JP2017201252A - Vulcanization material analysis method - Google Patents

Vulcanization material analysis method Download PDF

Info

Publication number
JP2017201252A
JP2017201252A JP2016092729A JP2016092729A JP2017201252A JP 2017201252 A JP2017201252 A JP 2017201252A JP 2016092729 A JP2016092729 A JP 2016092729A JP 2016092729 A JP2016092729 A JP 2016092729A JP 2017201252 A JP2017201252 A JP 2017201252A
Authority
JP
Japan
Prior art keywords
sulfur
ray
vulcanized
sample
vulcanization accelerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016092729A
Other languages
Japanese (ja)
Other versions
JP6743477B2 (en
Inventor
房恵 金子
Fusae Kaneko
房恵 金子
岸本 浩通
Hiromichi Kishimoto
浩通 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2016092729A priority Critical patent/JP6743477B2/en
Publication of JP2017201252A publication Critical patent/JP2017201252A/en
Application granted granted Critical
Publication of JP6743477B2 publication Critical patent/JP6743477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide vulcanization material analysis method capable of observing and analyzing dispersion state and chemical state of high molecule composite material containing a vulcanizing material such as a sulfur vulcanizing agent or a vulcanization accelerator.SOLUTION: The vulcanization material analysis method for analyzing dispersion state and chemical state of each vulcanizing material by measuring X-ray absorption in a minute area of high molecule composite material while irradiating the high molecule composite material of one or two or more kinds of vulcanizing materials with a high brightness X-ray while changing the energy of the X-ray.SELECTED DRAWING: Figure 1

Description

本発明は、加硫系材料分析方法に関する。 The present invention relates to a method for analyzing vulcanized materials.

ゴム材料は、硫黄を用いてポリマー同士を橋掛けした架橋構造を形成させることで、強度、機械疲労、繰り返し変形によるエネルギーロスや周波数応答性など、特異な物理特性を発現するため、タイヤや制震材料などに応用され、欠かすことのできない材料となっている。 Rubber materials form unique physical properties such as strength, mechanical fatigue, energy loss due to repeated deformation, and frequency responsiveness by forming a crosslinked structure in which polymers are crosslinked using sulfur. Applied to seismic materials, it is an indispensable material.

ゴム材料の強度、機械疲労特性等を向上させるポイントの1つとして架橋構造の制御が挙げられ、そのためには、硫黄や加硫促進剤の分散状態、化学状態を調べることが重要である。従来から、蛍光X線分析(XRF)、エネルギー分散型X線分光法(EDX)等を用いた硫黄のマッピングが提案されており、硫黄の分散状態が分析されているが、例えば、加硫系材料として、硫黄加硫剤と共に用いられ、加硫反応に重要な加硫促進剤と区別して分散状態を調べることができない。 One of the points for improving the strength, mechanical fatigue characteristics, etc. of the rubber material is the control of the cross-linking structure. For this purpose, it is important to examine the dispersion state and chemical state of sulfur and the vulcanization accelerator. Conventionally, mapping of sulfur using fluorescent X-ray analysis (XRF), energy dispersive X-ray spectroscopy (EDX) or the like has been proposed, and the dispersion state of sulfur has been analyzed. As a material, it is used together with a sulfur vulcanizing agent, and the state of dispersion cannot be examined separately from a vulcanization accelerator important for a vulcanization reaction.

また、XRF、EDXでは、詳細な化学状態が分からないため、反応による生成物を調べるためには、液体クロマトグラフィー−質量分析法(LC/MS)や熱分解ガスクロマトグラフィー−質量分析法(PGC/MS)等が用いられることが多い。しかしながら、これらの方法では、溶媒に抽出するなど、ゴムそのままの状態で観察できないため、その化合物がどのような状態で分散されているかを直接観察できず、架橋構造をコントロールするための指針も決め難いという問題がある。 In addition, since the detailed chemical state is not known in XRF and EDX, liquid chromatography-mass spectrometry (LC / MS) or pyrolysis gas chromatography-mass spectrometry (PGC) is used in order to investigate the product of the reaction. / MS) is often used. However, these methods cannot be observed in the state of rubber as it is, such as extraction into a solvent, so it is not possible to directly observe in what state the compound is dispersed, and a guideline for controlling the crosslinked structure is also determined. There is a problem that it is difficult.

このように、従来の硫黄加硫剤、加硫促進剤等の分散状態、化学状態の分析法は未だ改善の余地を残すものであり、これらの状態を同時に測定できる方法の提供が望まれている。 As described above, the analysis methods of the dispersion state and chemical state of conventional sulfur vulcanizing agents and vulcanization accelerators still leave room for improvement, and it is desired to provide a method capable of simultaneously measuring these states. Yes.

本発明は、前記課題を解決し、硫黄加硫剤、加硫促進剤等の加硫系材料を含む高分子複合材料に関し、それぞれの加硫系材料の分散状態や化学状態を観察、分析できる加硫系材料分析方法を提供することを目的とする。 The present invention solves the above problems and relates to a polymer composite material containing a vulcanized material such as a sulfur vulcanizing agent and a vulcanization accelerator, and can observe and analyze the dispersion state and chemical state of each vulcanized material. An object of the present invention is to provide a method for analyzing vulcanized materials.

本発明は、1種又は2種以上の加硫系材料を含む高分子複合材料に高輝度X線を照射し、X線のエネルギーを変えながら該高分子複合材料の微小領域におけるX線吸収量を測定することにより、各加硫系材料の分散状態及び化学状態を調べる加硫系材料分析方法に関する。 The present invention irradiates a polymer composite material containing one or more vulcanized materials with high-intensity X-rays and changes the energy of the X-rays while changing the energy of the X-rays. The present invention relates to a vulcanized material analysis method for examining a dispersion state and a chemical state of each vulcanized material by measuring the above.

前記加硫系材料は、硫黄加硫剤及び加硫促進剤からなる群より選択される少なくとも1種であることが好ましい。 The vulcanizing material is preferably at least one selected from the group consisting of a sulfur vulcanizing agent and a vulcanization accelerator.

