JP2010275386A - Rubber composition for tire tread - Google Patents

Rubber composition for tire tread Download PDF

Info

Publication number
JP2010275386A
JP2010275386A JP2009127700A JP2009127700A JP2010275386A JP 2010275386 A JP2010275386 A JP 2010275386A JP 2009127700 A JP2009127700 A JP 2009127700A JP 2009127700 A JP2009127700 A JP 2009127700A JP 2010275386 A JP2010275386 A JP 2010275386A
Authority
JP
Japan
Prior art keywords
sbr
rubber
modified
weight
butadiene rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009127700A
Other languages
Japanese (ja)
Other versions
JP5381332B2 (en
Inventor
Masaki Sato
正樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2009127700A priority Critical patent/JP5381332B2/en
Publication of JP2010275386A publication Critical patent/JP2010275386A/en
Application granted granted Critical
Publication of JP5381332B2 publication Critical patent/JP5381332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber composition for a tire tread, capable of further improving low rolling resistance, wet grip performance, and wear resistance compared to conventional levels. <P>SOLUTION: The rubber composition is obtained by compounding 6-120 pts.wt. silica with 100 pts.wt. diene rubber containing ≥70 wt.% in total of three of rubbers including emulsion polymerized styrene butadiene rubber (E-SBR), terminal-modified solution-polymerized styrene butadiene rubber (modified S-SBR), and butadiene rubber (BR). Here, the amount of BR is 10-20 wt.%, the weight ratio of the three of rubbers (E-SBR:modified S-SBR:BR) is (1-2):(3-4):1, the difference in styrene contents between the E-SBR and the modified S-SBR is ≤6 wt.%, and the difference in glass transition temperature between the E-SBR and the modified S-SBR is ≤7°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、タイヤトレッド用ゴム組成物に関し、更に詳しくは、低転がり抵抗、ウェットグリップ性能及び耐摩耗性を向上するようにしたタイヤトレッド用ゴム組成物に関する。   The present invention relates to a rubber composition for a tire tread, and more particularly to a rubber composition for a tire tread that is improved in low rolling resistance, wet grip performance, and wear resistance.

一般に、空気入りタイヤには、燃費性能が高く、かつ湿潤路面での操縦安定性が優れることが求められている。このため、トレッド部を構成するタイヤトレッド用ゴム組成物には、シリカを配合することにより、転がり抵抗を低くすると共に、ウェットグリップ性能を高くすることが行われている。しかし、シリカを配合したゴム組成物は、耐摩耗性が劣るという問題があった。   In general, a pneumatic tire is required to have high fuel efficiency and excellent handling stability on a wet road surface. For this reason, in the tire tread rubber composition constituting the tread portion, by adding silica, rolling resistance is lowered and wet grip performance is enhanced. However, the rubber composition containing silica has a problem of poor wear resistance.

この対策として、特許文献1は、溶液重合スチレンブタジエンゴム、乳化重合スチレンブタジエンゴム、ブタジエンゴムからなるゴム成分にシリカを配合したタイヤ用ゴム組成物を提案している。このゴム組成物は、低転がり抵抗、ウェットグリップ性能及び耐摩耗性の3機能がバランスよく改善する効果が認められる。しかし、需要者のこれらの3機能に対する要求レベルは十分に満足されず、それ以上の向上が求められている。   As a countermeasure, Patent Document 1 proposes a tire rubber composition in which silica is blended with a rubber component made of solution-polymerized styrene-butadiene rubber, emulsion-polymerized styrene-butadiene rubber, and butadiene rubber. This rubber composition has an effect of improving the three functions of low rolling resistance, wet grip performance and wear resistance in a well-balanced manner. However, demand levels for these three functions of consumers are not fully satisfied, and further improvements are required.

特開2005−23295号公報Japanese Patent Laid-Open No. 2005-23295

本発明の目的は、低転がり抵抗、ウェットグリップ性能及び耐摩耗性を従来レベルよりも更に向上するようにしたタイヤトレッド用ゴム組成物を提供することにある。   An object of the present invention is to provide a rubber composition for a tire tread in which low rolling resistance, wet grip performance and wear resistance are further improved from conventional levels.

上記目的を達成する本発明のタイヤトレッド用ゴム組成物は、乳化重合スチレンブタジエンゴム(E−SBR)、末端変性溶液重合スチレンブタジエンゴム(変性S−SBR)及びブタジエンゴム(BR)からなる3種のゴムを70重量%以上含むジエン系ゴム100重量部に、シリカを60〜120重量部配合したゴム組成物であり、前記ブタジエンゴムを10〜20重量%にし、前記3種のゴムの重量比(E−SBR:変性S−SBR:BR)を(1〜2):(3〜4):1にすると共に、前記乳化重合スチレンブタジエンゴムと末端変性溶液重合スチレンブタジエンゴムとのスチレン含有量の差を6重量%以下、かつガラス転移温度の差を7℃以下にしたことを特徴とする。   The rubber composition for a tire tread of the present invention that achieves the above object is composed of three types of emulsion-polymerized styrene-butadiene rubber (E-SBR), terminal-modified solution-polymerized styrene-butadiene rubber (modified S-SBR), and butadiene rubber (BR). A rubber composition containing 60 to 120 parts by weight of silica in 100 parts by weight of a diene rubber containing 70% by weight or more of the above rubber, the butadiene rubber being 10 to 20% by weight, and the weight ratio of the three rubbers (E-SBR: modified S-SBR: BR) was changed to (1-2) :( 3-4): 1, and the styrene content of the emulsion-polymerized styrene-butadiene rubber and the terminal-modified solution-polymerized styrene-butadiene rubber was adjusted. The difference is 6% by weight or less, and the difference in glass transition temperature is 7 ° C. or less.

前記末端変性溶液重合スチレンブタジエンゴムの官能基は、ヒドロキシル基、アルコキシル基、エポキシ基、カルボニル基、カルボキシル基、アミノ基から選ばれる少なくとも1種であることが好ましい。   The functional group of the terminal-modified solution-polymerized styrene butadiene rubber is preferably at least one selected from a hydroxyl group, an alkoxyl group, an epoxy group, a carbonyl group, a carboxyl group, and an amino group.

