し、発電電力は少なくなる。したがって、低温でも高発電効率となる媒体を使う必要がある。
バイナリー発電の媒体として、例えば、代替フロンを使用する場合、使用温度に上限があり、その温度では十分な発電効率が得ることができない。この温度上限は、代替フロンが熱分解しない温度であり、その温度を超えて使用すれば、材料を腐食させるガスが発生し、材料不腐食により長時間運転ができなくなる。熱サイクル装置11のように閉じた媒体循環の場合、熱分解しない温度で上限を決めており、この温度を超えた運用はできない。
そこで、本実施例では、エンジン排ガスの温度範囲で熱分解しない二酸化炭素(以下、CO2と表記)を媒体として用いることにした。二酸化炭素は冷却器13の媒体温度では液化しないため気体であり、高圧の超臨界状態で循環させる。
媒体が水の場合、液体輸送であるポンプ14を用いた。ポンプ14では、熱サイクル膨張機12で得る発電電力に対して使用する電気電力は無視できるほど小さい。一方、媒体がCO2の場合、圧縮機20を用いる。圧縮機20では、熱サイクル膨張機12で得る発電電力に対して圧縮機20で使用する電気電力は無視できなくなる。さらに、気体を圧縮するため、気体の温度は上昇する。
図4に本発明の熱サイクル膨張機12入口のCO2温度と入出力電気電力の関係図を示す。●は熱サイクル膨張機12で得る電気電力(出力)であり、■は圧縮機20で必要とする電気電力(入力)である。それらの差が取得できる電気電力となる。●と■が一致する自立運転温度以上で取得電気電力が得られる。
発電効率を使用する熱エネルギー量に対する発電電力と定義し、熱サイクル装置における発電電力は、熱サイクル膨張機で得る発電電力から圧縮機(あるいはポンプ)で使用する電気電力を差し引いた正味の値とすると、低温における発電効率は水よりもCO2の方が高い。
[実施例3]
実施例1および2ではエンジン排ガスの熱エネルギーを熱サイクル装置11で回収する方法を説明したが、他の方法として熱電変換装置51で代用することができる。
図5に本発明の回生ターボと熱電変換装置のシステム図を示す。触媒4の下流に熱電変換装置51を設けた。熱電モジュール組込み熱交換器52は熱電変換材料のモジュール(熱電変換素子)を熱交換器内部の伝面に組込んだものである。熱電変換材料は材料の厚さ方向の温度差で発電する材料であり、例えばペルチェ素子が用いられる。すなわち、熱電材料の1面を高温の排ガスで加熱し、もう片方の1面を冷却することで温度差を確保し、発電させる。
熱電モジュール組込み熱交換器52を冷却する媒体は液体がよく、途中、沸騰させないで運用する。そこで、本実施例では、同様な使い方をするエンジン冷却のクーラントを用いることにした。冷却器53は自動車であればラジエターと同じである。クーラントは、ポンプ55を用いて冷却器53から熱電モジュール組込み熱交換器52に供給される。熱電モジュール組込み熱交換器52で得た電気電力は、電圧調整器54を経て、電力制御装置31に取り込むようにする。
熱電変換装置51を駆動するには媒体を輸送するポンプ55の電気電力を必要になる。さらに、冷却器53のファンを駆動させるための電気電力が必要になる。したがって、熱電変換装置は、熱電変換装置で得る電気電力が、ポンプ55の必要とする電気電力と冷却器53の必要とする電気電力との総和よりも大きい場合に駆動させ、小さい場合に停止させる運用になる。したがって、この場合も自立運転条件がある。
エンジン起動の初期状態はクーラントの温度が低く、熱電モジュール組込み熱交換器52にクーラントを供給することにより加熱され、次第にクーラント温度は上昇する。そこで、冷却器53の出口に温度計56を設け、その温度が所定の温度以上にならないようにポンプ55でクーラントの流量を調整するとともに、冷却器53のファン出力を調整する制御をする。
熱電モジュール組込み熱交換器52の加熱面は、排ガスの温度と流量の熱エネルギーによって温度変化する。熱エネルギーが多いほど高温になり、少ないほど低温になる。一方、冷却面は、熱電モジュール組込み熱交換器52に供給するクーラントの温度をポンプ55と冷却器53のファンによって所定の温度に調整されることから、温度の変動は小さい。したがって、排ガスの熱エネルギーの方が発電電力に及ぼす影響は大きい。そこで、自立運転温度は熱電モジュール組込み熱交換器52の入口の排ガス温度で設定するようにした。