前記高輝度X線を用いて、エネルギー範囲130〜280eVの硫黄L殼吸収端における硫黄のX線吸収量及びエネルギー範囲370〜500eVの窒素K殼吸収端における窒素のX線吸収量を測定することが好ましい。 Using the high-intensity X-rays, measuring the X-ray absorption amount of sulfur at the sulfur L 殼 absorption edge in the energy range 130 to 280 eV and the X-ray absorption amount of nitrogen at the nitrogen K 殼 absorption edge in the energy range 370 to 500 eV. Is preferred.

本発明によれば、1種又は2種以上の加硫系材料を含む高分子複合材料に高輝度X線を照射し、X線のエネルギーを変えながら該高分子複合材料の微小領域におけるX線吸収量を測定することにより、各加硫系材料の分散状態及び化学状態を調べる加硫系材料分析方法であるので、硫黄加硫剤、加硫促進剤等の加硫系材料を1種含む複合材料だけでなく、2種以上含む複合材料であっても、それぞれの加硫系材料の分散状態や化学状態を同時に観察、分析することが可能となる。 According to the present invention, X-rays in a minute region of the polymer composite material are irradiated with high-intensity X-rays on the polymer composite material containing one or more vulcanized materials and the energy of the X-rays is changed. Since it is a vulcanized material analysis method for examining the dispersion state and chemical state of each vulcanized material by measuring the amount of absorption, it contains one vulcanized material such as a sulfur vulcanizing agent and a vulcanization accelerator. Not only the composite material but also a composite material containing two or more kinds can simultaneously observe and analyze the dispersion state and chemical state of each vulcanized material.

マッピング画像及びX線吸収スペクトルを示す図の一例。An example of the figure which shows a mapping image and an X-ray absorption spectrum.

本発明は、1種又は2種以上の加硫系材料を含む高分子複合材料に高輝度X線を照射し、X線のエネルギーを変えながら該高分子複合材料の微小領域におけるX線吸収量を測定することにより、各加硫系材料の分散状態及び化学状態を調べる加硫系材料分析方法である。 The present invention irradiates a polymer composite material containing one or more vulcanized materials with high-intensity X-rays and changes the energy of the X-rays while changing the energy of the X-rays. This is a vulcanized material analysis method for examining the dispersion state and chemical state of each vulcanized material by measuring

硫黄加硫剤、加硫促進剤等の加硫系材料を1種又は2種以上含むサンプルにおいて、サンプルに含まれる各加硫系材料の分散状態(加硫ゴムや未加硫ゴム中での硫黄加硫剤、加硫促進剤のそれぞれの分散状態、等)や、各加硫系材料の化学状態(加硫ゴムや未加硫ゴム中での加硫促進剤の化学構造、等)を同時に観察、分析することは、従来の手法では困難である。 In samples containing one or more vulcanized materials such as sulfur vulcanizing agents and vulcanization accelerators, the dispersion state of each vulcanized material contained in the sample (in vulcanized rubber and unvulcanized rubber) Each dispersion state of sulfur vulcanizing agent and vulcanization accelerator, etc.) and chemical state of each vulcanized material (chemical structure of vulcanization accelerator in vulcanized rubber and unvulcanized rubber, etc.) It is difficult to observe and analyze at the same time by conventional methods.

この点について、本発明は、サンプルの微小領域のX線吸収量を測定して各加硫系材料の分散状態や化学状態を測定する方法であり、例えば、硫黄L殼吸収端、窒素K殼吸収端におけるNEXAFSの2次元マッピングを測定することにより、サンプルの架橋構造の制御に重要な各種加硫剤(硫黄加硫剤等)、加硫促進剤のそれぞれの分散状態や化学状態を同時に観察、分析することが可能である。 In this regard, the present invention is a method for measuring the dispersion state and chemical state of each vulcanized material by measuring the amount of X-ray absorption in a minute region of the sample. For example, the sulfur L-absorption edge, nitrogen K- By measuring the two-dimensional mapping of NEXAFS at the absorption edge, simultaneously observe the dispersion and chemical state of various vulcanizing agents (sulfur vulcanizing agents, etc.) and vulcanization accelerators that are important for controlling the cross-linking structure of the sample. It is possible to analyze.

本発明の方法に供される高分子複合材料は、1種又は2種以上の加硫系材料を含む材料である。
加硫系材料は、一般にゴム組成物の混練工程における仕上げ練り工程で添加(配合)、混練される材料であり、各種加硫剤(架橋剤)、加硫促進剤、等が挙げられる。
The polymer composite material used in the method of the present invention is a material containing one or more vulcanized materials.
The vulcanized material is a material that is generally added (blended) and kneaded in the final kneading step in the kneading step of the rubber composition, and includes various vulcanizing agents (crosslinking agents), vulcanization accelerators, and the like.

加硫剤としては、タイヤ工業で一般的なものを使用でき、硫黄加硫剤(粉末硫黄等の硫黄からなる加硫剤);1,6−ヘキサメチレン−ジチオ硫酸ナトリウム・二水和物、1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ヘキサン)などの硫黄を含む加硫剤:等が挙げられる。 As a vulcanizing agent, those generally used in the tire industry can be used, a sulfur vulcanizing agent (a vulcanizing agent composed of sulfur such as powdered sulfur), 1,6-hexamethylene-sodium dithiosulfate dihydrate, Vulcanizing agents containing sulfur such as 1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane).

加硫促進剤としては、グアニジン類、スルフェンアミド類、チアゾール類、チウラム類、ジチオカルバミン酸塩類、チオウレア類、キサントゲン酸塩類等、タイヤ工業で公知の各種加硫促進剤が挙げられる。特に、本発明の方法は、スルフェンアミド類等の硫黄含有加硫促進剤や、更に窒素も含む硫黄・窒素含有加硫促進剤等にも観察、分析にも好適に適用できる。 Examples of the vulcanization accelerator include various vulcanization accelerators known in the tire industry, such as guanidines, sulfenamides, thiazoles, thiurams, dithiocarbamates, thioureas, and xanthates. In particular, the method of the present invention can be suitably applied to observation and analysis of sulfur-containing vulcanization accelerators such as sulfenamides, sulfur / nitrogen-containing vulcanization accelerators further containing nitrogen.