本発明のタイヤトレッド用ゴム組成物を使用した空気入りタイヤは、低転がり抵抗、ウェットグリップ性能及び耐摩耗性を従来レベルよりも向上することができる。   The pneumatic tire using the rubber composition for a tire tread of the present invention can improve the low rolling resistance, wet grip performance and wear resistance from the conventional level.

本発明のタイヤトレッド用ゴム組成物は、乳化重合スチレンブタジエンゴム(E−SBR)、末端変性溶液重合スチレンブタジエンゴム(変性S−SBR)及びブタジエンゴム(BR)からなる3種のゴムを70重量%以上含むジエン系ゴム100重量部に、シリカを60〜120重量部配合すると共に、BRの配合量を10〜20重量%にし、E−SBR:変性S−SBR:BRの重量比を(1〜2):(3〜4):1にすることにより、ジエン系ゴムとシリカとの親和性を高くしシリカの分散性を向上すると共に、BRを配合することにより耐摩耗性を高くすることができる。また、E−SBR及び変性S−SBRのスチレン含有量の差を6重量%以下、かつガラス転移温度の差を7℃以下にしたことにより、E−SBRと変性S−SBRとの相溶性を高くにすると共に、上記の重量比にしたので、低発熱性とゴム強度とをバランスさせるため、タイヤトレッド用ゴム組成物の低転がり抵抗、ウェットグリップ性能及び耐摩耗性を従来レベルよりも更に向上可能にした。   The rubber composition for a tire tread of the present invention has 70 weights of three kinds of rubbers composed of an emulsion polymerization styrene butadiene rubber (E-SBR), a terminal-modified solution polymerization styrene butadiene rubber (modified S-SBR) and a butadiene rubber (BR). In addition to blending 60 to 120 parts by weight of silica with 100 parts by weight of diene rubber containing at least 10%, the blending amount of BR is 10 to 20% by weight, and the weight ratio of E-SBR: modified S-SBR: BR is (1 ~ 2) :( 3-4): 1 By increasing the affinity between the diene rubber and silica and improving the dispersibility of silica, the wear resistance is increased by blending BR. Can do. Further, the difference in styrene content between E-SBR and modified S-SBR is 6% by weight or less, and the difference in glass transition temperature is 7 ° C. or less, so that the compatibility between E-SBR and modified S-SBR is improved. In addition to increasing the weight ratio, the low rolling resistance, wet grip performance and wear resistance of the rubber composition for tire treads are further improved compared to conventional levels in order to balance low heat build-up and rubber strength. Made possible.

本発明のタイヤトレッド用ゴム組成物において、ゴム成分はジエン系ゴムであり、そのジエン系ゴムは乳化重合スチレンブタジエンゴム(以下、「E−SBR」という。)、末端変性溶液重合スチレンブタジエンゴム(以下、「変性S−SBR」という。)及びブタジエンゴム(以下、「BR」という。)からなる3種のゴムを必ず含むようにする。   In the rubber composition for a tire tread of the present invention, the rubber component is a diene rubber, and the diene rubber is an emulsion-polymerized styrene butadiene rubber (hereinafter referred to as “E-SBR”), a terminal-modified solution polymerized styrene butadiene rubber ( Hereinafter, three kinds of rubber composed of “modified S-SBR” and butadiene rubber (hereinafter referred to as “BR”) must be included.

本発明では、E−SBRを配合することにより耐摩耗性を高くすることができる。使用するE−SBRは、乳化重合で製造されたスチレンブタジエンゴムであれば特に制限されるものではない。E−SBRは、スチレン含有量が好ましくは25〜50重量%、より好ましくは30〜45重量%であるとよい。E−SBRのスチレン含有量をこのような範囲内にすることにより、ゴム強度を高くし耐摩耗性を確保すると共にウェットグリップ性能を高くすることができる。また、E−SBRは、ガラス転移温度(Tg)が好ましくは−50〜−20℃、より好ましくは−45〜−25℃であるとよい。E−SBRのTgをこのような範囲内にすることにより、ゴム強度を高くし耐摩耗性を確保すると共に、ウェットグリップ性能を高くすることができる。なお、本発明において、スチレン含有量は、赤外分光分析(ハンプトン法)により測定し、ガラス転移温度(Tg)は、示差走査熱量測定(DSC)により20℃/分の昇温速度条件によりサーモグラムを測定し、転移域の中点の温度とした。また、スチレンブタジエンゴムが油展品であるときは、油展成分(オイル)を含まない状態におけるスチレンブタジエンゴムのガラス転移温度とする。   In the present invention, wear resistance can be increased by blending E-SBR. The E-SBR used is not particularly limited as long as it is a styrene butadiene rubber produced by emulsion polymerization. E-SBR preferably has a styrene content of 25 to 50% by weight, more preferably 30 to 45% by weight. By setting the styrene content of E-SBR within such a range, it is possible to increase the rubber strength and ensure the wear resistance as well as the wet grip performance. E-SBR has a glass transition temperature (Tg) of preferably −50 to −20 ° C., more preferably −45 to −25 ° C. By setting the Tg of E-SBR within such a range, the rubber strength can be increased to ensure wear resistance, and the wet grip performance can be increased. In the present invention, the styrene content is measured by infrared spectroscopic analysis (Hampton method), and the glass transition temperature (Tg) is measured by a differential scanning calorimetry (DSC) with a temperature increase rate of 20 ° C./min. Gram was measured and it was set as the temperature at the midpoint of the transition zone. When the styrene butadiene rubber is an oil-extended product, the glass transition temperature of the styrene butadiene rubber in a state not containing an oil-extended component (oil) is used.

