JP6219607B2 - Chemical state measurement method - Google Patents
Chemical state measurement method Download PDFInfo
- Publication number
- JP6219607B2 JP6219607B2 JP2013119929A JP2013119929A JP6219607B2 JP 6219607 B2 JP6219607 B2 JP 6219607B2 JP 2013119929 A JP2013119929 A JP 2013119929A JP 2013119929 A JP2013119929 A JP 2013119929A JP 6219607 B2 JP6219607 B2 JP 6219607B2
- Authority
- JP
- Japan
- Prior art keywords
- sulfur
- deterioration
- degradation
- degree
- spectrum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000126 substance Substances 0.000 title claims description 34
- 238000000691 measurement method Methods 0.000 title claims description 11
- 229910052717 sulfur Inorganic materials 0.000 claims description 173
- 239000011593 sulfur Substances 0.000 claims description 168
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 151
- 230000006866 deterioration Effects 0.000 claims description 118
- 238000000034 method Methods 0.000 claims description 114
- 229920001971 elastomer Polymers 0.000 claims description 89
- 239000005060 rubber Substances 0.000 claims description 89
- 239000000463 material Substances 0.000 claims description 69
- 238000010521 absorption reaction Methods 0.000 claims description 53
- 229920000642 polymer Polymers 0.000 claims description 31
- 239000002904 solvent Substances 0.000 claims description 12
- 239000003960 organic solvent Substances 0.000 claims description 4
- 238000000638 solvent extraction Methods 0.000 claims description 4
- 238000004132 cross linking Methods 0.000 description 62
- 230000015556 catabolic process Effects 0.000 description 55
- 238000006731 degradation reaction Methods 0.000 description 55
- 238000005259 measurement Methods 0.000 description 47
- 238000001228 spectrum Methods 0.000 description 40
- 238000000862 absorption spectrum Methods 0.000 description 30
- 238000000833 X-ray absorption fine structure spectroscopy Methods 0.000 description 29
- 238000012667 polymer degradation Methods 0.000 description 29
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 24
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 22
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 22
- 238000004458 analytical method Methods 0.000 description 20
- 238000010606 normalization Methods 0.000 description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 229910052760 oxygen Inorganic materials 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- 244000043261 Hevea brasiliensis Species 0.000 description 14
- 239000005062 Polybutadiene Substances 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 14
- 229920003052 natural elastomer Polymers 0.000 description 14
- 229920001194 natural rubber Polymers 0.000 description 14
- 229920002857 polybutadiene Polymers 0.000 description 14
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 11
- 125000004434 sulfur atom Chemical group 0.000 description 10
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 9
- 238000005211 surface analysis Methods 0.000 description 9
- 238000000605 extraction Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 238000000944 Soxhlet extraction Methods 0.000 description 7
- 150000001721 carbon Chemical group 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 230000001678 irradiating effect Effects 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 238000004073 vulcanization Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 229920005549 butyl rubber Polymers 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000002795 fluorescence method Methods 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000003712 anti-aging effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 229920005683 SIBR Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 229920003244 diene elastomer Polymers 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229920003049 isoprene rubber Polymers 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- ZZMVLMVFYMGSMY-UHFFFAOYSA-N 4-n-(4-methylpentan-2-yl)-1-n-phenylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)CC(C)C)=CC=C1NC1=CC=CC=C1 ZZMVLMVFYMGSMY-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- DEQZTKGFXNUBJL-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)cyclohexanamine Chemical compound C1CCCCC1NSC1=NC2=CC=CC=C2S1 DEQZTKGFXNUBJL-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000002186 photoelectron spectrum Methods 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 238000007673 x-ray photoluminescence spectroscopy Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Description
本発明は、ゴム材料の化学状態を正確に調べることが可能な化学状態測定方法に関する。 The present invention relates to a chemical state measurement method capable of accurately examining the chemical state of a rubber material.
ジエン系ゴムなどのゴム成分を含むゴム材料の化学状態を調べる方法として、X線光電子分光法(XPS法)、高輝度X線を用いて着目している特定元素の吸収端付近のX線吸収スペクトルを測定する方法(NEXAFS法など)など、X線を使用する手法が知られている(特許文献1参照)。 X-ray absorption near the absorption edge of a specific element of interest using X-ray photoelectron spectroscopy (XPS method) or high-intensity X-ray as a method for examining the chemical state of rubber materials containing rubber components such as diene rubber A method using X-rays such as a method of measuring a spectrum (such as NEXAFS method) is known (see Patent Document 1).
XPS法やNEXAFS法は、検出深度が表面〜数十nmである表面敏感な測定手法であり、例えば、ポリマーの化学状態を調べるためには、XPS法では炭素1s軌道付近のスペクトルなど、NEXAFS法では炭素K殻吸収端近傍のスペクトルなど、に着目した測定が実施される。 The XPS method and the NEXAFS method are surface-sensitive measurement methods having a detection depth of from the surface to several tens of nanometers. For example, in order to examine the chemical state of a polymer, the XPA method uses a NEXAFS method such as a spectrum near the carbon 1s orbit. Then, a measurement focusing on the spectrum near the carbon K shell absorption edge is performed.
しかしながら、従来の評価方法に比べ、ゴム材料の化学状態をより正確に測定できる評価方法を提供することが望まれている。 However, it is desired to provide an evaluation method that can measure the chemical state of the rubber material more accurately than conventional evaluation methods.
本発明は、前記課題を解決し、ゴム材料の化学状態、特に劣化などの表面から生じる化学状態の変化(ゴム材料の劣化状態)を正確に測定できる化学状態測定方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a chemical state measurement method capable of accurately measuring a chemical state of a rubber material, in particular, a change in a chemical state generated from the surface such as deterioration (deterioration state of the rubber material). To do.
本発明は、ゴム材料にフリーサルファー除去処理を施した後、X線を用いた表面分析法を適用することにより、ゴム材料の化学状態を測定する化学状態測定方法に関する。 The present invention relates to a chemical state measurement method for measuring a chemical state of a rubber material by applying a surface analysis method using X-rays after performing a free sulfur removal treatment on the rubber material.
前記フリーサルファー除去処理は、前記ゴム材料中のフリーサルファー含有量を0.2質量%以下に低減するものであることが好ましい。 The free sulfur removal treatment preferably reduces the free sulfur content in the rubber material to 0.2% by mass or less.
前記化学状態測定方法は、前記ゴム材料の化学状態の変化を調べ、前記ゴム材料の劣化状態を測定するものであることが好ましい。 It is preferable that the chemical state measurement method is a method for examining a change in the chemical state of the rubber material and measuring a deterioration state of the rubber material.
前記フリーサルファー除去処理は、溶媒を用いて前記ゴム材料中のフリーサルファーを除去するものであることが好ましい。ここで、前記溶媒は、有機溶媒であることが好ましい。 It is preferable that the said free sulfur removal process is what removes the free sulfur in the said rubber material using a solvent. Here, the solvent is preferably an organic solvent.
前記フリーサルファー除去処理は、溶媒抽出法を用いて前記ゴム材料中のフリーサルファーを除去するものであることが好ましい。 It is preferable that the said free sulfur removal process removes the free sulfur in the said rubber material using a solvent extraction method.
本発明によれば、ゴム材料にフリーサルファー除去処理を施した後、X線を用いた表面分析法を適用することにより、ゴム材料の化学状態を測定する化学状態測定方法であるので、ゴム材料の正確な化学状態を測定できる。従って、特に劣化などの表面から生じる化学状態の変化を正確に測定でき、ゴム材料の劣化状態を評価できる。 According to the present invention, the rubber material is a chemical state measurement method for measuring the chemical state of a rubber material by applying a surface analysis method using X-rays after performing free sulfur removal treatment on the rubber material. The exact chemical state of can be measured. Therefore, it is possible to accurately measure changes in the chemical state caused by the surface such as deterioration, and to evaluate the deterioration state of the rubber material.
本発明の化学状態測定方法は、ゴム材料にフリーサルファー除去処理を施した後、X線を用いた表面分析法を適用することにより、ゴム材料の化学状態を測定する方法である。 The chemical state measuring method of the present invention is a method for measuring the chemical state of a rubber material by applying a surface analysis method using X-rays after performing a free sulfur removal treatment on the rubber material.
加硫ゴムなどのイオウ架橋させたゴム材料の劣化要因として、紫外線、酸素、オゾン、熱などによるポリマー分子鎖の劣化、イオウ架橋の劣化などが知られているが、耐劣化性を改良するためには、どの要因によってポリマー分子鎖、イオウ架橋構造がどのように変化するかを知ることが重要である。 Known degradation factors for sulfur-crosslinked rubber materials such as vulcanized rubber include degradation of polymer molecular chains due to ultraviolet rays, oxygen, ozone, heat, etc., and degradation of sulfur cross-links. For this purpose, it is important to know how the polymer molecular chain and the sulfur cross-linked structure change due to which factors.
この点について、NEXAFS法を用いて試料の測定を行い、酸素K殻吸収端付近のX線吸収スペクトルの全面積からゴム材料に酸素やオゾンなどが結合した量を求める手法が提案されているが、高分子部分、イオウ架橋部分のいずれに結合したのかを判断できない。またXPS法で得られたS1s軌道のスペクトルの全面積に対するイオウ架橋に結合した酸化物のピークの割合を算出することで、イオウ架橋劣化を求める手法も考えられるが、酸化物の量から間接的にイオウ架橋部の劣化を求めるもので、劣化に直接関与する架橋部分の切断量を測定できない。 In this regard, a method has been proposed in which a sample is measured using the NEXAFS method, and the amount of oxygen, ozone, or the like combined with the rubber material is determined from the entire area of the X-ray absorption spectrum near the oxygen K-shell absorption edge. It cannot be determined whether it is bonded to a polymer portion or a sulfur cross-linking portion. In addition, a method for obtaining the sulfur bridge deterioration by calculating the ratio of the peak of the oxide bonded to the sulfur bridge to the total area of the S1s orbital spectrum obtained by the XPS method is conceivable. In this method, the deterioration of the sulfur cross-linking portion is required, and the cutting amount of the cross-linking portion directly related to the deterioration cannot be measured.
