JP2017207354A - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
JP2017207354A
JP2017207354A JP2016099455A JP2016099455A JP2017207354A JP 2017207354 A JP2017207354 A JP 2017207354A JP 2016099455 A JP2016099455 A JP 2016099455A JP 2016099455 A JP2016099455 A JP 2016099455A JP 2017207354 A JP2017207354 A JP 2017207354A
Authority
JP
Japan
Prior art keywords
light
emitted
diffraction grating
emitting diodes
concave diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016099455A
Other languages
Japanese (ja)
Inventor
渡辺 正幸
Masayuki Watanabe
正幸 渡辺
豊之 橋本
Toyoyuki Hashimoto
豊之 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2016099455A priority Critical patent/JP2017207354A/en
Publication of JP2017207354A publication Critical patent/JP2017207354A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce fluctuation in the luminous energy of emitted light in a light source device equipped with a plurality of light-emitting diodes differing in the wavelength range of emitted light.SOLUTION: A light source device 100 according to the present invention comprises: a plurality of light-emitting diodes (LED) 10 mutually differing in the wavelength range of emitted light; a concave diffraction grating 12 for guiding lights emitted from these LEDs 10 to the same synthetic optical path; a semipermeable membrane 16 arranged in the synthetic optical path, for branching the light synthesized by the concave diffraction grating 12 into a measurement light and a monitor light; a spectroscopic element (concave diffraction grating 12) for separating the monitor light into lights that correspond to the wavelength range of light emitted from each of the plurality of LEDs 10; an optical detector 20 having a plurality of optical detection elements for detecting the intensities of a plurality of lights separated by the spectroscopic element; and an output control unit 30 for controlling the outputs of the plurality of LEDs 10 on the basis of detection signals obtained by the plurality of optical detection elements.SELECTED DRAWING: Figure 3

Description

本発明は、分光光度計等の光学測定装置に組み込まれる光源装置に関する。   The present invention relates to a light source device incorporated in an optical measuring device such as a spectrophotometer.

測定対象物に光を照射したときに該測定対象物と光との相互作用(吸収、反射、蛍光等)により発生する光を分光測定する光学測定装置では、測定対象物によって相互作用する光の波長が異なるため、広い波長範囲の光を出射する光源装置が使用される。このような光源装置の一つに、発光波長範囲が異なる複数の発光ダイオード(以下、LED(light emitting diode)という。)を用いた光源装置がある。この光源装置では、複数のLEDの出射光を回折格子やハーフミラー等の光学素子によって合成することにより、広い波長範囲の出射光を実現している(特許文献1、2参照)。   In an optical measurement device that performs spectroscopic measurement of light generated by the interaction (absorption, reflection, fluorescence, etc.) between the measurement object and light when the measurement object is irradiated with light, the light that interacts with the measurement object Since the wavelengths are different, a light source device that emits light in a wide wavelength range is used. As one of such light source devices, there is a light source device using a plurality of light emitting diodes (hereinafter referred to as LEDs (light emitting diodes)) having different emission wavelength ranges. In this light source device, light emitted from a plurality of LEDs is synthesized by an optical element such as a diffraction grating or a half mirror, thereby realizing light emitted in a wide wavelength range (see Patent Documents 1 and 2).

US2011/0132077 A1US2011 / 0132077 A1 特開2004-286645号公報JP 2004-286645 A

正確な分光測定を行うためには各LEDの出力を安定させる必要がある。そのため、上述の光源装置では、各LEDの出射光の一部を分岐して、その光強度を検出器で検出し、その結果に基づき該LEDの駆動電流をフィードバック制御している。   In order to perform accurate spectroscopic measurement, it is necessary to stabilize the output of each LED. Therefore, in the light source device described above, a part of the emitted light of each LED is branched, the light intensity is detected by a detector, and the drive current of the LED is feedback-controlled based on the result.

回折格子を用いて出射光を合成する系では、合成した後の光(合成光)を集光レンズで集光するとともに、集光レンズの集光位置に出射スリットを配置し、目的とする回折光(例えば1次回折光)のみを該出射スリットを通じて取り出すようにしている。このため、例えば装置周辺の温度変化に伴い回折格子や集光レンズ等の光学素子やそれらを保持するフレームが膨張したり収縮したりすることによって合成光の集光位置が変動すると、出射スリットを通過する光量が変化する。このような場合、各LEDの出力が安定していても、実際に測定対象に照射される出射光の光量が変化することになり、正確な分光測定を行うことができないという問題があった。   In a system that synthesizes outgoing light using a diffraction grating, the combined light (synthesized light) is collected by a condenser lens, and an outgoing slit is placed at the condensing position of the condenser lens to achieve the desired diffraction. Only light (for example, first-order diffracted light) is extracted through the exit slit. For this reason, for example, when the condensing position of the synthesized light fluctuates due to expansion or contraction of an optical element such as a diffraction grating or a condensing lens or a frame holding them with a temperature change around the apparatus, the exit slit is changed. The amount of light passing through changes. In such a case, there is a problem that even if the output of each LED is stable, the amount of emitted light actually irradiated onto the measurement object changes, and accurate spectroscopic measurement cannot be performed.

本発明が解決しようとする課題は、出射光の波長範囲が異なる複数の発光ダイオードを備えた光源装置において、出射光の光量の変動を小さくすることである。   The problem to be solved by the present invention is to reduce fluctuations in the amount of emitted light in a light source device including a plurality of light emitting diodes having different wavelength ranges of emitted light.

