JP2017207391A - 試料注入装置及びそれを備えるクロマトグラフ装置 - Google Patents

試料注入装置及びそれを備えるクロマトグラフ装置 Download PDF

Info

Publication number
JP2017207391A
JP2017207391A JP2016100556A JP2016100556A JP2017207391A JP 2017207391 A JP2017207391 A JP 2017207391A JP 2016100556 A JP2016100556 A JP 2016100556A JP 2016100556 A JP2016100556 A JP 2016100556A JP 2017207391 A JP2017207391 A JP 2017207391A
Authority
JP
Japan
Prior art keywords
sample
needle
liquid
sample injection
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016100556A
Other languages
English (en)
Inventor
太一 伴野
Taichi Banno
太一 伴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2016100556A priority Critical patent/JP2017207391A/ja
Publication of JP2017207391A publication Critical patent/JP2017207391A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

【課題】キャリーオーバー現象を抑制することができる試料注入装置及びクロマトグラフ装置を提供する。【解決手段】液体試料を採取して所定量の液体試料を移動相中に注入する試料注入部30と、先端部にニードル22aが形成され、末端部が試料注入部30に連結された試料導入管22と、ニードル22aを移動させるニードル駆動部23と、ニードル22aを洗浄するためのリンス液となる水が収容された洗浄部24とを備え、洗浄部24は、振動周波数が81kHz以上3MHz以下の超音波を水中に発生させる超音波振動子24bを備える構成とする。【選択図】図1