これに対し、イオウ架橋させたゴム材料(高分子材料)に、X線を照射し、X線のエネルギーを変えながらX線吸収量を測定することにより求めた高分子の劣化状態及びイオウ架橋の劣化状態から、高分子劣化とイオウ架橋劣化の劣化割合を求める劣化解析方法を用いることにより、それぞれの劣化割合を求めることができる。例えば、炭素K殻吸収端付近におけるX線吸収スペクトルからポリマーの劣化度を求めるとともに、硫黄K殻吸収端付近におけるX線吸収スペクトルのS−S結合量の変化からイオウ架橋の劣化度を求めることにより、高分子、イオウ架橋のそれぞれの劣化度を測定し、どちらの劣化がより進行しているか、劣化割合を判別できる解析方法を提供することが可能である。 In contrast, sulfur-crosslinked rubber materials (polymer materials) are irradiated with X-rays and the X-ray absorption is measured while changing the energy of the X-rays. By using the deterioration analysis method for determining the deterioration ratio of the polymer deterioration and the sulfur crosslinking deterioration from the deterioration state, the respective deterioration ratios can be determined. For example, the degree of deterioration of a polymer is obtained from the X-ray absorption spectrum near the carbon K-shell absorption edge, and the degree of sulfur bridge deterioration is obtained from the change in the amount of S—S bonds in the X-ray absorption spectrum near the sulfur K-shell absorption edge. Thus, it is possible to provide an analysis method capable of measuring the degree of deterioration of each of the polymer and the sulfur cross-linking and determining which deterioration is progressing more.
ここで、当該解析方法のイオウ架橋劣化について、硫黄K殻吸収端付近におけるXAFS法を用いてX線吸収スペクトルを得ることで、図1に示されるようにS−S結合に帰属されるピークが検出され、該S−S結合は劣化によって切断されてピークが減少するため、その減少割合によってイオウ架橋劣化度を測定できる。しかし、ゴムを加硫する際、硫黄が全て反応せずゴム材料中に残っていることがあり、その場合、イオウ架橋部分のS−S結合が精度良く検出されないので、イオウ架橋の劣化度を正確に求められない。 Here, regarding the sulfur crosslinking deterioration of the analysis method, by obtaining an X-ray absorption spectrum using the XAFS method in the vicinity of the sulfur K-shell absorption edge, a peak attributed to the S—S bond is obtained as shown in FIG. The detected S—S bond is cleaved due to deterioration and the peak is reduced, so that the degree of sulfur cross-linking deterioration can be measured by the reduction rate. However, when rubber is vulcanized, there is a case where all of the sulfur does not react and remains in the rubber material. In this case, since the S—S bond of the sulfur cross-linked portion is not detected with high accuracy, the degree of deterioration of the sulfur cross-linking is reduced. It cannot be determined accurately.
本発明は、NEXAFS法、XAFS法、XPS法などの表面分析を実施する前に、予め溶媒などを用いるフリーサルファー除去処理を施し、ゴム材料中でイオウ架橋を形成しないフリーサルファーを除去することで、イオウ架橋部分のS−S結合を精度良く検出でき、高分子部分だけでなく、イオウ架橋部分についても精密に測定することが可能となるため、ゴム材料の正確な化学状態を測定できる。従って、NEXAFSスペクトル、XAFSスペクトル、XPSスペクトルなどにより正確な化学状態を測定できるとともに、劣化前後のスペクトルを対比することで、劣化状態(劣化度合)も正確に測定可能である。 In the present invention, before performing surface analysis such as NEXAFS method, XAFS method, and XPS method, a free sulfur removal treatment using a solvent or the like is performed in advance to remove free sulfur that does not form a sulfur bridge in a rubber material. Since the S—S bond of the sulfur cross-linked portion can be detected with high accuracy and not only the polymer portion but also the sulfur cross-linked portion can be accurately measured, the accurate chemical state of the rubber material can be measured. Therefore, an accurate chemical state can be measured using a NEXAFS spectrum, an XAFS spectrum, an XPS spectrum, and the like, and a deterioration state (degradation degree) can also be accurately measured by comparing spectra before and after deterioration.
具体的に説明すると、図2は、フリーサルファー除去処理前後のゴム材料について、硫黄K殻吸収端付近のXAFSスペクトルを示しているが、図示されているように、フリーサルファー除去処理後のスペクトルは、除去処理前のスペクトルに比べて、S−S結合のピークが小さくなっている。これは、XAFS法に供する前に、ゴム材料中に含まれるフリーサルファーが除去されていることで、フリーサルファーのS−S結合分が減少し、イオウ架橋部分のS−S結合が精度良く検出可能となっているものと考えられる。 Specifically, FIG. 2 shows an XAFS spectrum near the sulfur K-shell absorption edge for the rubber material before and after the free sulfur removal treatment. As shown, the spectrum after the free sulfur removal treatment is as follows. The S—S bond peak is smaller than the spectrum before the removal treatment. This is because free sulfur contained in the rubber material is removed before being subjected to the XAFS method, so that the S—S bond content of the free sulfur is reduced, and the S—S bond of the sulfur cross-linked portion is accurately detected. It is considered possible.
本発明では、先ず、ゴム材料にフリーサルファー除去処理が施される。
本発明に供するゴム材料としては特に限定されず、従来公知のゴム組成物を使用でき、例えば、ゴム成分、他の配合材料を含むゴム組成物などが挙げられる。
In the present invention, the rubber material is first subjected to a free sulfur removal treatment.
The rubber material used in the present invention is not particularly limited, and a conventionally known rubber composition can be used, and examples thereof include a rubber composition containing a rubber component and other compounding materials.
ゴム成分としては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X−IIR)、スチレンイソプレンブタジエンゴム(SIBR)などのジエン系ゴムなどが挙げられる。また、ゴム成分は、水酸基、アミノ基などの変性基を1つ以上含むものでもよい。 As rubber components, natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), halogenated Examples thereof include diene rubbers such as butyl rubber (X-IIR) and styrene isoprene butadiene rubber (SIBR). The rubber component may contain one or more modifying groups such as hydroxyl groups and amino groups.
更にゴム成分としては、前記ゴム成分と1種類以上の樹脂とが複合された複合材料も使用できる。上記樹脂としては特に限定されず、例えば、ゴム工業分野で汎用されているものが挙げられ、例えば、C5系脂肪族石油樹脂、シクロペンタジエン系石油樹脂などの石油樹脂が挙げられる。 Furthermore, as the rubber component, a composite material in which the rubber component and one or more kinds of resins are combined can also be used. The resin is not particularly limited, and examples thereof include those widely used in the rubber industry field, and examples thereof include petroleum resins such as C5 aliphatic petroleum resins and cyclopentadiene petroleum resins.
ゴム材料には、カーボンブラック、シリカなどの充填剤、シランカップリング剤、酸化亜鉛、ステアリン酸、老化防止剤、ワックス、オイル、加硫剤、加硫促進剤、架橋剤など、従来公知のゴム分野の配合物を適宜配合してもよい。このようなゴム材料(ゴム組成物)は、公知の混練方法などを用いて製造できる。このようなゴム材料としては、例えば、タイヤ用ゴム材料(タイヤ用ゴム組成物)などが挙げられる。 Rubber materials include conventionally known rubbers such as fillers such as carbon black and silica, silane coupling agents, zinc oxide, stearic acid, anti-aging agents, waxes, oils, vulcanizing agents, vulcanization accelerators, and crosslinking agents. You may mix | blend the compound of a field | area suitably. Such a rubber material (rubber composition) can be produced using a known kneading method or the like. Examples of such rubber materials include tire rubber materials (tire rubber compositions).
フリーサルファー(ゴム材料中でイオウ架橋を形成しないサルファー)除去処理としては、ゴム材料からフリーサルファーを除去できる任意の処理方法を適用でき、例えば、溶媒を用いる方法が挙げられる。溶媒を用いるフリーサルファー除去処理としては、室温や加熱状態など、所定条件下において、ゴム材料を溶媒に湿潤(含浸)する方法、ソックスレー抽出器等の抽出器具を用いて溶媒抽出を実施する等の抽出法(溶媒抽出法)などが挙げられる。なかでも、フリーサルファーを効率的に除去できる点から、ソックスレー抽出などの抽出法が好ましく、ソックスレー抽出が特に好ましい。 As a free sulfur (sulfur that does not form sulfur crosslinks in the rubber material), any treatment method capable of removing free sulfur from the rubber material can be applied, and examples thereof include a method using a solvent. Examples of the free sulfur removal treatment using a solvent include a method in which a rubber material is wetted (impregnated) in a solvent under a predetermined condition such as room temperature and a heating state, and solvent extraction is performed using an extraction device such as a Soxhlet extractor. Examples include extraction methods (solvent extraction methods). Among these, extraction methods such as Soxhlet extraction are preferable, and Soxhlet extraction is particularly preferable because free sulfur can be efficiently removed.
ソックスレー抽出としては、JISK6229に準じたソックスレー抽出法による抽出操作などを実施できる。例えば、ソックスレー抽出器の最下部に設けた抽出フラスコに溶媒(溶剤)を満たし、中間部分に設けた紙又は焼結ガラス製容器内に、適当な大きさの試験片に調製した所定量のゴム材料を入れ、最上部に冷却管を結合することにより、実施できる。 As the Soxhlet extraction, an extraction operation by a Soxhlet extraction method according to JISK6229 can be performed. For example, an extraction flask provided at the bottom of a Soxhlet extractor is filled with a solvent (solvent), and a predetermined amount of rubber prepared as a test piece of an appropriate size in a paper or sintered glass container provided in the middle part. This can be done by putting the material and connecting a cooling tube at the top.
ソックスレー抽出などの抽出時間は、フリーサルファーを除去でき、ゴムの化学状態を変化させない時間であれば特に限定されず、本発明に適用するゴム材料の構成成分などに応じて適宜設定すればよい。例えば、ソックスレー抽出の抽出時間は、10〜36時間が好ましい。10時間未満であると、フリーサルファーを充分に除去できないおそれがあり、36時間を超えると、劣化して短くなったゴム分子まで除去されてしまうおそれがある。なお、例えば、アセトンソックスレー抽出を用いた際のフリーサルファー量は、ゴム材料に配合されたイオウ量の約10%程度であり、また、劣化したゴム材料は、新品よりもフリーサルファー量が少ない傾向にある。 The extraction time such as Soxhlet extraction is not particularly limited as long as it can remove free sulfur and does not change the chemical state of the rubber, and may be appropriately set according to the constituent components of the rubber material applied to the present invention. For example, the extraction time for Soxhlet extraction is preferably 10 to 36 hours. If it is less than 10 hours, free sulfur may not be sufficiently removed, and if it exceeds 36 hours, rubber molecules that have deteriorated and become shorter may be removed. In addition, for example, the amount of free sulfur when using acetone soxhlet extraction is about 10% of the amount of sulfur compounded in the rubber material, and the deteriorated rubber material tends to have a smaller amount of free sulfur than the new one. It is in.