上記課題を解決するために成された本発明の第1態様に係る光源装置は、
a) 出射する光の波長範囲が互いに異なる複数の発光ダイオードと、
b) 前記複数の発光ダイオードから出射される光を同一の合成光路に導く光合成部材と、
c) 前記合成光路上に配置された、前記光合成部材によって合成された光を出射光とモニタ光に分岐する光分岐部材と、
d) 前記モニタ光を、前記複数の発光ダイオードの各々が出射する光の波長範囲に対応する光に分光する分光素子と、
e) 前記分光素子で分光された複数の光の強度を検出するための複数の光検出素子を有する光検出器と、
f) 前記複数の光検出素子で得られた検出信号に基づき前記複数の発光ダイオードの出力を制御する出力制御部と
を備えることを特徴とする。
The light source device according to the first aspect of the present invention, which has been made to solve the above problems,
a) a plurality of light emitting diodes having different wavelength ranges of emitted light;
b) a light combining member that guides light emitted from the plurality of light emitting diodes to the same combined light path;
c) a light branching member arranged on the combined light path for branching the light combined by the light combining member into outgoing light and monitor light;
d) a spectroscopic element that splits the monitor light into light corresponding to a wavelength range of light emitted from each of the plurality of light emitting diodes;
e) a photodetector having a plurality of light detecting elements for detecting the intensity of a plurality of lights dispersed by the spectroscopic element;
and f) an output control unit that controls outputs of the plurality of light emitting diodes based on detection signals obtained by the plurality of light detection elements.

上記第1態様の光源装置においては、複数の発光ダイオードから出射された光を光合成部材で合成した後、光分岐部材で出射光とモニタ光に分岐する。出射光は該光源装置から出射され、例えば分光測定の対象物に照射される。一方、モニタ光は、分光素子によって、複数の発光ダイオードの各々が出射する光の波長範囲に対応する光に分光され、光検出素子によって検出される。この場合、分光素子によって分光された光の波長範囲と複数の発光ダイオードの各々の出射光の波長範囲は必ずしも一致してなくても良い。また、分光素子は、モニタ光を連続的に分光(つまり、分光後の光が連続スペクトルとなるように分光)しても良く、間欠的に分光しても良い。出力制御部は、各光検出素子の検出信号に基づき複数の発光ダイオードの出力を制御する。   In the light source device according to the first aspect, after the light emitted from the plurality of light emitting diodes is synthesized by the light combining member, it is branched into the emitted light and the monitor light by the light branching member. The emitted light is emitted from the light source device, and is irradiated on, for example, an object for spectroscopic measurement. On the other hand, the monitor light is split into light corresponding to the wavelength range of the light emitted from each of the plurality of light emitting diodes by the spectroscopic element, and is detected by the photodetection element. In this case, the wavelength range of the light split by the spectroscopic element and the wavelength range of the emitted light of each of the plurality of light emitting diodes do not necessarily have to coincide with each other. Further, the spectroscopic element may continuously disperse the monitor light (that is, disperse the light after the separation into a continuous spectrum) or may intermittently disperse the monitor light. The output control unit controls the outputs of the plurality of light emitting diodes based on the detection signals of the respective light detection elements.

この場合、出力制御部は、複数の光検出素子の各々から得られた検出信号に基づき、その光検出素子に対応する発光ダイオードの出力を制御する(つまり、光検出素子と発光ダイオードが1:1の関係になるように制御する)ようにしても良いが、複数の光検出素子から得られた検出信号と、予め求められた演算式とを用いて、前記各発光ダイオードの出射光の強度を算出する演算処理部を備え、該演算処理部が算出した各発光ダイオードの出射光の強度に基づき各発光ダイオードの出力を制御するようにしても良い。   In this case, the output control unit controls the output of the light emitting diode corresponding to the light detection element based on the detection signal obtained from each of the plurality of light detection elements (that is, the light detection element and the light emitting diode are 1: The intensity of the emitted light from each light emitting diode may be determined using detection signals obtained from a plurality of light detection elements and a previously obtained arithmetic expression. May be provided, and the output of each light emitting diode may be controlled based on the intensity of the emitted light of each light emitting diode calculated by the arithmetic processing unit.

上記光源装置においては、光合成部材を凹面回折格子から構成し、複数の発光ダイオードを、前記凹面回折格子の波長分散方向に並べて配置すると良い。
この場合、モニタ光を前記凹面回折格子に導く光導入部材を設け、該凹面回折格子が前記分光素子を兼用するように構成することにより、装置の構成部品の点数を少なくすることができ、装置を小形化することができる。
In the light source device, the light combining member may be formed of a concave diffraction grating, and a plurality of light emitting diodes may be arranged side by side in the wavelength dispersion direction of the concave diffraction grating.
In this case, by providing a light introducing member for guiding the monitor light to the concave diffraction grating, and by configuring the concave diffraction grating to also serve as the spectroscopic element, the number of component parts of the apparatus can be reduced, Can be miniaturized.

また、上記課題を解決するために成された本発明の第2態様に係る光源装置は、
a) 出射する光の波長範囲が互いに異なる複数の発光ダイオードと、
b) 前記複数の発光ダイオードから出射される光の回折光を同一の合成光路に導く凹面回折格子と、
c) 前記凹面回折格子によって前記合成光路に導かれる各発光ダイオードの出射光の回折光とは次数の異なる回折光が入射する位置に配置された複数の光検出素子を有する光検出器と、
d) 前記複数の光検出素子で得られた検出信号に基づき前記複数の発光ダイオードの出力を制御する出力制御部と
を備えることを特徴とする。
Moreover, the light source device according to the second aspect of the present invention, which has been made to solve the above problems,
a) a plurality of light emitting diodes having different wavelength ranges of emitted light;
b) a concave diffraction grating that guides the diffracted light of the light emitted from the plurality of light emitting diodes to the same combined optical path;
c) a photodetector having a plurality of photodetectors arranged at positions where diffracted light having a different order from the diffracted light emitted from each light-emitting diode guided to the combined optical path by the concave diffraction grating is incident;
d) An output control unit that controls outputs of the plurality of light emitting diodes based on detection signals obtained by the plurality of light detection elements.

上記第2態様の光源装置においては、複数の発光ダイオードから出射された光の凹面回折格子による回折光が合成光路に導かれて出射光を構成し、該出射光を構成する回折光とは異なる次数の回折光がモニタ光として複数の光検出素子に入射する。   In the light source device of the second aspect, the diffracted light from the concave diffraction grating of the light emitted from the plurality of light emitting diodes is guided to the combined optical path to form the emitted light, which is different from the diffracted light constituting the emitted light. The diffracted light of the order enters the plurality of light detection elements as monitor light.

