JP2017040618A - Chemical state measurement method - Google Patents

Chemical state measurement method Download PDF

Info

Publication number
JP2017040618A
JP2017040618A JP2015163877A JP2015163877A JP2017040618A JP 2017040618 A JP2017040618 A JP 2017040618A JP 2015163877 A JP2015163877 A JP 2015163877A JP 2015163877 A JP2015163877 A JP 2015163877A JP 2017040618 A JP2017040618 A JP 2017040618A
Authority
JP
Japan
Prior art keywords
sulfur
ray absorption
absorption spectrum
composite material
polymer composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015163877A
Other languages
Japanese (ja)
Other versions
JP6657664B2 (en
Inventor
房恵 金子
Fusae Kaneko
房恵 金子
岸本 浩通
Hiromichi Kishimoto
浩通 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2015163877A priority Critical patent/JP6657664B2/en
Publication of JP2017040618A publication Critical patent/JP2017040618A/en
Application granted granted Critical
Publication of JP6657664B2 publication Critical patent/JP6657664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a chemical state measurement method capable of precisely obtaining information for controlling a sulfur bridge structure in a sulfur-containing polymer composite material including sulfur rubber of a crosslinked portion using a sulfur-containing compound.SOLUTION: A chemical state measurement method includes a measurement process in which a sulfur-containing polymer composite material is irradiated with a high brightness X-ray and X-ray absorption spectrum is measured while energy of the X-ray is changed, and a removal process in which component of sulfur oxide is removed form the X-ray absorption spectrum of the sulfur-containing polymer composite material.SELECTED DRAWING: None

Description

本発明は、硫黄を含有する高分子複合材料において、架橋部分の硫黄の情報を高精度に得ることが可能な化学状態測定方法に関する。 The present invention relates to a chemical state measurement method capable of obtaining information on sulfur in a cross-linked portion with high accuracy in a polymer composite material containing sulfur.

従来、硫黄加硫剤等の硫黄含有化合物を用いて架橋した加硫ゴム中の硫黄架橋構造を分析する手法としては、LiAlHやプロパン2−チオールといった試薬で選択的に架橋を切断し、その前後での膨潤度から、Flory−Rehnerの式(例えば、非特許文献1参照)を用いて加硫ゴム中のモノスルフィド結合(R−S−R)、ジスルフィド結合(R−S−R)、ポリスルフィド結合(R−S−R(n≧3))の架橋密度[mol/cm]を算出する方法が知られていた。 Conventionally, as a technique for analyzing a sulfur cross-linking structure in a vulcanized rubber cross-linked using a sulfur-containing compound such as a sulfur vulcanizing agent, the cross-linking is selectively cut with a reagent such as LiAlH 4 or propane 2-thiol, From the degree of swelling before and after, the monosulfide bond (R-S 1 -R) and disulfide bond (R-S 2 -R) in vulcanized rubber using the Flory-Rehner formula (see, for example, Non-Patent Document 1). ), A method for calculating the crosslink density [mol / cm 3 ] of polysulfide bonds (R—S n —R (n ≧ 3)) has been known.

中内秀雄、外4名、「日本ゴム協会誌」、1987年、第60巻、第5号、p.267−272Hideo Nakauchi, 4 others, “The Journal of Japan Rubber Association”, 1987, Vol. 60, No. 5, p. 267-272

硫黄含有化合物を用いて架橋した加硫ゴムをはじめとする硫黄含有高分子複合材料中の硫黄架橋構造を制御することができれば、力学物性等の硫黄含有高分子複合材料に要求される性能をより精緻に制御することが可能となるものと考えられ、硫黄含有高分子複合材料中の硫黄架橋構造の分析は、上記要求性能を制御するうえで非常に重要である。 If the sulfur cross-linking structure in sulfur-containing polymer composites including vulcanized rubber cross-linked with sulfur-containing compounds can be controlled, the performance required for sulfur-containing polymer composites such as mechanical properties will be improved. It is considered that precise control is possible, and analysis of the sulfur cross-linking structure in the sulfur-containing polymer composite material is very important in controlling the required performance.

上述のように、従来から加硫ゴム中の硫黄架橋構造を分析する手法が知られていたが、従来法では、加硫ゴム中のモノスルフィド結合(R−S−R)、ジスルフィド結合(R−S−R)、ポリスルフィド結合(R−S−R(n≧3))の3種類の架橋密度しか算出することができなかった。そして更には、ポリスルフィド結合(R−S−R(n≧3))を優先的に切断するプロパン2−チオールは強い臭気のために使用できないことも多く、そのため、モノスルフィド結合(R−S−R)、及び、ジスルフィド結合を含んだポリスルフィド結合(R−S−R(n≧2))の2種類の架橋密度を算出して、硫黄架橋構造を分析する場合も多かった。しかしながら、これらの方法では、ポリスルフィド結合の詳細(R−S−R(n=2、3、4、5、6、7、8))は分からず、硫黄架橋構造を制御して要求性能を制御するには不充分であった。このように、より詳細に硫黄架橋構造を分析する方法について改善の余地があった。 As described above, a technique for analyzing a sulfur cross-linked structure in a vulcanized rubber has been conventionally known. However, in the conventional method, a monosulfide bond (R—S 1 -R), a disulfide bond ( It was possible to calculate only three types of crosslink density: R—S 2 —R) and polysulfide bond (R—S n —R (n ≧ 3)). Furthermore, propane 2-thiol that preferentially cleaves polysulfide bonds (R—S n —R (n ≧ 3)) often cannot be used due to strong odor, and therefore monosulfide bonds (R—S In many cases, the sulfur crosslinking structure was analyzed by calculating two types of crosslinking density of 1- R) and a polysulfide bond including a disulfide bond (R-S n -R (n ≧ 2)). However, in these methods, details of the polysulfide bond (R—S n —R (n = 2, 3, 4, 5, 6, 7, 8)) are not known, and the required performance is controlled by controlling the sulfur crosslinking structure. Insufficient to control. Thus, there was room for improvement in the method for analyzing the sulfur cross-linking structure in more detail.

こうした背景を受けて、本発明者らは、特願2015―130060、特願2015−138963において、硫黄含有高分子複合材料のX線吸収スペクトルをリバースモンテカルロ法でフィッティングすることにより、架橋密度を測定する方法を提案した。しかしながら、この方法は、以下の点で改善の余地があった。 In view of such a background, the present inventors measured the crosslinking density in Japanese Patent Application Nos. 2015-130060 and 2015-138963 by fitting the X-ray absorption spectrum of the sulfur-containing polymer composite material by the reverse Monte Carlo method. Proposed method to do. However, this method has room for improvement in the following points.