本実施例では、触媒4と熱電モジュール組込み熱交換器52は近い位置にあることから、触媒温度を計測する温度計41の値を熱電変換装置51の自立運転を維持させる制御指標として用いる。温度計41の温度は、触媒4の反応温度維持の制御指標も兼ねる。これにより、回生ターボ3の発電電力を減少させる、あるいは発電させない制御が可能になる。
ここまで、実施例1および2の熱サイクル装置11の代用として熱電変換装置51を説明したが、熱電変換装置51を、実施例1および実施例2の熱サイクル装置11の下流に設けることもできる。その場合、熱サイクル装置11と熱電変換装置51の間に温度計を設け、その温度を制御指標とする。
[実施例4]
実施例2で説明したように、過給機1の回転軸と回生ターボ3の回転軸とを分離することにより配置の自由度が増した。よって、回生ターボ3はエンジン2の直下にある必要はなく、熱サイクル装置11、あるいは熱電変換装置51の下流の離れた箇所に配置してもよい。
図6に本発明の熱サイクル装置と回生ターボのシステム図を示す。空気と燃料をエンジン2に供給し、燃焼させることによって車輪を回転させる動力を得る。エンジン出力を高くするときは、燃料流量を増加させるとともに、過給機1を用い、空気を圧縮することで空気流量を増加させる。エンジン負荷が高い場合のエンジン排ガスは、流量が多く、圧力も高い。したがって、排ガス管の流速は速く、運動エネルギーが高い状態になる。この運動エネルギーを回収するのが回生ターボ3である。
回生ターボ3で回収した運動エネルギーの利用方法には、過給機1の動力に利用する方法と、発電機23で電気エネルギーに変換して利用する方法がある。
前者は、実施例1で説明したターボチャージャーである。過給機1の回転軸と回生ターボ3の回転軸を同一軸で連結し、過給する動力を得ることから、過給機1で必要とする動力分を回生ターボ3から得ることになる。エンジン入口の過給された空気の圧力とエンジン出口の排ガスの圧力はほぼ同じであるが、温度は排ガスの方が高く、流量も排ガスの方が燃料流量分だけ多い。したがって、ターボチャージャーでは排ガス中の運動エネルギーの一部が回収されていることになる。
後者は、実施例2で説明した。過給機1の回転軸にモーター26を連結し、電気電力で駆動させ、回生ターボ3の回転軸には発電機を連結し、発電させる方法である。過給機1の回転軸と回生ターボ3の回転軸は同一軸ではないため、独立して制御することができる。よって、排ガスの全ての運動エネルギーを回生ターボ3で回収することができる。本実施例では後者を採用することにした。
エンジン直下に排ガスを浄化する触媒4を設ける。触媒4は排ガス中の窒素酸化物(以下、NOxと記述)、一酸化炭素、炭化水素のガスおよび煤を化学反応により窒素、二酸化炭素および水にする。その反応温度は触媒の種類によって異なるが、概ね400℃以上の温度が必要である。エンジン直下に触媒4を設けることにより、エンジン起動の初期段階における急速加熱も、温度保持も制御不要となる。
触媒4の下流に熱サイクル装置11を設ける。熱交換器5は排ガスの熱エネルギーを媒体に移動させ、回収する装置である。熱サイクル装置11の媒体はCO2を用いる。CO2は冷却器13の温度では液化しない気体であり、高圧の超臨界状態で循環させるため、圧縮機20を用いる。
実施例2で説明したように、圧縮機20で使用する電気電力は熱サイクル膨張機12で得る発電電力に対して無視できない。さらに、気体を圧縮するため気体の温度が上昇し、熱交換器5での伝熱量を減少させるが、水と比較して低温で発電効率が高く、水よりも多く発電電力を得ることができる。
熱サイクル膨張機12の入口に温度計16を設け、冷却器13の下流に温度計17を設け、温度を計測する。また、これら計測温度から熱サイクル膨張機12の入口圧力と出口圧力の情報を得ることができる。