本発明の第1態様に係る光源装置では、光合成部材によって合成された後の光の光量に基づいて複数の発光ダイオードの出力を制御するため、装置周辺の温度が変化し、発光ダイオードから光合成部材に至るまでの光学系の配置等に変動が生じた場合でも出射光の光量の変動を小さくすることができる。   In the light source device according to the first aspect of the present invention, since the outputs of the plurality of light emitting diodes are controlled based on the amount of light after being synthesized by the light synthesizing member, the temperature around the device changes, and the light synthesizing member changes from the light emitting diode to the light synthesizing member. Even when there is a change in the arrangement of the optical system up to the above, the change in the amount of emitted light can be reduced.

また、本発明の第2態様に係る光源装置では、複数の発光ダイオードから出射された光の凹面回折格子による回折光が合成光路に導かれて出射光を構成し、該出射光を構成する回折光とは異なる次数の回折光がモニタ光として複数の光検出素子に入射する。このとき、発光ダイオードから凹面回折格子に至るまでの光学系の配置等に変動が生じると、凹面回折格子からの回折光の出射方向が変化する。この場合、回折光の出射方向の変化は、回折次数に関係なく同じようになるため、回折光の一部をモニタ光とすることにより、出射光の光量の変動を小さくすることができる。   Further, in the light source device according to the second aspect of the present invention, the diffracted light by the concave diffraction grating of the light emitted from the plurality of light emitting diodes is guided to the combined optical path to constitute the emitted light, and the diffraction constituting the emitted light Diffracted light of an order different from that of light enters the plurality of light detection elements as monitor light. At this time, when a change occurs in the arrangement of the optical system from the light emitting diode to the concave diffraction grating, the emission direction of the diffracted light from the concave diffraction grating changes. In this case, since the change in the emission direction of the diffracted light becomes the same regardless of the diffraction order, the change in the amount of the emitted light can be reduced by using a part of the diffracted light as the monitor light.

本発明の第1実施形態に係る光源装置の概略的な構成を示す上面図。1 is a top view showing a schematic configuration of a light source device according to a first embodiment of the present invention. スリット板から見た光源装置の側面図。The side view of the light source device seen from the slit board. 単色LED及び光検出器、回折格子、及び出射スリットの位置関係を示す斜視図。The perspective view which shows the positional relationship of monochromatic LED, a photodetector, a diffraction grating, and an output slit. 単色LED及び白色LEDの光強度分布図。The light intensity distribution figure of monochromatic LED and white LED. 光源装置の信号の流れを説明するための図。The figure for demonstrating the flow of the signal of a light source device. 本発明の第2実施形態に係る光源装置の制御回路を中心とするブロック図。The block diagram centering on the control circuit of the light source device which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る光源装置の概略的な構成を示す上面図。The top view which shows schematic structure of the light source device which concerns on 3rd Embodiment of this invention.

以下、本発明に係る光源装置の具体的な実施形態について図面を参照して説明する。
[第1実施形態]
図1に示すように、光源装置100は、6個の単色LED10(101〜106)と、1個の白色LED11と、トロイダル面状の入射面を有する凹面回折格子12と、スリット板13を備えている。スリット板13には、細孔から成る出射スリット131及びモニタ光入射スリット132が上下に並んで形成されている(図2及び図3参照)。6個の単色LED101〜106は平板状の基板14に一列に並べて設置されており、一方の端から他方の端に向かって順に340nm、405nm、470nm、635nm、700nm、770nmを中心波長とする波長幅が約10〜20nmの単色光を出射する。白色LED11は6個の単色LED101〜106の出射光の波長範囲から外れた波長範囲を補うために設けられ、約400nm〜700nmの波長範囲の光を出射する。
Hereinafter, specific embodiments of a light source device according to the present invention will be described with reference to the drawings.
[First Embodiment]
As illustrated in FIG. 1, the light source device 100 includes six single-color LEDs 10 (101 to 106), one white LED 11, a concave diffraction grating 12 having a toroidal-shaped incident surface, and a slit plate 13. ing. The slit plate 13 is formed with an exit slit 131 and a monitor light entrance slit 132 made of fine holes arranged vertically (see FIGS. 2 and 3). The six single-color LEDs 101 to 106 are arranged in a line on the flat substrate 14 and have wavelengths centered at 340 nm, 405 nm, 470 nm, 635 nm, 700 nm, and 770 nm in order from one end to the other end. Monochromatic light with a width of about 10 to 20 nm is emitted. The white LED 11 is provided to supplement a wavelength range that is out of the wavelength range of the emitted light of the six single-color LEDs 101 to 106, and emits light in a wavelength range of about 400 nm to 700 nm.

凹面回折格子12は、光学素材の凹面状の表面(入射面)に一方向に等間隔で平行な多数の溝が形成されている。単色LED101〜106は、いずれも凹面回折格子12の入射面に入射した光の1次回折光が出射スリット131を通過するような位置関係となるように基板14上に配置されている。また、白色LED11は、凹面回折格子12の入射面に入射した光の0次光が出射スリット131を通過するように配置されている。   The concave diffraction grating 12 is formed with a number of grooves parallel to each other at equal intervals in one direction on the concave surface (incident surface) of the optical material. The monochromatic LEDs 101 to 106 are all arranged on the substrate 14 so as to have a positional relationship such that the first-order diffracted light incident on the incident surface of the concave diffraction grating 12 passes through the exit slit 131. The white LED 11 is arranged so that the 0th-order light of the light incident on the incident surface of the concave diffraction grating 12 passes through the exit slit 131.