変性S−SBRは、分子鎖の片末端又は両末端に官能基を有するように溶液重合で製造した末端変性スチレンブタジエンゴムである。官能基としては、例えばをヒドロキシル基、アルコキシル基、エポキシ基、カルボニル基、カルボキシル基、アミノ基等を例示することができる。このような変性S−SBRは、通常の方法で溶液重合したものを使用すればよい。また、市販品を使用してもよい。   Modified S-SBR is a terminal-modified styrene butadiene rubber produced by solution polymerization so as to have a functional group at one end or both ends of a molecular chain. Examples of the functional group include a hydroxyl group, an alkoxyl group, an epoxy group, a carbonyl group, a carboxyl group, and an amino group. Such modified S-SBR may be obtained by solution polymerization by a normal method. Moreover, you may use a commercial item.

変性S−SBRを配合することにより、シリカとの親和性を高くし分散性を改善するため、シリカの作用効果を一層向上すると共に、耐摩耗性を確保する。また、変性S−SBRは、スチレン含有量が好ましくは20〜50重量%、より好ましくは25〜45重量%であるとよい。変性S−SBRのスチレン含有量をこのような範囲内にすることにより、転がり抵抗を低くすると共に、ゴム強度を高くして耐摩耗性を確保することができる。また、変性S−SBRは、ガラス転移温度(Tg)が好ましくは−40〜−15℃、より好ましくは−35〜−20℃にするとよい。変性S−SBRのTgをこのような範囲内にすることにより、高いウェットグリップ性能を確保すると共に、低い転がり抵抗を実現することができる。   By blending the modified S-SBR, the effect of silica is further improved and the wear resistance is ensured in order to increase the affinity with silica and improve the dispersibility. In the modified S-SBR, the styrene content is preferably 20 to 50% by weight, more preferably 25 to 45% by weight. By setting the styrene content of the modified S-SBR within such a range, the rolling resistance can be lowered and the rubber strength can be increased to ensure wear resistance. The modified S-SBR has a glass transition temperature (Tg) of preferably −40 to −15 ° C., more preferably −35 to −20 ° C. By setting the Tg of the modified S-SBR within such a range, a high wet grip performance can be secured and a low rolling resistance can be realized.

本発明において、E−SBR及び変性S−SBRのスチレン含有量の差は、6重量%以下、好ましくは5重量%以下にする必要がある。E−SBRのスチレン含有量と変性S−SBRのスチレン含有量との差を6重量%以下にすることにより、E−SBRと変性S−SBRとの相溶性を高くするので、ゴム組成物の低転がり抵抗、ウェットグリップ性能及び耐摩耗性を同時に向上することができる。E−SBRと変性S−SBRのスチレン含有量の差が6重量%より大きいと、特に耐摩耗性が悪化する。   In the present invention, the difference in styrene content between E-SBR and modified S-SBR needs to be 6% by weight or less, preferably 5% by weight or less. By making the difference between the styrene content of E-SBR and the styrene content of modified S-SBR 6% by weight or less, compatibility between E-SBR and modified S-SBR is increased. Low rolling resistance, wet grip performance and wear resistance can be improved at the same time. When the difference in styrene content between E-SBR and modified S-SBR is larger than 6% by weight, the wear resistance is particularly deteriorated.

また、E−SBR及び変性S−SBRのガラス転移温度(Tg)の差は7℃以下、好ましくは5℃以下にする必要がある。E−SBRのTgと変性S−SBRのTgとの差を7℃以下にすることにより、E−SBRと変性S−SBRとの親和性を高くするので、ゴム組成物のウェットグリップ性能及び耐摩耗性が向上する。E−SBRと変性S−SBRのTgの差が7℃より大きいと、特に耐摩耗性が悪化する。   Further, the difference in glass transition temperature (Tg) between E-SBR and modified S-SBR must be 7 ° C. or less, preferably 5 ° C. or less. By making the difference between the Tg of E-SBR and that of modified S-SBR 7 ° C. or less, the affinity between E-SBR and modified S-SBR is increased. Abrasion is improved. When the difference in Tg between E-SBR and modified S-SBR is larger than 7 ° C., the wear resistance is particularly deteriorated.

本発明において、BRを配合することにより、ゴム組成物の耐摩耗性を確保する。ジエン系ゴム中のBRの配合量は10〜20重量%、好ましくは12〜18重量%にする。BRの配合量が10重量%未満であると、ゴム組成物の耐摩耗性が悪化する。また、BRの配合量が20重量%を超えると、ウェットグリップ性能が悪化する。   In the present invention, the abrasion resistance of the rubber composition is ensured by blending BR. The blending amount of BR in the diene rubber is 10 to 20% by weight, preferably 12 to 18% by weight. When the blending amount of BR is less than 10% by weight, the wear resistance of the rubber composition is deteriorated. Moreover, when the compounding quantity of BR exceeds 20% by weight, the wet grip performance is deteriorated.

E−SBR、変性S−SBR及びBRの配合量は、これら3種のゴムの合計がジエン系ゴム中70重量%以上、好ましくは80〜100重量%になるようにする。3種のゴムの合計が70重量%未満であると、ゴム組成物の低転がり抵抗、ウェットグリップ性能及び耐摩耗性を従来レベルよりも更に向上することができない。   The blending amount of E-SBR, modified S-SBR and BR is such that the total of these three types of rubber is 70% by weight or more, preferably 80 to 100% by weight in the diene rubber. When the total of the three types of rubbers is less than 70% by weight, the low rolling resistance, wet grip performance and wear resistance of the rubber composition cannot be further improved from conventional levels.