硫黄含有高分子複合材料は、通常、架橋反応を促進するために、酸化亜鉛(ZnO)が配合されているが、図1に示すように、硫黄含有高分子複合材料のX線吸収スペクトルは、ZnOの有無によってプロファイルが変化する。これは、酸化亜鉛と硫黄との反応で生成する硫黄酸化物(硫酸亜鉛:ZnSO)に起因するものと考えられる。また、硫黄酸化物は、硫黄含有高分子複合材料の劣化時にも生成するため、硫黄含有高分子複合材料のX線吸収スペクトルは、硫酸亜鉛以外の硫黄酸化物の影響も受けていると考えられる。 The sulfur-containing polymer composite material is usually blended with zinc oxide (ZnO) in order to promote the crosslinking reaction, but as shown in FIG. 1, the X-ray absorption spectrum of the sulfur-containing polymer composite material is The profile changes depending on the presence or absence of ZnO. This is considered to be caused by sulfur oxide (zinc sulfate: ZnSO 4 ) generated by the reaction between zinc oxide and sulfur. In addition, since sulfur oxides are generated even when the sulfur-containing polymer composite material is deteriorated, it is considered that the X-ray absorption spectrum of the sulfur-containing polymer composite material is also affected by sulfur oxides other than zinc sulfate. .

このように、硫黄含有高分子複合材料のX線吸収スペクトルには、架橋部分の硫黄だけでなく、硫黄酸化物中の硫黄の情報も含んでいる。そのため、そのまま解析に使用しても、架橋部分の硫黄の情報を正確に得ることは困難である。 Thus, the X-ray absorption spectrum of the sulfur-containing polymer composite material includes not only sulfur at the cross-linked portion but also information on sulfur in the sulfur oxide. Therefore, it is difficult to accurately obtain information on sulfur at the cross-linking portion even if it is used for analysis as it is.

本発明は、前記課題を解決し、架橋部分の硫黄の情報を高精度に得ることが可能な化学状態測定方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a chemical state measurement method capable of obtaining information on sulfur in a crosslinking portion with high accuracy.

本発明は、硫黄含有高分子複合材料に高輝度X線を照射し、X線のエネルギーを変えながらX線吸収スペクトルを測定する測定工程と、硫黄含有高分子複合材料のX線吸収スペクトルから硫黄酸化物の成分を除去する除去工程とを含む化学状態測定方法に関する。 The present invention relates to a measuring step of irradiating a sulfur-containing polymer composite material with high-intensity X-rays and measuring an X-ray absorption spectrum while changing the energy of the X-ray, and sulfur from the X-ray absorption spectrum of the sulfur-containing polymer composite material. The present invention relates to a chemical state measuring method including a removing step of removing an oxide component.

上記除去工程では、少なくとも、硫黄酸化物と、硫黄酸化物以外の硫黄連結数の異なる複数の化合物との標準試料のX線吸収スペクトルを用いて、硫黄含有高分子複合材料のX線吸収スペクトルのXANES領域を波形分離することにより、硫黄含有高分子複合材料のX線吸収スペクトルにおける硫黄酸化物の比率を算出し、得られた硫黄酸化物の比率に基づき、硫黄含有高分子複合材料のEXAFS振動から硫黄酸化物のEXAFS振動を差し引くことにより、硫黄含有高分子複合材料のX線吸収スペクトルから硫黄酸化物の成分を除去することが好ましい。 In the above removal step, the X-ray absorption spectrum of the sulfur-containing polymer composite material is used by using at least the X-ray absorption spectrum of a standard sample of sulfur oxide and a plurality of compounds having different numbers of sulfur linkages other than sulfur oxide. The ratio of sulfur oxides in the X-ray absorption spectrum of the sulfur-containing polymer composite material is calculated by waveform separation of the XANES region, and the EXAFS vibration of the sulfur-containing polymer composite material is calculated based on the obtained sulfur oxide ratio. It is preferable to remove the sulfur oxide component from the X-ray absorption spectrum of the sulfur-containing polymer composite material by subtracting the EXAFS vibration of the sulfur oxide from the X-ray absorption spectrum.

上記測定工程では、X線を用いて走査するエネルギー範囲を2300〜4000eVとすることで、硫黄K殻吸収端付近の硫黄のX線吸収スペクトルを測定することが好ましい。 In the measurement step, it is preferable to measure the X-ray absorption spectrum of sulfur near the sulfur K shell absorption edge by setting the energy range scanned using X-rays to 2300 to 4000 eV.

上記測定工程では、X線は、光子数が10(photons/s)以上、輝度が1010(photons/s/mrad/mm/0.1%bw)以上であることが好ましい。 In the measurement step, the X-ray preferably has a photon number of 10 7 (photons / s) or more and a luminance of 10 10 (photons / s / mrad 2 / mm 2 /0.1% bw) or more.

本発明によれば、硫黄含有高分子複合材料のX線吸収スペクトルから硫黄酸化物の成分を除去することにより、架橋部分の硫黄の情報を高精度に得ることが可能となる。 According to the present invention, by removing the sulfur oxide component from the X-ray absorption spectrum of the sulfur-containing polymer composite material, it is possible to obtain the sulfur information of the cross-linked portion with high accuracy.

ZnO入り硫黄架橋ゴムのX線吸収スペクトルと、ZnOなし硫黄架橋ゴムのX線吸収スペクトルとを示すグラフである。It is a graph which shows the X-ray absorption spectrum of the sulfur bridge | crosslinking rubber | gum containing ZnO, and the X-ray absorption spectrum of the sulfur bridge | crosslinking rubber | gum which does not contain ZnO. 硫黄架橋ゴムのX線吸収スペクトルと、標準試料のX線吸収スペクトルを用いてフィッティングを行った結果とを示すグラフである。It is a graph which shows the result of having performed fitting using the X-ray absorption spectrum of sulfur bridge | crosslinking rubber | gum, and the X-ray absorption spectrum of a standard sample. 硫黄架橋ゴムのX線吸収スペクトルを示すグラフである。It is a graph which shows the X-ray absorption spectrum of sulfur crosslinked rubber. 図3のスペクトルから抜き出したEXAFS振動(図3の破線部分)を示すグラフである。It is a graph which shows the EXAFS vibration (dashed line part of FIG. 3) extracted from the spectrum of FIG. ZnSOのX線吸収スペクトルを示すグラフである。Is a graph showing the X-ray absorption spectra of ZnSO 4. 図5のスペクトルから抜き出したEXAFS振動(図5の破線部分)に係数αを掛けたものを示すグラフである。6 is a graph showing an EXAFS vibration extracted from the spectrum of FIG. 5 (dotted line portion of FIG. 5) multiplied by a coefficient α. 硫黄架橋ゴムのEXAFS振動から硫黄酸化物の成分を除去したものを示すグラフである。It is a graph which shows what removed the component of the sulfur oxide from the EXAFS vibration of sulfur crosslinked rubber. 硫黄酸化物を除去した動径分布関数(実施例)と、未除去の動径分布関数(比較例)とを示すグラフである。It is a graph which shows the radial distribution function (Example) which removed the sulfur oxide, and the non-removed radial distribution function (comparative example).

本発明は、硫黄含有高分子複合材料に高輝度X線を照射し、X線のエネルギーを変えながらX線吸収スペクトルを測定する測定工程と、硫黄含有高分子複合材料のX線吸収スペクトルから硫黄酸化物の成分を除去する除去工程とを含む化学状態測定方法である。 The present invention relates to a measuring step of irradiating a sulfur-containing polymer composite material with high-intensity X-rays and measuring an X-ray absorption spectrum while changing the energy of the X-ray, and sulfur from the X-ray absorption spectrum of the sulfur-containing polymer composite material. And a removing step of removing a component of the oxide.

本発明では、測定工程、除去工程を順に実施することで、硫黄酸化物の成分が除去されたX線吸収スペクトルが得られる。このX線吸収スペクトルを解析することにより、架橋部分の硫黄の情報を高精度に得ることができる。得られた情報を解析することで、ポリマー間を橋かけする硫黄の数や量を正確に得ることが期待できる。 In this invention, the X-ray absorption spectrum from which the component of sulfur oxide was removed is obtained by implementing a measurement process and a removal process in order. By analyzing this X-ray absorption spectrum, it is possible to obtain information on the sulfur in the bridging portion with high accuracy. By analyzing the obtained information, it can be expected that the number and amount of sulfur bridging between the polymers will be obtained accurately.

本発明における測定工程では、硫黄含有高分子複合材料(以下、単に「試料」ともいう。)に、高輝度X線を照射し、X線のエネルギーを変えながらX線吸収スペクトルを測定する。上記測定工程において、X線吸収スペクトルを測定する方法としては、例えば、XAFS(X−ray Absorption Fine Structure:吸収端近傍X線吸収微細構造)法が挙げられる。 In the measurement step in the present invention, a high-intensity X-ray is irradiated on a sulfur-containing polymer composite material (hereinafter also simply referred to as “sample”), and an X-ray absorption spectrum is measured while changing the energy of the X-ray. Examples of a method for measuring the X-ray absorption spectrum in the measurement step include an XAFS (X-ray Absorption Fine Structure: X-ray absorption fine structure near the absorption edge) method.

硫黄加硫剤等の硫黄含有化合物を用いたゴム材料をはじめとする硫黄を含有する高分子複合材料における架橋密度を測定する方法として、硫黄K殻吸収端付近におけるXAFS法は有用である。
XAFS法はX線を照射し、狙った原子におけるX線吸収量を測定する方法であり、化学状態(結合)の違いによって吸収できるX線エネルギーが異なることを利用して詳細な化学状態(結合)を調べることができる。しかしながら、硫黄含有高分子複合材料中には、モノスルフィド結合、ジスルフィド結合、ポリスルフィド結合等の硫黄の結合長さが異なる硫黄架橋が存在し、これらはスペクトルで検出されるピークエネルギーが近い。また、酸化亜鉛を配合した場合には硫化亜鉛も生成され、そのスペクトルも観察される。このように硫黄含有高分子複合材料中の硫黄の化学状態は複雑であるため、硫黄成分を含まない高分子材料に比べて、得られるXAFSスペクトルはブロードなスペクトルとなる傾向がある。従って、硫黄含有高分子複合材料の分析には、より高精度な測定が要求される。そこで、XAFS法においてより高精度な測定を行うために、高輝度X線を用いることができる。
The XAFS method in the vicinity of the sulfur K-shell absorption edge is useful as a method for measuring the crosslinking density in sulfur-containing polymer composite materials such as rubber materials using sulfur-containing compounds such as sulfur vulcanizing agents.
The XAFS method is a method of irradiating X-rays and measuring the amount of X-ray absorption in the target atom, and using the fact that the X-ray energy that can be absorbed varies depending on the chemical state (bonding), the detailed chemical state (bonding) ). However, in sulfur-containing polymer composite materials, there are sulfur bridges having different sulfur bond lengths such as monosulfide bonds, disulfide bonds, polysulfide bonds, etc., and these have close peak energies detected in the spectrum. In addition, when zinc oxide is blended, zinc sulfide is also generated and its spectrum is observed. Thus, since the chemical state of sulfur in the sulfur-containing polymer composite material is complicated, the obtained XAFS spectrum tends to be a broad spectrum as compared with a polymer material not containing a sulfur component. Therefore, more accurate measurement is required for the analysis of the sulfur-containing polymer composite material. Therefore, high-intensity X-rays can be used to perform measurement with higher accuracy in the XAFS method.

また、XAFS法による分析では、吸収端(吸収が立ち上がるエネルギー)から50eV位までのピークが出現する領域であるXANES(X−ray Absorption Near Edge Structure)領域、それよりも高エネルギーの緩やかな振動成分が出現する領域であるEXAFS(Extended X−ray Absorption Fine Structure)領域での分析がある。XANES領域は、試料に狙った原子の吸収端近傍のX線を照射した際、内殻準位にいた電子が励起状態に遷移するため、狙った原子がどのような原子と結合しているか(化学状態)がわかる。一方、EXAFS領域は、内殻電子が原子核の束縛を離れ、光電子として飛び出す。その際、光電子は波として表わされるため、近くに他の原子がいる場合には、波が干渉して返ってくる。そのため、中心原子の周囲の原子数、原子種、原子間距離等の情報が得られる。本発明においては、後述する除去工程に供するX線吸収スペクトルとして、硫黄K殻吸収端付近におけるXAFS法で得られたEXAFS領域のスペクトル(以下、「EXAFS振動」ともいう。)を用いることが好ましい。 Also, in the analysis by the XAFS method, an XANES (X-ray Absorption Near Edge Structure) region where a peak from the absorption edge (energy at which absorption rises) to about 50 eV appears, and a gentle vibration component with higher energy than that. There is an analysis in an EXAFS (Extended X-ray Absorption Fine Structure) region, in which appears. In the XANES region, when the sample is irradiated with X-rays near the absorption edge of the target atom, electrons in the core level transition to an excited state, so what kind of atom the target atom is bonded to ( Chemical state). On the other hand, in the EXAFS region, inner-shell electrons leave the nucleus and are ejected as photoelectrons. At that time, since photoelectrons are represented as waves, if there are other atoms nearby, the waves interfere and return. Therefore, information such as the number of atoms around the central atom, atomic species, and interatomic distance can be obtained. In the present invention, it is preferable to use an EXAFS region spectrum obtained by the XAFS method in the vicinity of the sulfur K-shell absorption edge (hereinafter also referred to as “EXAFS vibration”) as an X-ray absorption spectrum to be used in the removal step described later. .

本発明の方法に供される硫黄含有高分子複合材料としては、硫黄加硫剤等の硫黄含有化合物を用いて架橋され、硫黄架橋構造を有する高分子複合材料であれば特に限定されず、例えば、硫黄加硫剤等の硫黄含有化合物、ゴム成分、他の配合材料を含むゴム組成物を架橋して得られた硫黄架橋ゴムなどが挙げられる。 The sulfur-containing polymer composite material used in the method of the present invention is not particularly limited as long as it is a polymer composite material that is crosslinked using a sulfur-containing compound such as a sulfur vulcanizing agent and has a sulfur crosslinking structure. And sulfur-crosslinked rubber obtained by crosslinking a rubber composition containing a sulfur-containing compound such as a sulfur vulcanizing agent, a rubber component, and other compounding materials.

上記硫黄含有化合物としては、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄等の硫黄加硫剤等が挙げられる。 Examples of the sulfur-containing compound include sulfur vulcanizing agents such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur.

上記ゴム成分としては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X−IIR)、スチレンイソプレンブタジエンゴム(SIBR)等のジエン系ゴム等が挙げられる。また、ゴム成分は、水酸基、アミノ基等の変性基を1つ以上含むものでもよい。更には、ゴム成分として種々のエラストマーを用いることもできる。 Examples of the rubber component include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), and halogen. And diene rubbers such as butyl rubber (X-IIR) and styrene isoprene butadiene rubber (SIBR). The rubber component may contain one or more modifying groups such as hydroxyl groups and amino groups. Furthermore, various elastomers can be used as the rubber component.

更にゴム成分としては、前記ゴム成分と1種類以上の樹脂とが複合された複合材料も使用できる。上記樹脂としては特に限定されず、例えば、ゴム工業分野で汎用されているものが挙げられ、例えば、C5系脂肪族石油樹脂、シクロペンタジエン系石油樹脂等の石油樹脂が挙げられる。 Furthermore, as the rubber component, a composite material in which the rubber component and one or more kinds of resins are combined can also be used. The resin is not particularly limited, and examples thereof include those commonly used in the rubber industry field, and examples thereof include petroleum resins such as C5 aliphatic petroleum resins and cyclopentadiene petroleum resins.

上記硫黄含有高分子複合材料には、カーボンブラック、シリカ等の充填剤、シランカップリング剤、酸化亜鉛、ステアリン酸、老化防止剤、ワックス、オイル、硫黄以外の加硫剤、加硫促進剤等、従来公知のゴム分野の配合物を適宜配合してもよい。このようなゴム材料(ゴム組成物)は、公知の混練方法、加硫方法等を用いて製造できる。このようなゴム材料としては、例えば、タイヤ用加硫ゴム材料(タイヤ用加硫ゴム組成物)等が挙げられる。 The sulfur-containing polymer composite material includes carbon black, silica and other fillers, silane coupling agents, zinc oxide, stearic acid, anti-aging agents, waxes, oils, vulcanizing agents other than sulfur, vulcanization accelerators, etc. A conventionally known compound in the rubber field may be appropriately blended. Such a rubber material (rubber composition) can be produced using a known kneading method, vulcanizing method, or the like. Examples of such rubber materials include tire vulcanized rubber materials (tire vulcanized rubber compositions).

高輝度X線を照射し、X線のエネルギーを変えながらX線吸収スペクトルを測定する具体的な方法としては、以下のような透過法、蛍光法、電子収量法等が汎用されている。 As specific methods for irradiating high-intensity X-rays and measuring X-ray absorption spectra while changing the energy of X-rays, the following transmission methods, fluorescence methods, electron yield methods and the like are widely used.

(透過法)
試料を透過してきたX線強度を検出する方法である。透過光強度測定には、フォトダイオードアレイ検出器等が用いられる。
(Transmission method)
This is a method for detecting the X-ray intensity transmitted through a sample. For the transmitted light intensity measurement, a photodiode array detector or the like is used.

(蛍光法)
試料にX線を照射した際に発生する蛍光X線を検出する方法である。検出器は、Lytle検出器、半導体検出器等がある。前記透過法の場合、試料中の含有量が少ない元素のX線吸収測定を行うと、シグナルが小さい上に含有量の多い元素のX線吸収によりバックグラウンドが高くなるためS/B比の悪いスペクトルとなる。それに対し蛍光法(特にエネルギー分散型検出器等を用いた場合)では、目的とする元素からの蛍光X線のみを測定することが可能であるため、含有量が多い元素の影響が少ない。そのため、含有量が少ない元素のX線吸収スペクトル測定を行う場合に有効である。また、蛍光X線は透過力が強い(物質との相互作用が小さい)ため、試料内部で発生した蛍光X線を検出することが可能となる。そのため、本手法は透過法に次いでバルク情報を得る方法として最適である。
(Fluorescence method)
This is a method for detecting fluorescent X-rays generated when a sample is irradiated with X-rays. Examples of the detector include a Lytle detector and a semiconductor detector. In the case of the transmission method, when X-ray absorption measurement of an element having a small content in a sample is performed, the background is increased due to the X-ray absorption of an element having a small content and a large content, so that the S / B ratio is poor. It becomes a spectrum. On the other hand, in the fluorescence method (especially when an energy dispersive detector or the like is used), it is possible to measure only the fluorescent X-rays from the target element, so that the influence of the element having a large content is small. Therefore, it is effective when measuring an X-ray absorption spectrum of an element having a small content. In addition, since fluorescent X-rays have strong penetrating power (low interaction with substances), it is possible to detect fluorescent X-rays generated inside the sample. Therefore, this method is the most suitable method for obtaining bulk information after the transmission method.

(電子収量法)
試料にX線を照射した際に流れる電流を検出する方法である。そのため試料が導電物質である必要がある。また、表面敏感(試料表面の数nm程度の情報)であるという特徴もある。試料にX線を照射すると元素から電子が脱出するが、電子は物質との相互作用が強いため、物質中での平均自由行程が短い。
(Electron yield method)
This is a method for detecting a current flowing when a sample is irradiated with X-rays. Therefore, the sample needs to be a conductive material. In addition, there is a feature that the surface is sensitive (information about several nm on the sample surface). When the sample is irradiated with X-rays, electrons escape from the element, but electrons have a strong interaction with the substance, so that the mean free path in the substance is short.

このように、透過法は、XAFSの基本的な測定方法で、入射光強度と試料を透過したX線強度を検出してX線吸収量を測定する方法であるため、試料のバルク情報が得られ、対象化合物が一定以上の濃度(例えば、数wt%以上)でなければ測定が困難という特徴がある。電子収量法は、表面敏感な方法であり、試料表面の数十nm程度の情報が得られる。一方、蛍光法は、電子収量法に比べて表面からある程度深い部分からの情報が得られるという特徴と、対象化合物濃度が低くても測定できるという特徴がある。本発明では、蛍光法が好適に用いられる。
そこで、蛍光法について、より具体的に以下説明する。
As described above, the transmission method is a basic measurement method of XAFS, and is a method of detecting the incident light intensity and the X-ray intensity transmitted through the sample and measuring the X-ray absorption amount. In other words, it is difficult to measure unless the target compound has a certain concentration (eg, several wt% or more). The electron yield method is a surface-sensitive method, and information on the surface of a sample of about several tens of nanometers can be obtained. On the other hand, the fluorescence method has the characteristics that information from a part deeper than the surface can be obtained compared to the electron yield method, and the measurement can be performed even when the concentration of the target compound is low. In the present invention, the fluorescence method is preferably used.
Therefore, the fluorescence method will be described more specifically below.

蛍光法とは、試料にX線を照射した際に発生する蛍光X線をモニタリングする方法であり、X線吸収量と蛍光X線の強度に比例関係があることを用いて、蛍光X線の強度からX線吸収量を間接的に求める方法となる。蛍光法を行う場合、電離箱を用いた方法とSDD(シリコンドリフト検出器)やSSD(シリコンストリップ検出器)等の半導体検出器を用いることが多い。電離箱では比較的簡便に測定ができるが、エネルギー分別が困難なことと、試料からの散乱X線や対象元素以外の蛍光X線が入ってしまうためバックグランドを上げてしまうことがあり、試料と検出器との間にソーラースリットやフィルターを設置する必要がある。SDDやSSDを用いた場合、好感度でかつ、エネルギー分別が可能であるため、目的元素からの蛍光X線のみを取り出すことができ、S/B比よく測定することが可能となる。 The fluorescence method is a method for monitoring fluorescent X-rays generated when a sample is irradiated with X-rays, and uses the fact that there is a proportional relationship between the amount of X-ray absorption and the intensity of fluorescent X-rays. This is a method of indirectly obtaining the X-ray absorption amount from the intensity. When performing the fluorescence method, a method using an ionization chamber and a semiconductor detector such as an SDD (silicon drift detector) or an SSD (silicon strip detector) are often used. The ionization chamber can be measured relatively easily, but the background may be raised due to the difficulty of energy separation and scattered X-rays from the sample and fluorescent X-rays other than the target element. It is necessary to install a solar slit or filter between the sensor and the detector. When SDD or SSD is used, the sensitivity is good and the energy can be separated, so that only fluorescent X-rays from the target element can be taken out and measurement can be performed with a high S / B ratio.

上記測定工程において用いるX線は、光子数が10photons/s以上であることが好ましい。これにより高精度の測定が可能となる。上記X線の光子数は、10photons/s以上であることがより好ましい。上記X線の光子数の上限は特に限定されないが、放射線ダメージがない程度以下のX線強度を用いることが好ましい。 The X-ray used in the measurement step preferably has a photon number of 10 7 photons / s or more. As a result, highly accurate measurement is possible. The number of photons of the X-ray is more preferably 10 9 photons / s or more. The upper limit of the number of photons of the X-ray is not particularly limited, but it is preferable to use an X-ray intensity equal to or less than the extent that there is no radiation damage.

上記測定工程において用いるX線は、輝度が1010photons/s/mrad/mm/0.1%bw以上であることが好ましい。
XAFS法は、X線エネルギーで走査するため光源には連続X線発生装置が必要であり、詳細な化学状態を解析するには高いS/N比及びS/B比のX線吸収スペクトルを測定する必要がある。シンクロトロンから放射されるX線は、1010photons/s/mrad/mm/0.1%bw以上の輝度を有し、且つ連続X線源であるため、XAFS測定には最適である。なお、bwはシンクロトロンから放射されるX線のband widthを示す。上記X線の輝度は、1011photons/s/mrad/mm/0.1%bw以上であることがより好ましい。上記X線の輝度の上限は特に限定されないが、放射線ダメージがない程度以下のX線強度を用いることが好ましい。
The X-ray used in the measurement step preferably has a luminance of 10 10 photons / s / mrad 2 / mm 2 /0.1% bw or more.
Since the XAFS method scans with X-ray energy, the light source requires a continuous X-ray generator, and X-ray absorption spectra with high S / N ratio and S / B ratio are measured to analyze the detailed chemical state. There is a need to. X-rays emitted from the synchrotron have a luminance of 10 10 photons / s / mrad 2 / mm 2 /0.1% bw or more, and are a continuous X-ray source, so they are optimal for XAFS measurement. . Note that bw indicates the band width of X-rays emitted from the synchrotron. The luminance of the X-ray is more preferably 10 11 photons / s / mrad 2 / mm 2 /0.1% bw or more. Although the upper limit of the said X-ray brightness is not specifically limited, It is preferable to use the X-ray intensity below the extent that there is no radiation damage.

上記測定工程におけるX線を用いて走査するエネルギー範囲としては、2300〜4000eVの範囲が好適である。上記範囲を走査することで、硫黄K殻吸収端付近の硫黄のX線吸収スペクトルを測定でき、試料中の硫黄の化学状態の情報が得られる。上記エネルギー範囲としてより好ましくは2350〜3500eVである。 A range of 2300 to 4000 eV is suitable as an energy range for scanning using X-rays in the measurement step. By scanning the above range, the X-ray absorption spectrum of sulfur near the sulfur K shell absorption edge can be measured, and information on the chemical state of sulfur in the sample can be obtained. The energy range is more preferably 2350 to 3500 eV.

本発明における除去工程では、硫黄含有高分子複合材料のX線吸収スペクトルから硫黄酸化物の成分を除去する。以下、除去方法の一例を説明する。 In the removal step in the present invention, the sulfur oxide component is removed from the X-ray absorption spectrum of the sulfur-containing polymer composite material. Hereinafter, an example of the removal method will be described.

まず、標準試料のX線吸収スペクトルを用いて、硫黄含有高分子複合材料のX線吸収スペクトルのXANES領域を波形分離することにより、硫黄含有高分子複合材料のX線吸収スペクトルにおける硫黄酸化物の比率を算出する。 First, the XANES region of the X-ray absorption spectrum of the sulfur-containing polymer composite material is waveform-separated using the X-ray absorption spectrum of the standard sample, so that the sulfur oxides in the X-ray absorption spectrum of the sulfur-containing polymer composite material are separated. Calculate the ratio.

標準試料は、少なくとも、硫黄酸化物と、硫黄酸化物以外の硫黄連結数の異なる複数の化合物(以下、「硫黄試料」ともいう。)とを使用する。硫黄酸化物は、本工程での除去の対象とするものであり、硫黄試料は、架橋部分の硫黄に相当するものである。 The standard sample uses at least sulfur oxide and a plurality of compounds (hereinafter, also referred to as “sulfur sample”) having different numbers of sulfur linkages other than sulfur oxide. Sulfur oxide is a target for removal in this step, and the sulfur sample corresponds to sulfur in the cross-linked portion.

硫黄酸化物としては、例えば、上述の硫酸亜鉛(ZnSO)の他、R−SO(Rは炭化水素基)で表される構造を有する化合物を使用することもできる。硫黄含有高分子複合材料の架橋部分等が酸化している場合は、R−SOで表される構造を有する化合物を使用することが好適である。 As the sulfur oxide, for example, in addition to the above-described zinc sulfate (ZnSO 4 ), a compound having a structure represented by R—SO 4 (R is a hydrocarbon group) can also be used. When the crosslinked part of the sulfur-containing polymer composite material is oxidized, it is preferable to use a compound having a structure represented by R—SO 4 .

硫黄試料としては、例えば、モノ結合(C−S−C)を有する化合物、ジ結合(C−S−S−C)を有する化合物、ポリ結合(C−S−C、n≧3)を有する化合物を使用することができる。 Examples of the sulfur sample include a compound having a mono bond (C—S—C), a compound having a di bond (C—S—S—C), and a poly bond (C—S n —C, n ≧ 3). Can be used.

以下、標準試料として下記化合物を、硫黄含有高分子複合材料として硫黄架橋ゴムを使用した場合について説明する。なお、標準試料は下記化合物に限定されるものではなく、硫黄部分が類似していれば他の化合物を用いることも可能である。硫黄架橋ゴムの調製方法及び配合内容は、後述の実施例と同様である。
(標準試料)
・モノ結合を有する化合物:poly(3−hexyl thiophen)
・ジ結合を有する化合物:poly(ethylene glycol)with disulfide linkage
・ポリ結合を有する化合物:sulfur
・硫黄酸化物:ZnSO
Hereinafter, the case where the following compound is used as the standard sample and the sulfur-crosslinked rubber is used as the sulfur-containing polymer composite material will be described. The standard sample is not limited to the following compounds, and other compounds can be used as long as the sulfur moieties are similar. The method for preparing the sulfur-crosslinked rubber and the content of blending are the same as in the examples described later.
(Standard sample)
Compound having a mono bond: poly (3-hexyl thiophene)
Compound having a di bond: poly (ethylene glycol) with disulphide linkage
・ Compound having poly bond: sulfur
・ Sulfur oxide: ZnSO 4

X線吸収スペクトルの測定条件及び解析条件は、以下のとおりである。なお、今回用いたSDDのような半導体検出器は、高計測測定の場合に数え落としが発生するため、数え落とし補正を実施した。数え落とし補正の方法は、文献「伊藤真義、谷田肇、放射光 July 2008 Vol.21 No.4」等で開示されている。
(使用装置)
XAFS:SPring−8 BL27SUのBブランチのXAFS測定装置
(測定条件)
輝度:1×1016photons/s/mrad/mm/0.1%bw
光子数:5×1010photons/s
分光器:結晶分光器
検出器:SDD(シリコンドリフト検出器)
測定法:蛍光法
エネルギー範囲:2360〜3500eV
(XAFS解析)
(株)リガク製のXAFS解析統合ソフトウェアREX2000
The measurement conditions and analysis conditions for the X-ray absorption spectrum are as follows. Note that the semiconductor detector such as the SDD used this time was counted down in the case of high-measurement measurement, and thus the count-down correction was performed. A method for correcting the counting-down is disclosed in a document “Makoto Ito, Kei Tanida, Synchrotron Radiation July 2008 Vol. 21 No. 4” and the like.
(Device used)
XAFS: SPring-8 BL27SU B-branch XAFS measurement system (measurement conditions)
Luminance: 1 × 10 16 photons / s / mrad 2 / mm 2 /0.1% bw
Number of photons: 5 × 10 10 photons / s
Spectrometer: Crystal spectrometer Detector: SDD (silicon drift detector)
Measurement method: Fluorescence method Energy range: 2360-3500 eV
(XAFS analysis)
Rigaku XAFS analysis integration software REX2000

図2は、硫黄架橋ゴムのX線吸収スペクトルと、標準試料のX線吸収スペクトルを用いてフィッティングを行った結果とを示すグラフである。各スペクトルは、最も強度の高い2470eV付近のピークの強度が1となるように規格化している。この結果に基づき、硫黄架橋ゴムのX線吸収スペクトルのXANES領域を波形分離することにより、硫黄架橋ゴムのX線吸収スペクトルにおける硫黄酸化物の比率(係数α)を算出することができる。 FIG. 2 is a graph showing an X-ray absorption spectrum of sulfur-crosslinked rubber and a result of fitting using an X-ray absorption spectrum of a standard sample. Each spectrum is standardized so that the intensity of the peak near 2470 eV having the highest intensity is 1. Based on this result, the ratio (coefficient α) of sulfur oxide in the X-ray absorption spectrum of the sulfur-crosslinked rubber can be calculated by separating the waveform of the XANES region of the X-ray absorption spectrum of the sulfur-crosslinked rubber.

次に、算出した係数αに基づき、硫黄含有高分子複合材料のEXAFS振動から硫黄酸化物のEXAFS振動を差し引くことにより、硫黄含有高分子複合材料のX線吸収スペクトルから硫黄酸化物の成分を除去する。 Next, based on the calculated coefficient α, the sulfur oxide component is removed from the X-ray absorption spectrum of the sulfur-containing polymer composite material by subtracting the EXAFS vibration of the sulfur oxide from the EXAFS vibration of the sulfur-containing polymer composite material. To do.

図3は、硫黄架橋ゴムのX線吸収スペクトルを示すグラフであり、図4は、図3のスペクトルから抜き出したEXAFS振動(図3の破線部分)を示すグラフである。また、図5は、ZnSOのX線吸収スペクトルを示すグラフであり、図6は、図5のスペクトルから抜き出したEXAFS振動(図5の破線部分)に係数αを掛けたものを示すグラフである。そして、硫黄架橋ゴムのEXAFS振動(図4)から、硫黄酸化物の成分、すなわち、ZnSOのEXAFS振動に係数αを掛けたもの(図6)を差し引くことにより、図7に示すように、ZnSOの成分が除外された硫黄架橋ゴムのEXAFS振動が得られる。 FIG. 3 is a graph showing an X-ray absorption spectrum of the sulfur-crosslinked rubber, and FIG. 4 is a graph showing EXAFS vibration (a broken line portion in FIG. 3) extracted from the spectrum of FIG. FIG. 5 is a graph showing an X-ray absorption spectrum of ZnSO 4 , and FIG. 6 is a graph showing an EXAFS vibration (dotted line portion in FIG. 5) extracted from the spectrum of FIG. 5 multiplied by a coefficient α. is there. Then, by subtracting the component of sulfur oxide, that is, the EXAFS vibration of ZnSO 4 multiplied by the coefficient α (FIG. 6) from the EXAFS vibration of the sulfur crosslinked rubber (FIG. 4), as shown in FIG. An EXAFS vibration of the sulfur-crosslinked rubber excluding the ZnSO 4 component is obtained.

以上の手順により、硫黄架橋ゴムのX線吸収スペクトルから硫黄酸化物の成分を除去することができる。そして、除去後のスペクトルに基いて種々の解析を行うことで、架橋部分の硫黄の状態を正確に解析することができる。 By the above procedure, the sulfur oxide component can be removed from the X-ray absorption spectrum of the sulfur-crosslinked rubber. And the state of sulfur of a bridge part can be analyzed correctly by performing various analyzes based on the spectrum after removal.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

〔試料の調製〕
以下の配合内容に従い、硫黄及び加硫促進剤以外の材料を充填率が58%になるように(株)神戸製鋼所製の1.7Lバンバリーミキサーに充填し、80rpmで140℃に到達するまで混練した(工程1)。工程1で得られた混練物に、硫黄及び加硫促進剤を以下の配合にて添加し、160℃で20分間加硫することでゴム試料(硫黄架橋ゴム)を得た(工程2)。
(Sample preparation)
In accordance with the following blending contents, materials other than sulfur and vulcanization accelerator were charged into a 1.7 L Banbury mixer manufactured by Kobe Steel Co., Ltd. so that the filling rate was 58%, and until reaching 140 ° C. at 80 rpm. Kneaded (Step 1). A rubber sample (sulfur crosslinked rubber) was obtained by adding sulfur and a vulcanization accelerator to the kneaded product obtained in step 1 in the following composition and vulcanizing at 160 ° C. for 20 minutes (step 2).

配合は、天然ゴム50質量部、ブタジエンゴム50質量部、カーボンブラック60質量部、オイル5質量部、老化防止剤2質量部、ワックス2.5質量部、酸化亜鉛3質量部、ステアリン酸2質量部、粉末硫黄1.2質量部、及び加硫促進剤1質量部とした。なお、使用材料は以下のとおりである。
天然ゴム:TSR20
ブタジエンゴム:宇部興産(株)製のBR150B
カーボンブラック:キャボットジャパン(株)製のショウブラックN351
オイル:(株)ジャパンエナジー製のプロセスX−140
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−1,3−ジメチルブチル−N’−フェニル−p−フェニレンジアミン)
ワックス:日本精蝋(株)製のオゾエース0355
酸化亜鉛:東邦亜鉛(株)製の銀嶺R
ステアリン酸:日油(株)製の椿
粉末硫黄(5%オイル含有):鶴見化学工業(株)製の5%オイル処理粉末硫黄(オイル分5質量%含む可溶性硫黄)
加硫促進剤:大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド)
Formulation is 50 parts by weight of natural rubber, 50 parts by weight of butadiene rubber, 60 parts by weight of carbon black, 5 parts by weight of oil, 2 parts by weight of anti-aging agent, 2.5 parts by weight of wax, 3 parts by weight of zinc oxide, 2 parts by weight of stearic acid. Part, powder sulfur 1.2 parts by mass, and vulcanization accelerator 1 part by mass. The materials used are as follows.
Natural rubber: TSR20
Butadiene rubber: BR150B manufactured by Ube Industries, Ltd.
Carbon Black: Show Black N351 manufactured by Cabot Japan
Oil: Process X-140 manufactured by Japan Energy Co., Ltd.
Anti-aging agent: NOCRACK 6C (N-1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine) manufactured by Ouchi Shinsei Chemical Co., Ltd.
Wax: Ozoace 0355 manufactured by Nippon Seiwa Co., Ltd.
Zinc oxide: Silver candy R made by Toho Zinc Co., Ltd.
Stearic acid: Koji powder sulfur manufactured by NOF Corporation (containing 5% oil): 5% oil-treated powder sulfur manufactured by Tsurumi Chemical Co., Ltd. (soluble sulfur containing 5% by mass of oil)
Vulcanization accelerator: Noxeller CZ (N-cyclohexyl-2-benzothiazylsulfenamide) manufactured by Ouchi Shinsei Chemical Co., Ltd.

(実施例)
得られたゴム試料と、標準試料とについて、硫黄K殻吸収端付近におけるXAFS法による測定を実施してXAFSスペクトルを得た。使用した標準試料、XAFS法の測定条件及び解析条件は、上述の実施形態と同様である。
(Example)
The obtained rubber sample and the standard sample were measured by the XAFS method in the vicinity of the sulfur K-shell absorption edge to obtain an XAFS spectrum. The standard sample used, the measurement conditions and analysis conditions of the XAFS method are the same as in the above-described embodiment.

得られたXAFSスペクトルから、上述の実施形態と同様の手順により、硫黄酸化物(硫酸亜鉛:ZnSO)の成分を除去した。そして、フーリエ変換により、EXAFS振動を動径分布関数に変換した。結果を図8に示す。なお、図8には、比較例として、除去前のスペクトルを併記した。 From the obtained XAFS spectrum, the component of sulfur oxide (zinc sulfate: ZnSO 4 ) was removed by the same procedure as in the above embodiment. Then, the EXAFS vibration was converted into a radial distribution function by Fourier transform. The results are shown in FIG. In FIG. 8, the spectrum before removal is also shown as a comparative example.

図8に示すように、実施例のスペクトルは、比較例のスペクトルと異なるプロファイルを有しており、硫黄酸化物の成分が除去されていることが確認できた。 As shown in FIG. 8, the spectrum of the example had a profile different from that of the comparative example, and it was confirmed that the sulfur oxide component was removed.

Claims (4)

硫黄含有高分子複合材料に高輝度X線を照射し、X線のエネルギーを変えながらX線吸収スペクトルを測定する測定工程と、
硫黄含有高分子複合材料のX線吸収スペクトルから硫黄酸化物の成分を除去する除去工程とを含む化学状態測定方法。
A measurement step of irradiating the sulfur-containing polymer composite material with high-intensity X-rays and measuring the X-ray absorption spectrum while changing the energy of the X-rays;
A chemical state measurement method including a removal step of removing a component of sulfur oxide from an X-ray absorption spectrum of a sulfur-containing polymer composite material.
少なくとも、硫黄酸化物と、硫黄酸化物以外の硫黄連結数の異なる複数の化合物との標準試料のX線吸収スペクトルを用いて、硫黄含有高分子複合材料のX線吸収スペクトルのXANES領域を波形分離することにより、硫黄含有高分子複合材料のX線吸収スペクトルにおける硫黄酸化物の比率を算出し、
得られた硫黄酸化物の比率に基づき、硫黄含有高分子複合材料のEXAFS振動から硫黄酸化物のEXAFS振動を差し引くことにより、硫黄含有高分子複合材料のX線吸収スペクトルから硫黄酸化物の成分を除去する請求項1記載の化学状態測定方法。
Waveform separation of the XANES region of the X-ray absorption spectrum of a sulfur-containing polymer composite material using at least the X-ray absorption spectrum of a standard sample of sulfur oxide and a plurality of compounds having different numbers of sulfur linkages other than sulfur oxide By calculating the ratio of sulfur oxides in the X-ray absorption spectrum of the sulfur-containing polymer composite material,
By subtracting the EXAFS vibration of the sulfur oxide from the EXAFS vibration of the sulfur-containing polymer composite material based on the ratio of the obtained sulfur oxide, the component of the sulfur oxide is obtained from the X-ray absorption spectrum of the sulfur-containing polymer composite material. The chemical state measuring method according to claim 1 to be removed.
X線を用いて走査するエネルギー範囲を2300〜4000eVとすることで、硫黄K殻吸収端付近の硫黄のX線吸収スペクトルを測定する請求項1又は2記載の化学状態測定方法。 The chemical state measuring method according to claim 1 or 2, wherein an X-ray absorption spectrum of sulfur in the vicinity of the sulfur K shell absorption edge is measured by setting an energy range to be scanned using X-rays to 2300 to 4000 eV. X線は、光子数が10(photons/s)以上、輝度が1010(photons/s/mrad/mm/0.1%bw)以上である請求項1〜3のいずれかに記載の化学状態測定方法。
The X-ray has a photon number of 10 7 (photons / s) or more and a luminance of 10 10 (photons / s / mrad 2 / mm 2 /0.1% bw) or more. Chemical state measurement method.
JP2015163877A 2015-08-21 2015-08-21 Chemical state measurement method Active JP6657664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015163877A JP6657664B2 (en) 2015-08-21 2015-08-21 Chemical state measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015163877A JP6657664B2 (en) 2015-08-21 2015-08-21 Chemical state measurement method

Publications (2)

Publication Number Publication Date
JP2017040618A true JP2017040618A (en) 2017-02-23
JP6657664B2 JP6657664B2 (en) 2020-03-04

Family

ID=58206194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015163877A Active JP6657664B2 (en) 2015-08-21 2015-08-21 Chemical state measurement method

Country Status (1)

Country Link
JP (1) JP6657664B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158654A (en) * 2018-03-14 2019-09-19 住友ゴム工業株式会社 Method of predicting abrasion resistance and fracture resistance
JP2019158653A (en) * 2018-03-14 2019-09-19 住友ゴム工業株式会社 Method of predicting changes in abrasion resistance and fracture resistance
JP2020514764A (en) * 2017-03-22 2020-05-21 シグレイ、インコーポレイテッド Method and X-ray absorption spectroscopy system for performing X-ray spectroscopy
JP2020101454A (en) * 2018-12-21 2020-07-02 Toyo Tire株式会社 Method for analyzing sulfur crosslinked structure of high polymer material
US10989822B2 (en) 2018-06-04 2021-04-27 Sigray, Inc. Wavelength dispersive x-ray spectrometer
US10991538B2 (en) 2018-07-26 2021-04-27 Sigray, Inc. High brightness x-ray reflection source
US11056308B2 (en) 2018-09-07 2021-07-06 Sigray, Inc. System and method for depth-selectable x-ray analysis
US11143605B2 (en) 2019-09-03 2021-10-12 Sigray, Inc. System and method for computed laminography x-ray fluorescence imaging
US11175243B1 (en) 2020-02-06 2021-11-16 Sigray, Inc. X-ray dark-field in-line inspection for semiconductor samples
US11215572B2 (en) 2020-05-18 2022-01-04 Sigray, Inc. System and method for x-ray absorption spectroscopy using a crystal analyzer and a plurality of detector elements
US11549895B2 (en) 2020-09-17 2023-01-10 Sigray, Inc. System and method using x-rays for depth-resolving metrology and analysis
US11686692B2 (en) 2020-12-07 2023-06-27 Sigray, Inc. High throughput 3D x-ray imaging system using a transmission x-ray source
US11885755B2 (en) 2022-05-02 2024-01-30 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021125A1 (en) * 2011-08-08 2013-02-14 Total Sa Predictive h2s model using x-ray absorption spectroscopy
JP2014238287A (en) * 2013-06-06 2014-12-18 住友ゴム工業株式会社 Chemical state measurement method
JP2015129708A (en) * 2014-01-08 2015-07-16 住友ゴム工業株式会社 polymer material analysis method
JP2015148443A (en) * 2014-02-04 2015-08-20 富士通株式会社 X-ray analysis method, and x-ray analysis device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021125A1 (en) * 2011-08-08 2013-02-14 Total Sa Predictive h2s model using x-ray absorption spectroscopy
JP2014238287A (en) * 2013-06-06 2014-12-18 住友ゴム工業株式会社 Chemical state measurement method
JP2015129708A (en) * 2014-01-08 2015-07-16 住友ゴム工業株式会社 polymer material analysis method
JP2015148443A (en) * 2014-02-04 2015-08-20 富士通株式会社 X-ray analysis method, and x-ray analysis device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514764A (en) * 2017-03-22 2020-05-21 シグレイ、インコーポレイテッド Method and X-ray absorption spectroscopy system for performing X-ray spectroscopy
JP7069874B2 (en) 2018-03-14 2022-05-18 住友ゴム工業株式会社 How to predict changes in wear resistance and fracture resistance
JP2019158653A (en) * 2018-03-14 2019-09-19 住友ゴム工業株式会社 Method of predicting changes in abrasion resistance and fracture resistance
JP2019158654A (en) * 2018-03-14 2019-09-19 住友ゴム工業株式会社 Method of predicting abrasion resistance and fracture resistance
US10989822B2 (en) 2018-06-04 2021-04-27 Sigray, Inc. Wavelength dispersive x-ray spectrometer
US10991538B2 (en) 2018-07-26 2021-04-27 Sigray, Inc. High brightness x-ray reflection source
US11056308B2 (en) 2018-09-07 2021-07-06 Sigray, Inc. System and method for depth-selectable x-ray analysis
JP7139238B2 (en) 2018-12-21 2022-09-20 Toyo Tire株式会社 Sulfur cross-link structure analysis method for polymeric materials
JP2020101454A (en) * 2018-12-21 2020-07-02 Toyo Tire株式会社 Method for analyzing sulfur crosslinked structure of high polymer material
US11143605B2 (en) 2019-09-03 2021-10-12 Sigray, Inc. System and method for computed laminography x-ray fluorescence imaging
US11175243B1 (en) 2020-02-06 2021-11-16 Sigray, Inc. X-ray dark-field in-line inspection for semiconductor samples
US11215572B2 (en) 2020-05-18 2022-01-04 Sigray, Inc. System and method for x-ray absorption spectroscopy using a crystal analyzer and a plurality of detector elements
US11428651B2 (en) 2020-05-18 2022-08-30 Sigray, Inc. System and method for x-ray absorption spectroscopy using a crystal analyzer and a plurality of detector elements
US11549895B2 (en) 2020-09-17 2023-01-10 Sigray, Inc. System and method using x-rays for depth-resolving metrology and analysis
US11686692B2 (en) 2020-12-07 2023-06-27 Sigray, Inc. High throughput 3D x-ray imaging system using a transmission x-ray source
US11885755B2 (en) 2022-05-02 2024-01-30 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer

Also Published As

Publication number Publication date
JP6657664B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP6657664B2 (en) Chemical state measurement method
JP6348295B2 (en) How to determine the chemical state of sulfur
JP6581539B2 (en) Method for analyzing sulfur cross-linking morphology of polymer materials
JP6544098B2 (en) Method of measuring crosslink density in sulfur-containing polymer composites
JP6219607B2 (en) Chemical state measurement method
JP6374355B2 (en) Method for measuring crosslink density in sulfur-containing polymer composites
US9874530B2 (en) Method of measuring crosslink densities in sulfur-containing polymer composite material
JP7289186B2 (en) Method for Predicting Wear and Fracture Resistance Performance
JP6769123B2 (en) Method for measuring crosslink density
JP6912999B2 (en) Sulfur cross-linked structure analysis method for polymer materials
JP2015132518A (en) Method for investigating chemical state of sulfur
JP5805043B2 (en) Degradation analysis method
JP7167546B2 (en) Crosslinked structure visualization method
JP2019045196A (en) Measuring method of coupling amount of monosulfide bond, coupling amount of disulfide bond, coupling amount of polysulfide bond, and coupling amount of filler interface in polymer composite containing filler and sulfur
JP6822160B2 (en) Evaluation method for sheet scraping of polymer composite materials
JP7053217B2 (en) Sulfur cross-linking structure analysis method for polymer materials
JP6371174B2 (en) How to determine the chemical state of sulfur
JP7139238B2 (en) Sulfur cross-link structure analysis method for polymeric materials
JP6050174B2 (en) Degradation analysis method
JP7275461B2 (en) Method for obtaining X-ray absorption spectrum and method for creating calibration curve
JP7163242B2 (en) Sulfur cross-linking density evaluation method for polymeric materials
JP7069874B2 (en) How to predict changes in wear resistance and fracture resistance
JP6769122B2 (en) Method for evaluating the degree of orientation of a polymer in a polymer composite material
JP6371109B2 (en) How to determine the chemical state of sulfur
JP5814277B2 (en) Fracture energy prediction method and rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6657664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250