熱サイクル装置11を駆動するには、媒体を輸送する圧縮機20の電気電力が必要であり、さらに、冷却器13に設けられたファンを駆動させるための電気電力が必要になる。熱サイクル装置11は、熱サイクル膨張機12で得る電気電力が圧縮機20の必要とする電気電力と冷却器13の必要とする電気電力との総和よりも大きい場合に駆動させ、小さい場合に停止させる。したがって、熱サイクル膨張機12で得る電気電力が圧縮機20の必要とする電気電力と冷却器13の必要とする電気電力との総和と等しくなる自立運転条件が存在する。その指標は熱サイクル膨張機12入口の温度計16の温度で設定する。
また、熱サイクル膨張機12入口の媒体温度、すなわち温度計16の温度には、発電効率が最大となる適正値が存在する。その値に対して圧縮機20の出力を制御する。温度計16の温度は、熱交換器5入口の排ガス温度および排ガス流量とも関係性がある。また、排ガス温度と排ガス流量はエンジン負荷と関係性があることから、温度計16は熱交換器5入口の排ガス温度でも代用することができる。
熱サイクル装置11の下流に回生ターボ3を設ける。過給機1と離れた位置関係になるが、それぞれの回転軸を独立することにより、そのような配置が可能となる。
熱サイクル装置11および回生ターボ3で発電した電力は、電力制御装置31に取り込み、バッテリー33の充電、およびその他の電気電力が必要とする箇所へ送り込まれる。熱サイクル装置11および回生ターボ3で発電した電力が自動車で必要とする電気電力より小さい場合、バッテリー33を放電させ、電気電力を取り出す。さらに、バッテリー33の電気容量が少ない場合、エンジン2に付設した発電機22を駆動させ、発電することにより、自動車で必要とする電気電力とバッテリー33を充電する。
エンジン2に付設した発電機22は燃料を使って駆動する。したがって、回生ターボ3による発電や熱サイクル装置11の駆動は、発電機22の駆動を抑制し、エンジン2の燃費向上に寄与する。
熱サイクル装置11と回生ターボ3の各制御方法について説明する。
図7に本発明の熱サイクル膨張機入口CO2温度と発電効率の関係図を示す。発電効率は使用する熱エネルギー量に対する発電電力と定義する。熱サイクル装置11における発電電力は、熱サイクル膨張機12で得る発電電力から圧縮機20(あるいはポンプ)で使用する電気電力を差し引いた値である。また、回生ターボ3は、過給機1から独立したものとし、回生ターボ3における発電電力は、回生ターボ3によって発電した電気電力とした。
●はCO2を媒体として用いた熱サイクル装置11の発電効率である。●の熱サイクル装置11の発電効率が高い点において、回生ターボ3の発電効率を○および□で示す。○は回生ターボ3をエンジン2の直下に設ける場合、□は回生ターボ3を熱サイクル装置11の下流に設ける場合である。
●の熱サイクル装置11の発電効率は、回生ターボ3をエンジン2の直下に設けても熱サイクル装置11の下流に設けても同じである。これは、熱サイクル膨張機入口CO2温度が得られれば、同じ発電効率となる。したがって、熱交換器5でCO2が得る熱エネルギーが大きいほど、言い換えると、熱サイクル膨張機12に供給するエネルギーが大きいほど、得られる電気電力が多くなる。
一方、回生ターボ3の発電効率は、□で示す熱サイクル装置11の下流に設ける方が○で示すエンジン直下に設ける場合より低い。これは、排ガスの温度が関係している。エンジン直下では排ガス温度が高く、熱サイクル装置11の下流では排ガス温度が低くなるからである。いずれも熱サイクル装置11の発電効率よりも低く、回生ターボ3が熱サイクル装置11の下流に設ける場合も、回生ターボ3より熱サイクル装置11を優先する制御が必要になる。
実施例2で説明したように、回生ターボ3で発電させた排ガスは温度低下する。しかしながら、本実施例では回生ターボ3の下流には排ガスのエネルギーを回収する装置はない。したがって、回生ターボ3は、過給機1の回転軸と回生ターボ3の回転軸が同一軸で連結されたターボチャージャーの場合と同じ制御でよい。すなわち、エンジン直下の排ガス圧力と過給機1によって上昇した吸気圧はほぼ同じになるような制御をする。
回生ターボ3の制御方法は実施例2で説明したように二つある。一つは回生ターボ3の直上から分岐し、回生ターボ3を迂回するバイパス経路を設け、分岐後の二つ経路にそれぞれバルブを設け、それらのバルブを調節することで回生ターボ3を通過する排ガス流量を調整する方法である。もう一つは、回生ターボ3の回転軸に接続した発電機23のコイルに加える電流を調整し、発生する磁界強度を調整する方法である。どちらを用いてもよいが、図6では後者を記述した。