また、BRの配合量を1にしたときの3種のゴムの配合量の重量比(E−SBR:変性S−SBR:BR)は、(1〜2):(3〜4):1、好ましくは(1.5〜2):(3.5〜4):1にする必要がある。E−SBRの配合量が、この範囲より少ないと耐摩耗性が悪化する。またE−SBRの配合量が、この範囲より多いと転がり抵抗が悪化する。変性S−SBRの配合量が、この範囲より少ないと転がり抵抗が悪化する。また変性S−SBRの配合量が、この範囲より多いと耐摩耗性が悪化する。   Moreover, the weight ratio (E-SBR: modified S-SBR: BR) of the blending amounts of the three types of rubber when the blending amount of BR is 1 is (1-2): (3-4): 1, Preferably, it should be (1.5-2) :( 3.5-4): 1. When the amount of E-SBR is less than this range, the wear resistance is deteriorated. Moreover, when there are more compounding quantities of E-SBR than this range, rolling resistance will deteriorate. If the amount of the modified S-SBR is less than this range, the rolling resistance is deteriorated. Moreover, when there are more compounding quantities of modified S-SBR than this range, abrasion resistance will deteriorate.

本発明において、ジエン系ゴムは上述した3種類のゴム成分のみで構成してもよい。又は他のジエン系ゴムを30重量%以下、好ましくは20重量%以下含有してもよい。他のジエン系ゴムとしては、例えば天然ゴム、イソプレンゴム、末端変性していないS−SBR、ブチルゴム、ハロゲン化ブチルゴム等を例示することができる。好ましくは天然ゴム、イソプレンゴム、末端変性していないS−SBRがよい。このようなジエン系ゴムは、単独又は複数のブレンドとして使用することができる。   In the present invention, the diene rubber may be composed of only the three types of rubber components described above. Alternatively, other diene rubbers may be contained in an amount of 30% by weight or less, preferably 20% by weight or less. Examples of other diene rubbers include natural rubber, isoprene rubber, unmodified S-SBR, butyl rubber, and halogenated butyl rubber. Natural rubber, isoprene rubber, and S-SBR that is not terminally modified are preferred. Such diene rubbers can be used alone or as a plurality of blends.

本発明において、シリカをジエン系ゴム100重量部に対し60〜120重量部、好ましくは60〜110重量部配合する。シリカの配合量をこの範囲とすることにより、ゴム組成物の低転がり抵抗とウェットグリップ性能とを共に向上する。また、上述した変性S−SBRの配合により、シリカとジエン系ゴムとの親和性を高くし分散性を改善するため、シリカの作用効果を向上すると共に、耐摩耗性を確保する。シリカとしては、通常タイヤトレッド用ゴム組成物に配合されるシリカ、例えば湿式法シリカ、乾式法シリカあるいは表面処理シリカなどを使用することができる。   In the present invention, silica is blended in an amount of 60 to 120 parts by weight, preferably 60 to 110 parts by weight, based on 100 parts by weight of the diene rubber. By setting the blending amount of silica within this range, both the low rolling resistance and wet grip performance of the rubber composition are improved. Moreover, in order to improve the dispersibility by increasing the affinity between the silica and the diene rubber by adding the above-described modified S-SBR, the effect of silica is improved and the wear resistance is ensured. As the silica, silica usually blended in a rubber composition for a tire tread, for example, wet method silica, dry method silica, or surface-treated silica can be used.

また、本発明では、シリカとシランカップリング剤とを共に配合することにより、シリカの分散性を向上しジエン系ゴムとの補強性をより高くすることができる。シランカップリング剤は、シリカ配合量に対して好ましくは3〜15重量%、より好ましくは5〜10重量%配合するとよい。シランカップリング剤がシリカ重量の3重量%未満の場合、シリカの分散性を向上する効果が十分に得られない。また、シランカップリング剤が15重量%を超えると、シランカップリング剤同士が重合してしまい、所望の効果を得ることができなくなる。   Moreover, in this invention, the dispersibility of a silica can be improved and reinforcement with a diene rubber can be made higher by mix | blending a silica and a silane coupling agent together. The silane coupling agent is preferably added in an amount of 3 to 15% by weight, more preferably 5 to 10% by weight, based on the amount of silica. When the silane coupling agent is less than 3% by weight of the silica weight, the effect of improving the dispersibility of silica cannot be sufficiently obtained. On the other hand, when the silane coupling agent exceeds 15% by weight, the silane coupling agents are polymerized, and a desired effect cannot be obtained.

シランカップリング剤としては、特に制限されるものではないが、硫黄含有シランカップリング剤が好ましく、例えばビス−(3−トリエトキシシリルプロピル)テトラサルファイド、ビス(3−トリエトキシシリルプロピル)ジサルファイド、3−トリメトキシシリルプロピルベンゾチアゾールテトラサルファイド、γ−メルカプトプロピルトリエトキシシラン、3−オクタノイルチオプロピルトリエトキシシラン等を例示することができる。   Although it does not restrict | limit especially as a silane coupling agent, A sulfur containing silane coupling agent is preferable, for example, bis- (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide. , 3-trimethoxysilylpropylbenzothiazole tetrasulfide, γ-mercaptopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, and the like.

本発明のタイヤトレッド用ゴム組成物は、カーボンブラック及び/又はシリカ以外の充填剤を配合することによりゴムの強度を高くする。カーボンブラックの配合量は、ジエン系ゴム100重量部に対し好ましくは5〜35重量部、より好ましくは5〜30重量部にするとよい。カーボンブラックの配合量が5重量部未満の場合には、ゴム強度を十分に高くすることができない。また、カーボンブラックの配合量が35重量部を超えると転がり抵抗が悪化するため好ましくない。充填剤としては、例えばクレー、マイカ、タルク、炭酸カルシウム、水酸化アルミニウム、酸化アルミニウム等が例示される。   The rubber composition for a tire tread of the present invention increases the strength of the rubber by blending a filler other than carbon black and / or silica. The compounding amount of carbon black is preferably 5 to 35 parts by weight, more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the diene rubber. When the amount of carbon black is less than 5 parts by weight, the rubber strength cannot be sufficiently increased. Moreover, since the rolling resistance will deteriorate when the compounding quantity of carbon black exceeds 35 weight part, it is unpreferable. Examples of the filler include clay, mica, talc, calcium carbonate, aluminum hydroxide, aluminum oxide and the like.