Description

本発明は、試料注入装置及びそれを備えるクロマトグラフ装置に関し、特に、多数の液体試料を測定する液体クロマトグラフ装置(以下、LCと略す)に関する。
図3及び図4は、従来の一般的なLCの一例を示す概略構成図である。LC101は、移動相を貯蔵する移動相貯槽10と、移動相貯槽10に連結された送液ポンプ11と、カラム連結管(カラムIN側配管)12と、カラム連結管12と連結された分離用カラム13と、分離用カラム13を略一定の温度に保つカラム恒温槽14と、分離用カラム13と連結された検出器(検出部)15と、移動相中へ液体試料を注入するオートサンプラ(試料注入装置)120と、LC101を制御する制御部140とを備える。
オートサンプラ120は、多数の試料バイアルSが配置されたテーブル21と、先端部にステンレス製のニードル22aが形成された試料導入管22と、ニードル22aを上下方向及び水平方向に移動させるニードル駆動部23と、ニードル22aを洗浄するためのリンスポート(洗浄部)124と、試料注入部30とを備える。
試料バイアルSは、底面を有する円筒形状のガラス容器と、ガラス容器の開口部に取り付けられたシリコン製のセプタムとから構成され、内部に液体試料が収容されている。
リンスポート124は、リンス液(溶出力の高い溶液)が収容された容器124aを備えている。
試料注入部30は、シリンジポンプ31と、インジェクションポート32と、6つのポートa〜fを有する流路切換バルブ33と、7つのポートg〜mを有する流路切換バルブ34とを備える。
シリンジポンプ31は、円筒状体のシリンジ31aと、シリンジ31a内に挿入される円柱形状のプランジャ31bと、プランジャ31bを上下方向に移動させるパルスモータ31cとを備える。そして、シリンジポンプ31は、流路切換バルブ33及び流路切換バルブ34が図4の状態のときに、プランジャ31bが下方に引かれると液体試料を試料導入管22内に注入し、プランジャ31bが上方に押されるとシリンジ31a内に収容されていた洗浄液を試料導入管22内に注入するようになっている。
インジェクションポート32は、リンス液が収容された容器32aと、容器32aの底面に形成されたニードル22aが挿入されるためのニードルシール(極細流路)32bとを備える。
流路切換バルブ33のポートaは送液ポンプ11を介して移動相貯槽10に、ポートbは試料導入管22に、ポートcは流路切換バルブ34のポートkに、ポートdは電磁弁35を介してドレインに、ポートeはインジェクションポート32のニードルシール32bに、ポートfはカラム連結管12にそれぞれ接続されている。そして、隣り合うポートa〜f同士が連通可能に構成されている。
流路切換バルブ34のポートgとポートhとポートiは洗浄液が収容された容器36に、ポートjはシリンジポンプ31に、ポートkは流路切換バルブ33のポートcに、ポートlはリンスポート124に、ポートmは電磁弁37を介してシリンジポンプ31にそれぞれ接続されている。そして、ポートmはポートg〜lのいずれか1個のポートに連通可能となっているとともに、隣り合うポートg〜l同士が連通可能に構成されている。
ここで、上述したLC101を用いて多数の液体試料を自動的に連続して分析する分析方法について説明する。まず、制御部140は、流路切換バルブ33、34のポートa〜mを図4の状態に制御する。したがって、移動相貯槽10から送液ポンプ11を介して供給された移動相は、カラム連結管12を通って分離用カラム13に送られる。次に、制御部140は、ニードル22aの直下に所望の試料バイアルSがくるように移動させた後、ニードル22aを降下させて試料バイアルS内に挿入する。そして、制御部140は、プランジャ31bを引くことにより、試料バイアルS内の液体試料を試料導入管22内に充填する。
次に、制御部140は、ニードル22aの直下にインジェクションポート32を移動させた後、ニードル22aを降下させてインジェクションポート32のニードルシール32bに挿入する。そして、制御部140は、流路切換バルブ33、34のポートa〜mを図3の状態に制御する。したがって、移動相貯槽10から送液ポンプ11を介して供給された移動相は、試料導入管22とニードル22aとニードルシール32bとを通ってカラム連結管12に送られる。このとき、試料導入管22内に充填されていた液体試料は、移動相と共にカラム連結管12に送り込まれ、分離用カラム13で成分分離された後に検出器15によって順次検出される。
そして、制御部140は、液体試料をカラム連結管12内に注入後、流路切換バルブ33、34のポートa〜mを図4の状態に制御する。次に、制御部140は、ニードル22aの直下にリンスポート124を移動させた後、ニードル22aを降下させてリンスポート124内に挿入する。そして、制御部140は、プランジャ31bを抜き差しすることにより、試料注入部30の容器36内の洗浄液を試料導入管22内に流通させる。
その後、制御部140は、上記と同様の手順により次の液体試料を測定する制御を行う。
また、例えば特許文献1には、リンス液が収容された容器と、その容器に取り付けられた超音波振動子とを備えるリンスポートが開示されている。このようなリンスポートを上述したLC101に適用すれば、試料バイアルSから液体試料を採取した状態で、ニードル22aをリンスポート124内に挿入する。そして、振動周波数が20kHz以上80kHz以下となる超音波をリンス液に発生させる。超音波振動子によって発生した超音波は、コヒーレントでない疎密波であり、容器124aの内壁で反射されてリンス液に浸漬されたニードル22aを振動させる。これにより、振動が均一に伝わり、ニードル22a外周面に残った余分な液体試料を取り除くことができる。その後、ニードル22aをインジェクションポート32のニードルシール32bに挿入することになる。
特許第4455495号公報
上述したようなLC101において、近年、検出器15の検出感度が高くなるにつれて「キャリーオーバー」と呼ばれる現象が問題になってきている。なお、「キャリーオーバー」とは、過去に測定した液体試料の成分が残留し、あたかも現在測定している液体試料中にその成分が存在するかのような検出結果を示す現象である。
また、上述したような洗浄手段では、ニードルが物理的なダメージを負うリスクが存在している。
出願人は、キャリーオーバー現象が起こる原因について検討した。そして、液体試料中に糖質やタンパク質や脂質等の高分子化合物が含まれている場合に、この高分子化合物の一部がニードル22aに残留することにより、その残留物が次に注入された液体試料に混ざって検出器15に導入されていることがわかった。
この問題を解決するため、20kHz以上80kz以下の超音波によって振動させるのではなく、81kHz以上3MHz以下の超音波によってニードル22a部の残留成分を分解することにした。
具体的には、81kHz以上3MHz以下の超音波が溶液中に伝搬するときには高圧域と低圧域とが発生し、溶媒分子の分子間力を上回る程度の低圧状態となったときにキャビティが形成される。このキャビティは、膨張と収縮を繰り返した後に圧壊し、圧壊時には高温・高圧・高速流動の極限状態が生じる。この高温・高圧そのものが化学反応の駆動力となって溶媒分子が熱分解する。このとき、例えば水分子をOHラジカルとHラジカルとに熱分解すると、高分子化合物は酸化力の強いOHラジカルにより酸化分解される。
また同時に、粒子加速度による洗浄も行われる。これは溶媒分子が加速されニードルにぶつかる衝撃により、ニードルに付着した化合物を剥離させる。これは周波数が高ければ高いほど効果がある。