放熱を除き、熱サイクル装置11の上流で排ガス温度を低下させる装置はない。したがって、熱サイクル装置11は、熱サイクル膨張機入口のCO2温度を自立運転の指標および高い発電効率を得る温度指標とし、独立した制御をすればよい。
図7に示したように回生ターボ3の発電効率は、熱サイクル装置11の下流に設ける方がエンジン直下に設ける場合より低くなるが、熱サイクル装置11の発電効率は回生ターボ3の発電効率より高く、熱サイクル装置11で熱エネルギーを回収する量を増加させる本実施例の方が、熱サイクル装置11と回生ターボ3を合わせた発電電力は増加する。
熱サイクル装置11と回生ターボ3の各制御を協調制御すれば、さらに熱サイクル装置11と回生ターボ3を合わせた発電電力は増加する。本実施例では、熱サイクル装置11の温度計16の計測値を車載制御装置32に取り込み、車載制御装置32から発電機23に指令を送ることにより回生ターボ3を制御する協調制御を設けるようにする。
実施例1で説明したように、回生ターボ3がエンジン直下にある場合、エンジン起動時においても回生ターボ3と熱サイクル装置11との協調制御が必要であった。しかしながら、本実施例では熱サイクル装置11と回生ターボ3の独立制御に任せて運用してよい。
自立運転温度以上になってからの制御は、図8の本発明の熱サイクル装置11と回生ターボ3の協調制御方法図で説明する。図8左側がエンジン負荷を増加させる加速の場合であり、図8右側がエンジン負荷を減少させる減速の場合である。図中の実線は本発明の協調制御であり、破線は独立制御を表している。
加速時において、図8左1段目に示すようなエンジン負荷の増加と、過給機1の駆動開始時点を設定する。エンジン負荷の増加にともない図8左2段目に示すように排ガス温度は上昇する。
図8左3段目の破線で示すように、独立制御であれば次第に回生ターボ3の磁界強度を高め、発電電力を増加させる。協調制御では実線で示すように回生ターボ3の磁界強度を急激に高める制御をする。磁界強度を高めることにより、回生ターボ3の回転翼は負荷が上がり、回転しづらくなるが、発電電力は増加する。また、回転翼が回転しづらくなると、それが抵抗になってエンジン出口から回生ターボ3までの間の排ガス圧力は上昇する。すなわち、排ガスの圧縮により回生ターボ3から排出する排ガスエネルギーを減少させ、減少させた分は回生ターボ3の上流にある熱サイクル装置11で回収される。
図8左4段目に示すように、熱サイクル膨張機12入口の媒体温度は、破線で示す独立制御より実線で示す協調制御の方が速く温度上昇する。熱サイクル膨張機12入口媒体温度が適正温度範囲に到達する。その下限は熱サイクル装置11の発電効率が高くなる下限温度である。図8左3段目の実線で示すように、適正温度範囲に到達するまでは、磁界強度を維持し、それ以降は独立制御と同じでよい。
その結果、図8左5段目に示すように、回生ターボ3と熱サイクル装置11の発電電力の総和は、破線で示す独立制御よりも実線で示す協調制御の方が速く増加する。減速時において、図8右1段目に示すようなエンジン負荷の減少と、過給機1の停止時点を設定する。エンジン負荷の減少にともない図8右2段目に示すように排ガス温度が減少する。図8右3段目の破線で示すように、独立制御であれば次第に回生ターボ3の磁界強度を減少させる(磁界強度を弱める)。
図8右4段目の実線で示すように、熱サイクル膨張機12入口の媒体温度が低下し、適正温度範囲の下限に到達したら、図8右3段目の実線で示すように磁界強度を維持する、あるいは高める制御をし、エンジン出口から回生ターボ3までの間の排ガス圧力の低下を抑制する。これにより、熱サイクル膨張機12入口の媒体温度の低下を緩和させる。磁界強度は独立制御より高く、回生ターボ3での発電電力は独立制御より多い。
その結果、図8右5段目に示すように、回生ターボ3と熱サイクル装置11の発電電力の総和は、破線で示す独立制御よりも実線で示す協調制御の方が遅く減少する。