タイヤトレッド用ゴム組成物には、上述したカーボンブラック及び充填剤以外にも、加硫又は架橋剤、加硫促進剤、老化防止剤、可塑剤、加工助剤などのタイヤトレッド用ゴム組成物に一般的に使用される各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練してゴム組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。このようなゴム組成物は、公知のゴム用混練機械、例えば、バンバリーミキサー、ニーダー、ロール等を使用して、上記各成分を混合することによって製造することができる。   In addition to the above-described carbon black and filler, the tire tread rubber composition includes a tire tread rubber composition such as a vulcanization or crosslinking agent, a vulcanization accelerator, an anti-aging agent, a plasticizer, and a processing aid. Various commonly used additives can be blended, and such additives can be kneaded by a general method to form a rubber composition, which can be used for vulcanization or crosslinking. As long as the amount of these additives is not contrary to the object of the present invention, a conventional general amount can be used. Such a rubber composition can be produced by mixing each of the above components using a known rubber kneading machine, for example, a Banbury mixer, a kneader, a roll or the like.

本発明のタイヤトレッド用ゴム組成物は、空気入りタイヤに好適に使用することができる。このタイヤトレッド用ゴム組成物を使用した空気入りタイヤは、低転がり抵抗、ウェットグリップ性能及び耐摩耗性を同時に向上することができる。   The rubber composition for a tire tread of the present invention can be suitably used for a pneumatic tire. A pneumatic tire using the tire tread rubber composition can simultaneously improve low rolling resistance, wet grip performance, and wear resistance.

以下、実施例によって本発明を更に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, the scope of the present invention is not limited to these Examples.

表1〜3に示す配合からなる13種類のタイヤトレッド用ゴム組成物(実施例1〜4、比較例1〜9)を、硫黄、加硫促進剤を除く成分を1.8Lの密閉型ミキサーで5分間混練し放出したマスターバッチに、硫黄、加硫促進剤を加えてオープンロールで混練することにより調製した。なお、表1〜3中、3種のゴムの重量比(E−SBR:変性S−SBR:BR)を油展オイルを除いた配合量の比として示すと共に、E−SBRと変性S−SBRとのスチレン含有量の差及びガラス転移温度(Tg)の差を示した。なお、比較例1,2及び9では、変性S−SBRの代わりに未変性のS−SBRの値を用いて算出した。   13 types of rubber compositions for tire treads (Examples 1 to 4 and Comparative Examples 1 to 9) each having the composition shown in Tables 1 to 3 were mixed with 1.8 L of a closed mixer except for sulfur and a vulcanization accelerator. The mixture was prepared by adding sulfur and a vulcanization accelerator to the master batch that was kneaded and released for 5 minutes and kneading with an open roll. In Tables 1 to 3, the weight ratio of three kinds of rubbers (E-SBR: modified S-SBR: BR) is shown as a ratio of the blend amount excluding oil-extended oil, and E-SBR and modified S-SBR. Difference in styrene content and glass transition temperature (Tg). In Comparative Examples 1, 2, and 9, calculation was performed using the value of unmodified S-SBR instead of modified S-SBR.

得られた13種類のタイヤトレッド用ゴム組成物を所定形状の金型中で、160℃、20分間プレス加硫して加硫ゴムサンプルを作製し、下記に示す方法で耐摩耗性、ウェットグリップ性能及び転がり抵抗を測定した。   Thirteen types of rubber compositions for tire treads thus obtained were press vulcanized at 160 ° C. for 20 minutes in a mold having a predetermined shape to produce a vulcanized rubber sample. Performance and rolling resistance were measured.

耐摩耗性
得られた加硫ゴムサンプルのランボーン摩耗を、JIS K6264−2に準拠して、岩本製作所社製ランボーン摩耗試験機を使用し、荷重15N、スリップ率50%の条件で測定した。
Abrasion Resistance Lambone wear of the obtained vulcanized rubber sample was measured under the conditions of a load of 15 N and a slip ratio of 50% using a Lambone wear tester manufactured by Iwamoto Seisakusho in accordance with JIS K6264-2.

得られた結果は、表1,2では比較例1を100とし、表3では比較例9を100とする指数として、表1〜3に示した。この指数が大きいほど耐摩耗性が優れることを意味する。   The obtained results are shown in Tables 1 to 3 as indexes with Tables 1 and 2 with Comparative Example 1 as 100 and Table 3 with Comparative Example 9 as 100. Higher index means better wear resistance.

ウェットグリップ性能
得られた加硫ゴムサンプルのウェットグリップ性能を、ウェットグリップ性能の指標であることが知られているtanδ(0℃)により評価した。tanδ(0℃)は、東洋精機製作所社製粘弾性スペクトロメーターを用いて、初期歪み10%、振幅±2%、周波数20Hzの条件下で、温度0℃の損失正接tanδ(0℃)を測定した。
Wet grip performance The wet grip performance of the obtained vulcanized rubber samples was evaluated by tan δ (0 ° C), which is known to be an index of wet grip performance. tan δ (0 ° C.) is measured with a loss tangent tan δ (0 ° C.) at a temperature of 0 ° C. under the conditions of an initial strain of 10%, an amplitude of ± 2%, and a frequency of 20 Hz using a viscoelastic spectrometer manufactured by Toyo Seiki Seisakusho. did.

得られた結果は、表1,2では比較例1を100とし、表3では比較例9を100とする指数として、表1〜3に示した。この指数が大きいほどウェットグリップ性能が優れることを意味する。   The obtained results are shown in Tables 1 to 3 as indexes with Tables 1 and 2 with Comparative Example 1 as 100 and Table 3 with Comparative Example 9 as 100. A larger index means better wet grip performance.