高分子複合材料は、ジエン系ポリマーや、ブレンドゴム材料と1種類以上の樹脂とが複合された複合材料を含むものが好ましい。ジエン系ポリマーとしては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X−IIR)、スチレンイソプレンブタジエンゴム(SIBR)などの二重結合を有するポリマーが挙げられる。 The polymer composite material preferably includes a diene polymer or a composite material in which a blend rubber material and one or more kinds of resins are composited. Diene polymers include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), halogen And polymers having a double bond such as butyl rubber (X-IIR) and styrene isoprene butadiene rubber (SIBR).

上記樹脂としては特に限定されず、例えば、ゴム工業分野で汎用されているものが挙げられ、例えば、C5系脂肪族石油樹脂、シクロペンタジエン系石油樹脂などの石油樹脂が挙げられる。 The resin is not particularly limited, and examples thereof include those widely used in the rubber industry field, and examples thereof include petroleum resins such as C5 aliphatic petroleum resins and cyclopentadiene petroleum resins.

本発明でX線吸収量を測定する方法としては、高輝度X線を用いて試料の微小領域におけるX線吸収スペクトルを測定する手法であるマイクロXAFS(X−ray Absorption Fine Structure)等を採用できる。通常のXAFSは、空間分解能を有しないため、試料全体の吸収量を検出するのに対し、マイクロXAFSは、試料の微小領域におけるX線吸収スペクトルを測定する測定方法であり、通常、100nm以下程度の空間分解能を有している。そのため、マイクロXAFSを採用することにより、試料中に含まれているそれぞれの加硫系材料の吸収を検知し、硫黄加硫剤、加硫促進剤等、各加硫系材料の吸収量の違いを検出できる。 As a method for measuring the amount of X-ray absorption in the present invention, a micro XAFS (X-ray Absorption Fine Structure), which is a method for measuring an X-ray absorption spectrum in a minute region of a sample using high-intensity X-rays, can be employed. . Since normal XAFS does not have spatial resolution, the amount of absorption of the entire sample is detected, whereas micro XAFS is a measurement method for measuring an X-ray absorption spectrum in a minute region of the sample, and is usually about 100 nm or less. It has a spatial resolution of Therefore, by adopting micro XAFS, the absorption of each vulcanizing material contained in the sample is detected, and the difference in the amount of absorption of each vulcanizing material such as sulfur vulcanizing agent, vulcanization accelerator, etc. Can be detected.

空間分解能に優れるという点から、マイクロXAFSは軟X線領域で測定する方法(マイクロNEXAFS)が好ましく、走査型透過X線顕微鏡(STXM:Scanning Transmission X−ray Microscopy)法やX線光電子顕微鏡(XPEEM:X−ray Photo emission electron microscopy)法、等が挙げられる。 From the viewpoint of excellent spatial resolution, the micro XAFS is preferably a method of measuring in the soft X-ray region (micro NEXAFS). The scanning transmission X-ray microscope (STXM) method or the X-ray photoelectron microscope (XPEEM) : X-ray photo emission electron microscopy) method, and the like.

本発明では、ポリマー中の硫黄加硫剤、加硫促進剤がX線損傷しやすいため、X線損傷が起きにくい方法での測定が望ましく、この点から、X線損傷が生じにくいSTXM法の方が好適である。また、測定の際、試料を冷却することでX線損傷を防ぐことが更に好ましい。 In the present invention, the sulfur vulcanizing agent and vulcanization accelerator in the polymer are susceptible to X-ray damage, so measurement by a method that does not easily cause X-ray damage is desirable. From this point, the STXM method is less likely to cause X-ray damage. Is preferred. Further, it is more preferable to prevent X-ray damage by cooling the sample during measurement.

STXM法は、フレネルゾーンプレートで集光した高輝度X線を試料の微小領域に照射し、試料を抜けた光(透過光)と入射光を測定することで微小領域のX線吸収量を測定できる。なお、フレネルゾーンプレートの代わりに、X線反射ミラーを用いたKirkpatrick−Baez(K−B)集光系で高輝度X線を集光してもよい。 The STXM method measures the amount of X-ray absorption in a minute region by irradiating a minute region of a sample with high-intensity X-rays collected by a Fresnel zone plate and measuring the light (transmitted light) that has passed through the sample and incident light. it can. Instead of the Fresnel zone plate, high-brightness X-rays may be condensed by a Kirkpatrick-Baez (KB) condensing system using an X-ray reflecting mirror.

そして、微小領域のX線吸収量を測定し、次いでNEXAFSの2次元マッピングを行って得られたマッピング画像や、分散状態や化学状態を観察、分析する試料部位のX線吸収スペクトル、更には硫黄加硫剤、加硫促進剤等の試料に含まれる各加硫系材料の標準スペクトルを用いることにより、当該部位における各加硫系材料の分散状態や化学状態を観察、分析できる。 Then, the amount of X-ray absorption in a minute region is measured, and then a mapping image obtained by performing two-dimensional mapping of NEXAFS, an X-ray absorption spectrum of a sample part to be observed and analyzed, and further sulfur By using a standard spectrum of each vulcanized material contained in a sample such as a vulcanizing agent and a vulcanization accelerator, it is possible to observe and analyze the dispersion state and chemical state of each vulcanized material at the site.

X線エネルギーで走査するため光源には連続X線発生装置が必要であり、詳細な化学状態を解析するには高いS/N比及びS/B比のX線吸収スペクトルを測定する必要がある。そのため、シンクロトロンから放射されるX線は、少なくとも1010(photons/s/mrad/mm/0.1%bw)以上の輝度を有し、且つ連続X線源であるため、測定には最適である。尚、bwはシンクロトロンから放射されるX線のband widthを示す。 In order to scan with X-ray energy, the light source needs a continuous X-ray generator, and in order to analyze a detailed chemical state, it is necessary to measure an X-ray absorption spectrum with a high S / N ratio and S / B ratio. . Therefore, the X-rays emitted from the synchrotron have a luminance of at least 10 10 (photons / s / mrad 2 / mm 2 /0.1% bw) and are continuous X-ray sources. Is the best. Note that bw represents the band width of X-rays emitted from the synchrotron.