本実施例によれば、熱サイクル装置11は、エンジン2からの排ガス経路において回生ターボ3の上流に設けられており、熱サイクル装置11の温度が所定値未満の場合の回生ターボ3の発電量は、熱サイクル装置11の温度が所定値以上の場合の回生ターボ3による発電量よりも多くなるように制御される。したがって、回生ターボ3よりも発電効率の高い熱サイクル装置11での発電を優先させることができ、効率よく発電することができる。
[実施例5]
実施例4ではエンジン排ガスの熱エネルギーを熱サイクル装置11で回収する方法を説明したが、他の方法として熱電変換装置51で代用することができる。
図9に本発明の熱電変換装置と回生ターボのシステム図を示す。触媒4の下流に熱電変換装置51を設けた。熱電モジュール組込み熱交換器52は熱電変換材料のモジュール(熱電変換素子)を熱交換器内部の伝面に組込んだものである。熱電変換材料は材料の厚さ方向の温度差で発電する材料である。すなわち、熱電材料の1面を高温の排ガスで加熱し、もう片方の1面を冷却することで温度差を確保し、発電させる。
熱電モジュール組込み熱交換器52を冷却する媒体は液体がよく、途中、沸騰させないで運用する。そこで、本実施例では、同様な使い方をするエンジン冷却のクーラントを用いることにした。冷却器53は自動車であればラジエターと同じである。クーラントは、ポンプ55を用いて冷却器53から熱電モジュール組込み熱交換器52に供給される。熱電モジュール組込み熱交換器52で得た電気電力は、電圧調整器54を経て、電力制御装置31に取り込むようにする。
熱電変換装置51を駆動するには媒体を輸送するポンプ55の電気電力が必要になる。さらに、冷却器53のファンを駆動させるための電気電力が必要になる。したがって、熱電変換装置51は、熱電変換装置51で得る電気電力が、ポンプ55の必要とする電気電力と冷却器53の必要とする電気電力との総和よりも大きい場合に駆動させ、小さい場合に停止させる運用になる。したがって、この場合も自立運転条件がある。
エンジン起動の初期状態はクーラントの温度が低く、熱電モジュール組込み熱交換器52にクーラントを供給することにより加熱され、次第にクーラント温度は上昇する。そこで、冷却器53の出口に温度計56を設け、その温度が所定の温度以上にならないようにポンプ55でクーラントの流量を調整するとともに、冷却器53のファン出力を調整する制御をする。
熱電モジュール組込み熱交換器52の加熱面は、排ガスの温度と流量の熱エネルギーによって温度変化する。熱エネルギーが多いほど高温になり、少ないほど低温になる。一方、冷却面は、熱電モジュール組込み熱交換器52に供給するクーラントの温度をポンプ55と冷却器53のファンによって所定の温度に調整されることから、温度の変動は小さい。したがって、排ガスの熱エネルギーの方が発電電力に及ぼす影響は大きい。そこで、自立運転温度は熱電モジュール組込み熱交換器52の入口の排ガス温度で設定するようにした。
本実施例では、熱電モジュール組込み熱交換器52の直上に温度計57を設け、その値を熱電変換装置の自立運転を維持させる制御指標として用いる。これにより、回生ターボ3の磁界強度を高めて回転翼の負荷を上げる制御が可能になる。
ここまで、熱サイクル装置11の代用として熱電変換装置51を説明したが、熱サイクル装置11の下流に熱電変換装置51を設け、その下流が回生ターボ3となる構成としてもよい。
以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1. 過給機 2. エンジン 3. 回生ターボ 4. 触媒 5. 熱交換器
11. 熱サイクル装置 12. 熱サイクル膨張機 13. 冷却器 14. ポンプ
15. 発電機 16. 温度計 17. 温度計 18. 圧力計 19. 温度計
20. 圧縮機
21. モーター発電機 22. 発電機 23. 発電機 24. バルブ
25. バルブ 26. モーター
31. 電力制御装置 32. 車載制御装置 33. バッテリー
41. 温度計
51. 熱電変換装置 52. 熱電モジュール組込み熱交換器 53. 冷却器
54. 電圧調整器 55. ポンプ 56. 温度計 57. 温度計