図2に示すように、出射スリット131を通過した各単色LED101〜106の出射光の1次回折光、及び白色LED11の出射光の0次回折光はコリメータレンズ15に入射し、平行光束に整形された後、半透膜16に入射する。半透膜16に入射した光の一部は該半透膜16を通過し、一部はミラー17に向けて反射される。半透膜16を通過した光は図示しない窓部から出射される。
一方、半透膜16で反射された光はモニタ光としてミラー17に入射し、該ミラー17で反射された後、集光レンズ18によってモニタ光入射スリット132上に集光する。そして、モニタ光入射スリット132を通過した後、再び凹面回折格子12の入射面に入射する。つまり、本実施形態では半透膜16が光分岐部材を構成する。
As shown in FIG. 2, the first-order diffracted light of the emitted light from each of the monochromatic LEDs 101 to 106 and the 0th-order diffracted light of the emitted light from the white LED 11 that has passed through the exit slit 131 are incident on the collimator lens 15 and shaped into parallel light fluxes. Thereafter, the light enters the semipermeable membrane 16. A part of the light incident on the semipermeable membrane 16 passes through the semipermeable membrane 16 and a part thereof is reflected toward the mirror 17. The light that has passed through the semipermeable membrane 16 is emitted from a window portion (not shown).
On the other hand, the light reflected by the semi-transmissive film 16 enters the mirror 17 as monitor light, and after being reflected by the mirror 17, is condensed on the monitor light incident slit 132 by the condenser lens 18. Then, after passing through the monitor light incident slit 132, it enters the incident surface of the concave diffraction grating 12 again. That is, in this embodiment, the semipermeable membrane 16 constitutes a light branching member.

凹面回折格子12に再入射したモニタ光は、図3に示すように、該凹面回折格子12によって波長分散された後、光検出器20が備える7個の光検出素子201〜207に入射する。光検出素子201〜207はそれぞれ、モニタ光の凹面回折格子12による各波長分散光の集光位置に配置されている。本実施形態では、光検出素子201〜207は単色LED101〜106と同じく基板14上に一列に並んで設置されていることとするが、別の基板に設置されていても良い。なお、図示しないが、7個の光検出素子201〜207の周囲及び各光検出素子の周囲には、それぞれ遮光部材が設けられており、光源装置100の筐体内で散乱反射した光(迷光)が各光検出素子201〜207に入射しないように構成されている。   As shown in FIG. 3, the monitor light re-entered on the concave diffraction grating 12 is wavelength-dispersed by the concave diffraction grating 12 and then enters the seven light detection elements 201 to 207 included in the photodetector 20. Each of the light detection elements 201 to 207 is disposed at a condensing position of each wavelength dispersion light by the concave diffraction grating 12 of the monitor light. In the present embodiment, the light detection elements 201 to 207 are arranged in a line on the substrate 14 as in the case of the single color LEDs 101 to 106, but may be arranged on another substrate. Although not shown, a light shielding member is provided around each of the seven light detection elements 201 to 207 and around each light detection element, and the light (stray light) scattered and reflected in the housing of the light source device 100. Is configured not to enter each of the light detection elements 201 to 207.

図4に、単色LED101〜106及び白色LED11の光強度分布を示す(図4では単色LED101〜106をそれぞれ単色LED1〜6と表す。)。各光検出素子201〜206には、各単色LED101〜106のピーク波長域の光が入射するように構成されている。また、検出素子207には白色LED11のピーク波長域のうち単色LED101〜106の影響の少ない波長域(図4において矩形枠で囲んだ領域)の光が入射するように配置されている。   FIG. 4 shows light intensity distributions of the single color LEDs 101 to 106 and the white LED 11 (in FIG. 4, the single color LEDs 101 to 106 are represented as single color LEDs 1 to 6, respectively). The light detection elements 201 to 206 are configured such that light in the peak wavelength region of the single color LEDs 101 to 106 is incident thereon. Further, the detection element 207 is arranged so that light in a wavelength region (region surrounded by a rectangular frame in FIG. 4) that is less affected by the monochromatic LEDs 101 to 106 out of the peak wavelength region of the white LED 11 is incident.

図5は、光源装置100の信号の流れを示す図である。図5では、図4と同様、6個の単色LED101〜106をそれぞれ単色LED1〜単色LED6と表す。また、単色LED1〜単色LED6及び白色LEDを合わせた7個のLEDの駆動回路40をそれぞれLED1駆動回路〜LED7駆動回路、7個のLEDの出射光の強度を検出するための光検出素子201〜207を光検出素子1〜光検出素子7と表す。以下、この表記に従って説明する。   FIG. 5 is a diagram illustrating a signal flow of the light source device 100. In FIG. 5, as in FIG. 4, the six single-color LEDs 101 to 106 are represented as single-color LEDs 1 to single-color LEDs 6, respectively. Further, seven LED drive circuits 40 including the single-color LED 1 to the single-color LED 6 and the white LED are respectively used as the LED 1 drive circuit to the LED 7 drive circuit, and the light detection elements 201 to detect the intensity of the emitted light from the seven LEDs. Reference numeral 207 denotes a light detection element 1 to a light detection element 7. Hereinafter, description will be made according to this notation.

光源装置100の制御回路30は記憶装置31及び制御演算部32を備えており、記憶装置31には光検出素子1〜7からの信号を用いて単色LED1〜単色LED6と白色LEDの出射光強度(P1〜P7)を算出するための以下の演算式(1)が記憶されている。制御演算部32は、演算式(1)と各光検出素子1〜7の信号とを用いて所定の演算処理を実行し、単色LED1〜単色LED6及び白色LEDの出射光の強度を算出する。

Figure 2017207354
The control circuit 30 of the light source device 100 includes a storage device 31 and a control calculation unit 32. The storage device 31 uses the signals from the light detection elements 1 to 7 to emit light intensity of the single color LEDs 1 to 6 and the white LED. The following arithmetic expression (1) for calculating (P1 to P7) is stored. The control calculation unit 32 performs a predetermined calculation process using the calculation formula (1) and the signals of the light detection elements 1 to 7 to calculate the intensity of the emitted light from the single color LED 1 to the single color LED 6 and the white LED.
Figure 2017207354

単色LED1〜単色LED6、及び白色LEDの駆動が開始され、光検出素子1〜7からの信号(I1〜I7)が制御回路30に入力されると、該制御回路30は、信号(I1〜I7)と演算式(1)とを用いて各LEDの出射光の強度を算出する。そしてこの強度が予め設定された目標値になるようにLED1駆動回路〜LED7駆動回路を制御し、各LEDを駆動する。LED1駆動回路〜LED7駆動回路の制御はPI制御による帰還制御の他、PID制御、P制御等を用いることができる。   When driving of the single color LED 1 to single color LED 6 and the white LED is started and signals (I 1 to I 7) from the light detection elements 1 to 7 are input to the control circuit 30, the control circuit 30 outputs the signals (I 1 to I 7 ) And the calculation formula (1) are used to calculate the intensity of the emitted light from each LED. And LED1 drive circuit-LED7 drive circuit is controlled so that this intensity | strength may become the preset target value, and each LED is driven. For the control of the LED1 drive circuit to the LED7 drive circuit, PID control, P control, etc. can be used in addition to feedback control by PI control.