転がり抵抗
得られた加硫ゴムサンプルの転がり抵抗を、転がり抵抗の指標であることが知られているtanδ(60℃)により評価した。tanδ(60℃)は、東洋精機製作所社製粘弾性スペクトロメーターを用いて、初期歪み10%、振幅±2%、周波数20Hzの条件下で、温度60℃の損失正接tanδ(60℃)を測定した。
Rolling resistance The rolling resistance of the obtained vulcanized rubber samples was evaluated by tan δ (60 ° C.), which is known to be an index of rolling resistance. tan δ (60 ° C.) is measured for loss tangent tan δ (60 ° C.) at a temperature of 60 ° C. under conditions of initial strain 10%, amplitude ± 2%, frequency 20 Hz, using a viscoelastic spectrometer manufactured by Toyo Seiki Seisakusho. did.

得られた結果は、表1,2では比較例1を100とし、表3では比較例9を100とする指数として、表1〜3に示した。この指数が大きいほど低発熱で転がり抵抗が優れることを意味する。   The obtained results are shown in Tables 1 to 3 as indexes with Tables 1 and 2 with Comparative Example 1 as 100 and Table 3 with Comparative Example 9 as 100. A larger index means lower heat generation and better rolling resistance.

Figure 2010275386
Figure 2010275386

Figure 2010275386
Figure 2010275386

Figure 2010275386
Figure 2010275386

なお、表1〜3において使用した原材料の種類を下記に示す。
E−SBR1:乳化重合スチレンブタジエンゴム、スチレン含有量が41重量%、Tgが−28℃、日本ゼオン社製Nipol 1739、ゴム成分100重量部に対しオイル分37.5重量部を含む油展品
E−SBR2:乳化重合スチレンブタジエンゴム、スチレン含有量が48重量%、Tgが−24℃、日本ゼオン社製Nipol 1749、ゴム成分100重量部に対しオイル分50重量部を含む油展品
E−SBR3:乳化重合スチレンブタジエンゴム、スチレン含有量が37重量%、Tgが−37℃、日本ゼオン社製Nipol 9548、ゴム成分100重量部に対しオイル分37.5重量部を含む油展品
変性S−SBR:ヒドロキシル基を有する溶液重合スチレンブタジエンゴム、スチレン含有量が37重量%、Tgが−27℃、旭化成ケミカルズ社製タフデン E581、ゴム成分100重量部に対しオイル分37.5重量部を含む油展品
S−SBR:未変性の溶液重合スチレンブタジエンゴム、スチレン含有量が39重量%、Tgが−23℃、日本ゼオン社製Nipol NS522、ゴム成分100重量部に対しオイル分37.5重量部を含む油展品
BR:ブタジエンゴム、日本ゼオン社製Nipol BR1220
NR:天然ゴム、RSS#3
シリカ:ローディア社製Zeosil 1165MP
カーボンブラック;キャボットジャパン社製ショウブラックN339
酸化亜鉛:正同化学工業社製酸化亜鉛3種
ステアリン酸:日油社製ビーズステアリン酸YR
老化防止剤:フレキシス社製サントフレックス6PPD
ワックス:大内新興化学工業社製サンノック
加工助剤:ラインケミー社製Aktiplast PP
シランカップリング剤:硫黄含有シランカップリング剤、デグサ社製Si69
硫黄:鶴見化学工業社製金華印油入微粉硫黄
加硫促進剤1:加硫促進剤CBS、大内新興化学工業社製ノクセラーCZ−G
加硫促進剤2:加硫促進剤DPG、大内新興化学工業社製ノクセラーD
オイル:昭和シェル石油社製エキストラクト4号S
In addition, the kind of raw material used in Tables 1-3 is shown below.
E-SBR1: Emulsion polymerization styrene butadiene rubber, 41% by weight of styrene, Tg of −28 ° C., Nipol 1739 manufactured by Nippon Zeon Co., Ltd. -SBR2: Emulsion-polymerized styrene-butadiene rubber, styrene content is 48 wt%, Tg is -24 ° C, Nipol 1749 manufactured by Nippon Zeon Co., Ltd., and oil-extended product E-SBR3 containing 50 parts by weight of oil to 100 parts by weight of rubber component: Emulsion-polymerized styrene-butadiene rubber, Styrene content is 37% by weight, Tg is -37 ° C, Nipol 9548 manufactured by Nippon Zeon Co., Ltd. Solution polymerization styrene butadiene rubber having hydroxyl group, styrene content is 37% by weight, Tg is -27 ° C, Asahi Toughden E581, manufactured by Seisei Chemicals Co., Ltd., an oil-extended product S-SBR containing 37.5 parts by weight of oil with respect to 100 parts by weight of rubber component: unmodified solution-polymerized styrene butadiene rubber, styrene content 39% by weight, Tg -23 ℃, Nippon Zeon Nipol NS522, Oil Exhibit BR containing 37.5 parts by weight of oil to 100 parts by weight of rubber component: Butadiene rubber, Nippon Zeon Nipol BR1220
NR: natural rubber, RSS # 3
Silica: Rhodia Zeosil 1165MP
Carbon Black; Show Black N339 manufactured by Cabot Japan
Zinc oxide: Zendo Chemical Industries, Ltd. Zinc oxide, 3 types of stearic acid: NOF Beads stearic acid YR
Anti-aging agent: Santoflex 6PPD manufactured by Flexis
Wax: Sannok processing aid manufactured by Ouchi Shinsei Chemical Industry Co., Ltd .: Aktiplast PP manufactured by Rhein Chemie
Silane coupling agent: Sulfur-containing silane coupling agent, Si69 manufactured by Degussa
Sulfur: Fine powder sulfur vulcanization accelerator with Jinhua seal oil manufactured by Tsurumi Chemical Industry Co., Ltd. 1: VBS accelerator CBS, Noxeller CZ-G manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Vulcanization accelerator 2: Vulcanization accelerator DPG, Noxeller D manufactured by Ouchi Shinsei Chemical Co., Ltd.
Oil: Extract 4 S, Showa Shell Sekiyu

Claims (3)

乳化重合スチレンブタジエンゴム(E−SBR)、末端変性溶液重合スチレンブタジエンゴム(変性S−SBR)及びブタジエンゴム(BR)からなる3種のゴムを70重量%以上含むジエン系ゴム100重量部に、シリカを60〜120重量部配合したゴム組成物であり、前記ブタジエンゴムを10〜20重量%にし、前記3種のゴムの重量比(E−SBR:変性S−SBR:BR)を(1〜2):(3〜4):1にすると共に、前記乳化重合スチレンブタジエンゴムと末端変性溶液重合スチレンブタジエンゴムとのスチレン含有量の差を6重量%以下、かつガラス転移温度の差を7℃以下にしたタイヤトレッド用ゴム組成物。   In 100 parts by weight of a diene rubber containing 70% by weight or more of three kinds of rubbers composed of emulsion-polymerized styrene-butadiene rubber (E-SBR), terminal-modified solution-polymerized styrene-butadiene rubber (modified S-SBR) and butadiene rubber (BR), It is a rubber composition containing 60 to 120 parts by weight of silica, the butadiene rubber is made 10 to 20% by weight, and the weight ratio of the three kinds of rubbers (E-SBR: modified S-SBR: BR) is (1 to 1). 2) :( 3-4): 1, the difference in styrene content between the emulsion-polymerized styrene-butadiene rubber and the terminal-modified solution-polymerized styrene-butadiene rubber is 6% by weight or less, and the difference in glass transition temperature is 7 ° C. The following rubber composition for tire treads. 前記末端変性溶液重合スチレンブタジエンゴムの官能基が、ヒドロキシル基、アルコキシル基、エポキシ基、カルボニル基、カルボキシル基、アミノ基から選ばれる少なくとも1種である請求項1に記載のタイヤトレッド用ゴム組成物。   The rubber composition for a tire tread according to claim 1, wherein the functional group of the terminal-modified solution-polymerized styrene butadiene rubber is at least one selected from a hydroxyl group, an alkoxyl group, an epoxy group, a carbonyl group, a carboxyl group, and an amino group. . 請求項1又は2に記載のタイヤトレッド用ゴム組成物を使用した空気入りタイヤ。   A pneumatic tire using the rubber composition for a tire tread according to claim 1.
JP2009127700A 2009-05-27 2009-05-27 Rubber composition for tire tread Active JP5381332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009127700A JP5381332B2 (en) 2009-05-27 2009-05-27 Rubber composition for tire tread

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009127700A JP5381332B2 (en) 2009-05-27 2009-05-27 Rubber composition for tire tread

Publications (2)

Publication Number Publication Date
JP2010275386A true JP2010275386A (en) 2010-12-09
JP5381332B2 JP5381332B2 (en) 2014-01-08

Family

ID=43422655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009127700A Active JP5381332B2 (en) 2009-05-27 2009-05-27 Rubber composition for tire tread

Country Status (1)

Country Link
JP (1) JP5381332B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130059965A1 (en) * 2010-05-26 2013-03-07 The Yokohama Rubber Co., Ltd Tire tread rubber composition
JP2013224356A (en) * 2012-04-20 2013-10-31 Yokohama Rubber Co Ltd:The Rubber composition for tire tread and pneumatic tire
WO2014002706A1 (en) 2012-06-30 2014-01-03 株式会社ブリヂストン Rubber composition for tire treads
JP2014009324A (en) * 2012-06-30 2014-01-20 Bridgestone Corp Rubber composition for tire tread
JP2014009323A (en) * 2012-06-30 2014-01-20 Bridgestone Corp Rubber composition for tire tread
CN103703072A (en) * 2011-07-22 2014-04-02 住友橡胶工业株式会社 Rubber composition for tread, and pneumatic tire
CN104817740A (en) * 2015-05-13 2015-08-05 建大橡胶(中国)有限公司 High-wet-grip tire rubber composition
JP2016006197A (en) * 2015-08-10 2016-01-14 株式会社ブリヂストン Rubber composition for tire tread
US9365656B2 (en) 2012-02-10 2016-06-14 Toyo Tire & Rubber Co., Ltd. Process for producing modified polymer, diene polymer, rubber composition and pneumatic tire
WO2016199911A1 (en) * 2015-06-12 2016-12-15 横浜ゴム株式会社 Rubber composition and pneumatic tire using same
US20170044349A1 (en) * 2014-04-30 2017-02-16 The Yokohama Rubber Co., Ltd. Rubber Composition for Use in Tire Treads
JP2017088898A (en) * 2017-02-09 2017-05-25 株式会社ブリヂストン Rubber composition for tire tread
CN107531951A (en) * 2015-06-12 2018-01-02 横滨橡胶株式会社 Rubber composition and the pneumatic tire using the rubber composition
CN107531950A (en) * 2015-06-12 2018-01-02 横滨橡胶株式会社 Rubber composition and the pneumatic tire using the rubber composition
EP3272550A1 (en) * 2016-07-19 2018-01-24 The Goodyear Tire & Rubber Company Rubber composition and tire with such a rubber composition containing a combination of styrene/butadiene elastomers
KR101905118B1 (en) * 2017-09-06 2018-10-08 넥센타이어 주식회사 Rubber composition for tire tread with improved abrasion resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053807A (en) * 1998-02-06 2000-02-22 Pirelli Pneumatici Spa Vulcanizable rubber composition for use especially in tread having low rolling resistance for automobile tire
JP2008127501A (en) * 2006-11-22 2008-06-05 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP2008285558A (en) * 2007-05-16 2008-11-27 Asahi Kasei Chemicals Corp Oil extended conjugated diene-based polymer composition
WO2009084667A1 (en) * 2007-12-28 2009-07-09 Bridgestone Corporation Tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053807A (en) * 1998-02-06 2000-02-22 Pirelli Pneumatici Spa Vulcanizable rubber composition for use especially in tread having low rolling resistance for automobile tire
JP2008127501A (en) * 2006-11-22 2008-06-05 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP2008285558A (en) * 2007-05-16 2008-11-27 Asahi Kasei Chemicals Corp Oil extended conjugated diene-based polymer composition
WO2009084667A1 (en) * 2007-12-28 2009-07-09 Bridgestone Corporation Tire

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130059965A1 (en) * 2010-05-26 2013-03-07 The Yokohama Rubber Co., Ltd Tire tread rubber composition
US8759439B2 (en) * 2010-05-26 2014-06-24 The Yokohama Rubber Co., Ltd. Tire tread rubber composition
USRE46184E1 (en) 2011-07-22 2016-10-25 Sumitomo Rubber Industries, Ltd. Rubber composition for tread, and pneumatic tire
CN103703072A (en) * 2011-07-22 2014-04-02 住友橡胶工业株式会社 Rubber composition for tread, and pneumatic tire
DE112013000646B4 (en) 2012-02-10 2022-01-05 Toyo Tire & Rubber Co., Ltd. Method for producing a modified polymer, diene polymer and rubber composition
US9365656B2 (en) 2012-02-10 2016-06-14 Toyo Tire & Rubber Co., Ltd. Process for producing modified polymer, diene polymer, rubber composition and pneumatic tire
JP2013224356A (en) * 2012-04-20 2013-10-31 Yokohama Rubber Co Ltd:The Rubber composition for tire tread and pneumatic tire
JP2014009324A (en) * 2012-06-30 2014-01-20 Bridgestone Corp Rubber composition for tire tread
CN104379658A (en) * 2012-06-30 2015-02-25 株式会社普利司通 Rubber composition for tire treads
RU2630800C2 (en) * 2012-06-30 2017-09-13 Бриджстоун Корпорейшн Rubber mixture for tire treads
JP2014009323A (en) * 2012-06-30 2014-01-20 Bridgestone Corp Rubber composition for tire tread
CN104379658B (en) * 2012-06-30 2016-10-19 株式会社普利司通 Rubber composition for tire tread
WO2014002706A1 (en) 2012-06-30 2014-01-03 株式会社ブリヂストン Rubber composition for tire treads
US9663639B2 (en) 2012-06-30 2017-05-30 Bridgestone Corporation Rubber composition for tire treads
US20170044349A1 (en) * 2014-04-30 2017-02-16 The Yokohama Rubber Co., Ltd. Rubber Composition for Use in Tire Treads
US10894871B2 (en) * 2014-04-30 2021-01-19 The Yokohama Rubber Co., Ltd. Rubber composition for use in tire treads
CN104817740A (en) * 2015-05-13 2015-08-05 建大橡胶(中国)有限公司 High-wet-grip tire rubber composition
EP3309206A4 (en) * 2015-06-12 2019-02-27 The Yokohama Rubber Co., Ltd. Rubber composition and pneumatic tire using same
EP3309205A4 (en) * 2015-06-12 2019-02-27 The Yokohama Rubber Co., Ltd. Rubber composition and pneumatic tire using same
CN107531950A (en) * 2015-06-12 2018-01-02 横滨橡胶株式会社 Rubber composition and the pneumatic tire using the rubber composition
WO2016199911A1 (en) * 2015-06-12 2016-12-15 横浜ゴム株式会社 Rubber composition and pneumatic tire using same
JPWO2016199911A1 (en) * 2015-06-12 2018-03-29 横浜ゴム株式会社 Rubber composition and pneumatic tire using the same
CN107531950B (en) * 2015-06-12 2020-09-15 横滨橡胶株式会社 Rubber composition and pneumatic tire using the same
CN107531951B (en) * 2015-06-12 2020-09-11 横滨橡胶株式会社 Rubber composition and pneumatic tire using the same
CN107531951A (en) * 2015-06-12 2018-01-02 横滨橡胶株式会社 Rubber composition and the pneumatic tire using the rubber composition
US10494512B2 (en) 2015-06-12 2019-12-03 The Yokohama Rubber Co., Ltd. Rubber composition and pneumatic tire using same
JP2016006197A (en) * 2015-08-10 2016-01-14 株式会社ブリヂストン Rubber composition for tire tread
US10301459B2 (en) 2016-07-19 2019-05-28 The Goodyear Tire & Rubber Company Tire with rubber tread containing a combination of styrene/butadiene elastomers and traction resins and pre-hydrophobated precipitated silica reinforcement
EP3272550A1 (en) * 2016-07-19 2018-01-24 The Goodyear Tire & Rubber Company Rubber composition and tire with such a rubber composition containing a combination of styrene/butadiene elastomers
JP2017088898A (en) * 2017-02-09 2017-05-25 株式会社ブリヂストン Rubber composition for tire tread
KR101905118B1 (en) * 2017-09-06 2018-10-08 넥센타이어 주식회사 Rubber composition for tire tread with improved abrasion resistance

Also Published As

Publication number Publication date
JP5381332B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5381332B2 (en) Rubber composition for tire tread
JP4835769B2 (en) Rubber composition for tire tread
JP5234203B2 (en) Rubber composition for tire
JP5376008B2 (en) Rubber composition for tire
JP5737324B2 (en) Rubber composition for tire
JP5900036B2 (en) Rubber composition for tire tread
JP5999167B2 (en) Rubber composition for tire tread
JP4294070B2 (en) Rubber composition for tire
JP4788843B1 (en) Rubber composition for tire
JP5904233B2 (en) Rubber composition for tire tread
JP5321751B2 (en) Rubber composition for tire, pneumatic tire, and method for producing rubber composition for tire
JP6481255B2 (en) Rubber composition for tire
JP5597959B2 (en) Rubber composition for tire
JP2013227400A (en) Rubber composition for tire tread
US20180362740A1 (en) Rubber composition for tire, tread and tire
JP7159566B2 (en) Rubber composition for tire
JP5920544B2 (en) Rubber composition for tire
JP2011173986A (en) Rubber composition for tire
JP6451265B2 (en) Rubber composition for tire
KR101943832B1 (en) Rubber compositions for tires
JP2013147532A (en) Rubber composition for tire
JP2022164149A (en) Rubber composition and method for producing the same
JP2012031308A (en) Rubber composition for tire tread
JP2012031300A (en) Rubber composition for tire tread
JP2010106214A (en) Rubber composition for tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5381332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250