Claims (13)

  1. エンジンからの排ガスの運動エネルギーを電気エネルギーに変換する回生発電手段と、前記エンジンからの排ガスの熱を電気エネルギーに変換する熱回収手段と、を制御する車載制御装置であって、
    前記車載制御装置は、前記熱回収手段の温度が所定値未満の場合、前記熱回収手段の温度が前記所定値以上となるように前記回生発電手段の発電量を変更することを特徴とする車載制御装置。
  2. 前記熱回収手段は、前記エンジンからの排ガス経路において前記回生発電手段の上流に設けられ、
    前記熱回収手段の温度が所定値未満の場合の前記回生発電手段の発電量は、前記所定値以上の場合の前記回生発電手段による発電量よりも多くなるように制御することを特徴とする請求項1に記載の車載制御装置。
  3. 前記熱回収手段は、前記エンジンからの排ガス経路において前記回生発電手段の下流に設けられ、
    前記熱回収手段の温度が所定値未満の場合の前記回生発電手段の発電量は、前記所定値以上の場合の前記回生発電手段による発電量よりも少なくなるように制御することを特徴とする請求項1に記載の車載制御装置。
  4. 前記熱回収手段の温度は、前記熱回収手段に流入する前記排ガスの温度を測定する温度計測手段により測定された値、または、
    前記熱回収手段に設けられた媒体の温度を測定する温度計測手段により測定された値のいずれかであることを特徴とする請求項2または請求項3に記載の車載制御装置。
  5. 前記熱回収手段は、熱サイクル装置または熱電変換装置のいずれか、あるいは双方であることを特徴とする請求項4に記載の車載制御装置。
  6. 前記熱サイクル装置の媒体は、二酸化炭素であることを特徴とする請求項5に記載の車載制御装置。
  7. 前記排ガスの経路には、前記回生発電手段をバイパスするバイパス経路が設けられ、
    前記熱回収手段の温度が前記所定値未満の場合、前記排ガスを前記バイパス経路に通過させる制御を行うことを特徴とする請求項3に記載の車載制御装置。
  8. 前記回生発電手段の直下に排ガス浄化触媒と、該排ガス浄化触媒の触媒温度を計測する手段が設けられ、前記排ガス浄化触媒の触媒温度が所定値未満の場合、前記排ガスを前記バイパス経路に通過させる制御を行うことを特徴とする請求項7に記載の車載制御装置。
  9. 前記回生発電手段は、前記排ガスが通過する箇所に回転翼を有し、
    前記排ガス浄化触媒の触媒温度が所定値未満の場合、前記回転翼の負荷を下げる制御を行うことを特徴とする請求項8に記載の車載制御装置。
  10. 前記回転翼の負荷を下げるために、前記回生発電手段の磁界強度を下げる制御を行うことを特徴とする請求項9に記載の車載制御装置。
  11. 前記回生発電手段は、前記排ガスが通過する箇所に回転翼を有し、
    前記熱回収手段の温度が所定値未満の場合、前記回転翼の負荷を上げる制御を行うことを特徴とする請求項2に記載の車載制御装置。
  12. 前記回転翼の負荷を上げるために、前記回生発電手段の磁界強度を上げる制御を行うことを特徴とする請求項11に記載の車載制御装置。
  13. 前記エンジンの上流に空気流量を増加させる過給手段を設け、該過給手段の回転軸が前記回生発電手段の回転軸と連結することなく分離されており、前記過給手段の回転軸には電気電力で駆動するモーターが連結され、前記回生発電手段の回転軸には発電機が連結されていることを特徴とする請求項2または請求項3に記載の車載制御装置。
JP2016102179A 2016-05-23 2016-05-23 車載制御装置 Expired - Fee Related JP6762755B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016102179A JP6762755B2 (ja) 2016-05-23 2016-05-23 車載制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016102179A JP6762755B2 (ja) 2016-05-23 2016-05-23 車載制御装置