溶媒を用いるフリーサルファー除去処理(湿潤、抽出など)において、使用可能な溶媒としては、有機溶媒が好適である。有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール等の1価アルコール類;エチレングリコール、プロピレングリコール、ブチレングリコール等の多価アルコール類;アセトン、メチルエチルケトン等のケトン類;酢酸メチル、酢酸エチル等のエステル類;テトラヒドロフラン、ジエチルエーテル等の鎖状及び環状エーテル類;ポリエチレングリコール等のポリエーテル類;ジクロロメタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類;ヘキサン、シクロヘキサン、石油エーテル等の炭化水素類;ベンゼン、トルエン等の芳香族炭化水素類;等が挙げられる。なお、これらは単独で又は2種以上を組み合わせて使用できる。 In the free sulfur removal treatment (wetting, extraction, etc.) using a solvent, an organic solvent is suitable as a usable solvent. Examples of the organic solvent include monohydric alcohols such as methanol, ethanol, propanol and butanol; polyhydric alcohols such as ethylene glycol, propylene glycol and butylene glycol; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate. Linear and cyclic ethers such as tetrahydrofuran and diethyl ether; polyethers such as polyethylene glycol; halogenated hydrocarbons such as dichloromethane, chloroform and carbon tetrachloride; hydrocarbons such as hexane, cyclohexane and petroleum ether; Aromatic hydrocarbons such as benzene and toluene; In addition, these can be used individually or in combination of 2 or more types.
本発明におけるフリーサルファー除去処理において、ゴム材料中のフリーサルファーの含有量を0.2質量%以下に低減することが好ましく、より好ましくは0.1質量%以下であり、イオウ架橋部分のS−S結合を精度良く測定するためには、除去するほど望ましい。 In the free sulfur removal treatment in the present invention, the content of free sulfur in the rubber material is preferably reduced to 0.2% by mass or less, more preferably 0.1% by mass or less, and S- In order to measure the S bond with high accuracy, it is desirable to remove it.
本発明では、予めゴム材料にフリーサルファー除去処理を施した後、得られた試料(除去処理を施したゴム材料)にX線を用いた表面分析法が適用される。このような表面分析法としては、ゴム材料表面の化学状態を正確に測定できるという点から、NEXAFS(Near Edge X−ray Absorption Fine Structure:吸収端近傍X線吸収微細構造)法、XAFS(X−ray Absorption Fine Structure:吸収端近傍X線吸収微細構造)法などが好ましい。フリーサルファーを除去した試料に前記表面分析法を適用することで、正確な化学状態を調べることができる。また、劣化前後のそれぞれの試料に適用し、劣化前後のピーク強度や面積の比較により劣化状態(劣化度合)を精度良く調べることも可能である。 In the present invention, a surface analysis method using X-rays is applied to the obtained sample (rubber material subjected to the removal treatment) after the rubber material is previously subjected to the free sulfur removal treatment. Such surface analysis methods include NEXAFS (Near Edge X-ray Absorption Fine Structure: X-ray absorption fine structure near the absorption edge) method, XAFS (X-FS), because the chemical state of the rubber material surface can be accurately measured. The ray absorption fine structure (X-ray absorption fine structure in the vicinity of absorption edge) method is preferable. By applying the surface analysis method to a sample from which free sulfur has been removed, an accurate chemical state can be examined. It is also possible to apply to each sample before and after deterioration, and to accurately check the deterioration state (deterioration degree) by comparing the peak intensity and area before and after deterioration.
例えば、新品及び劣化後のゴム材料にフリーサルファー除去処理を施して作製された試料に対してそれぞれX線をエネルギーを変えながら照射し、X線吸収量を測定して得られた各スペクトルを比較することで、劣化後の試料の劣化状態を解析し、ポリマー劣化度とイオウ劣化度の劣化割合を判定する。具体的には、特定元素の吸収端付近のX線吸収スペクトルを測定する手法などを用いて、フリーサルファーを除去した試料の測定を行うことで、ポリマーの劣化度とイオウ架橋の劣化度を精度良く解析し、得られたそれぞれの劣化度からポリマーとイオウ架橋の劣化割合を判定する。 For example, X-rays are irradiated while changing energy to samples prepared by free sulfur removal treatment on new and deteriorated rubber materials, and each spectrum obtained by measuring X-ray absorption is compared. Thus, the deterioration state of the sample after deterioration is analyzed, and the deterioration ratio of the polymer deterioration degree and the sulfur deterioration degree is determined. Specifically, by measuring the X-ray absorption spectrum near the absorption edge of a specific element, etc., by measuring a sample from which free sulfur has been removed, the degree of degradation of the polymer and the degree of sulfur crosslinking can be accurately measured. Analyze well, and determine the deterioration rate of polymer and sulfur cross-linking from the degree of deterioration obtained.
例えば、NEXAFS測定により得られる炭素原子のK殻吸収端のX線吸収スペクトルのピーク面積などからポリマー部分の劣化状態を解析するとともに、XAFS測定により得られる硫黄原子のK殻吸収端のX線吸収スペクトルのピーク面積などからイオウ架橋部分の劣化状態を解析し、得られたそれぞれの劣化度からポリマーとイオウ架橋の劣化割合を判定できる。なお、炭素K殻吸収端付近と硫黄K殻吸収端付近では、使用するX線のエネルギーが異なる。そのため、一般にシンクロトロンから放射される連続X線の必要なエネルギー範囲を分光器で切り出して測定に使用されるが、使用するエネルギーによって異なる分光器が用いられる。 For example, the degradation state of the polymer portion is analyzed from the peak area of the X-ray absorption spectrum of the K-shell absorption edge of carbon atoms obtained by NEXAFS measurement, and the X-ray absorption of the K-shell absorption edge of sulfur atoms obtained by XAFS measurement The deterioration state of the sulfur cross-linked portion is analyzed from the peak area of the spectrum, and the deterioration rate of the polymer and the sulfur cross-link can be determined from the obtained degree of deterioration. The X-ray energy used differs between the vicinity of the carbon K-shell absorption edge and the vicinity of the sulfur K-shell absorption edge. Therefore, in general, a necessary energy range of continuous X-rays radiated from the synchrotron is cut out by a spectrometer and used for measurement. However, different spectrometers are used depending on the energy used.
NEXAFS法及びXAFS法は、X線エネルギーで走査するため光源には連続X線発生装置が必要であり、詳細な化学状態を解析するには高いS/N比及びS/B比のX線吸収スペクトルを測定する必要がある。そのため、シンクロトロンから放射されるX線は、少なくとも1010(photons/s/mrad2/mm2/0.1%bw)以上の輝度を有し、且つ連続X線源であるため、NEXAFS測定及びXAFS測定には最適である。尚、bwはシンクロトロンから放射されるX線のband widthを示す。 The NEXAFS and XAFS methods require a continuous X-ray generator for the light source to scan with X-ray energy, and X-ray absorption with a high S / N ratio and S / B ratio is required to analyze detailed chemical states. It is necessary to measure the spectrum. Therefore, the X-ray emitted from the synchrotron has a brightness of at least 10 10 (photons / s / mrad 2 / mm 2 /0.1% bw) and is a continuous X-ray source. And optimal for XAFS measurements. Note that bw represents the band width of X-rays emitted from the synchrotron.
上記X線の輝度(photons/s/mrad2/mm2/0.1%bw)は、好ましくは1010以上、より好ましくは1011以上である。上限は特に限定されないが、放射線ダメージがない程度以下のX線強度を用いることが好ましい。 The X-ray luminance (photons / s / mrad 2 / mm 2 /0.1% bw) is preferably 10 10 or more, more preferably 10 11 or more. Although an upper limit is not specifically limited, It is preferable to use the X-ray intensity below the extent that there is no radiation damage.
また、上記X線の光子数(photons/s)は、好ましくは107以上、より好ましくは109以上である。上限は特に限定されないが、放射線ダメージがない程度以下のX線強度を用いることが好ましい。 Further, the number of photons (photons / s) of the X-ray is preferably 10 7 or more, more preferably 10 9 or more. Although an upper limit is not specifically limited, It is preferable to use the X-ray intensity below the extent that there is no radiation damage.
上記X線を用いて走査するエネルギー範囲は、好ましくは5000eV以下、より好ましくは4000eV以下、更に好ましくは3500eV以下である。5000eVを超えると、目的とする高分子複合材料中の劣化状態解析ができないおそれがある。下限は特に限定されない。 The energy range scanned using the X-ray is preferably 5000 eV or less, more preferably 4000 eV or less, and still more preferably 3500 eV or less. When it exceeds 5000 eV, there is a possibility that the degradation state analysis in the target polymer composite material cannot be performed. The lower limit is not particularly limited.
測定は、例えば、超高真空中に設置した試料にX線を照射することで光電子が飛び出し、それを補うためにグラウンドから電子が流れ、その試料電流を測定するという方法で実施できる。そのため、表面敏感ではあるが、測定可能な試料の条件として真空中でガスを出さないこと、導電性であることが挙げられるので、これまでは結晶や分子吸着の研究が主であり、ガスを出しそうでかつ絶縁体であるゴム試料の研究はほとんど行われていない。 The measurement can be performed by, for example, a method in which photoelectrons are emitted by irradiating a sample placed in an ultra-high vacuum with X-rays, electrons flow from the ground to compensate for it, and the sample current is measured. Therefore, although it is sensitive to the surface, the conditions of the sample that can be measured include the fact that it does not emit gas in a vacuum and that it is electrically conductive. There has been little research on rubber samples that are likely to be removed and that are insulators.
この点について、NEXAFS及びXAFSは非占有軌道への励起を見ており、調査する元素に結合した元素の影響を大きく受けるため、個々の結合状態を分離することが可能で、劣化要因の分離が可能であるため、高分子劣化の分析に使用できる。 In this regard, NEXAFS and XAFS are seeing excitation to unoccupied orbitals, and are greatly affected by the elements bound to the elements to be investigated. Therefore, it is possible to separate individual bonding states and to separate degradation factors. It can be used for analysis of polymer degradation.
NEXAFS及びXAFSの測定方法には次の3つの方法が代表的に用いられている。本発明の実施例では、NEXAFS法では電子収量法、XAFS法では蛍光法を用いて実施したが、これに限定されるものではなく、様々な検出方法を用いてもよく、組み合わせて同時計測してもよい。 The following three methods are typically used as NEXAFS and XAFS measurement methods. In the examples of the present invention, the NEXAFS method was performed using the electron yield method and the XAFS method was performed using the fluorescence method. However, the present invention is not limited to this, and various detection methods may be used. May be.
(透過法)
試料を透過してきたX線強度を検出する方法である。透過光強度測定には、フォトダイオードアレイ検出器などが用いられる。
(Transmission method)
This is a method for detecting the X-ray intensity transmitted through a sample. For measurement of transmitted light intensity, a photodiode array detector or the like is used.