ここで、演算式(1)について説明する。演算式(1)におけるa1〜a7、・・・、g1〜g7はそれぞれ光検出素子1〜光検出素子7の信号の変換係数である。演算式(1)は光源装置100の初期化の際に次の手順で求められる。
まず、単色LED1〜単色LED6、白色LEDを、その出射光の強度が一定の値(P0)になるように、1個ずつ順に駆動電流を流す。そして、そのときの全ての光検出素子1〜光検出素子7の検出信号(I1〜I7)と光検出素子1〜光検出素子7の出射光強度(P0)の比を求め、これを変換係数とする。例えば、単色LED1を駆動した場合、
a1=I1/P0、a2=I2/P0・・・a7=I7/P0
となる。
Here, the arithmetic expression (1) will be described. In the arithmetic expression (1), a1 to a7,..., G1 to g7 are conversion coefficients of signals of the light detection elements 1 to 7, respectively. The arithmetic expression (1) is obtained by the following procedure when the light source device 100 is initialized.
First, the drive current is passed through the single color LED 1 to the single color LED 6 and the white LED one by one so that the intensity of the emitted light becomes a constant value (P0). Then, the ratio of the detection signals (I1 to I7) of all the light detection elements 1 to 7 and the emission light intensity (P0) of the light detection elements 1 to 7 is obtained, and this is used as a conversion coefficient. And For example, when the monochrome LED 1 is driven,
a1 = I1 / P0, a2 = I2 / P0 ... a7 = I7 / P0
It becomes.

以上の構成により、各光検出素子1〜7に複数のLEDからの光が入射した場合でも、制御回路30は、各光検出素子1〜7が検出した光量に対する各LEDの寄与分を考慮して該LEDの出力を制御することができる。なお、各光検出素子1〜7の変換係数を求める際の各単色LED1〜6及び白色LEDの出射光強度は同じでなくても良い。また、ここでは、LEDを1個ずつ駆動して変換係数を求めることとしたが、例えば複数のLEDが互いに離間して配置されており、影響が小さい場合は、これら複数のLEDを同時に駆動してそれぞれの変換係数を求めても良い。   With the above configuration, even when light from a plurality of LEDs is incident on each of the light detection elements 1 to 7, the control circuit 30 considers the contribution of each LED to the amount of light detected by each of the light detection elements 1 to 7. Thus, the output of the LED can be controlled. In addition, the emitted light intensity of each single color LED1-6 and white LED at the time of calculating | requiring the conversion coefficient of each photon detection element 1-7 may not be the same. Here, the conversion coefficient is obtained by driving the LEDs one by one. However, for example, when the plurality of LEDs are arranged apart from each other and the influence is small, the plurality of LEDs are driven simultaneously. Thus, the respective conversion coefficients may be obtained.

このように、本実施形態によれば、凹面回折格子12で合成し、出射スリット131を通過した後の光を分光して、分光後の光の強度を光検出素子201〜207で検出した。そして、これら光検出素子201〜207の検出信号に基づいて単色LED101〜106及び白色LED11の出力を制御するようにした。従って、光源装置100周辺の温度が変化し、単色LED101〜106及び白色LED11から出射スリット131までの光学系の配置等に変動が生じた場合でも、出射光の光量を安定させることができる。   As described above, according to the present embodiment, the light after being synthesized by the concave diffraction grating 12 and passing through the exit slit 131 is dispersed, and the light intensity after the spectroscopy is detected by the light detection elements 201 to 207. And the output of single color LED101-106 and white LED11 was controlled based on the detection signal of these photon detection elements 201-207. Therefore, even when the temperature around the light source device 100 changes and the arrangement or the like of the optical system from the single color LEDs 101 to 106 and the white LED 11 to the exit slit 131 changes, the amount of the emitted light can be stabilized.

また、上記実施形態では、各単色LED101〜106及び白色LED11の出射光を合成するための光学部材である凹面回折格子12をモニタ光の分光素子として利用したため、部品点数が少なくなり、装置の小形化及び製造コストの低減を図ることができる。   Moreover, in the said embodiment, since the concave diffraction grating 12 which is an optical member for synthesize | combining the emitted light of each single color LED101-106 and white LED11 was utilized as a spectroscopic element of monitor light, a number of parts decreased and the apparatus small size. And manufacturing cost can be reduced.

さらに、上記実施形態によれば、各光検出素子201〜207の周りに遮光部材を設け、各光検出素子201〜207に迷光が入射することを防止したため、各単色LED101〜106及び白色LED11の出力を安定して制御することができる   Furthermore, according to the above embodiment, since the light blocking member is provided around each of the light detection elements 201 to 207 to prevent stray light from entering each of the light detection elements 201 to 207, each of the single color LEDs 101 to 106 and the white LED 11 Output can be controlled stably

[第2実施形態]
図6は、本発明の第2実施形態に係る光源装置の制御回路300を中心とするブロック図である。この実施形態では、複数の単色LEDの近傍にそれぞれ温度センサAを設け、各温度センサAの検出信号に基づいて各単色LEDの駆動電流を調整するようにした点、複数の単色LEDの出射光を検出する光検出素子の近傍にそれぞれ温度センサBを設け、各温度センサBの検出信号に基づき光検出素子の感度補正を行うようにした点、が第1実施形態と異なり、それ以外の構成(具体的には遮蔽板、遮蔽部材の構成等)は第1実施形態と同じである。
[Second Embodiment]
FIG. 6 is a block diagram centering on the control circuit 300 of the light source device according to the second embodiment of the present invention. In this embodiment, a temperature sensor A is provided near each of the plurality of single color LEDs, and the drive current of each single color LED is adjusted based on the detection signal of each temperature sensor A. The emitted light of the plurality of single color LEDs Unlike the first embodiment, the temperature sensor B is provided in the vicinity of the light detecting element for detecting the light and the sensitivity of the light detecting element is corrected based on the detection signal of each temperature sensor B. (Specifically, the configuration of the shielding plate, the shielding member, etc.) is the same as in the first embodiment.

温度センサA及び温度センサBは、例えば測温抵抗体や熱電対から構成されている。温度センサA及び温度センサBの両方を測温抵抗体または熱電対から構成しても良く、温度センサA及び温度センサBの一方を測温抵抗体、他方を熱電対としても良い。   The temperature sensor A and the temperature sensor B are composed of, for example, a resistance temperature detector or a thermocouple. Both the temperature sensor A and the temperature sensor B may be constituted of a temperature measuring resistor or a thermocouple, and one of the temperature sensor A and the temperature sensor B may be a temperature measuring resistor and the other may be a thermocouple.

図6では、複数の単色LEDを代表して単色LED1、単色LED2とし、これら単色LED1、単色LED2に対応する構成要素にも同様に1、2の数字を付している。   In FIG. 6, the single-color LED 1 and the single-color LED 2 are representatively represented by a plurality of single-color LEDs, and the components corresponding to the single-color LED 1 and the single-color LED 2 are also denoted by numbers 1 and 2 in the same manner.

本実施形態に係る光源装置では、制御回路300に、光検出素子1、2の検出信号、温度センサA1、A2の検出信号、温度センサB1、B2の検出信号が入力され、これらの検出信号に基づいてLED1駆動回路、LED2駆動回路等の駆動回路が制御される。   In the light source device according to the present embodiment, the detection signals of the light detection elements 1 and 2, the detection signals of the temperature sensors A 1 and A 2, and the detection signals of the temperature sensors B 1 and B 2 are input to the control circuit 300. Based on this, drive circuits such as the LED1 drive circuit and the LED2 drive circuit are controlled.

すなわち、単色LED1、単色LED2の駆動が開始され、光検出素子1、2によって単色LED1、単色LED2の出射光の強度が検出されると、その信号はデジタル化回路1、デジタル化回路2に入力され、そこでデジタル変換された後、感度補正部1、感度補正部2に入力される。また、感度補正部1、感度補正部2には、温度センサB1、温度センサB2から検出信号が入力され、これら温度センサB1、B2の検出信号と、記憶装置301に予め記憶された光検出素子毎の温度係数に基づき光検出素子1、2の検出信号を補正して制御演算部302に送る。制御演算部302は、光検出素子1、2の検出信号の補正値と上述した演算式(1)を用いてLED1、2の出射光の強度を算出し、その結果をLED1出力補正部、LED2出力補正部に出力する。   That is, when driving of the single color LED 1 and single color LED 2 is started and the intensity of light emitted from the single color LED 1 and single color LED 2 is detected by the light detection elements 1 and 2, the signal is input to the digitizing circuit 1 and digitizing circuit 2. After being digitally converted there, it is input to the sensitivity correction unit 1 and the sensitivity correction unit 2. The sensitivity correction unit 1 and the sensitivity correction unit 2 receive detection signals from the temperature sensor B1 and the temperature sensor B2, and the detection signals from the temperature sensors B1 and B2 and the light detection elements stored in the storage device 301 in advance. Based on each temperature coefficient, the detection signals of the light detection elements 1 and 2 are corrected and sent to the control calculation unit 302. The control calculation unit 302 calculates the intensity of the emitted light from the LEDs 1 and 2 using the correction value of the detection signal of the light detection elements 1 and 2 and the above-described calculation formula (1), and the result is the LED1 output correction unit and LED2. Output to the output correction unit.

LED1出力補正部、LED2出力補正部には、それぞれ単色LED1、単色LED2の近傍に設けられた温度センサA1、温度センサA2から検出信号が入力される。記憶装置301には、LED駆動回路毎の温度係数が予め記憶されており、LED1出力補正部、LED2出力補正部は、予め設定された関係式と、上記温度係数及び制御演算部302から入力されたLED1、2の出射光の強度を用いて、目標出力光強度になるように、LED1、LED2への出力電流を決定する。決定された出力電流値はアナログ化回路1、2にてアナログ化された後、LED1駆動回路、LED2駆動回路に送られる。   Detection signals are input from the temperature sensor A1 and the temperature sensor A2 provided in the vicinity of the single color LED 1 and the single color LED 2, respectively, to the LED 1 output correction unit and the LED 2 output correction unit. The storage device 301 stores a temperature coefficient for each LED drive circuit in advance. The LED1 output correction unit and the LED2 output correction unit are input from a preset relational expression and the temperature coefficient and control calculation unit 302. The output currents to the LEDs 1 and 2 are determined so as to achieve the target output light intensity using the intensity of the emitted light from the LEDs 1 and 2. The determined output current value is analogized by the analogizing circuits 1 and 2 and then sent to the LED1 driving circuit and the LED2 driving circuit.

上述した光検出素子毎の温度係数、LED駆動回路毎の温度係数、LEDへの出力電流値とLEDの出射光の強度との関係式は、例えば装置の調整工程時に算出され、予め記憶装置301に保存される(図6参照)。記憶装置301に保存された温度係数等の値は、光源装置に電源が投入される毎に測定され、LEDや光検出素子の経年劣化の影響が補正される。   The above-described temperature coefficient for each photodetecting element, temperature coefficient for each LED drive circuit, output current value to the LED, and intensity of emitted light from the LED are calculated, for example, during the adjustment process of the device, and stored in advance in the storage device 301. (See FIG. 6). A value such as a temperature coefficient stored in the storage device 301 is measured every time power is turned on to the light source device, and the influence of aging deterioration of the LED and the light detection element is corrected.

なお、図示及び説明は省略するが、白色LEDについても単色LEDと同様に、該白色LEDの近傍に温度センサAが、光検出素子の近傍に温度センサBが設けられており、これら温度センサの検出信号に基づいて、白色LEDの出力が補正される。   Although illustration and description are omitted, the white LED is provided with a temperature sensor A in the vicinity of the white LED and a temperature sensor B in the vicinity of the light detection element, as in the case of the single color LED. Based on the detection signal, the output of the white LED is corrected.

[第3実施形態]
図7は本発明の第3実施形態に係る光源装置400の概略的な上面図である。上記第1実施形態と同一部分には同一符号を付している。この実施形態では、光検出器20の各光検出素子201〜207は、常温状態で凹面回折格子12に入射した各単色LED101〜106及び白色光11からの出射光の回折光が入射する位置に配置されている。この場合、光検出素子201〜207には、出射光を構成する回折光とは次数が異なる回折光が入射する。例えば、単色LED101〜106の1次回折光及び白色LED11の0次回折光を出射光として出射スリット131に入射させ、単色LED101〜106の0次回折光及び白色LED11の1次回折光をモニタ光として光検出素子201〜207に入射させる。
[Third Embodiment]
FIG. 7 is a schematic top view of a light source device 400 according to the third embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals. In this embodiment, each of the light detection elements 201 to 207 of the light detector 20 is located at a position where the diffracted light of the emitted light from the monochromatic LEDs 101 to 106 and the white light 11 incident on the concave diffraction grating 12 in the normal temperature state is incident. Has been placed. In this case, diffracted light having an order different from that of the diffracted light constituting the emitted light is incident on the light detection elements 201 to 207. For example, the first-order diffracted light of the monochromatic LEDs 101 to 106 and the 0th-order diffracted light of the white LED 11 are made incident on the exit slit 131 as emitted light, and the 0th-order diffracted light of the single-color LEDs 101 to 106 and the first-order diffracted light of the white LED 11 are monitored light. 201-207.

光源装置400の周辺温度が変化し、各LEDから凹面回折格子12に至るまでの光学系の配置等に変動が生じた場合、凹面回折格子12による回折光の回折角等が変化して回折光の光軸の方向が変化することがある。この結果、出射スリット131を通過する光量が変動するが、同様に、各光検出素子201〜207に入射する光量も変動する。従って、各検出素子201〜207の検出信号に基づいて各単色LED101〜106及び白色LED11の出力を制御することにより、出射光の光量の変動を小さくすることができる。   When the ambient temperature of the light source device 400 changes and a variation occurs in the arrangement of the optical system from each LED to the concave diffraction grating 12, the diffraction angle of the diffracted light by the concave diffraction grating 12 changes and the diffracted light The direction of the optical axis may change. As a result, the amount of light passing through the exit slit 131 varies, but similarly, the amount of light incident on each of the light detection elements 201 to 207 also varies. Therefore, by controlling the outputs of the single-color LEDs 101 to 106 and the white LEDs 11 based on the detection signals of the detection elements 201 to 207, fluctuations in the amount of emitted light can be reduced.

また、この構成では、出射光を分岐するための光分岐部材(半透膜)が不要となるため、部品点数を少なくすることができる。   Further, in this configuration, the light branching member (semipermeable membrane) for branching the emitted light is not necessary, so that the number of parts can be reduced.

なお、本発明は上記した実施形態に限定されるものではなく、適宜、変更が可能である。
例えば、上記第1及び第2実施形態では、半透膜(光分岐部材)を通過した光を分光測定系に入射させ、該半透膜で反射された光をモニタ光として凹面回折格子で分光した後、光検出素子で検出したが、逆でも良い。
In addition, this invention is not limited to above-described embodiment, A change is possible suitably.
For example, in the first and second embodiments, the light that has passed through the semipermeable membrane (light branching member) is incident on the spectroscopic measurement system, and the light reflected by the semipermeable membrane is spectrally analyzed by the concave diffraction grating as monitor light. Then, the light detection element is used for detection, but the reverse is also possible.

上記第1及び第2実施形態では光合成部材として凹面回折格子を用いたが、複数のハーフミラーを光合成部材としても良い。
また、白色LEDの数、単色LEDの数は適宜変更しても良く、単色LEDだけで光源装置を構成することも可能である。
In the first and second embodiments, the concave diffraction grating is used as the light combining member. However, a plurality of half mirrors may be used as the light combining member.
Further, the number of white LEDs and the number of single color LEDs may be changed as appropriate, and the light source device can be configured with only single color LEDs.

10、101〜106…単色LED
11…白色LED
12…凹面回折格子(光合成部材)
13…スリット板
131…出射スリット
132…モニタ光入射スリット
15…コリメータレンズ
16…半透膜(光分岐部材)
17…ミラー
18…集光レンズ
20…光検出器
201〜207…光検出素子
30、320…制御回路(出力制御部)
31、321…記憶装置
32、322…演算部
40…駆動回路
100、400…光源装置
10, 101-106 ... single color LED
11 ... White LED
12 ... Concave diffraction grating (photosynthesis member)
DESCRIPTION OF SYMBOLS 13 ... Slit board 131 ... Output slit 132 ... Monitor light entrance slit 15 ... Collimator lens 16 ... Semi-permeable membrane (light branching member)
DESCRIPTION OF SYMBOLS 17 ... Mirror 18 ... Condensing lens 20 ... Photo detector 201-207 ... Photo detection element 30, 320 ... Control circuit (output control part)
31, 321, ... Storage devices 32, 322 ... Calculation unit 40 ... Drive circuit 100, 400 ... Light source device

Claims (5)

a) 出射する光の波長範囲が互いに異なる複数の発光ダイオードと、
b) 前記複数の発光ダイオードから出射される光を同一の合成光路に導く光合成部材と、
c) 前記合成光路上に配置された、前記光合成部材によって合成された光を出射光とモニタ光に分岐する光分岐部材と、
d) 前記モニタ光を、前記複数の発光ダイオードの各々が出射する光の波長範囲に対応する光に分光する分光素子と、
e) 前記分光素子で分光された複数の光の強度を検出するための複数の光検出素子を有する光検出器と、
f) 前記複数の光検出素子で得られた検出信号に基づき前記複数の発光ダイオードの出力を制御する出力制御部と
を備えることを特徴とする光源装置。
a) a plurality of light emitting diodes having different wavelength ranges of emitted light;
b) a light combining member that guides light emitted from the plurality of light emitting diodes to the same combined light path;
c) a light branching member arranged on the combined light path for branching the light combined by the light combining member into outgoing light and monitor light;
d) a spectroscopic element that splits the monitor light into light corresponding to a wavelength range of light emitted from each of the plurality of light emitting diodes;
e) a photodetector having a plurality of light detecting elements for detecting the intensity of a plurality of lights dispersed by the spectroscopic element;
f) an output control unit that controls outputs of the plurality of light emitting diodes based on detection signals obtained by the plurality of light detection elements.
前記光合成部材が凹面回折格子から構成され、
前記複数の発光ダイオードが、前記凹面回折格子の波長分散方向に並んで配置されていることを特徴とする請求項1に記載の光源装置。
The photosynthetic member is composed of a concave diffraction grating,
The light source device according to claim 1, wherein the plurality of light emitting diodes are arranged side by side in a wavelength dispersion direction of the concave diffraction grating.
前記モニタ光を前記凹面回折格子に導く光導入部材を備え、前記凹面回折格子が前記分光素子を兼用する、請求項2に記載の光源装置。   The light source device according to claim 2, further comprising a light introducing member that guides the monitor light to the concave diffraction grating, wherein the concave diffraction grating also serves as the spectroscopic element. 前記光分岐部材が、前記光合成部材によって合成された光の一部を透過させ、残りの一部を反射する半透膜から構成されていることを特徴とする請求項1〜3のいずれかに記載の光源装置。   The said light branching member is comprised from the semipermeable membrane which permeate | transmits a part of light synthesize | combined by the said photosynthesis member, and reflects the remaining part. The light source device described. a) 出射する光の波長範囲が互いに異なる複数の発光ダイオードと、
b) 前記複数の発光ダイオードから出射される光の回折光を同一の合成光路に導く凹面回折格子と、
c) 前記凹面回折格子によって前記合成光路に導かれる各発光ダイオードの出射光の回折光とは次数の異なる回折光が入射する位置に配置された複数の光検出素子を有する光検出器と、
d) 前記複数の光検出素子で得られた検出信号に基づき前記複数の発光ダイオードの出力を制御する出力制御部と
を備えることを特徴とする光源装置。
a) a plurality of light emitting diodes having different wavelength ranges of emitted light;
b) a concave diffraction grating that guides the diffracted light of the light emitted from the plurality of light emitting diodes to the same combined optical path;
c) a photodetector having a plurality of photodetectors arranged at positions where diffracted light of a different order from the diffracted light of the light emitted from each light-emitting diode guided to the combined optical path by the concave diffraction grating is incident;
and d) an output control unit that controls outputs of the plurality of light emitting diodes based on detection signals obtained by the plurality of light detection elements.
JP2016099455A 2016-05-18 2016-05-18 Light source device Pending JP2017207354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016099455A JP2017207354A (en) 2016-05-18 2016-05-18 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016099455A JP2017207354A (en) 2016-05-18 2016-05-18 Light source device

Publications (1)

Publication Number Publication Date
JP2017207354A true JP2017207354A (en) 2017-11-24

Family

ID=60414942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099455A Pending JP2017207354A (en) 2016-05-18 2016-05-18 Light source device

Country Status (1)

Country Link
JP (1) JP2017207354A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120703A (en) * 2017-12-29 2019-07-22 三星電子株式会社Samsung Electronics Co.,Ltd. Optical sensor, and apparatus and method for measuring absorbance using the same
KR102085955B1 (en) * 2018-09-20 2020-03-06 전자부품연구원 A lighting device using a led
US20210381954A1 (en) * 2018-11-15 2021-12-09 Hitachi High-Tech Corporation Broadband light source device and biochemical analyzing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120703A (en) * 2017-12-29 2019-07-22 三星電子株式会社Samsung Electronics Co.,Ltd. Optical sensor, and apparatus and method for measuring absorbance using the same
JP7338969B2 (en) 2017-12-29 2023-09-05 三星電子株式会社 Optical sensor, absorbance measuring device and method using the same
KR102085955B1 (en) * 2018-09-20 2020-03-06 전자부품연구원 A lighting device using a led
US20210381954A1 (en) * 2018-11-15 2021-12-09 Hitachi High-Tech Corporation Broadband light source device and biochemical analyzing device
US11754493B2 (en) * 2018-11-15 2023-09-12 Hitachi High-Tech Corporation Broadband light source device and biochemical analyzing device

Similar Documents

Publication Publication Date Title
US8699023B2 (en) Reflectivity measuring device, reflectivity measuring method, membrane thickness measuring device, and membrane thickness measuring method
US8233147B2 (en) Spectrometer and a method for controlling the spectrometer
TWI480501B (en) Displacement measurement method and displacement measuring device
JP5558654B2 (en) Stimulus wavelength conversion device and light detection device
JP2007171179A (en) Light propagation method of detection target
US20130240706A1 (en) Transmitting Light with Lateral Variation
US20110001988A1 (en) Apparatus for Measuring Thickness
JP2007171178A (en) Acquisition method of specimen data
KR20150105444A (en) Confocal measurement device
JP2017207354A (en) Light source device
JP6615604B2 (en) Confocal displacement meter
US20170269002A1 (en) A surface refractive index scanning system and method
KR100922577B1 (en) Portable biophotonic sensor measurement system
JP2017116492A (en) Confocal displacement meter
JP2016145770A (en) Optical analyzer
US10578486B2 (en) Method of calibrating spectrum sensors in a manufacturing environment and an apparatus for effecting the same
JP2017203722A (en) Light source device
US20170248463A1 (en) Arrangement for spatially resolved and wavelength-resolved detection of light radiation emitted from at least one oled or led
KR20130128274A (en) Optical filter assembly, optical apparatus comprising the same and method for controlling the optical apparatus
JPH08247935A (en) Optical device and detection device
JP5900248B2 (en) Spectrophotometer
JP5672376B2 (en) Optical system for reflection characteristic measuring apparatus and reflection characteristic measuring apparatus
JP2004294072A (en) Multiwavelength light source device and optical measuring apparatus
JP2013171007A (en) Optical power meter
JP7445083B2 (en) light source device