Publications (2)

Publication Number Publication Date
JP2017210871A true JP2017210871A (ja) 2017-11-30
JP6762755B2 JP6762755B2 (ja) 2020-09-30

Family

ID=60475328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016102179A Expired - Fee Related JP6762755B2 (ja) 2016-05-23 2016-05-23 車載制御装置

Country Status (1)

Country Link
JP (1) JP6762755B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114985018A (zh) * 2022-04-27 2022-09-02 浙江南化防腐设备有限公司 一种车载式高炉煤气催化剂再生系统及其再生方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300943A (ja) * 2003-03-28 2004-10-28 Toyota Motor Corp 内燃機関の制御装置
JP2007002813A (ja) * 2005-06-27 2007-01-11 Mitsubishi Motors Corp 過給機付き内燃機関の排気制御装置
JP2007211634A (ja) * 2006-02-08 2007-08-23 Mitsubishi Heavy Ind Ltd 排気ターボ過給機
JP2010190145A (ja) * 2009-02-19 2010-09-02 Ihi Corp 内燃機関の過給及び排気浄化システム
JP2011032954A (ja) * 2009-08-04 2011-02-17 Chiyoda Kako Kensetsu Kk 液化ガスの冷熱を利用した複合発電システム
WO2011089989A1 (ja) * 2010-01-21 2011-07-28 三菱重工業株式会社 エンジン排気エネルギー回収装置、これを備える船舶およびこれを備える発電プラント
JP2013538988A (ja) * 2010-10-06 2013-10-17 マック トラックス インコーポレイテッド 排熱回収装置バイパス機構
JP2016512295A (ja) * 2013-03-15 2016-04-25 エアリステック リミテッド 可変負荷を有するターボコンパウンドエンジンのタービンとその制御器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300943A (ja) * 2003-03-28 2004-10-28 Toyota Motor Corp 内燃機関の制御装置
JP2007002813A (ja) * 2005-06-27 2007-01-11 Mitsubishi Motors Corp 過給機付き内燃機関の排気制御装置
JP2007211634A (ja) * 2006-02-08 2007-08-23 Mitsubishi Heavy Ind Ltd 排気ターボ過給機
JP2010190145A (ja) * 2009-02-19 2010-09-02 Ihi Corp 内燃機関の過給及び排気浄化システム
JP2011032954A (ja) * 2009-08-04 2011-02-17 Chiyoda Kako Kensetsu Kk 液化ガスの冷熱を利用した複合発電システム
WO2011089989A1 (ja) * 2010-01-21 2011-07-28 三菱重工業株式会社 エンジン排気エネルギー回収装置、これを備える船舶およびこれを備える発電プラント
JP2013538988A (ja) * 2010-10-06 2013-10-17 マック トラックス インコーポレイテッド 排熱回収装置バイパス機構
JP2016512295A (ja) * 2013-03-15 2016-04-25 エアリステック リミテッド 可変負荷を有するターボコンパウンドエンジンのタービンとその制御器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114985018A (zh) * 2022-04-27 2022-09-02 浙江南化防腐设备有限公司 一种车载式高炉煤气催化剂再生系统及其再生方法

Also Published As

Publication number Publication date
JP6762755B2 (ja) 2020-09-30

Similar Documents

Publication Publication Date Title
US9810129B2 (en) Integrated waste heat recovery and motor assisted turbocharger system
US8567193B2 (en) Waste heat recovering device
CA2785328C (en) Dual use cooling systems
US8689741B2 (en) Thermal management system, vehicles embodying same and methods related thereto
EP2282357B1 (en) Thermoelectric power generator for variable thermal power source
US8628025B2 (en) Vehicle waste heat recovery system and method of operation
US20130219872A1 (en) Thermoelectric recovery and peltier heating of engine fluids
EP3064734B1 (en) Engine cooling system
US20050262842A1 (en) Process and device for the recovery of energy
US20050188711A1 (en) Vehicle exhaust heat recovery system
EP3161288B1 (en) Exhaust gas arrangement
JP2005504686A (ja) 電気またはハイブリッド型自動車の温度制御装置
GB2462904A (en) Cooling system for a hybrid electric vehicle (HEV)
JP2010503795A (ja) 熱交換器配列
JP2012122482A (ja) 内燃エンジンからの排気気体に含まれている汚染物質を処理する手段を通して流れる排気気体の温度を制御する装置と方法
JP6389640B2 (ja) 内燃機関の排気熱リサイクルシステム
JP2004522635A (ja) 内燃機関と車載電力供給装置とを備えた自動車
WO2016002711A1 (ja) 廃熱回生システム
JP6197459B2 (ja) エンジン冷却システム
JP6762755B2 (ja) 車載制御装置
JP2018062909A (ja) 廃熱回収発電装置
CN106593595A (zh) 用于车辆的热电发电系统
JP6152737B2 (ja) エンジン冷却システム
JP2018062873A (ja) 廃熱回収発電装置
JP2008095591A (ja) ランキンサイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200909

R150 Certificate of patent or registration of utility model

Ref document number: 6762755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees