JP2017206573A - Rubber composition and pneumatic tire using the same and reinforcer for rubber - Google Patents

Rubber composition and pneumatic tire using the same and reinforcer for rubber Download PDF

Info

Publication number
JP2017206573A
JP2017206573A JP2016097714A JP2016097714A JP2017206573A JP 2017206573 A JP2017206573 A JP 2017206573A JP 2016097714 A JP2016097714 A JP 2016097714A JP 2016097714 A JP2016097714 A JP 2016097714A JP 2017206573 A JP2017206573 A JP 2017206573A
Authority
JP
Japan
Prior art keywords
porous silica
rubber
hardness
rubber composition
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016097714A
Other languages
Japanese (ja)
Other versions
JP6841601B2 (en
Inventor
三原 諭
Satoshi Mihara
諭 三原
福寿 忠弘
Tadahiro Fukuju
忠弘 福寿
光喜 三道
Mitsuyoshi Sando
光喜 三道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Yokohama Rubber Co Ltd
Original Assignee
Tokuyama Corp
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp, Yokohama Rubber Co Ltd filed Critical Tokuyama Corp
Priority to JP2016097714A priority Critical patent/JP6841601B2/en
Publication of JP2017206573A publication Critical patent/JP2017206573A/en
Application granted granted Critical
Publication of JP6841601B2 publication Critical patent/JP6841601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To overcome difficult subjects in this field for satisfying performance such as low rolling resistance, hardness and abrasion resistance at same time because generally these properties position at contrary properties under a conditions that reduction of rolling resistance is required as a requirement performance of a pneumatic tire, therefore a filler such a silica is highly dispersed, but there are problems that hardness is reduced and operational stability is deteriorated, on the other hand correlation between fillers increases and rolling resistance is deteriorated as contrary performance by increasing filler amount for increasing hardness.SOLUTION: The above described problem is solved by a rubber composition by blending 1 to 50 pts.mass of porous silica having DBP oil absorbance of over 300 ml/100 g and 800 ml/100 g or less and pore volume Vp of 2 to 10 ml/g with 100 pts.mass of a silica rubber.SELECTED DRAWING: None

Description

本発明は、ゴム組成物およびそれを用いた空気入りタイヤに関するものであり、詳しくは、低転がり抵抗性、硬度および耐摩耗性を同時に向上させ得るゴム組成物およびそれを用いた空気入りタイヤ並びにゴム用補強剤に関するものである。   TECHNICAL FIELD The present invention relates to a rubber composition and a pneumatic tire using the same, and more specifically, a rubber composition capable of simultaneously improving low rolling resistance, hardness and wear resistance, and a pneumatic tire using the same, and The present invention relates to a rubber reinforcing agent.

近年、空気入りタイヤは、ラベリング(表示方法)制度が開始され、タイヤの要求性能として転がり抵抗の低減が求められるようになっている。タイヤの低転がり抵抗化には、シリカなどのフィラーを高分散化する方法が有効であるが、該方法では硬度が低下し、操縦安定性を損なうという問題点がある。
一方、高硬度化のために充填剤量を増加させると、充填剤間の相互作用が増加し、転がり抵抗を悪化させてしまう。
また、一般的に低転がり抵抗性、硬度、耐摩耗性の性能はいずれも背反特性に位置するため、これらの特性を同時に満足させることは当業界で困難な事項とされていた。
なお、ゴム組成物に多孔質シリカを配合する技術は、下記特許文献1〜3等に開示されている。
In recent years, a labeling (display method) system has been started for pneumatic tires, and a reduction in rolling resistance is required as a required performance of the tire. In order to reduce the rolling resistance of the tire, a method of highly dispersing a filler such as silica is effective, but this method has a problem that the hardness is lowered and steering stability is impaired.
On the other hand, when the amount of the filler is increased for increasing the hardness, the interaction between the fillers is increased and the rolling resistance is deteriorated.
In general, low rolling resistance, hardness, and wear resistance are all in the contradictory characteristics, and satisfying these characteristics at the same time has been a difficult matter in the industry.
In addition, the technique of mix | blending porous silica with a rubber composition is disclosed by the following patent documents 1-3.

特開2013−177501号公報JP 2013-177501 A 特開2001−151945号公報JP 2001-151945 A 特開2008−1826号公報JP 2008-1826 A

したがって本発明の目的は、低転がり抵抗性、硬度および耐摩耗性を同時に向上させ得るゴム組成物およびそれを用いた空気入りタイヤ並びにゴム用補強剤を提供することにある。   Accordingly, an object of the present invention is to provide a rubber composition capable of simultaneously improving low rolling resistance, hardness and abrasion resistance, a pneumatic tire using the rubber composition, and a rubber reinforcing agent.

本発明者らは鋭意研究を重ねた結果、ジエン系ゴムに対し、特定範囲のDBP吸油量および細孔容積を満たす多孔質シリカを特定量でもって配合することにより、上記課題を解決できることを見出し、本発明を完成することができた。
すなわち本発明は以下の通りである。
As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by blending diene rubber with a specific amount of porous silica satisfying a specific range of DBP oil absorption and pore volume. The present invention has been completed.
That is, the present invention is as follows.

1.ジエン系ゴム100質量部に対し、DBP吸油量が300ml/100gを超えかつ800ml/100g以下であり、なおかつ細孔容積Vpが2〜10ml/gである多孔質シリカを1〜50質量部配合してなることを特徴とするゴム組成物。
2.前記多孔質シリカのメタノール滴定による疎水化度が30〜60容量%であることを特徴とする前記1に記載のゴム組成物。
3.前記多孔質シリカが表面処理され、かつ前記表面処理濃度が炭素濃度として5〜10%であることを特徴とする前記1または2に記載のゴム組成物。
4.前記1〜3のいずれかに記載のゴム組成物を使用した空気入りタイヤ。
5.DBP吸油量が300ml/100gを超えかつ800ml/100g以下であり、なおかつ細孔容積Vpが2〜10ml/gである多孔質シリカよりなるジエン系ゴム用補強剤。
6.前記多孔質シリカのメタノール滴定による疎水化度が30〜60容量%であることを特徴とする前記5に記載のジエン系ゴム用補強剤。
7.前記多孔質シリカが表面処理され、かつ前記表面処理濃度が炭素濃度として5〜10%であることを特徴とする前記5または6に記載のジエン系ゴム用補強剤。
1. 1 to 50 parts by mass of porous silica having a DBP oil absorption of more than 300 ml / 100 g and 800 ml / 100 g or less and a pore volume Vp of 2 to 10 ml / g with respect to 100 parts by mass of diene rubber. A rubber composition characterized by comprising:
2. 2. The rubber composition according to 1 above, wherein the degree of hydrophobicity of the porous silica by methanol titration is 30 to 60% by volume.
3. 3. The rubber composition as described in 1 or 2 above, wherein the porous silica is surface-treated and the surface treatment concentration is 5 to 10% as a carbon concentration.
4). A pneumatic tire using the rubber composition according to any one of 1 to 3 above.
5. A diene rubber reinforcing agent comprising porous silica having a DBP oil absorption of more than 300 ml / 100 g and 800 ml / 100 g or less and a pore volume Vp of 2 to 10 ml / g.
6). 6. The reinforcing agent for diene rubbers according to 5 above, wherein the degree of hydrophobicity of the porous silica by methanol titration is 30 to 60% by volume.
7). 7. The reinforcing agent for diene rubber according to 5 or 6, wherein the porous silica is surface-treated and the surface treatment concentration is 5 to 10% as a carbon concentration.

本発明によれば、ジエン系ゴムに対し、特定範囲のDBP吸油量および細孔容積を満たす多孔質シリカを特定量でもって配合したので、低転がり抵抗性、硬度および耐摩耗性を同時に向上させ得るゴム組成物およびそれを用いた空気入りタイヤを提供することができる。
また本発明のゴム用補強材は、特定範囲のDBP吸油量および細孔容積を満たす多孔質シリカからなることを特徴としているので、ゴムの低転がり抵抗性、硬度および耐摩耗性を同時に向上させることができる。
According to the present invention, since the diene rubber is blended with a specific amount of porous silica satisfying a specific range of DBP oil absorption and pore volume, low rolling resistance, hardness and wear resistance are simultaneously improved. A rubber composition to be obtained and a pneumatic tire using the same can be provided.
Further, the rubber reinforcing material of the present invention is characterized by comprising porous silica satisfying a specific range of DBP oil absorption and pore volume, thereby simultaneously improving the low rolling resistance, hardness and wear resistance of the rubber. be able to.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

(ジエン系ゴム)
本発明で使用されるジエン系ゴムは、ゴム組成物に配合することができる任意のジエン系ゴムを用いることができ、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン−ブタジエン共重合体ゴム(SBR)、アクリロニトリル−ブタジエン共重合体ゴム(NBR)、エチレン−プロピレン−ジエンターポリマー(EPDM)等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。また、その分子量やミクロ構造はとくに制限されず、アミン、アミド、シリル、アルコキシシリル、カルボキシル、ヒドロキシル基等で変性されていても、エポキシ化されていてもよい。
これらのジエン系ゴムの中でも、本発明の効果の点からジエン系ゴムはNR、SBRおよびBRがとくに好ましい。
(Diene rubber)
As the diene rubber used in the present invention, any diene rubber that can be blended in the rubber composition can be used, for example, natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR). Styrene-butadiene copolymer rubber (SBR), acrylonitrile-butadiene copolymer rubber (NBR), ethylene-propylene-diene terpolymer (EPDM), and the like. These may be used alone or in combination of two or more. Moreover, the molecular weight and microstructure are not particularly limited, and may be modified with an amine, amide, silyl, alkoxysilyl, carboxyl, hydroxyl group or the like, or may be epoxidized.
Among these diene rubbers, NR, SBR and BR are particularly preferable as the diene rubber from the viewpoint of the effect of the present invention.

(多孔質シリカ)
本発明では、DBP吸油量が300ml/100gを超えかつ800ml/100g以下であり、なおかつ細孔容積Vpが2〜10ml/gである多孔質シリカを使用する。
多孔質シリカのDBP吸油量が300ml/100g以下では、低転がり抵抗性、硬度および耐摩耗性を同時に向上させることができない。またDBP吸油量が800ml/100gを超えると混合加工性が著しく低下し、その結果、フィラーの分散が悪化する。
本発明において、多孔質シリカのDBP吸油量は、450〜750ml/100gが好ましく、400〜600ml/100gがさらに好ましい。
なお、多孔質シリカのDBP吸油量は、JIS K6217−4に準拠して求めるものとする。
(Porous silica)
In the present invention, porous silica having a DBP oil absorption of more than 300 ml / 100 g and 800 ml / 100 g or less and a pore volume Vp of 2 to 10 ml / g is used.
When the DBP oil absorption amount of the porous silica is 300 ml / 100 g or less, the low rolling resistance, hardness and wear resistance cannot be improved at the same time. On the other hand, when the DBP oil absorption exceeds 800 ml / 100 g, the mixing processability is remarkably lowered, and as a result, the filler dispersion is deteriorated.
In the present invention, the DBP oil absorption of the porous silica is preferably 450 to 750 ml / 100 g, and more preferably 400 to 600 ml / 100 g.
In addition, the DBP oil absorption amount of porous silica shall be calculated | required based on JISK6217-4.

多孔質シリカの細孔容積Vpが2ml/g未満であると低転がり抵抗性、硬度および耐摩耗性を同時に向上させることができない。また細孔容積Vpが10ml/gを超えると耐摩耗性が悪化する。
本発明において、多孔質シリカの細孔容積Vpは、2.5〜7ml/gが好ましく、3〜6ml/gがさらに好ましい。
なお、多孔質シリカの細孔容積Vpは、測定対象のサンプルを、1kPa以下の真空下において、150℃の温度で2時間以上乾燥させ、その後液体窒素温度における窒素の吸着剤のみの吸着等温線を取得し、BJH法(Barrett,E.P.;Joyner,L.G.;Halenda,P.P.,J.Am.Chem.Soc.73,373(1951))により解析して得られる細孔半径1nm以上100nm以下の細孔に由来する細孔容積である。
When the pore volume Vp of the porous silica is less than 2 ml / g, the low rolling resistance, hardness and wear resistance cannot be improved at the same time. Further, when the pore volume Vp exceeds 10 ml / g, the wear resistance is deteriorated.
In the present invention, the pore volume Vp of the porous silica is preferably 2.5 to 7 ml / g, more preferably 3 to 6 ml / g.
The pore volume Vp of the porous silica is determined by drying the sample to be measured for 2 hours or more at a temperature of 150 ° C. under a vacuum of 1 kPa or less. And obtained by analysis according to the BJH method (Barrett, E.P .; Joyner, LG; Halenda, P.P., J. Am. Chem. Soc. 73, 373 (1951)). It is a pore volume derived from pores having a pore radius of 1 nm or more and 100 nm or less.

本発明で使用される多孔質シリカの製造方法は公知であり、例えば特開平10−236817号、特開2013−203804号等に開示されている方法が挙げられる。   The manufacturing method of the porous silica used by this invention is well-known, For example, the method currently disclosed by Unexamined-Japanese-Patent No. 10-236817, Unexamined-Japanese-Patent No. 2013-203804, etc. is mentioned.

本発明で使用される多孔質シリカの比表面積は、300m/g〜800m/gであることが好ましく、350m/g〜700m/gであることがより好ましく、400m/g〜600m/gであることが特に好ましい。
なお、多孔質シリカの比表面積は、測定対象のサンプルを1kPa以下の真空下において150℃の温度で2時間以上乾燥させ、その後、液体窒素温度における窒素の吸着側のみの吸着等温線を測定し、該吸着等温線をBET法により解析して求めた値であって、その際の解析に用いる圧力範囲は、相対圧0.1〜0.25の範囲である。
本発明で使用される多孔質シリカの一次粒子径は、例えば3nm〜10nm、好ましくは3nm〜7nmである。
The specific surface area of the porous silica used in the present invention is preferably 300m 2 / g~800m 2 / g, more preferably 350m 2 / g~700m 2 / g, 400m 2 / g~ Particularly preferred is 600 m 2 / g.
The specific surface area of the porous silica is determined by drying the sample to be measured at 150 ° C. for 2 hours or more under a vacuum of 1 kPa or less, and then measuring the adsorption isotherm only on the nitrogen adsorption side at the liquid nitrogen temperature. The value obtained by analyzing the adsorption isotherm by the BET method, and the pressure range used for the analysis at that time is a range of a relative pressure of 0.1 to 0.25.
The primary particle diameter of the porous silica used in the present invention is, for example, 3 nm to 10 nm, preferably 3 nm to 7 nm.

通常、多孔質シリカは複数の粒子が集まって二次粒子を形成し、一次粒子同士で形成される間隙部によって多孔質化する。この間隙部にゴムが入り込むことにより、ゴムと多孔質シリカの強固な複合体が形成され、ゴムの分子運度が遮られ、硬度並びに耐摩耗性の発現に寄与するものと推測される。   Usually, the porous silica forms a secondary particle by collecting a plurality of particles, and is made porous by a gap formed by the primary particles. It is presumed that when rubber enters this gap, a strong composite of rubber and porous silica is formed, the molecular mobility of the rubber is blocked, and it contributes to the development of hardness and wear resistance.

また本発明の多孔質シリカは、メタノール滴定による疎水化度が30〜60容量(vol)%であることが好ましい。疎水化度が当該範囲を満たすことにより、低転がり抵抗性、硬度および耐摩耗性をさらに高次に満足させることができる。
本発明において、多孔質シリカの疎水化度は、40〜55容量%がさらに好ましい。
上記疎水化度を達成するには、多孔質シリカを表面処理する際の処理剤量等の条件を調整するの方法等がある。
なお、多孔質シリカの疎水化度は、多孔質シリカを水に加え、攪拌下にメタノールを滴定により加え、多孔質シリカの全量が水に懸濁した際のメタノール−水混合溶媒中のメタノールの濃度(容量%)の値を求めたものである。
Further, the porous silica of the present invention preferably has a degree of hydrophobicity by methanol titration of 30 to 60 volume (vol)%. When the degree of hydrophobicity satisfies this range, low rolling resistance, hardness, and wear resistance can be further satisfied.
In the present invention, the hydrophobicity of the porous silica is more preferably 40 to 55% by volume.
In order to achieve the above-mentioned degree of hydrophobicity, there is a method of adjusting conditions such as the amount of treatment agent when the surface treatment of porous silica is performed.
The degree of hydrophobicity of the porous silica is determined by adding the porous silica to water, adding methanol by titration with stirring, and the amount of methanol in the methanol-water mixed solvent when the entire amount of the porous silica is suspended in water. The concentration (volume%) value is obtained.

また本発明の多孔質シリカは表面処理され、かつ前記表面処理濃度が炭素濃度として5〜10%であることが好ましい。炭素濃度が当該範囲を満たすことにより、低転がり抵抗性、硬度および耐摩耗性をさらに高次に満足させることができる。
本発明において、上記炭素濃度は6〜9%であることがさらに好ましい。
ここで言う表面処理とは、例えばシランカップリング剤を用いた処理、シリル化剤を用いた処理、シロキサン類を用いた処理等が挙げられる。
多孔質シリカの表面処理方法としては、例えばシリル化剤を用いた処理の場合、特開2013−203804号に開示される方法により処理することができる。
なお、炭素濃度は、多孔質シリカを完全燃焼させ、得られた燃焼ガス中の炭素ガスを定量し、換算することによって求めることができる。具体的には、エレメンタール社製のVario Micro cube等の市販の元素分析装置により測定することが可能である。
The porous silica of the present invention is preferably surface-treated and the surface treatment concentration is 5 to 10% as the carbon concentration. When the carbon concentration satisfies this range, low rolling resistance, hardness, and wear resistance can be further satisfied.
In the present invention, the carbon concentration is more preferably 6 to 9%.
Examples of the surface treatment herein include treatment using a silane coupling agent, treatment using a silylating agent, treatment using siloxanes, and the like.
As a surface treatment method for porous silica, for example, in the case of treatment using a silylating agent, treatment can be performed by a method disclosed in JP2013-203804A.
In addition, carbon concentration can be calculated | required by carrying out complete combustion of the porous silica, and quantifying and converting the carbon gas in the obtained combustion gas. Specifically, it can be measured by a commercially available elemental analyzer such as Vario Micro cube manufactured by Elemental.

以上説明した本発明の多孔質シリカは、ゴムの低転がり抵抗性、硬度および耐摩耗性を同時に向上させ得るので、ゴム用補強材として有用である。   The porous silica of the present invention described above is useful as a rubber reinforcing material because it can simultaneously improve the low rolling resistance, hardness, and wear resistance of rubber.

(ゴム組成物の配合割合)
本発明のゴム組成物は、ジエン系ゴム100質量部に対し、上記多孔質シリカを1〜50質量部配合してなることを特徴とする。
多孔質シリカの配合割合が1質量部未満であると、添加量が少なすぎて本発明の効果を奏することができない。逆に50質量部を超えると、耐摩耗性が悪化する。
多孔質シリカの配合割合は、ジエン系ゴム100質量部に対し、5〜45質量部がさらに好ましく、10〜30質量部がとくに好ましい。
なお、本発明のゴム組成物は、多孔質シリカ以外のその他のシリカを併用することもできる。その場合、多孔質シリカおよびその他のシリカの合計量は、ジエン系ゴム100質量部に対し、例えば30〜200質量部であることができる。
(Rubber composition ratio)
The rubber composition of the present invention is characterized in that 1 to 50 parts by mass of the porous silica is blended with 100 parts by mass of the diene rubber.
When the blending ratio of the porous silica is less than 1 part by mass, the added amount is too small to achieve the effects of the present invention. Conversely, when it exceeds 50 mass parts, abrasion resistance will deteriorate.
The blending ratio of the porous silica is more preferably 5 to 45 parts by mass and particularly preferably 10 to 30 parts by mass with respect to 100 parts by mass of the diene rubber.
In addition, the silica composition of this invention can also use silica other than porous silica together. In that case, the total amount of porous silica and other silica can be, for example, 30 to 200 parts by mass with respect to 100 parts by mass of the diene rubber.

(その他成分)
本発明におけるゴム組成物には、前記した成分に加えて、加硫又は架橋剤;加硫又は架橋促進剤;酸化亜鉛、カーボンブラック、クレー、タルク、炭酸カルシウムのような各種充填剤;老化防止剤;可塑剤などのゴム組成物に一般的に配合されている各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量も、本発明の目的に反しない限り、従来の一般的な配合量とすることができる。
(Other ingredients)
In the rubber composition of the present invention, in addition to the above-described components, a vulcanization or crosslinking agent; a vulcanization or crosslinking accelerator; various fillers such as zinc oxide, carbon black, clay, talc, calcium carbonate; Various additives generally blended in rubber compositions such as plasticizers can be blended, and these additives are kneaded by a general method to form a composition for vulcanization or crosslinking. Can be used. The blending amounts of these additives can be set to conventional general blending amounts as long as the object of the present invention is not violated.

また本発明のゴム組成物は従来の空気入りタイヤの製造方法に従って空気入りタイヤを製造するのに適しており、トレッド、とくにキャップトレッドに適用するのがよい。   The rubber composition of the present invention is suitable for producing a pneumatic tire in accordance with a conventional method for producing a pneumatic tire, and is preferably applied to a tread, particularly a cap tread.

以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example further demonstrate this invention, this invention is not restrict | limited to the following example.

標準例、実施例1〜6および比較例1〜7
サンプルの調製
表1に示す配合(質量部)において、加硫促進剤と硫黄を除く成分を1.7リットルの密閉式バンバリーミキサーで5分間混練した後、混練物をミキサー外に放出させて室温冷却させた。その後、同バンバリーミキサーにおいて加硫促進剤および硫黄を加えてさらに混練し、ゴム組成物を得た。次に得られたゴム組成物を所定の金型中で160℃、20分間プレス加硫して加硫ゴム試験片を得、以下に示す試験法で加硫ゴム試験片の物性を測定した。
Standard example, Examples 1-6 and Comparative Examples 1-7
Sample Preparation In the formulation (parts by mass) shown in Table 1, the components other than the vulcanization accelerator and sulfur were kneaded for 5 minutes with a 1.7 liter closed Banbury mixer, and then the kneaded product was discharged out of the mixer at room temperature. Allow to cool. Thereafter, in the same Banbury mixer, a vulcanization accelerator and sulfur were added and further kneaded to obtain a rubber composition. Next, the obtained rubber composition was press vulcanized at 160 ° C. for 20 minutes in a predetermined mold to obtain a vulcanized rubber test piece, and the physical properties of the vulcanized rubber test piece were measured by the following test method.

硬度(20℃):JIS K6253に基づき、20℃にて測定した。結果は、標準例の値を100として指数で示した。指数が大きいほど硬度が高いことを示す。
損失コンプライアンス:東洋精機製作所製の粘弾性スペクトロメーターを用い、歪10±2%、周波数20Hz、雰囲気温度60℃の条件にて測定した。結果は、標準例の値を100として指数で示した。指数が小さいほど低い転がり抵抗であることを示す。
耐摩耗性:岩本製作所(株)製のランボーン摩耗試験機を用い、荷重5kg(49N)、スリップ率25%、時間4分、室温の条件にて測定し摩耗減量を求めた。結果は、標準例の値を100として指数で示した。指数が大きいほど耐摩耗性に優れることを示す。
結果を表1に併せて示す。
Hardness (20 ° C.): Measured at 20 ° C. based on JIS K6253. The results are shown as an index with the value of the standard example being 100. The larger the index, the higher the hardness.
Loss compliance: Measured using a viscoelastic spectrometer manufactured by Toyo Seiki Seisakusho under the conditions of a strain of 10 ± 2%, a frequency of 20 Hz, and an ambient temperature of 60 ° C. The results are shown as an index with the value of the standard example being 100. The smaller the index, the lower the rolling resistance.
Abrasion resistance: Using a Lambourn abrasion tester manufactured by Iwamoto Seisakusho Co., Ltd., the weight loss was determined by measurement under the conditions of a load of 5 kg (49 N), a slip rate of 25%, a time of 4 minutes, and room temperature. The results are shown as an index with the value of the standard example being 100. It shows that it is excellent in abrasion resistance, so that an index | exponent is large.
The results are also shown in Table 1.

Figure 2017206573
Figure 2017206573

*1:SBR(旭化成(株)製E−581、油展量=SBR100質量部に対し37.5質量部)
*2:BR(日本ゼオン(株)製Nipol BR1220)
*3:シリカ−1(Solvay社製Zeosil 1165MP)
*4:シリカ−2(トクヤマ社製KS30SC)
*5:多孔質シリカ−1
DBP吸油量=492ml/100g、
細孔容積Vp=3.8ml/g、
メタノール滴定による疎水化度=48容量%、
オクタメチルシクロテトラシロキサンによる表面処理有り(炭素濃度=8.1%)、
比表面積=502m/g
D50=2.2μm
*6:多孔質シリカ−2
DBP吸油量=488ml/100g、
細孔容積Vp=4.0ml/g、
メタノール滴定による疎水化度=48容量%、
オクタメチルシクロテトラシロキサンによる表面処理有り(炭素濃度=8.1%)
比表面積=505m/g
D50=3.5μm
*7:多孔質シリカ−3
DBP吸油量=487ml/100g、
細孔容積Vp=4.1ml/g、
メタノール滴定による疎水化度=48容量%、
オクタメチルシクロテトラシロキサンによる表面処理有り(炭素濃度=8.1%)
比表面積=499m/g
D50=7.5μm
*8:多孔質シリカ−4
DBP吸油量=150ml/100g、
細孔容積Vp=1.0ml/g、
メタノール滴定による疎水化度=46容量%、
オクタメチルシクロテトラシロキサンによる表面処理有り(炭素濃度=7.5%)、
比表面積=509m/g
D50=3.0μm
*9:カーボンブラック(東海カーボン(株)製シースト6)
*10:酸化亜鉛(正同化学工業(株)製酸化亜鉛3種)
*11:ステアリン酸(日油(株)製ビーズステアリン酸)
*12:老化防止剤(フレキシス社製6PPD)
*13:ワックス(大内新興化学工業(株)製パラフィンワックス)
*14:加工助剤(ジルアンドザイラッハー社製EF44)
*15:プロセスオイル(昭和シェル石油(株)製エキストラクト4号S)
*16:硫黄(鶴見化学工業(株)製金華印油入微粉硫黄)
*17:加硫促進剤−1(大内新興化学工業(株)製ノクセラーCZ−G)
*18:加硫促進剤−2(大内新興化学工業(株)製ノクセラーD)
* 1: SBR (E-581 manufactured by Asahi Kasei Co., Ltd., oil extended amount = 37.5 parts by mass with respect to 100 parts by mass of SBR)
* 2: BR (Nipol BR1220 manufactured by Nippon Zeon Co., Ltd.)
* 3: Silica-1 (Zeosil 1165MP manufactured by Solvay)
* 4: Silica-2 (KS30SC manufactured by Tokuyama)
* 5: Porous silica-1
DBP oil absorption = 492 ml / 100 g,
Pore volume Vp = 3.8 ml / g,
Hydrophobic degree by methanol titration = 48% by volume,
With surface treatment with octamethylcyclotetrasiloxane (carbon concentration = 8.1%),
Specific surface area = 502 m 2 / g
D50 = 2.2μm
* 6: Porous silica-2
DBP oil absorption = 488 ml / 100 g,
Pore volume Vp = 4.0 ml / g,
Hydrophobic degree by methanol titration = 48% by volume,
Surface treatment with octamethylcyclotetrasiloxane (carbon concentration = 8.1%)
Specific surface area = 505 m 2 / g
D50 = 3.5μm
* 7: Porous silica-3
DBP oil absorption = 487 ml / 100 g,
Pore volume Vp = 4.1 ml / g,
Hydrophobic degree by methanol titration = 48% by volume,
Surface treatment with octamethylcyclotetrasiloxane (carbon concentration = 8.1%)
Specific surface area = 499 m 2 / g
D50 = 7.5μm
* 8: Porous silica-4
DBP oil absorption = 150 ml / 100 g,
Pore volume Vp = 1.0 ml / g,
Hydrophobic degree by methanol titration = 46% by volume,
With surface treatment with octamethylcyclotetrasiloxane (carbon concentration = 7.5%),
Specific surface area = 509 m 2 / g
D50 = 3.0μm
* 9: Carbon black (Toast Carbon Co., Ltd. Seest 6)
* 10: Zinc oxide (3 types of zinc oxide manufactured by Shodo Chemical Industry Co., Ltd.)
* 11: Stearic acid (beef stearic acid manufactured by NOF Corporation)
* 12: Anti-aging agent (6PPD manufactured by Flexis)
* 13: Wax (paraffin wax manufactured by Ouchi Shinsei Chemical Co., Ltd.)
* 14: Processing aid (EF44 manufactured by Jill and Sailacher)
* 15: Process oil (Extract No. 4 S manufactured by Showa Shell Sekiyu KK)
* 16: Sulfur (fine powdered sulfur with Jinhua seal oil from Tsurumi Chemical Co., Ltd.)
* 17: Vulcanization accelerator-1 (Noxeller CZ-G manufactured by Ouchi Shinsei Chemical Co., Ltd.)
* 18: Vulcanization accelerator-2 (Noxeller D manufactured by Ouchi Shinsei Chemical Co., Ltd.)

表1の結果から、実施例のゴム組成物は、ジエン系ゴムに対し、特定範囲のDBP吸油量および細孔容積を満たす多孔質シリカを特定量でもって配合したので、従来の代表的な標準例の組成物に比べ、低転がり抵抗性、硬度および耐摩耗性が同時に改善されていることが分かる。
これに対し、比較例1〜2は単にシリカの配合量を増加させた例であるので、低転がり抵抗性、硬度および耐摩耗性を同時に改善することができなかった。
比較例3〜4は、多孔質シリカのDBP吸油量および細孔容積が本発明で規定する下限未満であるので、低転がり抵抗性、硬度および耐摩耗性がいずれも悪化している。
比較例5〜6は、実施例における多孔質シリカとほぼ同等の比表面積を有するシリカを使用した例であるが、低転がり抵抗性、硬度および耐摩耗性を同時に改善することができなかった。
比較例7は、多孔質シリカの配合量が本発明で規定する上限を超えているので、耐摩耗性が悪化した。
From the results in Table 1, the rubber compositions of the examples were blended with a specific amount of porous silica satisfying the DBP oil absorption amount and pore volume in a specific range with respect to the diene rubber, so that the conventional representative standard It can be seen that the low rolling resistance, hardness and wear resistance are simultaneously improved compared to the example composition.
On the other hand, Comparative Examples 1 and 2 are examples in which the amount of silica is simply increased, and thus the low rolling resistance, hardness and wear resistance could not be improved at the same time.
In Comparative Examples 3 to 4, since the DBP oil absorption amount and pore volume of the porous silica are less than the lower limits specified in the present invention, the low rolling resistance, hardness, and wear resistance are all deteriorated.
Comparative Examples 5 to 6 are examples in which silica having a specific surface area substantially equivalent to the porous silica in the examples was used, but the low rolling resistance, hardness and wear resistance could not be improved at the same time.
In Comparative Example 7, the wear resistance deteriorated because the compounding amount of the porous silica exceeded the upper limit defined in the present invention.

Claims (7)

ジエン系ゴム100質量部に対し、DBP吸油量が300ml/100gを超えかつ800ml/100g以下であり、なおかつ細孔容積Vpが2〜10ml/gである多孔質シリカを1〜50質量部配合してなることを特徴とするゴム組成物。   1 to 50 parts by mass of porous silica having a DBP oil absorption of more than 300 ml / 100 g and 800 ml / 100 g or less and a pore volume Vp of 2 to 10 ml / g with respect to 100 parts by mass of diene rubber. A rubber composition characterized by comprising: 前記多孔質シリカのメタノール滴定による疎水化度が30〜60容量%であることを特徴とする請求項1に記載のゴム組成物。   The rubber composition according to claim 1, wherein the degree of hydrophobicity of the porous silica by methanol titration is 30 to 60% by volume. 前記多孔質シリカが表面処理され、かつ前記表面処理濃度が炭素濃度として5〜10%であることを特徴とする請求項1または2に記載のゴム組成物。   The rubber composition according to claim 1 or 2, wherein the porous silica is surface-treated and the surface treatment concentration is 5 to 10% as a carbon concentration. 請求項1〜3のいずれかに記載のゴム組成物を使用した空気入りタイヤ。   A pneumatic tire using the rubber composition according to claim 1. DBP吸油量が300ml/100gを超えかつ800ml/100g以下であり、なおかつ細孔容積Vpが2〜10ml/gである多孔質シリカよりなるジエン系ゴム用補強剤。   A diene rubber reinforcing agent comprising porous silica having a DBP oil absorption of more than 300 ml / 100 g and 800 ml / 100 g or less and a pore volume Vp of 2 to 10 ml / g. 前記多孔質シリカのメタノール滴定による疎水化度が30〜60容量%であることを特徴とする請求項5に記載のジエン系ゴム用補強剤。   6. The diene rubber reinforcing agent according to claim 5, wherein the degree of hydrophobicity of the porous silica by methanol titration is 30 to 60% by volume. 前記多孔質シリカが表面処理され、かつ前記表面処理濃度が炭素濃度として5〜10%であることを特徴とする請求項5または6に記載のジエン系ゴム用補強剤。   The diene rubber reinforcing agent according to claim 5 or 6, wherein the porous silica is surface-treated and the surface treatment concentration is 5 to 10% as a carbon concentration.
JP2016097714A 2016-05-16 2016-05-16 Rubber composition and pneumatic tires and rubber reinforcements using it Active JP6841601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016097714A JP6841601B2 (en) 2016-05-16 2016-05-16 Rubber composition and pneumatic tires and rubber reinforcements using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016097714A JP6841601B2 (en) 2016-05-16 2016-05-16 Rubber composition and pneumatic tires and rubber reinforcements using it

Publications (2)

Publication Number Publication Date
JP2017206573A true JP2017206573A (en) 2017-11-24
JP6841601B2 JP6841601B2 (en) 2021-03-10

Family

ID=60415316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016097714A Active JP6841601B2 (en) 2016-05-16 2016-05-16 Rubber composition and pneumatic tires and rubber reinforcements using it

Country Status (1)

Country Link
JP (1) JP6841601B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018002902A (en) * 2016-07-04 2018-01-11 横浜ゴム株式会社 Rubber composition and pneumatic tire using the same
JP2018002919A (en) * 2016-07-05 2018-01-11 横浜ゴム株式会社 Rubber composition and pneumatic tire using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231409A (en) * 1984-04-06 1985-11-18 ローヌ‐プーラン シミー ドウ バーズ Novel sedimentary silica with improved morphological properties, manufacture and application as filler
JPH0375215A (en) * 1989-08-17 1991-03-29 Nippon Shirika Kogyo Kk Preparation of porous silica
JP2005002225A (en) * 2003-06-12 2005-01-06 Asahi Kasei Chemicals Corp Rubber composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231409A (en) * 1984-04-06 1985-11-18 ローヌ‐プーラン シミー ドウ バーズ Novel sedimentary silica with improved morphological properties, manufacture and application as filler
JPH0375215A (en) * 1989-08-17 1991-03-29 Nippon Shirika Kogyo Kk Preparation of porous silica
JP2005002225A (en) * 2003-06-12 2005-01-06 Asahi Kasei Chemicals Corp Rubber composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018002902A (en) * 2016-07-04 2018-01-11 横浜ゴム株式会社 Rubber composition and pneumatic tire using the same
JP2018002919A (en) * 2016-07-05 2018-01-11 横浜ゴム株式会社 Rubber composition and pneumatic tire using the same
JP7149686B2 (en) 2016-07-05 2022-10-07 横浜ゴム株式会社 Rubber composition and pneumatic tire using the same

Also Published As

Publication number Publication date
JP6841601B2 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
JP4294070B2 (en) Rubber composition for tire
US20150148447A1 (en) Tire rubber composite and pneumatic tire
WO2014178431A1 (en) Rubber composition for tire
JP2013036025A (en) Rubber composition for tires
JP2010275386A (en) Rubber composition for tire tread
WO2013001826A1 (en) Rubber composition for tires, pneumatic tire, and method for producing rubber composition for tires
JP2008274017A (en) Rubber composition
JP2016003274A (en) Rubber composition and pneumatic tire using the same
JP6245033B2 (en) Rubber composition and pneumatic tire using the same
JP6848228B2 (en) Rubber composition and pneumatic tires using it
JP6841601B2 (en) Rubber composition and pneumatic tires and rubber reinforcements using it
JP5044903B2 (en) Rubber composition for tire
JP6208428B2 (en) Rubber composition for tire and pneumatic tire
WO2019163519A1 (en) Rubber composition and pneumatic tire obtained using same
JP2018002919A (en) Rubber composition and pneumatic tire using the same
JP5617355B2 (en) Rubber composition for tire tread and pneumatic tire using the same
JP6852291B2 (en) Rubber composition and pneumatic tires using it
JP2006335805A (en) Rubber composition for tire
JP6848229B2 (en) Rubber composition and pneumatic tires using it
JP2007217465A (en) Rubber composition for tire
JP6834194B2 (en) Rubber composition and pneumatic tires using it
JP2013213125A (en) Rubber composition for tire and pneumatic tire using the same
JP5082206B2 (en) Rubber composition for tire
JP5625964B2 (en) Pneumatic tire
JP6597866B2 (en) Rubber composition and pneumatic tire using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210218

R150 Certificate of patent or registration of utility model

Ref document number: 6841601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250