すなわち、本発明の試料注入装置は、液体試料を採取し、所定量の液体試料を移動相中に注入するための試料注入部と、先端部にニードルが形成され、末端部が前記試料注入部に連結された試料導入管と、前記ニードルを移動させるニードル駆動部と、前記ニードルを洗浄するためのリンス液が収容された洗浄部とを備える試料注入装置であって、前記リンス液は、水であり、前記洗浄部は、振動周波数が81kHz以上3MHz以下の超音波を前記水中に発生させる超音波振動子を備えるようにしている。
ここで、「所定量」とは、分析時に測定者等によって決められる任意の量であり、例えば10μl等となる。
以上のように、本発明の試料注入装置によれば、OHラジカルが液体試料中の高分子化合物(糖質・タンパク質・脂質等)を分解して低分子化するため、ニードルの洗浄効率が向上してキャリーオーバー現象を抑制することができる。また、リンス液に有機溶媒を用いることなく高い洗浄効果を得ることができるため、環境負荷が少なく、かつ、経済的である。
また、低周波領域で顕著なニードルへのダメージも低減できる。
(その他の課題を解決するための手段及び効果)
また、本発明のクロマトグラフ装置は、上述したような試料注入装置と、前記試料注入部にカラム連結管を介して連結され、前記液体試料が注入された移動相が通過する分離用カラムと、前記分離用カラムに連結され、前記液体試料中の成分を検出する検出部とを備えるようにしている。
さらに、上記のクロマトグラフ装置において、前記試料注入部は、所定量の液体試料を採取するためのシリンジポンプと、前記シリンジポンプと前記試料導入管とを連結するか、或いは、前記試料導入管と前記カラム連結管とを連結するためのポートバルブとを備えるようにしている。
本発明に係るクロマトグラフ装置の一例のLCを示す概略構成図。 図1同様のLCを示す概略構成図。 従来のLCの一例を示す概略構成図。 図3同様のLCを示す概略構成図。
以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。
本発明に係るクロマトグラフ装置の構成例として、LCを例にして図1及び図2にその概略構成を示す。なお、上述した従来のLC101と同様のものについては、同じ符号を付すことにより説明を省略する。
LC1は、移動相を貯蔵する移動相貯槽10と、移動相貯槽10に連結された送液ポンプ11と、カラム連結管(カラムIN側配管)12と、カラム連結管12と連結された分離用カラム13と、分離用カラム13を略一定の温度に保つカラム恒温槽14と、分離用カラム13と連結された検出器(検出部)15と、移動相中へ液体試料を注入するオートサンプラ(試料注入装置)20と、LC1を制御する制御部40とを備える。
オートサンプラ20は、多数の試料バイアルSが配置されたテーブル21と、先端部にステンレス製のニードル22aが形成された試料導入管22と、ニードル22aを上下方向及び水平方向に移動させるニードル駆動部23と、ニードル22aを洗浄するためのリンスポート(洗浄部)24と、試料注入部30とを備える。
リンスポート24は、水が収容された容器24aと、この容器24aに取り付けられる超音波振動子24bとを備えている。なお、超音波振動子24bは、振動可能な場所であれば、容器24aにおける任意の場所(例えば底面等)に取り付けることができる。
そして、超音波振動子24bの振動は、後述する制御部40の洗浄部制御部41cによって制御される。また、超音波振動子24bの振動周波数は、OHラジカルを充分に発生させるため、81kHz以上3MHz以下となっており、200kHz以上600kHz以下とすることがより好ましい。さらに、超音波振動子24bの作動時間は、3秒以上とすることが好ましい。
このようなリンスポート24によれば、振動周波数が20kHz以上80kHz以下の超音波を水中に発生させる。81kHz以上3MHz以下の超音波は、水中に伝搬するときに高圧域と低圧域とが発生し、水分子の分子間力を上回る程度の低圧状態となったときにキャビティが形成される。このキャビティは、膨張と収縮を繰り返した後に圧壊する。このとき、水分子はOHラジカルとHラジカルとに熱分解され、OHラジカルにより高分子化合物が酸化分解される。このようにして、ニードル22aの残留成分を取り除く。
制御部40は、CPU41と入力部42とを備える。CPU41が処理する機能をブロック化して説明すると、オートサンプラ20を制御するオートサンプラ制御部41aと、検出器15からイオン強度信号を受信する分析制御部41bと、超音波振動子24bを制御する洗浄部制御部41cとを有する。
なお、洗浄部制御部41cは、ニードル22aがリンスポート24内に挿入されたときに超音波振動子24bを作動させる制御を行う。
ここで、上述したLC1を用いて多数の液体試料を自動的に連続して分析する分析方法について説明する。まず、制御部40のオートサンプラ制御部41aは、流路切換バルブ33及び流路切換バルブ34のポートa〜mを図2の状態に制御する。次に、オートサンプラ制御部41aは、ニードル22aの直下に所望の試料バイアルSがくるように移動させた後、ニードル22aを降下させて試料バイアルS内に挿入する。そして、オートサンプラ制御部41aは、シリンジポンプ31のプランジャ31bを引くことにより、試料バイアルS内の液体試料を試料導入管22内に充填する。
次に、オートサンプラ制御部41aは、ニードル22aの直下にインジェクションポート32を移動させた後、ニードル22aを降下させてインジェクションポート32のニードルシール32bに挿入する。そして、オートサンプラ制御部41aは、流路切換バルブ33、34のポートa〜mを図1の状態に制御する。したがって、移動相貯槽10から送液ポンプ11を介して供給された移動相は、試料導入管22とニードル22aとニードルシール32bとを通ってカラム連結管12に送られる。このとき、試料導入管22内に充填されていた液体試料は、移動相と共にカラム連結管12に送り込まれ、分離用カラム13で成分分離された後に検出器15によって順次検出される。
そして、オートサンプラ制御部41aは、液体試料をカラム連結管12内に注入後、流路切換バルブ33、34のポートa〜mを図2の状態に制御する。次に、オートサンプラ制御部41aは、ニードル22aの直下にリンスポート24を移動させた後、ニードル22aを降下させてリンスポート24内に挿入する。
次に、洗浄部制御部41cが超音波振動子24bを所定時間作動させた後に、オートサンプラ制御部41aがプランジャ31bを抜き差しすることにより、試料注入部30の容器36内の洗浄液を試料導入管22内に流通させる。
その後、制御部40は、上記と同様の手順により次の液体試料を測定する制御を行う。
以上のように、本発明に係る構成を有したLC1によれば、OHラジカルが液体試料中の高分子化合物を分解して低分子化するため、ニードル22aの洗浄効率が向上してキャリーオーバー現象を抑制することができる。また、リンス液に有機溶媒を用いることなく高い洗浄効果を得ることができるため、環境負荷が少なく、かつ、経済的である。
<他の実施形態>
上述したLC1では、リンスポート24の容器24aに超音波振動子24bを取り付ける構成としたが、これに代えて、インジェクションポート32の容器32aに超音波振動子24bを取り付けるようにしてもよい。
本発明は、多数の液体試料を測定する液体クロマトグラフ装置等に利用することができる。
1: LC(クロマトグラフ装置)
12: カラム連結管
13: 分離用カラム
15: 検出器(検出部)
20: オートサンプラ(試料注入装置)
22: 試料導入管
22a: ニードル
23: ニードル駆動部
24: リンスポート(洗浄部)
24b: 超音波振動子
30: 試料注入部