(蛍光法)
試料にX線を照射した際に発生する蛍光X線を検出する方法である。検出器は、Lytle検出器、半導体検出器などがある。前記透過法の場合、試料中の含有量が少ない元素のX線吸収測定を行うと、シグナルが小さい上に含有量の多い元素のX線吸収によりバックグラウンドが高くなるためS/B比の悪いスペクトルとなる。それに対し蛍光法(特にエネルギー分散型検出器などを用いた場合)では、目的とする元素からの蛍光X線のみを測定することが可能であるため、含有量が多い元素の影響が少ない。そのため、含有量が少ない元素のX線吸収スペクトル測定を行う場合に有効的である。また、蛍光X線は透過力が強い(物質との相互作用が小さい)ため、試料内部で発生した蛍光X線を検出することが可能となる。そのため、本手法は透過法に次いでバルク情報を得る方法として最適である。
(Fluorescence method)
This is a method for detecting fluorescent X-rays generated when a sample is irradiated with X-rays. Examples of the detector include a Lytle detector and a semiconductor detector. In the case of the transmission method, when X-ray absorption measurement of an element having a small content in a sample is performed, the background is increased due to the X-ray absorption of an element having a small content and a large content, so that the S / B ratio is poor. It becomes a spectrum. On the other hand, in the fluorescence method (especially when an energy dispersive detector or the like is used), it is possible to measure only the fluorescent X-rays from the target element, so that the influence of the element having a large content is small. Therefore, it is effective when measuring an X-ray absorption spectrum of an element having a small content. In addition, since fluorescent X-rays have strong penetrating power (low interaction with substances), it is possible to detect fluorescent X-rays generated inside the sample. Therefore, this method is the most suitable method for obtaining bulk information after the transmission method.
(電子収量法)
試料にX線を照射した際に流れる電流を検出する方法である。そのため試料が導電物質である必要がある。高分子材料は絶縁物であるため、今まで高分子材料のX線吸収測定は、蒸着やスピンコートなどによって試料をごく薄く基板に乗せた物を用いることがほとんどだったが、本発明では、ゴム材料をミクロトームで100μm以下、好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは500nm以下に加工(カット)することでS/B比及びS/N比の高い測定を実現できる。
(Electron yield method)
This is a method for detecting a current flowing when a sample is irradiated with X-rays. Therefore, the sample needs to be a conductive material. Since the polymer material is an insulator, until now, the X-ray absorption measurement of the polymer material has mostly used a sample with a sample placed on a substrate by vapor deposition or spin coating, but in the present invention, By processing (cutting) the rubber material to 100 μm or less, preferably 10 μm or less, more preferably 1 μm or less, and even more preferably 500 nm or less with a microtome, measurement with a high S / B ratio and S / N ratio can be realized.
また、電子収量法の特徴として表面敏感(試料表面の数nm程度の情報)であるという点が挙げられる。試料にX線を照射すると元素から電子が脱出するが、電子は物質との相互作用が強いため、物質中での平均自由行程が短い。 Another characteristic of the electron yield method is that it is surface sensitive (information on the surface of the sample about several nm). When the sample is irradiated with X-rays, electrons escape from the element, but electrons have a strong interaction with the substance, so that the mean free path in the substance is short.
例えば、ゴム材料にフリーサルファー除去処理を施して作製された試料のX線吸収スペクトル測定を行い解析することで、高分子劣化度(%)、イオウ架橋劣化度(%)を分析できる。以下、これについて説明する。 For example, it is possible to analyze the degree of polymer degradation (%) and the degree of sulfur cross-linking degradation (%) by measuring and analyzing the X-ray absorption spectrum of a sample prepared by subjecting a rubber material to a free sulfur removal treatment. This will be described below.
NEXAFS法により、イオウ架橋させたゴム材料における高分子の劣化状態を求める手法としては、例えば、上記X線のエネルギーを260〜400eVの範囲において炭素原子のK殻吸収端の必要な範囲を走査することによって得られるX線吸収スペクトルに基づいて下記(式1−1)により規格化定数α及びβを算出し、該規格化定数α及びβを用いて補正された炭素原子のK殻吸収端のX線吸収スペクトルを波形分離し、得られた285eV付近のπ*遷移に帰属されるピーク面積を用いて下記(式1−2)により高分子劣化度(%)を求める方法が挙げられる。
(式1−1)
[劣化前の試料における測定範囲のX線吸収スペクトルの全面積]×α=1
[劣化後の試料における測定範囲のX線吸収スペクトルの全面積]×β=1
(式1−2)
[1−[(劣化後のπ*のピーク面積)×β]/[(劣化前のπ*のピーク面積)×α]]×100=高分子劣化度(%)
As a technique for obtaining the polymer degradation state in the sulfur-crosslinked rubber material by the NEXAFS method, for example, the necessary range of the K-shell absorption edge of the carbon atom is scanned in the X-ray energy range of 260 to 400 eV. The normalization constants α and β are calculated by the following (Equation 1-1) based on the X-ray absorption spectrum obtained by the above, and the K-shell absorption edge of the carbon atom corrected using the normalization constants α and β is calculated. There is a method of separating the waveform of the X-ray absorption spectrum and obtaining the degree of polymer degradation (%) by the following (Equation 1-2) using the obtained peak area attributed to the π * transition near 285 eV.
(Formula 1-1)
[Total area of X-ray absorption spectrum of measurement range in sample before deterioration] × α = 1
[Total area of X-ray absorption spectrum in the measurement range of the sample after deterioration] × β = 1
(Formula 1-2)
[1-[(Peak area of π * after degradation) × β] / [(Peak area of π * before degradation) × α]] × 100 = Polymer degradation degree (%)
これにより、劣化後の高分子(ポリマー部分)の劣化度合(%)が得られ、ポリマー部分劣化率を分析できる。ここで、上記高分子劣化度を求める方法において、上記X線のエネルギーを260〜350eVの範囲にすることが好ましい。なお、上記劣化度を求める方法では、上記(式1−1)の操作を行う前に、吸収端前のスロープから評価してバックグランドを引くことが行われる。 Thereby, the deterioration degree (%) of the polymer (polymer part) after deterioration can be obtained, and the polymer partial deterioration rate can be analyzed. Here, in the method for obtaining the degree of polymer degradation, it is preferable that the energy of the X-ray is in the range of 260 to 350 eV. In the method for obtaining the degree of deterioration, the background is drawn by evaluating from the slope before the absorption edge before performing the operation of (Equation 1-1).
上記高分子劣化度を求める方法において、上記(式1−1)におけるX線吸収スペクトルの全面積は、測定範囲内のスペクトルを積分したものであり、測定条件等によってエネルギー範囲は変えることができる。 In the method for determining the degree of polymer degradation, the total area of the X-ray absorption spectrum in (Equation 1-1) is obtained by integrating the spectrum within the measurement range, and the energy range can be changed depending on the measurement conditions and the like. .
上記高分子劣化度を求める方法について、NRとBRのブレンドゴムの新品、オゾン劣化を7時間実施した劣化品(共にイオウ架橋)のそれぞれにフリーサルファー除去処理を施して作製された試料を用いた例を用いて具体的に説明する。 Regarding the method for determining the degree of polymer degradation, samples prepared by subjecting a new blend rubber of NR and BR and a degraded product subjected to ozone degradation for 7 hours (both sulfur cross-linked) to free sulfur removal treatment were used. A specific example will be described.
除去処理済のこれらの試料について、炭素原子のK殻吸収端のNEXAFS測定結果を図3に示す。図3のように、劣化した試料では285eV付近のπ*のピークが新品と比較して小さくなるが、NEXAFS法は絶対値測定が困難である。その理由は、光源からの試料の距離などの微妙な変化がX線吸収スペクトルの大きさに影響を与えるためである。以上の理由により、炭素原子のK殻吸収端のNEXAFS測定結果については、試料間の単純な比較ができない。 FIG. 3 shows the NEXAFS measurement results of the K-shell absorption edge of carbon atoms for these samples that have been subjected to the removal treatment. As shown in FIG. 3, in the deteriorated sample, the peak of π * near 285 eV is smaller than that of the new product, but it is difficult to measure the absolute value by the NEXAFS method. The reason is that subtle changes such as the distance of the sample from the light source affect the magnitude of the X-ray absorption spectrum. For the above reasons, the NEXAFS measurement result of the K-shell absorption edge of carbon atoms cannot be simply compared between samples.
そこで、測定した試料間のX線吸収スペクトルを比較するために以下の様に規格化を行った(直接比較できるように各試料のX線吸収スペクトルを補正した)。劣化前後で炭素殻のX線吸収量は変わらないことから、上記(式1−1)を用いて、炭素原子のK殻吸収端のピーク面積が1となるように規格化する。つまり、先ず規格化前のX線吸収スペクトルについて(式1−1)をもとに規格化定数α、βを算出し、次いで規格化前のX線吸収スペクトルにα、βを乗じたスペクトルに補正(規格化)することで、試料間のπ*のピークを直接比較できる。 Therefore, in order to compare the measured X-ray absorption spectra between samples, normalization was performed as follows (the X-ray absorption spectra of each sample were corrected so that they could be directly compared). Since the X-ray absorption amount of the carbon shell does not change before and after deterioration, the above (Equation 1-1) is used to normalize the peak area of the K-shell absorption edge of the carbon atom to 1. That is, first, normalization constants α and β are calculated based on (Formula 1-1) for the X-ray absorption spectrum before normalization, and then the spectrum obtained by multiplying the X-ray absorption spectrum before normalization by α and β is obtained. By correcting (normalizing), π * peaks between samples can be directly compared.
このようにして得られた規格化後の炭素原子のK殻吸収端のスペクトル(NEXAFS)を図4に示す。規格化したスペクトルから高分子劣化度を上記(式1−2)を用いて決定する。上記高分子劣化度は、劣化前から劣化後へのπ*のピークの減少率であり、試料におけるポリマー鎖の劣化率(%)を示している。 FIG. 4 shows the spectrum (NEXAFS) of the K-shell absorption edge of the carbon atom after normalization obtained as described above. The degree of polymer degradation is determined from the normalized spectrum using the above (Equation 1-2). The degree of polymer degradation is the rate of decrease in the peak of π * from before degradation to after degradation, and indicates the degradation rate (%) of the polymer chain in the sample.
なお、上記高分子劣化度を求める方法では、上記(式1−2)においてピーク面積に代えてピーク強度を用いても同様に高分子劣化度を求めることができる。 In the above method for determining the degree of polymer deterioration, the degree of polymer deterioration can be determined in the same manner even if the peak intensity is used instead of the peak area in (Equation 1-2).
また、上記では、オゾン劣化品について説明しているが、酸素劣化品、オゾンと酸素の両方で劣化した劣化品でも同様の手法で解析でき、ポリマー鎖の劣化度を求めることが可能である。 In the above description, ozone-degraded products are described. However, oxygen-degraded products and degraded products degraded by both ozone and oxygen can be analyzed by the same method, and the degree of degradation of the polymer chain can be obtained.
前述の高分子の劣化状態は、例えば、佐賀県立九州シンクロトロン光研究センターのBL12ビームラインを用いて解析できる。 The aforementioned polymer degradation state can be analyzed using, for example, the BL12 beam line of the Saga Kyushu Synchrotron Light Research Center.
更に、XAFS法により、イオウ架橋させたゴム材料におけるイオウ架橋の劣化状態を求める手法としては、例えば、上記X線のエネルギーを2460〜3200eVの範囲において硫黄原子のK殻吸収端の必要な範囲を走査することによって得られるX線吸収スペクトルに基づいて下記(式1−3)により規格化定数γ及びδを算出し、該規格化定数γ及びδを用いて補正された硫黄原子のK殻吸収端のX線吸収スペクトルを波形分離し、得られた2472eV付近のS−S結合に帰属されるピーク面積を用いて下記(式1−4)によりイオウ架橋劣化度(%)を求める方法が挙げられる。
(式1−3)
[劣化前の試料における測定範囲のX線吸収スペクトルの全面積]×γ=1
[劣化後の試料における測定範囲のX線吸収スペクトルの全面積]×δ=1
(式1−4)
[1−[(劣化後のS−S結合のピーク面積)×δ]/[(劣化前のS−S結合のピーク面積)×γ]]×100=イオウ架橋劣化度(%)
Furthermore, as a technique for obtaining the deterioration state of sulfur crosslinking in a rubber material crosslinked with XAFS, for example, the required range of the K-shell absorption edge of the sulfur atom in the X-ray energy range of 2460 to 3200 eV is used. Based on the X-ray absorption spectrum obtained by scanning, the normalization constants γ and δ are calculated by the following (Equation 1-3), and the K-shell absorption of sulfur atoms corrected using the normalization constants γ and δ. An X-ray absorption spectrum at the end is waveform-separated, and the obtained peak area attributed to the S—S bond in the vicinity of 2472 eV is used to obtain a sulfur crosslinking deterioration degree (%) by the following (Equation 1-4). It is done.
(Formula 1-3)
[Total area of X-ray absorption spectrum in measurement range in sample before deterioration] × γ = 1
[Total area of X-ray absorption spectrum in the measurement range of the sample after deterioration] × δ = 1
(Formula 1-4)
[1-[(Peak area of S—S bond after deterioration) × δ] / [(Peak area of S—S bond before deterioration) × γ]] × 100 = Degree of sulfur crosslinking deterioration (%)
これにより、劣化後のイオウ架橋部分の劣化度合(%)が得られ、イオウ架橋の劣化率を分析できる。ここで、上記イオウ架橋劣化度を求める方法において、上記X線のエネルギーを2460〜2500eVの範囲にすることが好ましい。なお、上記劣化度を求める方法では、上記(式1−3)の操作を行う前に、吸収端前のスロープから評価してバックグランドを引くことが行われる。 Thereby, the deterioration degree (%) of the sulfur bridge | crosslinking part after deterioration is obtained, and the deterioration rate of sulfur bridge | crosslinking can be analyzed. Here, in the method for determining the degree of sulfur cross-linking deterioration, it is preferable that the energy of the X-ray is in the range of 2460 to 2500 eV. In the method for obtaining the degree of deterioration, the background is obtained by evaluating from the slope before the absorption edge before performing the operation of (Equation 1-3).
上記イオウ架橋劣化度を求める方法において、上記(式1−3)におけるX線吸収スペクトルの全面積は、測定範囲内のスペクトルを積分したものであり、測定条件等によってエネルギー範囲は変えることができる。 In the method for determining the degree of sulfur crosslinking deterioration, the total area of the X-ray absorption spectrum in (Equation 1-3) is obtained by integrating the spectrum within the measurement range, and the energy range can be changed depending on the measurement conditions and the like. .
上記イオウ架橋劣化度を求める方法について、NRとBRのブレンドゴムの新品、熱酸素劣化を1週間実施した劣化品(共にイオウ架橋)のそれぞれにフリーサルファー除去処理を施して作製された試料を用いた例を用いて具体的に説明する。 Regarding the method for determining the degree of sulfur cross-linking degradation, a new sample of blended rubber of NR and BR and a sample made by applying free sulfur removal treatment to each of the deteriorated products subjected to thermal oxygen deterioration for one week (both sulfur cross-linking) are used. A specific example will be described.
除去処理済のこれらの試料について、硫黄原子のK殻吸収端のXAFS測定結果を図5に示す。図5のように、劣化した試料では2472eV付近のS−S結合(硫黄−硫黄結合)に対応するピークが減少し、SOx(硫黄酸化物)に対応するピークが増加することが判り、これは、S−S結合が切断され、その部分に酸素が結合したことを示しているが、XAFS法は絶対値測定が困難である。その理由は、光源からの試料の距離などの微妙な変化がX線吸収スペクトルの大きさに影響を与えるためである。以上の理由により、硫黄原子のK殻吸収端のXAFS測定結果については、試料間の単純な比較ができない。 FIG. 5 shows the XAFS measurement results of the K-shell absorption edge of sulfur atoms for these samples that have been subjected to the removal treatment. As shown in FIG. 5, in the deteriorated sample, the peak corresponding to the S—S bond (sulfur-sulfur bond) near 2472 eV is decreased, and the peak corresponding to SOx (sulfur oxide) is increased. This indicates that the S—S bond is cleaved and oxygen is bonded to the portion, but the XAFS method is difficult to measure the absolute value. The reason is that subtle changes such as the distance of the sample from the light source affect the magnitude of the X-ray absorption spectrum. For the above reasons, the XAFS measurement result of the K-shell absorption edge of sulfur atoms cannot be simply compared between samples.
そこで、測定した試料間のX線吸収スペクトルを比較するために以下の様に規格化を行った(直接比較できるように各試料のX線吸収スペクトルを補正した)。劣化前後で硫黄殻のX線吸収量は変わらないことから、上記(式1−3)を用いて、硫黄原子のK殻吸収端のピーク面積が1となるように規格化する。つまり、先ず規格化前のX線吸収スペクトルについて(式1−3)をもとに規格化定数γ、δを算出し、次いで規格化前のX線吸収スペクトルにγ、δを乗じたスペクトルに補正(規格化)することで、試料間のS−S結合のピークを直接比較できる。 Therefore, in order to compare the measured X-ray absorption spectra between samples, normalization was performed as follows (the X-ray absorption spectra of each sample were corrected so that they could be directly compared). Since the amount of X-ray absorption of the sulfur shell does not change before and after deterioration, the above (Equation 1-3) is used to normalize the peak area of the K-shell absorption edge of sulfur atoms to 1. That is, first, normalization constants γ and δ are calculated based on (Formula 1-3) for the X-ray absorption spectrum before normalization, and then the spectrum obtained by multiplying the X-ray absorption spectrum before normalization by γ and δ is obtained. By correcting (normalizing), the S—S bond peak between samples can be directly compared.
このようにして得られた規格化後の硫黄原子のK殻吸収端のスペクトル(XAFS)を図6に示す。規格化したスペクトルからイオウ架橋劣化度を上記(式1−4)を用いて決定する。上記イオウ架橋劣化度は、劣化前から劣化後へのS−S結合のピークの減少率であり、試料におけるイオウ架橋の劣化率(%)を示している。 The spectrum (XAFS) of the K-shell absorption edge of the sulfur atom after normalization thus obtained is shown in FIG. The degree of sulfur cross-linking degradation is determined from the normalized spectrum using the above (Equation 1-4). The degree of sulfur cross-linking deterioration is the rate of decrease of the peak of S—S bonds from before deterioration to after deterioration, and indicates the deterioration rate (%) of sulfur cross-linking in the sample.
なお、上記イオウ架橋劣化度を求める方法では、上記(式1−4)においてピーク面積に代えてピーク強度を用いても同様にイオウ架橋劣化度を求めることができる。 In the method for obtaining the degree of sulfur cross-linking deterioration, the degree of sulfur cross-linking deterioration can be obtained in the same manner even if the peak intensity is used in place of the peak area in (Equation 1-4).
また、上記では、酸素劣化品について説明しているが、オゾン劣化品、オゾンと酸素の両方で劣化した劣化品でも同様の手法で解析でき、イオウ架橋の劣化度を求めることが可能である。 In the above description, oxygen-degraded products are described. However, ozone-degraded products and degraded products degraded by both ozone and oxygen can be analyzed by the same method, and the degree of deterioration of sulfur crosslinking can be obtained.
前述のイオウ架橋の劣化状態は、例えば、SPring−8のBL27SUのBブランチを用いて解析できる。 The deterioration state of the above-mentioned sulfur bridge can be analyzed using, for example, the B branch of BL27SU of SPring-8.
また、本発明における表面分析法として、XPS法(X線光電子分光法)も有効であり、フリーサルファーを除去した試料にXPS法を適用することで、正確な化学状態を調べることができる。また、劣化前後のそれぞれの試料に適用し、劣化前後のピーク強度や面積の比較により劣化状態(劣化度合)を精度良く調べることも可能である。 In addition, XPS (X-ray photoelectron spectroscopy) is also effective as a surface analysis method in the present invention, and an accurate chemical state can be examined by applying the XPS method to a sample from which free sulfur has been removed. It is also possible to apply to each sample before and after deterioration, and to accurately check the deterioration state (deterioration degree) by comparing the peak intensity and area before and after deterioration.
詳細には、イオウ架橋させたゴム材料に、一定エネルギーのX線を照射し、励起・放出された光電子を測定する劣化解析方法により、高分子の劣化状態、イオウ架橋の劣化状態を求めることができる。また、高分子の劣化状態とイオウ架橋の劣化状態を求めることで、それぞれの劣化割合も解析できる。 Specifically, it is possible to determine the degradation state of the polymer and the degradation state of the sulfur bridge by a degradation analysis method that irradiates a sulfur-crosslinked rubber material with X-rays of constant energy and measures the excited and emitted photoelectrons. it can. Further, by obtaining the deterioration state of the polymer and the deterioration state of the sulfur bridge, the respective deterioration ratios can be analyzed.
例えば、新品及び劣化後のゴム材料にフリーサルファー除去処理を施して作製された試料に対してそれぞれ一定エネルギーのX線を照射し、励起・放出された光電子を測定して得られた各スペクトルを比較することで、劣化後の試料の劣化状態を解析し、ポリマー劣化度とイオウ劣化度の劣化割合を判定する。具体的には、特定軌道のX線光電子スペクトルを測定する手法などを用いて、フリーサルファーを除去した試料の測定を行うことで、ポリマーの劣化度とイオウ架橋の劣化度を精度良く解析し、得られたそれぞれの劣化度からポリマーとイオウ架橋の劣化割合を判定する。 For example, each spectrum obtained by irradiating a new and deteriorated rubber material with X-rays of constant energy to samples prepared by removing free sulfur and measuring excited and emitted photoelectrons. By comparing, the deterioration state of the sample after deterioration is analyzed, and the deterioration ratio of the polymer deterioration degree and the sulfur deterioration degree is determined. Specifically, using a method that measures the X-ray photoelectron spectrum of a specific orbit, etc., by measuring the sample from which free sulfur has been removed, the degree of deterioration of the polymer and the degree of deterioration of the sulfur cross-link are analyzed accurately. The deterioration rate of the polymer and sulfur cross-linking is determined from the obtained degree of deterioration.
例えば、XPS測定により得られる炭素1s軌道付近のスペクトルのピーク面積などからポリマー部分の劣化状態を解析するとともに、イオウS2p、S1s軌道に対応するスペクトルのピーク面積などからイオウ架橋部分の劣化状態を解析し、得られたそれぞれの劣化度からポリマーとイオウ架橋の劣化割合を判定できる。 For example, the degradation state of the polymer portion is analyzed from the peak area of the spectrum near the carbon 1s orbit obtained by XPS measurement, and the degradation state of the sulfur bridge portion is analyzed from the peak area of the spectrum corresponding to the sulfur S2p and S1s orbitals. And the deterioration rate of a polymer and sulfur bridge | crosslinking can be determined from each obtained deterioration degree.
ここで、イオウ架橋させたゴム材料に、一定のエネルギーX線を照射し、励起・放出された光電子を測定する手法としては、X線光電子分光法(XPS)などが挙げられ、具体的には、通常のAl Kα1線(1486.6eV)を用いたXPS法、硬X線光電子分光法(HAX−PES:Hard X−ray Photoemission Spectroscopy)などを用いて測定できる。 Here, as a technique for irradiating a sulfur-crosslinked rubber material with constant energy X-rays and measuring excited and emitted photoelectrons, X-ray photoelectron spectroscopy (XPS) and the like can be specifically mentioned. In addition, it can be measured using an XPS method using a normal Al Kα 1 line (1486.6 eV), a hard X-ray photoelectron spectroscopy (HAX-PES: Hard X-ray Photoluminescence Spectroscopy) and the like.
XPS法により、イオウ架橋の劣化状態を測定する手法としては、例えば、一定エネルギーのX線を照射することによって励起・放出された光電子を分光し、イオウS2pに対応する光電子強度を測定したX線光電子スペクトルを波形分離し、得られたイオウ酸化物に帰属されるピーク面積を用いて下記(式2−1)によりイオウ架橋劣化度(%)を求める方法(方法1)が挙げられる。
(式2−1)
(S2pのイオウ酸化物に帰属されるピーク面積)/(S2pに関係する全ピーク面積)×100=イオウ架橋劣化度(%)
これにより、劣化後のイオウ架橋部分の劣化度(%)が得られ、劣化率を分析できる。
As a technique for measuring the degradation state of sulfur crosslinking by the XPS method, for example, X-rays in which photoelectrons excited and emitted by irradiating X-rays with a constant energy are dispersed and the photoelectron intensity corresponding to sulfur S2p is measured. There is a method (Method 1) in which a photoelectron spectrum is waveform-separated and a sulfur crosslinking deterioration degree (%) is obtained by the following (Formula 2-1) using a peak area attributed to the obtained sulfur oxide.
(Formula 2-1)
(Peak area attributed to sulfur oxide of S2p) / (Total peak area related to S2p) × 100 = Deterioration degree of sulfur crosslinking (%)
Thereby, the deterioration degree (%) of the sulfur bridge | crosslinking part after deterioration is obtained, and a deterioration rate can be analyzed.
上記方法1において、上記(式2−1)におけるS2pに関係する全ピーク面積は、測定範囲内のスペクトルを積分したものであり、測定条件等によってエネルギー範囲は変えることができる。 In Method 1, the total peak area related to S2p in (Equation 2-1) above is obtained by integrating the spectrum within the measurement range, and the energy range can be changed depending on the measurement conditions and the like.
上記方法1において、使用される一定エネルギーのX線のエネルギー範囲は、S2p(イオウ2p軌道)に関係するピークの面積を測定できるという点から、好ましくは、150〜200eV、より好ましくは155〜180eVである。 In the above method 1, the energy range of the constant energy X-ray used is preferably 150 to 200 eV, more preferably 155 to 180 eV, in that the area of the peak related to S2p (sulfur 2p orbit) can be measured. It is.
上記方法1について、NRとBRのブレンドゴムの新品、熱酸素劣化を1週間実施した劣化品(共にイオウ架橋)のそれぞれにフリーサルファー除去処理を施して作製された試料を用いた例を用いて具体的に説明する。 Using Method 1 above, an example using a sample prepared by subjecting a new blend rubber of NR and BR and a deteriorated product (both sulfur cross-linked) subjected to thermal oxygen deterioration for one week to free sulfur removal treatment. This will be specifically described.
除去処理済のこれらの試料について、S2p(イオウの2p軌道)におけるX線光電子スペクトルの測定結果を図7に示す。図7のように、劣化した試料では、S−S結合に対応するピークが減少し、イオウ酸化物(SOx)に対応するピークが増加することがわかる。従って、劣化品のS2pにおけるX線光電子スペクトルを、S−S結合、SOxの各ピークに波形分離し、SOxに帰属されるピーク面積とS2pに関係する全ピーク面積を上記(式2−1)に適用することでイオウ架橋劣化度(%)が求められる。 FIG. 7 shows the measurement result of the X-ray photoelectron spectrum in S2p (sulfur 2p orbit) for these samples after the removal treatment. As shown in FIG. 7, in the deteriorated sample, the peak corresponding to the S—S bond decreases and the peak corresponding to the sulfur oxide (SOx) increases. Therefore, the X-ray photoelectron spectrum at S2p of the deteriorated product is waveform-separated into S—S bond and SOx peaks, and the peak area attributed to SOx and the total peak area related to S2p are expressed by the above (formula 2-1). The degree of sulfur cross-linking degradation (%) is required.
ここで、S2p軌道はスピン軌道分裂のため、1つの帰属に付き2つのピークが出現し、また、イオウ酸化物(SOx)のピークは価数の異なる複数のピークが重なっていると考えられるが、原理的に考えると、図7のように、大きくS−Sに帰属されるピークとSOxに帰属されるピークに分離することが可能である。 Here, since the S2p orbital is spin orbital splitting, two peaks appear for one assignment, and the peak of sulfur oxide (SOx) is considered to be overlapped with a plurality of peaks having different valences. Considering in principle, as shown in FIG. 7, it is possible to largely separate the peak attributed to SS and the peak attributed to SOx.
なお、上記方法1では、上記(式2−1)においてピーク面積に代えてピーク強度を用いても同様にイオウ架橋劣化度を求めることができる。 In the above method 1, the sulfur cross-linking degradation degree can be obtained in the same manner even when the peak intensity is used instead of the peak area in (Equation 2-1).
また、HAX−PES法により、イオウ架橋の劣化状態を測定する手法としては、例えば、一定エネルギーのX線を照射することによって励起・放出された光電子を分光し、イオウS1sに対応する光電子強度を測定したX線光電子スペクトルを波形分離し、得られたイオウ酸化物に帰属されるピーク面積を用いて下記(式2−2)によりイオウ架橋劣化度(%)を求める方法(方法2)が挙げられる。
(式2−2)
(S1sのイオウ酸化物に帰属されるピーク面積)/(S1sに関係する全ピーク面積)×100=イオウ架橋劣化度(%)
これにより、劣化後のイオウ架橋部分の劣化度(%)が得られ、劣化率を分析できる。
Moreover, as a technique for measuring the degradation state of sulfur crosslinking by the HAX-PES method, for example, photoelectrons excited and emitted by irradiating X-rays with a constant energy are dispersed, and the photoelectron intensity corresponding to the sulfur S1s is obtained. There is a method (Method 2) for separating the waveform of the measured X-ray photoelectron spectrum and obtaining the degree of sulfur cross-linking degradation (%) by the following (Formula 2-2) using the peak area attributed to the obtained sulfur oxide. It is done.
(Formula 2-2)
(Peak area attributed to sulfur oxide of S1s) / (total peak area related to S1s) × 100 = sulfur cross-linking deterioration degree (%)
Thereby, the deterioration degree (%) of the sulfur bridge | crosslinking part after deterioration is obtained, and a deterioration rate can be analyzed.
特に、HAX−PES法を使用することで、通常のXPS法では測定できないS1s軌道を測定できるというメリットがある。つまり、通常のXPS法では、S2p軌道のスペクトルを測定することになるが、使用するX線のエネルギーが低いため、検出深さが表面〜数nmとなるのに対し、HAX−PES法では、S1s軌道を測定でき、使用するX線のエネルギーが高いため、検出深さは表面〜数十nmとなる。従って、ゴム材料の極表面にはイオウ化合物のブルームが生じるため、極表面を測定するXPS法では測定結果に影響を及ぼす懸念があるが、HAX−PES法は検出深さが深く、ブルームの影響を受けないと考えられる。よって、HAX−PES法によると、特にゴム材料のバルク(内部)におけるイオウ架橋の劣化解析が可能になる。 In particular, by using the HAX-PES method, there is an advantage that an S1s orbit that cannot be measured by a normal XPS method can be measured. That is, in the normal XPS method, the spectrum of the S2p orbit is measured. However, since the energy of the X-ray used is low, the detection depth is from the surface to several nm, whereas in the HAX-PES method, Since the S1s trajectory can be measured and the energy of X-rays used is high, the detection depth is from the surface to several tens of nm. Therefore, since a sulfur compound bloom occurs on the extreme surface of the rubber material, there is a concern that the XPS method for measuring the extreme surface may affect the measurement result. However, the HAX-PES method has a deep detection depth and the influence of bloom. It is thought not to receive. Therefore, according to the HAX-PES method, it is possible to analyze the deterioration of sulfur crosslinking particularly in the bulk (inside) of the rubber material.
なお、通常のXPS法でS2p軌道のスペクトルを測定する場合においても、アルゴンイオンエッチングなどにより、極表面を除去した後に測定することでブルームの影響を低下させた測定結果を得ることも可能である。 Even when the spectrum of the S2p orbit is measured by the normal XPS method, it is also possible to obtain a measurement result in which the influence of bloom is reduced by measuring after removing the extreme surface by argon ion etching or the like. .
上記方法2において、上記(式2−2)におけるS1sに対応するイオウの全ピーク面積は、測定範囲内のスペクトルを積分したものであり、測定条件等によってエネルギー範囲は変えることができる。 In Method 2, the total peak area of sulfur corresponding to S1s in (Equation 2-2) above is obtained by integrating the spectrum within the measurement range, and the energy range can be changed depending on the measurement conditions and the like.
上記方法2において、使用される一定エネルギーのX線のエネルギー範囲は、イオウS1s(イオウの1s軌道)に関係するピークの面積を測定できるという点から、好ましくは、4〜10kevである。 In the method 2, the X-ray energy range of constant energy used is preferably 4 to 10 kev from the viewpoint that the area of the peak related to sulfur S1s (sulfur 1s orbit) can be measured.
上記方法2について、NRとBRのブレンドゴムの新品、熱酸素劣化を1週間実施した劣化品(共にイオウ架橋)のそれぞれにフリーサルファー除去処理を施して作製された試料を用いた例を用いて具体的に説明する。 Regarding method 2 above, an example using a sample prepared by subjecting a new blend rubber of NR and BR and a deteriorated product subjected to thermal oxygen deterioration for one week (both sulfur cross-linked) to free sulfur removal treatment was used. This will be specifically described.
除去処理済のこれらの試料について、S1s(イオウの1s軌道)におけるX線光電子スペクトルの測定結果を図8に示す。図8のように、劣化した試料では、S−S結合に対応するピークが減少し、イオウ酸化物(SOx)に対応するピークが増加することがわかる。従って、劣化品のS1sにおけるX線光電子スペクトルを、S−S結合、SOxの各ピークに波形分離し、SOxに帰属されるピーク面積とイオウに関係する全ピーク面積を上記(式2−2)に適用することでイオウ架橋劣化度(%)が求められる。 FIG. 8 shows the measurement results of the X-ray photoelectron spectrum in S1s (sulfur 1s orbit) for these samples after the removal treatment. As shown in FIG. 8, in the deteriorated sample, the peak corresponding to the S—S bond decreases and the peak corresponding to the sulfur oxide (SOx) increases. Therefore, the X-ray photoelectron spectrum in S1s of the deteriorated product is waveform-separated into S—S bond and SOx peaks, and the peak area attributed to SOx and the total peak area related to sulfur are represented by the above (formula 2-2). The degree of sulfur cross-linking degradation (%) is required.
ここで、イオウ酸化物(SOx)のピークは価数の異なる複数のピークが重なっていると考えられるが、原理的に考えると、図8のように、大きくS−Sに帰属されるピークとSOxに帰属されるピークに分離することが可能である。 Here, although the peak of sulfur oxide (SOx) is considered to be a plurality of peaks having different valences, in principle, as shown in FIG. It is possible to separate into peaks attributed to SOx.
なお、上記方法2では、上記(式2−2)においてピーク面積に代えてピーク強度を用いても同様にイオウ架橋劣化度を求めることができる。 In the above method 2, the degree of sulfur cross-linking degradation can be obtained in the same manner even when the peak intensity is used instead of the peak area in (Equation 2-2).
また、上記方法1、2では、酸素劣化品について説明しているが、オゾン劣化品、オゾンと酸素の両方で劣化した劣化品でも同様の手法で解析でき、イオウ架橋の劣化度を求めることが可能である。 In addition, in the above methods 1 and 2, oxygen-degraded products are described, but ozone-degraded products and degraded products degraded by both ozone and oxygen can be analyzed by the same method, and the degree of deterioration of sulfur crosslinking can be obtained. Is possible.
前述のイオウ架橋の劣化状態は、例えば、Kratos製 AXIS Ultraなどの通常のXPS装置、SPring−8 BL46XUビームライン付属のHAX−PES装置を用いて解析できる。 The deterioration state of the above-mentioned sulfur bridge can be analyzed using, for example, a normal XPS apparatus such as AXIS Ultra manufactured by Kratos, or a HAX-PES apparatus attached to the SPring-8 BL46XU beam line.
更に上記劣化解析方法では、例えば、下記(式3)によって高分子劣化とイオウ架橋劣化の寄与率を算出することができる。
(式3)
[高分子劣化度(%)]/[イオウ架橋劣化度(%)]=高分子劣化とイオウ架橋劣化の寄与率
Furthermore, in the above degradation analysis method, for example, the contribution ratio of polymer degradation and sulfur cross-linking degradation can be calculated by the following (Equation 3).
(Formula 3)
[Polymer degradation degree (%)] / [Sulfur crosslinking degradation degree (%)] = Contribution rate of polymer degradation and sulfur crosslinking degradation
つまり、前述の高分子劣化度を求める方法やイオウ架橋劣化度を求める方法などを用いて高分子とイオウ架橋のそれぞれの劣化度を示す高分子劣化度(%)とイオウ架橋劣化度(%)の比(割合)を求めることにより、いずれの劣化がより進行しているか判別できる。具体的には、上記(式3)において、高分子劣化とイオウ架橋劣化の寄与率>1の場合は高分子劣化の進行の方が大きく、高分子劣化とイオウ架橋劣化の寄与率<1の場合はイオウ架橋劣化の進行の方が大きい、と判断できる。そのため、フリーサルファー除去処理を施したゴム材料に、前記劣化解析方法を採用することにより、従来よりも有効性の高い耐劣化対策が立てられる。 In other words, the degree of polymer degradation (%) and the degree of sulfur crosslinking degradation (%), which indicate the degree of degradation of each polymer and sulfur crosslinking, using the method for obtaining the degree of polymer degradation or the method for obtaining the degree of sulfur crosslinking degradation as described above. By determining the ratio (ratio), it is possible to determine which deterioration is progressing more. Specifically, in the above (Equation 3), when the contribution rate of polymer degradation and sulfur cross-linking degradation> 1, the progress of polymer degradation is larger, and the contribution rate of polymer degradation and sulfur cross-linking degradation <1. In this case, it can be judged that the progress of sulfur cross-linking degradation is larger. For this reason, by adopting the above-described degradation analysis method for the rubber material subjected to the free sulfur removal treatment, a more effective countermeasure against degradation can be established than before.
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.
<実施例、参考例、及び比較例>
(ゴム材料)
以下の配合内容に従い、硫黄及び加硫促進剤以外の材料を充填率が58%になるように(株)神戸製鋼所製の1.7Lバンバリーミキサーに充填し、80rpmで140℃に到達するまで混練した(工程1)。工程1で得られた混練物に、硫黄及び加硫促進剤を以下の配合にて添加し、160℃で20分間加硫することでゴム材料を得た(工程2)。
<Examples , reference examples, and comparative examples>
(Rubber material)
In accordance with the following blending contents, materials other than sulfur and vulcanization accelerator were charged into a 1.7 L Banbury mixer manufactured by Kobe Steel Co., Ltd. so that the filling rate was 58%, and until reaching 140 ° C. at 80 rpm. Kneaded (Step 1). Sulfur and a vulcanization accelerator were added to the kneaded material obtained in step 1 in the following composition, and vulcanized at 160 ° C. for 20 minutes to obtain a rubber material (step 2).
(配合)
天然ゴム50質量部、ブタジエンゴム50質量部、カーボンブラック60質量部、オイル5質量部、老化防止剤2質量部、ワックス2.5質量部、酸化亜鉛3質量部、ステアリン酸2質量部、粉末硫黄1.2質量部、及び加硫促進剤1質量部。
なお、使用材料は以下のとおりである。また、劣化ゴム材料は下記条件で劣化させたものである。
天然ゴム:TSR20
ブタジエンゴム:宇部興産(株)製BR150B
カーボンブラック:キャボットジャパン(株)製のショウブラックN351
オイル:(株)ジャパンエナジー製のプロセスX−140
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−1,3−ジメチルブチル−N’−フェニル−p−フェニレンジアミン)
ワックス:日本精蝋(株)製のオゾエース0355
酸化亜鉛:東邦亜鉛(株)製の銀嶺R
ステアリン酸:日油(株)製の椿
粉末硫黄(5%オイル含有):鶴見化学工業(株)製の5%オイル処理粉末硫黄(オイル分5質量%含む可溶性硫黄)
加硫促進剤:大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド)
(劣化条件)
オゾン劣化:40℃ 50pphm(24時間)
酸素劣化:80℃ 空気中(168時間)
(Combination)
Natural rubber 50 parts by mass, butadiene rubber 50 parts by mass, carbon black 60 parts by mass, oil 5 parts by mass, anti-aging agent 2 parts by mass, wax 2.5 parts by mass, zinc oxide 3 parts by mass, stearic acid 2 parts by mass, powder 1.2 parts by mass of sulfur and 1 part by mass of vulcanization accelerator.
The materials used are as follows. The deteriorated rubber material is deteriorated under the following conditions.
Natural rubber: TSR20
Butadiene rubber: BR150B manufactured by Ube Industries, Ltd.
Carbon Black: Show Black N351 manufactured by Cabot Japan
Oil: Process X-140 manufactured by Japan Energy Co., Ltd.
Anti-aging agent: NOCRACK 6C (N-1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine) manufactured by Ouchi Shinsei Chemical Co., Ltd.
Wax: Ozoace 0355 manufactured by Nippon Seiwa Co., Ltd.
Zinc oxide: Silver candy R made by Toho Zinc Co., Ltd.
Stearic acid: Koji powder sulfur manufactured by NOF Corporation (containing 5% oil): 5% oil-treated powder sulfur manufactured by Tsurumi Chemical Co., Ltd. (soluble sulfur containing 5% by mass of oil)
Vulcanization accelerator: Noxeller CZ (N-cyclohexyl-2-benzothiazylsulfenamide) manufactured by Ouchi Shinsei Chemical Co., Ltd.
(Deterioration conditions)
Ozone degradation: 40 ° C, 50 pphm (24 hours)
Oxygen degradation: 80 ° C in air (168 hours)
作製したゴム材料(新品、劣化品)に表1〜2に記載した前処理を施した後、処理後の各試料について、炭素K殻吸収端近傍におけるNEXAFS測定を実施してNEXAFSスペクトルを得、また、硫黄K殻吸収端近傍におけるXAFS測定を実施してXAFSスペクトルを得、更に、XPS測定を実施してXPSスペクトルを得た。 After the pretreatment described in Tables 1 and 2 was performed on the produced rubber material (new article, deteriorated article), NEXAFS measurement was performed in the vicinity of the carbon K-shell absorption edge for each sample after treatment to obtain a NEXAFS spectrum. Further, XAFS measurement was performed in the vicinity of the sulfur K-shell absorption edge to obtain an XAFS spectrum, and further XPS measurement was performed to obtain an XPS spectrum.
<NEXAFS測定>
NEXAFSを使用して、劣化前後の各試料について、以下の分析の実施により高分子劣化度(%)を測定した。
(使用装置)
NEXAFS:佐賀県立九州シンクロトロン光研究センターのBL12ビームライン付属のNEXAFS測定装置
(測定条件)
輝度:5×1012photons/s/mrad2/mm2/0.1%bw
光子数:2×109photons/s
分光器:回折格子分光器
測定法:電子収量法
<NEXAFS measurement>
Using NEXAFS, the degree of polymer degradation (%) was measured by performing the following analysis for each sample before and after degradation.