高輝度X線の輝度(photons/s/mrad/mm/0.1%bw)は、好ましくは1010以上、より好ましくは1011以上、更に好ましくは1012以上である。上限は特に限定されないが、放射線ダメージがない程度以下のX線強度を用いることが好ましい。 The luminance (photons / s / mrad 2 / mm 2 /0.1% bw) of high-intensity X-rays is preferably 10 10 or more, more preferably 10 11 or more, and still more preferably 10 12 or more. Although an upper limit is not specifically limited, It is preferable to use the X-ray intensity below the extent that there is no radiation damage.

また、高輝度X線の光子数(photons/s)は、好ましくは10以上、より好ましくは10以上である。上限は特に限定されないが、放射線ダメージがない程度以下のX線強度を用いることが好ましい。 The number of photons (photons / s) of the high-intensity X-ray is preferably 10 7 or more, more preferably 10 9 or more. Although an upper limit is not specifically limited, It is preferable to use the X-ray intensity below the extent that there is no radiation damage.

高輝度X線を用いて走査するエネルギー範囲は、好ましくは4000eV以下、より好ましくは1500eV以下、更に好ましくは1000eV以下である。4000eVを超えると、目的とする高分子複合材料を分析できないおそれがある。下限は特に限定されない。 The energy range scanned using high-intensity X-rays is preferably 4000 eV or less, more preferably 1500 eV or less, and still more preferably 1000 eV or less. If it exceeds 4000 eV, the target polymer composite material may not be analyzed. The lower limit is not particularly limited.

なかでも、高輝度X線を用いて、130〜280eVのエネルギー範囲を走査して硫黄L殼吸収端における硫黄のX線吸収量を測定し、かつ370〜500eVのエネルギー範囲を走査して窒素K殼吸収端における窒素のX線吸収量を測定することが好適である。このように、硫黄L殼吸収端、窒素K殼吸収端を測定することは、本発明のポイントの1つである。なお、硫黄L殼吸収端のエネルギー範囲は、140〜200eVがより好ましく、150〜180eVが更に好ましい。窒素K殼吸収端のエネルギー範囲は、375〜450eVがより好ましく、380〜430eVが更に好ましい。 In particular, using high-intensity X-rays, the energy range of 130 to 280 eV is scanned to measure the amount of sulfur X-ray absorption at the sulfur L-absorption edge, and the energy range of 370 to 500 eV is scanned to detect nitrogen K. It is preferable to measure the amount of X-ray absorption of nitrogen at the soot absorption edge. Thus, measuring the sulfur L soot absorption edge and the nitrogen K soot absorption edge is one of the points of the present invention. In addition, the energy range of the sulfur L soot absorption end is more preferably 140 to 200 eV, and further preferably 150 to 180 eV. The energy range of the nitrogen K 殼 absorption edge is more preferably 375 to 450 eV, and further preferably 380 to 430 eV.

STXM法等では、放射光が使用されるが、測定するエネルギーがかけ離れている場合、光学系が変わるため、別のビームラインで実験する必要がある。
各吸収端のエネルギーは、
[硫黄L殼吸収端]L2(2p1/2):163.6eV、L3(2p3/2):162.5eV
[窒素K殼吸収端]409.9eV
[硫黄K殼吸収端]2472eV
で、硫黄K殼吸収端のみエネルギーが高いため、硫黄K殼吸収端と窒素K殼吸収端を測定しようとすると、別々に実験する必要がある。そして、違うエネルギー領域でも同じ視野を測定しない限り、硫黄加硫剤、加硫促進剤等の各加硫系材料の分散状態や化学状態を評価できないので、硫黄K殼吸収端と窒素K殼吸収端の測定では、別のビームラインでの実験が必要で、同じ視野で測定できない。よって、当該測定では、各加硫系材料の分散状態や化学状態を評価できない。
In the STXM method or the like, synchrotron radiation is used. However, when the energy to be measured is far away, the optical system changes, so it is necessary to conduct experiments with another beam line.
The energy at each absorption edge is
[Sulfur L soot absorption end] L2 (2p1 / 2): 163.6 eV, L3 (2p3 / 2): 162.5 eV
[Nitrogen K 殼 absorption edge] 409.9 eV
[Sulfur K 殼 absorption edge] 2472eV
Since only the sulfur K 硫黄 absorption edge has high energy, it is necessary to experiment separately when trying to measure the sulfur K 殼 absorption edge and the nitrogen K 殼 absorption edge. And unless the same field of view is measured in different energy regions, the dispersion state and chemical state of each vulcanized material such as sulfur vulcanizing agent and vulcanization accelerator cannot be evaluated, so sulfur K 殼 absorption edge and nitrogen K 窒 素 absorption Edge measurement requires experimentation with a separate beamline and cannot be measured in the same field of view. Therefore, this measurement cannot evaluate the dispersion state or chemical state of each vulcanized material.

これに対し、硫黄K殼吸収端ではなく、硫黄L殼吸収端を採用すると、窒素K殼吸収端と測定するエネルギー範囲が近く、該窒素K殼吸収端と、同一装置での測定が可能となる。従って、同じ視野での測定が可能となり、各加硫系材料の分散状態や化学状態を同時に観察、分析できるようになる。 On the other hand, if the sulfur L soot absorption end is used instead of the sulfur K soot absorption end, the energy range to be measured is close to the nitrogen K soot absorption end, and measurement with the same apparatus as the nitrogen K soot absorption end is possible. Become. Therefore, measurement in the same visual field becomes possible, and the dispersion state and chemical state of each vulcanized material can be observed and analyzed simultaneously.

上記のマイクロXAFS法を用いて、1種又は2種以上の加硫系材料を含む高分子複合材料のX線吸収スペクトル測定を行い、2次元マッピング等により解析することで、試料中に含まれる各加硫系材料の分散状態や化学状態を同時に観察、分析できる。以下、この点について具体的に説明する。 Using the above-mentioned micro XAFS method, X-ray absorption spectrum measurement of a polymer composite material containing one or more vulcanized materials is performed and analyzed by two-dimensional mapping, etc. The dispersion state and chemical state of each vulcanized material can be observed and analyzed simultaneously. Hereinafter, this point will be specifically described.

図1(a)は、試料(2種以上の加硫系材料を含む高分子複合材料)の窒素K殼吸収端のマッピング画像(上段)と、当該試料、加硫促進剤TBBS(N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド)、及び加硫促進剤M(2-メルカプトベンゾチアゾール)の窒素K殼吸収端のX線吸収スペクトル(下段)とを示す。図1(b)は、試料の硫黄L殼吸収端のマッピング画像(上段)と、当該試料、硫黄加硫剤、加硫促進剤TBBS、及び加硫促進剤Mの硫黄L殼吸収端のX線吸収スペクトル(下段)とを示す。 FIG. 1A shows a mapping image (upper) of a nitrogen K 殼 absorption edge of a sample (a polymer composite material containing two or more vulcanized materials), the sample, a vulcanization accelerator TBBS (N-tert -Butyl-2-benzothiazolylsulfenamide) and an X-ray absorption spectrum (lower part) of the nitrogen K 殼 absorption edge of vulcanization accelerator M (2-mercaptobenzothiazole). FIG. 1 (b) shows a mapping image (upper stage) of the sulfur L soot absorption edge of the sample, and X of the sulfur L soot absorption edge of the sample, sulfur vulcanizing agent, vulcanization accelerator TBBS, and vulcanization accelerator M. A linear absorption spectrum (lower part) is shown.

試料は、イソプレンゴム、硫黄(硫黄加硫剤)、加硫促進剤TBBSを混練し、加硫して作製した高分子複合材料である。先ず、窒素K殼吸収端について、走査型透過X線顕微鏡(STXM)法を用いて、396〜403eVのエネルギー範囲を走査して窒素K殼吸収端における窒素のX線吸収量を測定し、試料のX線吸収スペクトルを得る。更に、得られた窒素K殼吸収端のX線吸収スペクトルに2次元マッピングを行い、図1(a)上段のマッピング画像を得る。 The sample is a polymer composite material prepared by kneading and vulcanizing isoprene rubber, sulfur (sulfur vulcanizing agent), and vulcanization accelerator TBBS. First, with respect to the nitrogen K に つ い て absorption edge, the X-ray absorption amount of nitrogen at the nitrogen K エ ネ ル ギ ー absorption edge is measured by scanning the energy range of 396 to 403 eV using a scanning transmission X-ray microscope (STXM) method. X-ray absorption spectrum of is obtained. Further, two-dimensional mapping is performed on the obtained X-ray absorption spectrum of the nitrogen K 殼 absorption edge to obtain the upper mapping image in FIG.

そして、得られたマッピング画像の黒色部位における丸囲み箇所(試料の丸囲み箇所)、加硫促進剤TBBS、加硫促進剤Mの窒素K殼吸収端における窒素のX線吸収量を、同エネルギー範囲で測定し、試料の当該箇所のX線吸収スペクトル、TBBS、MのX線吸収スペクトル(標準スペクトル)を得る(図1(a)下段)。 And the X-ray absorption amount of nitrogen at the nitrogen K 殼 absorption end of the circled portion (circled portion of the sample), the vulcanization accelerator TBBS, and the vulcanization accelerator M in the black part of the mapping image obtained is the same energy. Measurement is performed within a range, and an X-ray absorption spectrum of the corresponding portion of the sample, an X-ray absorption spectrum (standard spectrum) of TBBS, and M are obtained (the lower part of FIG. 1A).

窒素K殼吸収端と同一測定箇所の硫黄L殼吸収端についても、同様に、STXM法を用いて、162〜168eVのエネルギー範囲を走査して試料のX線吸収スペクトルを得、その硫黄L殼吸収端のX線吸収スペクトルに2次元マッピングを行い、図1(b)上段のマッピング画像を得る。また、同様に、丸囲み箇所(試料の丸囲み箇所)、硫黄、TBBS、Mの硫黄L殼吸収端における硫黄のX線吸収量を、同エネルギー範囲で測定し、試料の当該箇所のX線吸収スペクトル、硫黄、TBBS、MのX線吸収スペクトル(標準スペクトル)を得る(図1(b)下段)。 Similarly, the sulfur L 殼 absorption edge at the same measurement location as the nitrogen K 殼 absorption edge is similarly scanned using the STXM method to obtain an X-ray absorption spectrum of the sample by scanning the energy range of 162 to 168 eV. Two-dimensional mapping is performed on the X-ray absorption spectrum at the absorption edge to obtain the upper mapping image in FIG. Similarly, the X-ray absorption amount of sulfur at a circle L (absorbed point of sample), sulfur, TBBS, and sulfur L 殼 absorption edge of sulfur in the same energy range is measured, An X-ray absorption spectrum (standard spectrum) of an absorption spectrum, sulfur, TBBS, and M is obtained (the lower part of FIG. 1 (b)).

マッピング画像では黒色部位の方がX線吸収量が大きく、これは、黒色部位に硫黄又は加硫促進剤が存在することを示している。そして、黒色部位の丸囲み箇所(試料)の窒素K殼吸収端のスペクトルを、標準スペクトル(TBBS、M)と比較すると(図1(a)下段)、加硫促進剤Mのスペクトルと同エネルギーにピークを有している。従って、試料の当該箇所に加硫促進剤Mが存在することが示されており、加硫反応により、試料に配合した加硫促進剤TBBSが加硫促進剤Mに変化したことが分かる。 In the mapping image, the X-ray absorption amount is larger in the black portion, which indicates that sulfur or a vulcanization accelerator is present in the black portion. And when the spectrum of the nitrogen K 殼 absorption edge of the circled part (sample) of the black part is compared with the standard spectrum (TBBS, M) (the lower part of FIG. 1 (a)), the same energy as the spectrum of the vulcanization accelerator M is obtained. Has a peak. Therefore, it is shown that the vulcanization accelerator M is present in the corresponding portion of the sample, and it can be seen that the vulcanization accelerator TBBS blended in the sample is changed to the vulcanization accelerator M by the vulcanization reaction.

同様に、丸囲み箇所(試料)の硫黄L殼吸収端を、標準スペクトル(硫黄、TBBS、M)と比較すると(図1(b)下段)、硫黄、加硫促進剤Mと同エネルギーにピークを有している。従って、試料の当該箇所に、硫黄と加硫促進剤Mが存在することが分かる。 Similarly, when the sulfur L soot absorption edge of the encircled part (sample) is compared with the standard spectrum (sulfur, TBBS, M) (the lower part of FIG. 1 (b)), it peaks at the same energy as sulfur and vulcanization accelerator M. have. Therefore, it turns out that sulfur and the vulcanization accelerator M exist in the said location of a sample.

更に、図1(b)上段の硫黄L殼吸収端のマッピング画像において、硫黄及び加硫促進剤Mの存在が確認される黒色部位は、コントラストのはっきりした粒状の部分とコントラストのはっきりしない箇所が見られる。一方、図1(a)上段の窒素K殼吸収端のマッピング画像は、黒色部位のコントラストがはっきりしていない。従って、コントラストがはっきりしている粒状部分に硫黄、はっきりしていない部分に加硫促進剤が分散していると考えることができる。 Furthermore, in the mapping image of the sulfur L soot absorption edge in the upper part of FIG. 1 (b), the black part where the presence of sulfur and the vulcanization accelerator M is confirmed includes a granular part with clear contrast and a part with unclear contrast. It can be seen. On the other hand, in the mapping image of the nitrogen K 殼 absorption edge in the upper part of FIG. 1A, the contrast of the black part is not clear. Therefore, it can be considered that sulfur is dispersed in the granular portion where the contrast is clear, and the vulcanization accelerator is dispersed in the portion where the contrast is not clear.

以上のような分析により、試料中に含まれる硫黄、加硫促進剤の分散状態の観察が可能であること、また、試料の加硫反応により、加硫促進剤TBBSが加硫促進剤Mに変化した点等、硫黄、加硫促進剤の化学状態分析による試料中に存在する化合物の特定(化学構造の特定)も可能であること、が分かる。更に図1には、2種以上の加硫系材料を含む高分子複合材料の例が示されているが、例えば、加硫系材料として硫黄1種類を含む試料でも、本発明を適用することで、同様に、硫黄の分散状態、化学状態を観察、分析できる。 Through the analysis described above, it is possible to observe the dispersion state of sulfur and vulcanization accelerator contained in the sample, and the vulcanization accelerator TBBS is changed to the vulcanization accelerator M by the vulcanization reaction of the sample. It can be seen that it is possible to identify the compound present in the sample (identify the chemical structure) by analyzing the chemical state of sulfur and the vulcanization accelerator, such as changed points. Further, FIG. 1 shows an example of a polymer composite material containing two or more kinds of vulcanizing materials. For example, the present invention can be applied to a sample containing one kind of sulfur as a vulcanizing material. Similarly, the dispersion state and chemical state of sulfur can be observed and analyzed.

従って、本発明によれば、1種又は2種以上の加硫系材料を含む加硫、未加硫の高分子複合材料について、加硫前後における各加硫系材料の分散状態や化学状態を同時に観察、分析することが可能となる。 Therefore, according to the present invention, for vulcanized and unvulcanized polymer composite materials containing one or more vulcanized materials, the dispersion state and chemical state of each vulcanized material before and after vulcanization are determined. It becomes possible to observe and analyze at the same time.

なお、上記では、硫黄加硫剤、加硫促進剤等の加硫系材料の例を挙げたが、酸素K殼吸収端(吸収端のエネルギー:543.1eV)でも、同様に、NEXAFSの2次元マッピングを測定すると、試料中のZnOの分散も同時に観察、分析できる。 In the above, examples of vulcanized materials such as a sulfur vulcanizing agent and a vulcanization accelerator have been given. However, the oxygen K 殼 absorption edge (absorption edge energy: 543.1 eV) is similarly applied to NEXAFS 2 By measuring the dimensional mapping, the dispersion of ZnO in the sample can be observed and analyzed simultaneously.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

(試料作成方法)
以下の配合内容に従い、硫黄及び加硫促進剤以外の材料を充填率が58%になるように(株)神戸製鋼所製の1.7Lバンバリーミキサーに充填し、80rpmで140℃に到達するまで混練した(工程1)。工程1で得られた混練物に、硫黄及び加硫促進剤を以下の配合にて添加し、160℃で20分間加硫することでゴム試料を得た(工程2)。
(Sample preparation method)
In accordance with the following blending contents, materials other than sulfur and vulcanization accelerator were charged into a 1.7 L Banbury mixer manufactured by Kobe Steel Co., Ltd. so that the filling rate was 58%, and until reaching 140 ° C. at 80 rpm. Kneaded (Step 1). A rubber sample was obtained by adding sulfur and a vulcanization accelerator to the kneaded product obtained in step 1 in the following composition and vulcanizing at 160 ° C. for 20 minutes (step 2).

(配合)
天然ゴム50質量部、ブタジエンゴム50質量部、カーボンブラック60質量部、オイル5質量部、老化防止剤2質量部、ワックス2.5質量部、酸化亜鉛3質量部、ステアリン酸2質量部、粉末硫黄1.2質量部、及び加硫促進剤1質量部
(Combination)
Natural rubber 50 parts by mass, butadiene rubber 50 parts by mass, carbon black 60 parts by mass, oil 5 parts by mass, anti-aging agent 2 parts by mass, wax 2.5 parts by mass, zinc oxide 3 parts by mass, stearic acid 2 parts by mass, powder 1.2 parts by mass of sulfur and 1 part by mass of vulcanization accelerator

なお、使用材料は、以下のとおりである。
天然ゴム:TSR20
ブタジエンゴム:宇部興産(株)製BR150B
カーボンブラック:キャボットジャパン(株)製のショウブラックN351
オイル:(株)ジャパンエナジー製のプロセスX−140
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−1,3−ジメチルブチル−N’−フェニル−p−フェニレンジアミン)
ワックス:日本精蝋(株)製のオゾエース0355
酸化亜鉛:東邦亜鉛(株)製の銀嶺R
ステアリン酸:日本油脂(株)製の椿
粉末硫黄(5%オイル含有):鶴見化学工業(株)製の5%オイル処理粉末硫黄(オイル分5質量%含む可溶性硫黄)
加硫促進剤:大内新興化学工業(株)製のノクセラーNS−P(N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド)
The materials used are as follows.
Natural rubber: TSR20
Butadiene rubber: BR150B manufactured by Ube Industries, Ltd.
Carbon Black: Show Black N351 manufactured by Cabot Japan
Oil: Process X-140 manufactured by Japan Energy Co., Ltd.
Anti-aging agent: NOCRACK 6C (N-1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine) manufactured by Ouchi Shinsei Chemical Co., Ltd.
Wax: Ozoace 0355 manufactured by Nippon Seiwa Co., Ltd.
Zinc oxide: Silver candy R made by Toho Zinc Co., Ltd.
Stearic acid: Koji powder sulfur manufactured by NOF Corporation (containing 5% oil): 5% oil-treated powder sulfur manufactured by Tsurumi Chemical Co., Ltd. (soluble sulfur containing 5% by mass of oil)
Vulcanization accelerator: Noxeller NS-P (N-tert-butyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.

(サンプリング方法)
特開2014−238287号公報に記載の方法を用いて、試料中のフリーサルファを除去した後、ミクロトームで、TEM−EDX用試料は厚み100nm、STXM用試料は厚み250nmにカットした後、TEM用のCu製のグリッドにマウントした。
(Sampling method)
After removing free sulfur in the sample using the method described in Japanese Patent Application Laid-Open No. 2014-238287, the sample for TEM-EDX was cut to a thickness of 100 nm and the sample for STXM was cut to a thickness of 250 nm by a microtome. It was mounted on a grid made of Cu.

〔比較例〕
作製した試料をTEM−EDX測定(市販の装置を使用)に供した。
[Comparative Example]
The prepared sample was subjected to TEM-EDX measurement (using a commercially available device).

〔実施例〕
以下の条件下で、作製した試料をSTXM測定に供した。
(測定場所)
自然科学研究機構 分子科学研究所 極端紫外光研究施設 BL4U
(測定条件)
輝度:1×1016(photons/s/mrad/mm/0.1%bw)
分光器:グレーティング
(測定エネルギー)
硫黄L殼吸収端:162〜168eV
窒素K殼吸収端:396〜403eV
〔Example〕
The prepared sample was subjected to STXM measurement under the following conditions.
(Measurement location)
National Institute for Natural Sciences Molecular Science Laboratory Extreme Ultraviolet Light Research Facility BL4U
(Measurement condition)
Luminance: 1 × 10 16 (photons / s / mrad 2 / mm 2 /0.1% bw)
Spectrometer: Grating (measurement energy)
Sulfur L soot absorption edge: 162-168eV
Nitrogen K 殼 absorption edge: 396 to 403 eV

〔評価〕
実施例(STXM)、比較例(TEM−EDX)のそれぞれについて、試料中の硫黄(硫黄加硫剤)、加硫促進剤の分散状態の観察及び化学状態の分析が可能か否か、以下の基準で評価した。なお、実施例は、図1の方法を用いて、観察、分析を行った。
○:可能
×:不可能
[Evaluation]
For each of the example (STXM) and the comparative example (TEM-EDX), it is possible to observe the dispersion state of the sulfur (sulfur vulcanizing agent) and the vulcanization accelerator in the sample and analyze the chemical state as follows. Evaluated by criteria. In the examples, observation and analysis were performed using the method of FIG.
○: Possible ×: Impossible

TEM−EDXによる比較例の方法は、硫黄の分散状態しか観察できないのに対し、STXMによる実施例の方法は、硫黄と加硫促進剤共に、分散状態の観察、化学状態分析による化合物の特定が可能であった。特に、原料の加硫促進剤として配合したN−tert−ブチル−2−ベンゾチアゾリルスルフェンアミドは、試料(加硫ゴム)中では、2-メルカプトベンゾチアゾールに変化したことが、実施例により判明した。従って、本発明の方法により、加硫系材料の分散状態、化学状態の観察、分析が可能であることが明らかとなった。 The method of the comparative example by TEM-EDX can only observe the dispersion state of sulfur, while the method of the embodiment by STXM can identify the compound by observation of the dispersion state and chemical state analysis for both sulfur and vulcanization accelerator. It was possible. In particular, N-tert-butyl-2-benzothiazolylsulfenamide blended as a raw material vulcanization accelerator was changed to 2-mercaptobenzothiazole in the sample (vulcanized rubber) according to Examples. found. Therefore, it became clear that the dispersion state and chemical state of the vulcanized material can be observed and analyzed by the method of the present invention.

Claims (3)

1種又は2種以上の加硫系材料を含む高分子複合材料に高輝度X線を照射し、X線のエネルギーを変えながら該高分子複合材料の微小領域におけるX線吸収量を測定することにより、各加硫系材料の分散状態及び化学状態を調べる加硫系材料分析方法。 Irradiating a polymer composite material containing one or two or more vulcanized materials with high-intensity X-rays and measuring the X-ray absorption in a minute region of the polymer composite material while changing the energy of the X-rays A vulcanized material analysis method for investigating the dispersion state and chemical state of each vulcanized material. 前記加硫系材料は、硫黄加硫剤及び加硫促進剤からなる群より選択される少なくとも1種である請求項1記載の加硫系材料分析方法。 The vulcanization material analyzing method according to claim 1, wherein the vulcanization material is at least one selected from the group consisting of a sulfur vulcanizing agent and a vulcanization accelerator. 前記高輝度X線を用いて、エネルギー範囲130〜280eVの硫黄L殼吸収端における硫黄のX線吸収量及びエネルギー範囲370〜500eVの窒素K殼吸収端における窒素のX線吸収量を測定する請求項1又は2記載の加硫系材料分析方法。 Using the high-intensity X-ray, the X-ray absorption amount of sulfur at the sulfur L 殼 absorption edge in the energy range of 130 to 280 eV and the X-ray absorption amount of nitrogen at the nitrogen K 殼 absorption edge in the energy range of 370 to 500 eV are measured. Item 3. The vulcanized material analysis method according to Item 1 or 2.
JP2016092729A 2016-05-02 2016-05-02 Vulcanized material analysis method Active JP6743477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016092729A JP6743477B2 (en) 2016-05-02 2016-05-02 Vulcanized material analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016092729A JP6743477B2 (en) 2016-05-02 2016-05-02 Vulcanized material analysis method

Publications (2)

Publication Number Publication Date
JP2017201252A true JP2017201252A (en) 2017-11-09
JP6743477B2 JP6743477B2 (en) 2020-08-19

Family

ID=60265047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016092729A Active JP6743477B2 (en) 2016-05-02 2016-05-02 Vulcanized material analysis method

Country Status (1)

Country Link
JP (1) JP6743477B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096905A (en) * 2016-12-15 2018-06-21 住友ゴム工業株式会社 Abrasion proof performance prediction method
JP2019158654A (en) * 2018-03-14 2019-09-19 住友ゴム工業株式会社 Method of predicting abrasion resistance and fracture resistance
JP2019158653A (en) * 2018-03-14 2019-09-19 住友ゴム工業株式会社 Method of predicting changes in abrasion resistance and fracture resistance
JP2020027084A (en) * 2018-08-17 2020-02-20 住友ゴム工業株式会社 Crosslinked structure visualization method
JP2020187057A (en) * 2019-05-16 2020-11-19 国立大学法人東北大学 Method for analyzing polymer composite material
EP4249901A1 (en) 2022-03-24 2023-09-27 Sumitomo Rubber Industries, Ltd. Method for estimating abrasion resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005058906A (en) * 2003-08-12 2005-03-10 Asahi Kasei Medical Co Ltd Porous polymer membrane, blood purification device and production method for porous polymer membrane
US20120321039A1 (en) * 2011-06-17 2012-12-20 Uop Llc Solid material characterization with x-ray spectra in both transmission and fluoresence modes
JPWO2013065809A1 (en) * 2011-11-04 2015-04-02 住友ゴム工業株式会社 Degradation analysis method
JP2015152533A (en) * 2014-02-18 2015-08-24 住友ゴム工業株式会社 Method of inspecting chemical state of sulfur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005058906A (en) * 2003-08-12 2005-03-10 Asahi Kasei Medical Co Ltd Porous polymer membrane, blood purification device and production method for porous polymer membrane
US20120321039A1 (en) * 2011-06-17 2012-12-20 Uop Llc Solid material characterization with x-ray spectra in both transmission and fluoresence modes
JPWO2013065809A1 (en) * 2011-11-04 2015-04-02 住友ゴム工業株式会社 Degradation analysis method
JP2015152533A (en) * 2014-02-18 2015-08-24 住友ゴム工業株式会社 Method of inspecting chemical state of sulfur

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096905A (en) * 2016-12-15 2018-06-21 住友ゴム工業株式会社 Abrasion proof performance prediction method
JP2019158654A (en) * 2018-03-14 2019-09-19 住友ゴム工業株式会社 Method of predicting abrasion resistance and fracture resistance
JP2019158653A (en) * 2018-03-14 2019-09-19 住友ゴム工業株式会社 Method of predicting changes in abrasion resistance and fracture resistance
JP7069874B2 (en) 2018-03-14 2022-05-18 住友ゴム工業株式会社 How to predict changes in wear resistance and fracture resistance
JP7289186B2 (en) 2018-03-14 2023-06-09 住友ゴム工業株式会社 Method for Predicting Wear and Fracture Resistance Performance
JP2020027084A (en) * 2018-08-17 2020-02-20 住友ゴム工業株式会社 Crosslinked structure visualization method
JP7167546B2 (en) 2018-08-17 2022-11-09 住友ゴム工業株式会社 Crosslinked structure visualization method
JP2020187057A (en) * 2019-05-16 2020-11-19 国立大学法人東北大学 Method for analyzing polymer composite material
JP7258292B2 (en) 2019-05-16 2023-04-17 国立大学法人東北大学 Analysis method for polymer composites
EP4249901A1 (en) 2022-03-24 2023-09-27 Sumitomo Rubber Industries, Ltd. Method for estimating abrasion resistance

Also Published As

Publication number Publication date
JP6743477B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6743477B2 (en) Vulcanized material analysis method
JP5964850B2 (en) Degradation analysis method
JP2017040618A (en) Chemical state measurement method
JP2018096905A (en) Abrasion proof performance prediction method
JP6348295B2 (en) How to determine the chemical state of sulfur
JP6294673B2 (en) Polymer material analysis method
JP6544098B2 (en) Method of measuring crosslink density in sulfur-containing polymer composites
JP6219607B2 (en) Chemical state measurement method
JP6374355B2 (en) Method for measuring crosslink density in sulfur-containing polymer composites
JP7289186B2 (en) Method for Predicting Wear and Fracture Resistance Performance
JP7167546B2 (en) Crosslinked structure visualization method
JP6294623B2 (en) Life prediction method for polymer materials
JP6769123B2 (en) Method for measuring crosslink density
JP6822160B2 (en) Evaluation method for sheet scraping of polymer composite materials
JP2019045196A (en) Measuring method of coupling amount of monosulfide bond, coupling amount of disulfide bond, coupling amount of polysulfide bond, and coupling amount of filler interface in polymer composite containing filler and sulfur
JP2015132518A (en) Method for investigating chemical state of sulfur
JP5805043B2 (en) Degradation analysis method
JP2023141840A (en) Method for predicting wear resistance performance
JP5814277B2 (en) Fracture energy prediction method and rubber composition
JP6769122B2 (en) Method for evaluating the degree of orientation of a polymer in a polymer composite material
JP6460730B2 (en) Vulcanized rubber composition for tire and pneumatic tire
JP7069874B2 (en) How to predict changes in wear resistance and fracture resistance
JP6371174B2 (en) How to determine the chemical state of sulfur
JP2017032397A (en) Method of evaluating crack performance of polymer material
JP2018091636A (en) Scattering intensity evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6743477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250