Claims (3)

  1. 液体試料を採取し、所定量の液体試料を移動相中に注入するための試料注入部と、
    先端部にニードルが形成され、末端部が前記試料注入部に連結された試料導入管と、
    前記ニードルを移動させるニードル駆動部と、
    前記ニードルを洗浄するためのリンス液が収容された洗浄部とを備える試料注入装置であって、
    前記リンス液は、水であり、
    前記洗浄部は、振動周波数が81kHz以上3MHz以下の超音波を前記水中に発生させる超音波振動子を備えることを特徴とする試料注入装置。
  2. 請求項1に記載の試料注入装置と、
    前記試料注入部にカラム連結管を介して連結され、前記液体試料が注入された移動相が通過する分離用カラムと、
    前記分離用カラムに連結され、前記液体試料中の成分を検出する検出部とを備えることを特徴とするクロマトグラフ装置。
  3. 前記試料注入部は、所定量の液体試料を採取するためのシリンジポンプと、
    前記シリンジポンプと前記試料導入管とを連結するか、或いは、前記試料導入管と前記カラム連結管とを連結するためのポートバルブとを備えることを特徴とする請求項2に記載のクロマトグラフ装置。
JP2016100556A 2016-05-19 2016-05-19 試料注入装置及びそれを備えるクロマトグラフ装置 Pending JP2017207391A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016100556A JP2017207391A (ja) 2016-05-19 2016-05-19 試料注入装置及びそれを備えるクロマトグラフ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016100556A JP2017207391A (ja) 2016-05-19 2016-05-19 試料注入装置及びそれを備えるクロマトグラフ装置

Publications (1)

Publication Number Publication Date
JP2017207391A true JP2017207391A (ja) 2017-11-24

Family

ID=60415368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016100556A Pending JP2017207391A (ja) 2016-05-19 2016-05-19 試料注入装置及びそれを備えるクロマトグラフ装置

Country Status (1)

Country Link
JP (1) JP2017207391A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115494187A (zh) * 2021-06-17 2022-12-20 株式会社岛津制作所 液相色谱仪用的自动采样器
US11821878B2 (en) 2018-10-23 2023-11-21 Shimadzu Corporation Autosampler

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162403A (ja) * 2000-11-22 2002-06-07 Hitachi Ltd 自動分析装置
JP2002173799A (ja) * 2000-12-04 2002-06-21 Zenken:Kk 水酸化ラジカルを用いた有機物質の酸化分解方法及び酸化分解装置
JP2002239317A (ja) * 2001-02-13 2002-08-27 Dainippon Printing Co Ltd フィルター
JP2008164498A (ja) * 2006-12-28 2008-07-17 Shiseido Co Ltd 試料注入装置及び液体クロマトグラフィー装置
US20080229809A1 (en) * 2006-01-20 2008-09-25 Aya Hirayama Sample Injection Device, Sample Injection Method, and Liquid Chromatograph
JP2009068879A (ja) * 2007-09-11 2009-04-02 Olympus Corp 分注装置、分注装置の分注ノズル洗浄方法及び自動分析装置
JP2012145524A (ja) * 2011-01-14 2012-08-02 Shiseido Co Ltd 試料注入装置、試料注入方法、及び液体クロマトグラフィー装置
JP2012154824A (ja) * 2011-01-27 2012-08-16 Hitachi High-Technologies Corp 臨床検査用分析装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162403A (ja) * 2000-11-22 2002-06-07 Hitachi Ltd 自動分析装置
JP2002173799A (ja) * 2000-12-04 2002-06-21 Zenken:Kk 水酸化ラジカルを用いた有機物質の酸化分解方法及び酸化分解装置
JP2002239317A (ja) * 2001-02-13 2002-08-27 Dainippon Printing Co Ltd フィルター
US20080229809A1 (en) * 2006-01-20 2008-09-25 Aya Hirayama Sample Injection Device, Sample Injection Method, and Liquid Chromatograph
JP2008164498A (ja) * 2006-12-28 2008-07-17 Shiseido Co Ltd 試料注入装置及び液体クロマトグラフィー装置
JP2009068879A (ja) * 2007-09-11 2009-04-02 Olympus Corp 分注装置、分注装置の分注ノズル洗浄方法及び自動分析装置
JP2012145524A (ja) * 2011-01-14 2012-08-02 Shiseido Co Ltd 試料注入装置、試料注入方法、及び液体クロマトグラフィー装置
JP2012154824A (ja) * 2011-01-27 2012-08-16 Hitachi High-Technologies Corp 臨床検査用分析装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11821878B2 (en) 2018-10-23 2023-11-21 Shimadzu Corporation Autosampler
CN115494187A (zh) * 2021-06-17 2022-12-20 株式会社岛津制作所 液相色谱仪用的自动采样器

Similar Documents

Publication Publication Date Title
Fuchs Ultrasonic cleaning and washing of surfaces
JP6547853B2 (ja) クロマトグラフ装置
JP2007326088A (ja) 超音波洗浄システム及び超音波洗浄方法
JPH06313760A (ja) 酵素電極による検体測定方法
US7337653B2 (en) Liquid chromatography specimen filling method
US20060179946A1 (en) Method and apparatus for washing a probe or the like using ultrasonic energy
JP2008119642A (ja) 洗浄方法および洗浄装置
EP3564681B1 (en) Nozzle cleaner and automated analyzer using same
JP5143082B2 (ja) 液液抽出システム
JP2017207391A (ja) 試料注入装置及びそれを備えるクロマトグラフ装置
CN101797567A (zh) 混合波长超声波处理器
Saalbach et al. Self-sensing cavitation detection in ultrasound-induced acoustic cavitation
JP2017207392A (ja) 試料注入装置及びそれを備えるクロマトグラフ装置
JPH049670A (ja) 分析装置
US20120261348A1 (en) Apparatus for extracting biomaterial and method of extracting biomaterial using the apparatus
JP4292661B2 (ja) 水質分析計
JP2002148295A (ja) 周波数測定方法、周波数測定装置及び分析装置
US8876977B2 (en) Method for cleaning the U-tube of the measurement cell of a densimeter
JP6176798B2 (ja) 凍結分離装置、凍結分離装置用部品、および凍結分離方法
CN101548170B (zh) 采用水晶振子的液态物的搅拌方法
JPS6042635A (ja) 生化学分析装置におけるノズル洗浄装置
WO2021033349A1 (ja) 試料注入装置および試料溶解装置
JPH04169850A (ja) 生化学分析機
JP5439395B2 (ja) 臨床検査用分析装置
JP2011141244A (ja) 分析装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191210