(Device used)
NEXAFS: NEXAFS measurement system (measurement conditions) attached to the BL12 beam line at Saga Prefectural Kyushu Synchrotron Light Research Center
Luminance: 5 × 10 12 photons / s / mrad 2 / mm 2 /0.1% bw
Number of photons: 2 × 10 9 photons / s
Spectrometer: Grating spectrometer Measuring method: Electron yield method
(高分子劣化度分析)
X線のエネルギーを260〜400eVの範囲で走査し、炭素原子のK殻吸収端のX線吸収スペクトルを得た。このスペクトルにおいて必要な範囲である260〜350eVの範囲をもとに(式1−1)から規格化定数α、βを算出し、この定数を用いてスペクトルを規格化(補正)した。規格化後のスペクトルを波形分離し、285eV付近のπ*遷移に帰属されるピーク面積をもとに(式1−2)から高分子劣化度(%)を求めた。
(Polymer degradation analysis)
The X-ray energy was scanned in the range of 260 to 400 eV to obtain an X-ray absorption spectrum of the K-shell absorption edge of the carbon atom. Normalization constants α and β were calculated from (Equation 1-1) based on the range of 260 to 350 eV, which is a necessary range in this spectrum, and the spectrum was normalized (corrected) using these constants. The normalized spectrum was separated into waveforms, and the degree of polymer degradation (%) was determined from (Equation 1-2) based on the peak area attributed to the π * transition near 285 eV.
<XAFS測定>
XAFSを使用して、劣化前後の各試料について、以下の分析の実施によりイオウ架橋劣化度(%)を測定した。
(使用装置)
XAFS:SPring−8 BL27SUのBブランチのXAFS測定装置
(測定条件)
輝度:1×1016photons/s/mrad2/mm2/0.1%bw
光子数:5×1010photons/s
分光器:結晶分光器
検出器:SDD(シリコンドリフト検出器)
測定法:蛍光法
<XAFS measurement>
Using XAFS, the degree of sulfur cross-linking deterioration (%) was measured for each sample before and after deterioration by carrying out the following analysis.
(Device used)
XAFS: SPring-8 BL27SU B-branch XAFS measurement system (measurement conditions)
Luminance: 1 × 10 16 photons / s / mrad 2 / mm 2 /0.1% bw
Number of photons: 5 × 10 10 photons / s
Spectrometer: Crystal spectrometer Detector: SDD (silicon drift detector)
Measurement method: Fluorescence method
(イオウ架橋劣化度分析1)
X線のエネルギーを2460〜3200eVの範囲で走査し、硫黄原子のK殻吸収端のX線吸収スペクトルを得た。このスペクトルにおいて必要な範囲である2460〜2500eVの範囲をもとに(式1−3)から規格化定数γ及びδを算出し、この定数を用いてスペクトルを規格化(補正)した。規格化後のスペクトルを波形分離し、2472eV付近のS−S結合に帰属されるピーク面積をもとに(式1−4)からイオウ架橋劣化度(%)を求めた。
(Sulfur crosslinking degradation analysis 1)
The X-ray energy was scanned in the range of 2460 to 3200 eV to obtain an X-ray absorption spectrum of the K-shell absorption edge of the sulfur atom. Normalization constants γ and δ were calculated from (Equation 1-3) based on the range of 2460 to 2500 eV, which is a necessary range in this spectrum, and the spectrum was normalized (corrected) using these constants. The normalized spectrum was subjected to waveform separation, and the sulfur bridge deterioration degree (%) was determined from (Equation 1-4) based on the peak area attributed to the SS bond near 2472 eV.
<XPS測定>
XPSを使用して、劣化後の各試料について、以下の方法1の分析の実施によりイオウ架橋劣化度(%)を測定した。
(使用装置)
XPS:Kratos社製 AXIS Ultra
(測定条件)
測定光源:Al(モノクロメータ)
照射X線のエネルギー:1486eV
測定出力:20kV×10mA
測定元素及び軌道:S2p
束縛エネルギー:163.6eV(S2p1/2)、162.5eV(S2p3/2)
<XPS measurement>
Using XPS, the degree of sulfur cross-linking deterioration (%) was measured for each sample after deterioration by carrying out the analysis of Method 1 below.
(Device used)
XPS: AXIS Ultra manufactured by Kratos
(Measurement condition)
Measurement light source: Al (monochromator)
Irradiation X-ray energy: 1486 eV
Measurement output: 20 kV x 10 mA
Measuring element and orbit: S2p
Binding energy: 163.6 eV (S2p1 / 2), 162.5 eV (S2p3 / 2)
(イオウ架橋劣化度分析2(方法1))
上記の一定エネルギーのX線を照射することによって励起・放出された光電子を分光し、イオウS2pに対応する光電子強度を測定したX線光電子スペクトルを得た。このスペクトルの160〜175eVの範囲について、164eV付近のS−S結合、168eV付近のSOxに対応するピークにそれぞれ波形分離し、得られたイオウ酸化物に帰属されるピーク面積と160〜175eVの範囲のイオウの全ピーク面積を用いて(式2−1)からイオウ架橋劣化度(%)を求めた。
(Sulfur crosslinking degradation analysis 2 (Method 1))
The photoelectrons excited and emitted by irradiating the above-mentioned X-rays having a constant energy were dispersed to obtain an X-ray photoelectron spectrum in which the photoelectron intensity corresponding to the sulfur S2p was measured. In the range of 160 to 175 eV of this spectrum, waveforms are separated into peaks corresponding to S—S bonds near 164 eV and SOx near 168 eV, respectively, and the peak area attributed to the obtained sulfur oxide and the range of 160 to 175 eV The degree of sulfur crosslinking deterioration (%) was determined from (Equation 2-1) using the total peak area of sulfur.
(高分子劣化とイオウ架橋劣化の寄与率分析)
上記の高分子劣化度分析で求められた高分子劣化度、イオウ架橋劣化度分析1又は2で求められたイオウ架橋劣化度の値を(式3)に適用して、高分子劣化とイオウ架橋劣化の寄与率を算出した。
(Contribution analysis of polymer degradation and sulfur crosslinking degradation)
Applying the polymer degradation degree obtained in the above-mentioned polymer degradation degree analysis and the sulfur crosslinking degradation degree obtained in 1 or 2 to (Equation 3), polymer degradation and sulfur crosslinking The contribution rate of deterioration was calculated.
上記の高分子劣化度分析、イオウ架橋劣化度分析1で得られた結果を表1、上記の高分子劣化度分析、イオウ架橋劣化度分析2で得られた結果を表2にそれぞれ示した。 The results obtained in the above-described polymer degradation analysis and sulfur crosslinking degradation analysis 1 are shown in Table 1, and the results obtained in the above-described polymer degradation analysis and sulfur crosslinking degradation analysis 2 are shown in Table 2, respectively.
予めゴム材料中のフリーサルファーを除去した後、NEXAFS、XAFS、XPSなどを用いて表面分析をすることで、高分子劣化だけでなく、イオウ架橋劣化も精度良く測定することが可能となり、本発明の評価法の有効性が立証された。 After removing free sulfur in the rubber material in advance, surface analysis using NEXAFS, XAFS, XPS, etc. makes it possible to accurately measure not only polymer degradation but also sulfur cross-linking degradation. The effectiveness of the evaluation method was proved.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013119929A JP6219607B2 (en) | 2013-06-06 | 2013-06-06 | Chemical state measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013119929A JP6219607B2 (en) | 2013-06-06 | 2013-06-06 | Chemical state measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014238287A JP2014238287A (en) | 2014-12-18 |
JP6219607B2 true JP6219607B2 (en) | 2017-10-25 |
Family
ID=52135552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013119929A Active JP6219607B2 (en) | 2013-06-06 | 2013-06-06 | Chemical state measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6219607B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6657664B2 (en) * | 2015-08-21 | 2020-03-04 | 住友ゴム工業株式会社 | Chemical state measurement method |
JP6649737B2 (en) * | 2015-10-09 | 2020-02-19 | 株式会社住化分析センター | Analysis method of organic matter sample |
JP7289186B2 (en) | 2018-03-14 | 2023-06-09 | 住友ゴム工業株式会社 | Method for Predicting Wear and Fracture Resistance Performance |
JP7175744B2 (en) * | 2018-12-21 | 2022-11-21 | Toyo Tire株式会社 | Sulfur chemical state analysis method |
JP2023141840A (en) | 2022-03-24 | 2023-10-05 | 住友ゴム工業株式会社 | Method for predicting wear resistance performance |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU575708B2 (en) * | 1984-05-25 | 1988-08-04 | Charles H. Simpson | Method for removing pyritic, organic, and elemental sulfur from coal |
US6255412B1 (en) * | 1999-06-29 | 2001-07-03 | Union Carbide Chemicals & Plastics Technology Corporation | Polymerization of a sticky polymer in the presence of a treated carbon black |
JP4172407B2 (en) * | 2004-03-19 | 2008-10-29 | 東海ゴム工業株式会社 | Liquid filled damper |
JP2011141199A (en) * | 2010-01-07 | 2011-07-21 | Univ Of Yamanashi | Sample surface contaminant removal method and device using charged droplet etching |
JP5256332B2 (en) * | 2010-12-16 | 2013-08-07 | 住友ゴム工業株式会社 | Degradation analysis method |
US9851342B2 (en) * | 2011-11-04 | 2017-12-26 | Sumitomo Rubber Industries, Ltd. | Deterioration analyzing method |
-
2013
- 2013-06-06 JP JP2013119929A patent/JP6219607B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014238287A (en) | 2014-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5964850B2 (en) | Degradation analysis method | |
JP5256332B2 (en) | Degradation analysis method | |
JP6219607B2 (en) | Chemical state measurement method | |
JP5486073B1 (en) | Degradation analysis method | |
JP6657664B2 (en) | Chemical state measurement method | |
JP6348295B2 (en) | How to determine the chemical state of sulfur | |
EP2995946A1 (en) | Method of measuring crosslink densities in sulfur-containing polymer composite material | |
JP2017020906A (en) | Method of measuring crosslink density in sulfur-containing polymer composite material | |
JP7289186B2 (en) | Method for Predicting Wear and Fracture Resistance Performance | |
JP6374355B2 (en) | Method for measuring crosslink density in sulfur-containing polymer composites | |
JP6294623B2 (en) | Life prediction method for polymer materials | |
RU2639914C2 (en) | Method for analyzing aging and method of determining chemical state | |
JP6769123B2 (en) | Method for measuring crosslink density | |
JP2015132518A (en) | Method for investigating chemical state of sulfur | |
JP2019045196A (en) | Measuring method of coupling amount of monosulfide bond, coupling amount of disulfide bond, coupling amount of polysulfide bond, and coupling amount of filler interface in polymer composite containing filler and sulfur | |
JP5805043B2 (en) | Degradation analysis method | |
JP6050174B2 (en) | Degradation analysis method | |
JP6371174B2 (en) | How to determine the chemical state of sulfur | |
JP5731467B2 (en) | Chemical state measurement method | |
JP6371109B2 (en) | How to determine the chemical state of sulfur |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170912 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170928 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6219607 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |