JP2015152533A - Method of inspecting chemical state of sulfur - Google Patents

Method of inspecting chemical state of sulfur Download PDF

Info

Publication number
JP2015152533A
JP2015152533A JP2014028811A JP2014028811A JP2015152533A JP 2015152533 A JP2015152533 A JP 2015152533A JP 2014028811 A JP2014028811 A JP 2014028811A JP 2014028811 A JP2014028811 A JP 2014028811A JP 2015152533 A JP2015152533 A JP 2015152533A
Authority
JP
Japan
Prior art keywords
sulfur
rays
ray
chemical state
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014028811A
Other languages
Japanese (ja)
Other versions
JP6348295B2 (en
Inventor
房恵 金子
Fusae Kaneko
房恵 金子
岸本 浩通
Hiromichi Kishimoto
浩通 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2014028811A priority Critical patent/JP6348295B2/en
Publication of JP2015152533A publication Critical patent/JP2015152533A/en
Application granted granted Critical
Publication of JP6348295B2 publication Critical patent/JP6348295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation method for acquiring accurate information of a chemical state of sulfur in various polymer materials such as a polymer material in which sulfur exists nonuniformly.SOLUTION: In the method of inspecting the chemical state of sulfur, X rays of a beam size of vertical 500 μm × horizontal 500 μm or less are radiated to a sulfur-containing polymer material in which sulfur exists nonuniformly, and the X-ray absorbed amount is measured while the energy of the X rays is changed.

Description

本発明は、硫黄が不均一に存在する高分子材料等、各種高分子材料における硫黄の化学状態を調べる方法に関する。 The present invention relates to a method for examining the chemical state of sulfur in various polymer materials such as a polymer material in which sulfur is unevenly present.

イオウ架橋ジエン系ゴムなど、硫黄を含有する高分子材料の劣化による化学状態の変化を評価するために、一般的にSwell(膨潤試験)などの物性試験や赤外分光法(FT−IR)などの方法が用いられている。 In order to evaluate changes in chemical state due to deterioration of polymer materials containing sulfur, such as sulfur-crosslinked diene rubbers, physical property tests such as Swell (swelling test) and infrared spectroscopy (FT-IR) are generally used. The method is used.

Swell試験は、イオウ架橋高分子材料をトルエンなどで膨潤させ、網目鎖密度を求める方法で、全体の変化を見ているため、イオウ架橋部分のみを評価できない。FT−IR法では、C=OやOHなどの官能基の検出は可能であるが、S−S結合の感度が低い。 The Swell test is a method for obtaining a network chain density by swelling a sulfur-crosslinked polymer material with toluene and the like, and since the entire change is observed, only the sulfur-crosslinked portion cannot be evaluated. In the FT-IR method, functional groups such as C═O and OH can be detected, but the sensitivity of the S—S bond is low.

更に特許文献1には、高分子材料に照射したX線の吸収量を測定し、高分子の劣化状態を解析する劣化解析方法として、酸素原子のK殻吸収端の全ピーク面積から、高分子材料に酸素やオゾンなどが結合した量を求める手法が提案されている。しかし、この手法でも、イオウ架橋部分のみを評価することは難しい。 Further, in Patent Document 1, as a degradation analysis method for measuring the amount of X-ray absorption irradiated to a polymer material and analyzing the degradation state of the polymer, a polymer is obtained from the total peak area at the K-shell absorption edge of oxygen atoms. There has been proposed a method for obtaining the amount of oxygen or ozone combined with a material. However, even with this method, it is difficult to evaluate only the sulfur cross-linked portion.

特開2012−141278号公報JP 2012-141278 A

本発明は、前記課題を解決し、硫黄が不均一に存在する高分子材料等、各種高分子材料中の硫黄の化学状態について、精度の高い情報が得られる評価方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide an evaluation method capable of obtaining highly accurate information on the chemical state of sulfur in various polymer materials such as a polymer material in which sulfur is present nonuniformly. To do.

本発明は、硫黄含有高分子材料に、ビームサイズ垂直500μm×水平500μm以下のX線を照射し、X線のエネルギーを変えながらX線吸収量を測定することにより、硫黄の化学状態を調べる方法に関する。 The present invention is a method for investigating a chemical state of sulfur by irradiating a sulfur-containing polymer material with X-rays having a beam size of 500 μm × horizontal 500 μm or less and measuring X-ray absorption while changing the energy of the X-rays. About.

前記硫黄含有高分子材料は、硫黄が不均一に存在するものであることが好ましい。
前記X線を用いて走査するエネルギー範囲を2300〜4000eV及び/又は100〜280eVとすることで、硫黄K殻吸収端付近及び/又は硫黄L殻吸収端付近の硫黄のX線吸収量を測定することが好ましい。
The sulfur-containing polymer material is preferably one in which sulfur is present non-uniformly.
The X-ray absorption near the sulfur K-shell absorption edge and / or the sulfur L-shell absorption edge is measured by setting the energy range scanned using the X-ray to 2300 to 4000 eV and / or 100 to 280 eV. It is preferable.

前記X線は、光子数が10photons/s以上、輝度が1010photons/s/mrad/mm/0.1%bw以上であることが好ましい。 The X-ray preferably has a photon number of 10 7 photons / s or higher and a luminance of 10 10 photons / s / mrad 2 / mm 2 /0.1% bw or higher.

本発明によれば、硫黄含有高分子材料に、ビームサイズ垂直500μm×水平500μm以下のX線を照射し、X線のエネルギーを変えながらX線吸収量を測定することにより、硫黄の化学状態を調べる方法であるので、当該材料中の硫黄の化学状態について、精度の高い情報を得ることが可能となる。 According to the present invention, a sulfur-containing polymer material is irradiated with X-rays having a beam size of 500 μm vertical × 500 μm horizontal, and the X-ray absorption is measured while changing the energy of the X-rays. Since this is a method of examining, it is possible to obtain highly accurate information about the chemical state of sulfur in the material.

硫黄が均一に存在するサンプル全体にX線を照射する状態を示す概略図Schematic showing the state of irradiating X-rays to the entire sample in which sulfur is uniformly present 硫黄が不均一に存在するサンプル全体にX線を照射する状態を示す概略図Schematic showing a state in which X-rays are irradiated to the entire sample in which sulfur is unevenly present 硫黄が均一に存在するサンプル全体にビームサイズが大きいX線を照射する状態を示す概略図Schematic showing a state in which X-rays with a large beam size are irradiated to the entire sample in which sulfur is uniformly present 硫黄が不均一に存在するサンプルの所定箇所にビームサイズが小さいX線を照射する状態を示す概略図Schematic showing a state in which X-rays with a small beam size are irradiated to a predetermined portion of a sample in which sulfur is unevenly present 種々の硫黄濃度の部位におけるX線吸収スペクトル(規格化前)X-ray absorption spectra at various sulfur concentrations (before normalization) 種々の硫黄濃度の部位におけるX線吸収スペクトル(規格化後)X-ray absorption spectra at various sulfur concentrations (after normalization) 異なるビームサイズによるX線吸収スペクトル(規格化後)X-ray absorption spectra with different beam sizes (after normalization) 種々のビームサイズのX線を照射して得られた硫黄K殻吸収端近傍の硫黄架橋ゴムの各XAFSスペクトルXAFS spectra of sulfur-crosslinked rubber near the sulfur K-shell absorption edge obtained by X-ray irradiation with various beam sizes

本発明は、硫黄が不均一に存在する硫黄含有高分子材料等、各種硫黄含有高分子材料に、ビームサイズ垂直500μm×水平500μm以下のX線を照射し、X線のエネルギーを変えながらX線吸収量を測定することにより、硫黄の化学状態を調べる方法である。 The present invention irradiates various sulfur-containing polymer materials such as sulfur-containing polymer materials in which sulfur is present non-uniformly with X-rays having a beam size of 500 μm vertical × 500 μm horizontal or less and changing the energy of the X-rays. This is a method for examining the chemical state of sulfur by measuring the amount of absorption.

硫黄加硫剤等の硫黄含有化合物を用いたゴム材料をはじめとする硫黄を含有する高分子複合材料の化学状態を調べる方法として、硫黄K吸収端におけるXAFS(X−ray Absorption Fine Structure)法等があり、通常XAFS法には、以下のような透過法、蛍光法、電子収量法などが汎用されている。 XAFS (X-ray Absorption Fine Structure) method at the sulfur K absorption edge, etc., as a method for examining the chemical state of sulfur-containing polymer composite materials such as rubber materials using sulfur-containing compounds such as sulfur vulcanizing agents In general, the following transmission method, fluorescence method, electron yield method and the like are widely used as the XAFS method.

(透過法)
試料を透過してきたX線強度を検出する方法である。透過光強度測定には、フォトダイオードアレイ検出器などが用いられる。
(Transmission method)
This is a method for detecting the X-ray intensity transmitted through a sample. For measurement of transmitted light intensity, a photodiode array detector or the like is used.

(蛍光法)
試料にX線を照射した際に発生する蛍光X線を検出する方法である。検出器は、Lytle検出器、半導体検出器などがある。前記透過法の場合、試料中の含有量が少ない元素のX線吸収測定を行うと、シグナルが小さい上に含有量の多い元素のX線吸収によりバックグラウンドが高くなるためS/B比の悪いスペクトルとなる。それに対し蛍光法(特にエネルギー分散型検出器などを用いた場合)では、目的とする元素からの蛍光X線のみを測定することが可能であるため、含有量が多い元素の影響が少ない。そのため、含有量が少ない元素のX線吸収スペクトル測定を行う場合に有効的である。また、蛍光X線は透過力が強い(物質との相互作用が小さい)ため、試料内部で発生した蛍光X線を検出することが可能となる。そのため、本手法は透過法に次いでバルク情報を得る方法として最適である。
(Fluorescence method)
This is a method for detecting fluorescent X-rays generated when a sample is irradiated with X-rays. Examples of the detector include a Lytle detector and a semiconductor detector. In the case of the transmission method, when X-ray absorption measurement of an element having a small content in a sample is performed, the background is increased due to the X-ray absorption of an element having a small content and a large content, so that the S / B ratio is poor. It becomes a spectrum. On the other hand, in the fluorescence method (especially when an energy dispersive detector or the like is used), it is possible to measure only the fluorescent X-rays from the target element, so that the influence of the element having a large content is small. Therefore, it is effective when measuring an X-ray absorption spectrum of an element having a small content. In addition, since fluorescent X-rays have strong penetrating power (low interaction with substances), it is possible to detect fluorescent X-rays generated inside the sample. Therefore, this method is the most suitable method for obtaining bulk information after the transmission method.

(電子収量法)
試料にX線を照射した際に流れる電流を検出する方法である。そのため試料が導電物質である必要がある。また、表面敏感(試料表面の数nm程度の情報)であるという特徴もある。試料にX線を照射すると元素から電子が脱出するが、電子は物質との相互作用が強いため、物質中での平均自由行程が短い。
(Electron yield method)
This is a method for detecting a current flowing when a sample is irradiated with X-rays. Therefore, the sample needs to be a conductive material. In addition, there is a feature that the surface is sensitive (information about several nm on the sample surface). When the sample is irradiated with X-rays, electrons escape from the element, but electrons have a strong interaction with the substance, so that the mean free path in the substance is short.

このように、透過法は、XAFSの基本的な測定方法で、入射光強度と試料を透過したX線強度を検出してX線吸収量を測定する方法であるため、試料のバルク情報が得られ、対象化合物が一定以上の濃度(例えば、数wt%以上)でなければ測定が困難という特徴がある。電子収量法は、表面敏感な方法であり、試料表面の数十nm程度の情報が得られる。一方、蛍光法は、電子収量法に比べて表面からある程度深い部分からの情報が得られるという特徴と、対象化合物濃度が低くても測定できるという特徴がある。 As described above, the transmission method is a basic measurement method of XAFS, and is a method of detecting the incident light intensity and the X-ray intensity transmitted through the sample and measuring the X-ray absorption amount. In other words, it is difficult to measure unless the target compound has a certain concentration (eg, several wt% or more). The electron yield method is a surface-sensitive method, and information on the surface of a sample of about several tens of nanometers can be obtained. On the other hand, the fluorescence method has the characteristics that information from a part deeper than the surface can be obtained compared to the electron yield method, and the measurement can be performed even when the concentration of the target compound is low.

XAFS法は、X線を照射し、狙った原子におけるX線吸収量を測定する方法で、化学状態(結合)の違いによって吸収できるX線エネルギーが異なるので、詳細な化学状態を調べる方法として有効な方法である。しかし、ゴム中の硫黄架橋は、モノスルフィド結合、ジスルフィド結合、ポリスルフィド結合で、硫黄の結合長さが異なり、スペクトルで検出されるピークエネルギーが近い。また、酸化亜鉛の配合によって、硫化亜鉛も生成される。このように、ゴム中の硫黄の化学状態は複雑であるため、硫黄や硫化亜鉛等の他成分が存在しない化合物のXAFSスペクトルと比較すると、ブロードなスペクトルになる。従って、他の成分を含む材料において、高精度な測定をすることは一般に難しい。 The XAFS method is a method to measure the X-ray absorption at the target atom by irradiating X-rays, and the X-ray energy that can be absorbed depends on the difference in chemical state (bonding). It is a simple method. However, sulfur bridges in rubber are monosulfide bonds, disulfide bonds, and polysulfide bonds, and have different sulfur bond lengths and close peak energy detected in the spectrum. Moreover, zinc sulfide is also produced | generated by the mixing | blending of a zinc oxide. Thus, since the chemical state of sulfur in the rubber is complicated, it becomes a broad spectrum when compared with the XAFS spectrum of a compound in which no other component such as sulfur or zinc sulfide exists. Therefore, it is generally difficult to measure with high accuracy in materials containing other components.

XAFS測定は、全てのX線が照射される箇所(ビームサイズ)の平均した吸収量が得られる。そのため、例えば、図1左図のように硫黄が均一に存在する試料の場合、試料を透過する光の強度が均一になる(つまりX線吸収量も均一になる)ため、正しい情報を得ることが可能である。しかし、ゴムをはじめとする高分子複合材料において、硫黄を十分に拡散させることは困難であるため、通常、硫黄は不均一な状態で存在する。従って、一般に、図2左図のように、照射場所によって試料を透過する光の強度が不均一になる(つまりX線吸収量も不均一になる)ため、スペクトルがブロードになる。そして、XAFSスペクトルがブロードになると、各化学状態に対応するピークの分離が難しく、精度の高い情報を得ることが難しい。 In the XAFS measurement, an average amount of absorption at a portion (beam size) irradiated with all X-rays is obtained. Therefore, for example, in the case of a sample in which sulfur is uniformly present as shown in the left diagram of FIG. 1, the intensity of light transmitted through the sample is uniform (that is, the amount of X-ray absorption is uniform), so that correct information can be obtained. Is possible. However, since it is difficult to sufficiently diffuse sulfur in a polymer composite material such as rubber, sulfur usually exists in a non-uniform state. Accordingly, generally, as shown in the left diagram of FIG. 2, the intensity of light transmitted through the sample is nonuniform (that is, the amount of X-ray absorption is also nonuniform) depending on the irradiation location, and the spectrum becomes broad. When the XAFS spectrum becomes broad, it is difficult to separate peaks corresponding to each chemical state, and it is difficult to obtain highly accurate information.

そこで、本発明は、試料に照射されるX線の箇所(ビームサイズ)を小さくすることで、均一な硫黄の化学状態を測定し、精度のよいスペクトルが得られる評価方法である。詳細には、図3のように、ビームサイズが大きいと、硫黄が不均一に存在することに起因して、照射場所によりX線吸収量が異なるものとなり、精度の良いスペクトルを得ることが難しい。これに対し、図4のように、ビームサイズを小さくすると、照射場所が違ってもX線吸収量が同程度になるため、精度の良いスペクトルを得ることができる。 Therefore, the present invention is an evaluation method in which a uniform chemical state of sulfur can be measured and an accurate spectrum can be obtained by reducing the X-ray location (beam size) irradiated on the sample. Specifically, as shown in FIG. 3, when the beam size is large, the amount of X-ray absorption varies depending on the irradiation location due to the non-uniform presence of sulfur, and it is difficult to obtain an accurate spectrum. . On the other hand, as shown in FIG. 4, when the beam size is reduced, the X-ray absorption amount becomes the same even if the irradiation place is different, so that an accurate spectrum can be obtained.

より詳細に説明すると、先ず、透過法の場合、入射X線強度をI0、透過X線強度をIとすると、下記式(1)が成立し、これによれば、μt=μρtが成立することになる。

Figure 2015152533
More specifically, first, in the case of the transmission method, when the incident X-ray intensity is I 0 and the transmitted X-ray intensity is I, the following equation (1) is established. According to this, μt = μ M ρt is It will be established.
Figure 2015152533

そして、図1右図のように硫黄が均一に存在する状態の硫黄濃度を濃度1、図2右図のように硫黄が不均一に存在する状態の硫黄濃度が薄い箇所、濃い箇所の濃度をそれぞれ濃度2、濃度3とする場合、例えば、μ(線吸収係数)と試料厚みt(cm)を乗じたμt(=μρt)<3の関係を満たすことが好ましく、より好ましくはμt<2、更に好ましくは0.5<μt<2、特に好ましくは1<μt<2である。これにより、正確な測定が可能となる。通常のゴム中の硫黄配合量なら、μt<2になり、濃度1、濃度2の箇所はμt<2を満たす一方で、濃度3の箇所は硫黄が分散しておらず、塊で存在するイメージの箇所でμt>2となるため、正確な測定が困難になる。従って、μt=μρt<2になるように測定する元素量(ここでは、硫黄量)を決定すればよい。 Then, the concentration of sulfur in the state where sulfur exists uniformly as shown in the right figure of FIG. 1 is 1, and the concentration of light and dark places where sulfur concentration is unevenly present as shown in the right figure of FIG. each concentration of 2, if the concentration of 3, for example, it is preferable to satisfy the mu (linear absorption coefficient) and the sample thickness t (cm) obtained by multiplying the μt (= μ M ρt) < 3 relationships, more preferably Myuti < 2, more preferably 0.5 <μt <2, particularly preferably 1 <μt <2. Thereby, an accurate measurement becomes possible. If the amount of sulfur contained in normal rubber is μt <2, the locations of concentration 1 and concentration 2 satisfy μt <2, while the concentration 3 portion does not contain sulfur and is present as a lump. Since μt> 2 at this point, accurate measurement becomes difficult. Therefore, the amount of elements (here, the amount of sulfur) to be measured may be determined so that μt = μ M ρt <2.

前記式(1)は、測定する元素が充分均一になっていることを前提として成立するものであるが、ゴム試料などの場合、硫黄を充分に分散させることは難しく、通常、図2のように不均一になっていると考えられる。そのため、ビームサイズが大きいと、下記式(2)となり、後述の図8のビームサイズが垂直1mm×水平2mmのスペクトルのように2470eV付近のピークがつぶれたような形になるので、精度の高い結果が得られない。

Figure 2015152533
なお、蛍光法は、前記式(1)とは少し式が異なるが、通常、式(1)から適切な量を見積もることができる。 The above formula (1) is established on the assumption that the element to be measured is sufficiently uniform. However, in the case of a rubber sample or the like, it is difficult to sufficiently disperse sulfur, and as shown in FIG. It is thought that it is uneven. Therefore, when the beam size is large, the following formula (2) is obtained, and the beam size in FIG. 8 described later has a shape in which the peak near 2470 eV is crushed like a spectrum of vertical 1 mm × horizontal 2 mm, which is highly accurate. The result is not obtained.
Figure 2015152533
The fluorescence method is slightly different from the equation (1), but usually an appropriate amount can be estimated from the equation (1).

具体的には、先ず、濃度1、濃度2、濃度3の各箇所を測定すると、図5のようなX線吸収量(規格化前)が得られ、次いで、特開2012−141278号公報に記載の方法で規格化することで、図6のように、濃度1と濃度2の箇所でほぼ同形状のスペクトルが得られる。このように、硫黄濃度が不均一な試料でも、図4のようにビームサイズを小さくし、濃度2の箇所を照射することにより、濃度1で均一に存在する試料に大きなビームサイズで全体に照射する場合とX線吸収量が同程度になり、正確な測定が可能になる。 Specifically, first, when each location of concentration 1, concentration 2, and concentration 3 is measured, an X-ray absorption amount (before normalization) as shown in FIG. 5 is obtained, and then in Japanese Patent Laid-Open No. 2012-141278. By normalizing by the described method, spectra having almost the same shape can be obtained at locations of concentration 1 and concentration 2 as shown in FIG. In this way, even for a sample with a non-uniform sulfur concentration, the entire sample is irradiated with a large beam size at a concentration 1 by reducing the beam size as shown in FIG. The amount of X-ray absorption is about the same as that of the case, and accurate measurement is possible.

一方、濃度3は硫黄濃度が濃すぎることに起因して、X線吸収量と検出できるシグナルの直線性が失われ、正しく検出されないという現象が起こり、特に2470eV付近のピーク(S−S結合のピーク)は吸収が強すぎて、正しく検出されず、図6のように、スペクトルを規格化した時にピークが小さくなる。これは、S−S結合の割合が小さく検出されていることを意味するため、精度の悪いスペクトルになる。 On the other hand, the concentration 3 is caused by the fact that the sulfur concentration is too high and the linearity of the X-ray absorption amount and the detectable signal is lost, and the phenomenon that the signal is not correctly detected occurs. In particular, the peak around 2470 eV (SS bond) The peak) is too strongly absorbed and is not detected correctly, and the peak becomes smaller when the spectrum is normalized as shown in FIG. This means that the S—S bond ratio is detected to be small, resulting in an inaccurate spectrum.

以上により、硫黄濃度が不均一な試料に対し、図3、図4のように、互いに異なるビームサイズで照射すると、図7に示すとおり、ビームサイズが小さい図4のケースの方が、大きい図3のケースに比べ、精度の良いX線吸収スペクトルが得られる。従って、ビームサイズを小さく調整する本発明の方法によれば、硫黄が不均一に存在する高分子材料であっても、高精度のXAFSスペクトルが得ることが可能となる。 As described above, when a sample having a non-uniform sulfur concentration is irradiated with different beam sizes as shown in FIGS. 3 and 4, the case of FIG. 4 having a smaller beam size is larger as shown in FIG. Compared to the third case, an accurate X-ray absorption spectrum can be obtained. Therefore, according to the method of the present invention in which the beam size is adjusted to be small, it is possible to obtain a highly accurate XAFS spectrum even for a polymer material in which sulfur is present non-uniformly.

本発明の方法に供される硫黄含有高分子材料としては、硫黄を含む高分子材料であれば特に限定されず、例えば、従来公知の硫黄含有ゴム組成物を使用でき、例えば、硫黄加硫剤等の硫黄含有化合物、ゴム成分、他の配合材料を含むゴム組成物などが挙げられる。なお、硫黄含有高分子材料において、硫黄の存在状態は限定されず、不均一に存在するものにも好適に適用可能である。 The sulfur-containing polymer material used in the method of the present invention is not particularly limited as long as it is a polymer material containing sulfur. For example, a conventionally known sulfur-containing rubber composition can be used, for example, a sulfur vulcanizing agent. And rubber compositions containing a sulfur-containing compound, a rubber component, and other compounding materials. In addition, in the sulfur-containing polymer material, the existence state of sulfur is not limited, and the present invention can also be suitably applied to materials that exist non-uniformly.

硫黄含有化合物としては、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄などの硫黄加硫剤等が挙げられる。 Examples of the sulfur-containing compound include sulfur vulcanizing agents such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur.

ゴム成分としては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X−IIR)、スチレンイソプレンブタジエンゴム(SIBR)などのジエン系ゴムなどが挙げられる。また、ゴム成分は、水酸基、アミノ基などの変性基を1つ以上含むものでもよい。 As rubber components, natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), halogenated Examples thereof include diene rubbers such as butyl rubber (X-IIR) and styrene isoprene butadiene rubber (SIBR). The rubber component may contain one or more modifying groups such as hydroxyl groups and amino groups.

更にゴム成分としては、前記ゴム成分と1種類以上の樹脂とが複合された複合材料も使用できる。上記樹脂としては特に限定されず、例えば、ゴム工業分野で汎用されているものが挙げられ、例えば、C5系脂肪族石油樹脂、シクロペンタジエン系石油樹脂などの石油樹脂が挙げられる。 Furthermore, as the rubber component, a composite material in which the rubber component and one or more kinds of resins are combined can also be used. The resin is not particularly limited, and examples thereof include those widely used in the rubber industry field, and examples thereof include petroleum resins such as C5 aliphatic petroleum resins and cyclopentadiene petroleum resins.

硫黄含有高分子材料には、カーボンブラック、シリカなどの充填剤、シランカップリング剤、酸化亜鉛、ステアリン酸、老化防止剤、ワックス、オイル、硫黄以外の加硫剤、加硫促進剤等、従来公知のゴム分野の配合物を適宜配合してもよい。このようなゴム材料(ゴム組成物)は、公知の混練方法などを用いて製造される。このようなゴム材料としては、例えば、タイヤ用ゴム材料(タイヤ用ゴム組成物)などが挙げられる。 Sulfur-containing polymer materials include carbon black, silica and other fillers, silane coupling agents, zinc oxide, stearic acid, anti-aging agents, waxes, oils, vulcanizing agents other than sulfur, vulcanization accelerators, etc. You may mix | blend a well-known compound of the rubber | gum field | area suitably. Such a rubber material (rubber composition) is manufactured using a known kneading method or the like. Examples of such rubber materials include tire rubber materials (tire rubber compositions).

本発明は、硫黄が不均一に硫黄含有高分子材料等、各種硫黄含有高分子材料に、ビームサイズ垂直500μm×水平500μm以下のX線を照射し、X線のエネルギーを変えながらX線吸収量を測定することで、硫黄の化学状態を調べる方法であり、例えば、XAFS(X−ray Absorption Fine Structure:吸収端近傍X線吸収微細構造)測定の実施により、X線吸収量を測定できる。 The present invention irradiates various sulfur-containing polymer materials such as sulfur-containing polymer materials with non-uniform sulfur by irradiating X-rays with a beam size of 500 μm vertical x 500 μm horizontal or less and changing the energy of the X-rays to absorb X-rays. The X-ray absorption amount can be measured, for example, by performing XAFS (X-ray Absorption Fine Structure) measurement.

XAFSは、一般的に、吸収端(吸収が立ち上がるエネルギー)から50eV位までのピークが出現する領域をXANES(X−ray Absorption Near Edge Structure)領域、それよりも高エネルギーの緩やかな振動成分が出現する領域をEXAFS(Extended X−ray Absorption Fine Structure)領域と呼ぶ。 In XAFS, generally, the region where the peak from the absorption edge (energy at which absorption rises) to about 50 eV appears is the XANES (X-ray Absorption Near Edge Structure) region, and a gentle vibration component with higher energy appears. The area to be called is called an EXAFS (Extended X-ray Absorption Fine Structure) area.

XANES領域は、試料に狙った原子の吸収端近傍のX線を照射した際、内殻準位にいた電子が励起状態に遷移するため、狙った原子がどのような原子と結合しているか(化学状態)がわかる。一方、EXAFS領域は、内殻電子が原子核の束縛を離れ、光電子として飛び出す。その際、光電子は波として表わされるため、近くに他の原子がいる場合には、波が干渉して返ってくる。そのため、中心原子の周囲の原子数、原子種、原子間距離等の情報が得られる。一般にXANES領域では、各結合に対応するピークを分離することで、測定した物質において、どの結合がどの程度かを知ることができる。なお、本発明は、XANES領域、EXAFS領域共に有効である。 In the XANES region, when the sample is irradiated with X-rays near the absorption edge of the target atom, electrons in the core level transition to an excited state, so what kind of atom the target atom is bonded to ( Chemical state). On the other hand, in the EXAFS region, inner-shell electrons leave the nucleus and are ejected as photoelectrons. At that time, since photoelectrons are represented as waves, if there are other atoms nearby, the waves interfere and return. Therefore, information such as the number of atoms around the central atom, atomic species, and interatomic distance can be obtained. In general, in the XANES region, by separating the peaks corresponding to each bond, it is possible to know which bond and how much in the measured substance. The present invention is effective for both the XANES region and the EXAFS region.

XAFS法は、X線エネルギーで走査するため光源には連続X線発生装置が必要であり、詳細な化学状態を解析するには高いS/N比及びS/B比のX線吸収スペクトルを測定する必要がある。そのため、シンクロトロンから放射されるX線は、少なくとも1010(photons/s/mrad/mm/0.1%bw)以上の輝度を有し、且つ連続X線源であるため、XAFS測定には最適である。尚、bwはシンクロトロンから放射されるX線のband widthを示す。 Since the XAFS method scans with X-ray energy, the light source requires a continuous X-ray generator, and X-ray absorption spectra with high S / N ratio and S / B ratio are measured to analyze the detailed chemical state. There is a need to. Therefore, the X-ray emitted from the synchrotron has a luminance of at least 10 10 (photons / s / mrad 2 / mm 2 /0.1% bw) or more and is a continuous X-ray source. Ideal for. Note that bw represents the band width of X-rays emitted from the synchrotron.

上記X線の輝度(photons/s/mrad/mm/0.1%bw)は、好ましくは1010以上、より好ましくは1011以上である。上限は特に限定されないが、放射線ダメージがない程度以下のX線強度を用いることが好ましい。 The X-ray luminance (photons / s / mrad 2 / mm 2 /0.1% bw) is preferably 10 10 or more, more preferably 10 11 or more. Although an upper limit is not specifically limited, It is preferable to use the X-ray intensity below the extent that there is no radiation damage.

また、上記X線の光子数(photons/s)は、好ましくは10以上、より好ましくは10以上である。上限は特に限定されないが、放射線ダメージがない程度以下のX線強度を用いることが好ましい。 Further, the number of photons (photons / s) of the X-ray is preferably 10 7 or more, more preferably 10 9 or more. Although an upper limit is not specifically limited, It is preferable to use the X-ray intensity below the extent that there is no radiation damage.

上記X線を用いて走査するエネルギー範囲としては、(1)2300〜4000eV、(2)100〜280eVの範囲が好適である。上記範囲を走査することで、それぞれ、硫黄K殻吸収端付近、硫黄L殻吸収端付近の硫黄のX線吸収量を測定でき、材料中の硫黄の化学状態の情報が得られる。(1)の範囲の場合、より好ましくは2350〜3500eVであり、(2)の範囲の場合、より好ましくは150〜260eVである。 The energy range scanned using the X-ray is preferably (1) 2300 to 4000 eV and (2) 100 to 280 eV. By scanning the above ranges, the X-ray absorption amount of sulfur near the sulfur K shell absorption edge and the sulfur L shell absorption edge can be measured, respectively, and information on the chemical state of sulfur in the material can be obtained. In the case of (1), it is more preferably 2350-3500 eV, and in the case of (2), more preferably 150-260 eV.

本発明は、ビームサイズ垂直500μm×水平500μm以下のX線を照射するものであるが、ビームサイズを小さくして、垂直500μm×水平500μm以下に調整する方法としては、主に下記の2種類がある。
(1)集光ミラーなどで、測定位置のX線のビームを集光する方法
(2)スリットで余分な光をカットすることで、ビームサイズを小さくする方法
The present invention irradiates X-rays with a beam size of 500 μm vertical × 500 μm horizontal, but there are mainly the following two methods for adjusting the beam size to be vertical 500 μm × horizontal 500 μm or less. is there.
(1) A method of condensing the X-ray beam at the measurement position with a condensing mirror, etc. (2) A method of reducing the beam size by cutting excess light with a slit

一般に、集光ミラー等で測定位置のX線のビームを集光することが多いが、ビームサイズが大きいケースもあるので、本発明では、スリットでビームサイズを小さくすることが望ましい。上記ビームサイズは、好ましくは垂直200μm×水平200μm以下、より好ましくは垂直50μm×水平50μm以下である。これにより、架橋の均一な箇所の化学状態を測定でき、精度を向上することが可能となる。なお、この方法は、透過法、蛍光法、電子収量法全てに有効である。 In general, the X-ray beam at the measurement position is often collected by a condensing mirror or the like. However, in some cases, the beam size is large. Therefore, in the present invention, it is desirable to reduce the beam size by a slit. The beam size is preferably vertical 200 μm × horizontal 200 μm or less, more preferably vertical 50 μm × horizontal 50 μm or less. Thereby, it is possible to measure the chemical state of the uniform cross-linked portion and improve the accuracy. This method is effective for all transmission methods, fluorescence methods, and electron yield methods.

以上のとおり、本発明の方法を採用することにより、硫黄が不均一に存在する高分子複合材料であっても、材料中の硫黄化合物の化学状態に関する情報を精度良く得ることが可能となる。 As described above, by adopting the method of the present invention, it is possible to accurately obtain information on the chemical state of the sulfur compound in the material even in a polymer composite material in which sulfur is present non-uniformly.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

<実施例及び比較例>
(ゴム材料)
以下の配合内容に従い、硫黄及び加硫促進剤以外の材料を充填率が58%になるように(株)神戸製鋼所製の1.7Lバンバリーミキサーに充填し、80rpmで140℃に到達するまで混練した(工程1)。工程1で得られた混練物に、硫黄及び加硫促進剤を以下の配合にて添加し、160℃で20分間加硫することでゴム材料を得た(工程2)。
<Examples and Comparative Examples>
(Rubber material)
In accordance with the following blending contents, materials other than sulfur and vulcanization accelerator were charged into a 1.7 L Banbury mixer manufactured by Kobe Steel Co., Ltd. so that the filling rate was 58%, and until reaching 140 ° C. at 80 rpm. Kneaded (Step 1). Sulfur and a vulcanization accelerator were added to the kneaded material obtained in step 1 in the following composition, and vulcanized at 160 ° C. for 20 minutes to obtain a rubber material (step 2).

(配合)
天然ゴム50質量部、ブタジエンゴム50質量部、カーボンブラック60質量部、オイル5質量部、老化防止剤2質量部、ワックス2.5質量部、酸化亜鉛3質量部、ステアリン酸2質量部、粉末硫黄1.2質量部、及び加硫促進剤1質量部。
なお、使用材料は以下のとおりである。
天然ゴム:TSR20
ブタジエンゴム:宇部興産(株)製BR150B
カーボンブラック:キャボットジャパン(株)製のショウブラックN351
オイル:(株)ジャパンエナジー製のプロセスX−140
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−1,3−ジメチルブチル−N’−フェニル−p−フェニレンジアミン)
ワックス:日本精蝋(株)製のオゾエース0355
酸化亜鉛:東邦亜鉛(株)製の銀嶺R
ステアリン酸:日油(株)製の椿
粉末硫黄(5%オイル含有):鶴見化学工業(株)製の5%オイル処理粉末硫黄(オイル分5質量%含む可溶性硫黄)
加硫促進剤:大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド)
(Combination)
Natural rubber 50 parts by mass, butadiene rubber 50 parts by mass, carbon black 60 parts by mass, oil 5 parts by mass, anti-aging agent 2 parts by mass, wax 2.5 parts by mass, zinc oxide 3 parts by mass, stearic acid 2 parts by mass, powder 1.2 parts by mass of sulfur and 1 part by mass of vulcanization accelerator.
The materials used are as follows.
Natural rubber: TSR20
Butadiene rubber: BR150B manufactured by Ube Industries, Ltd.
Carbon Black: Show Black N351 manufactured by Cabot Japan
Oil: Process X-140 manufactured by Japan Energy Co., Ltd.
Anti-aging agent: NOCRACK 6C (N-1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine) manufactured by Ouchi Shinsei Chemical Co., Ltd.
Wax: Ozoace 0355 manufactured by Nippon Seiwa Co., Ltd.
Zinc oxide: Silver candy R made by Toho Zinc Co., Ltd.
Stearic acid: Koji powder sulfur manufactured by NOF Corporation (containing 5% oil): 5% oil-treated powder sulfur manufactured by Tsurumi Chemical Co., Ltd. (soluble sulfur containing 5% by mass of oil)
Vulcanization accelerator: Noxeller CZ (N-cyclohexyl-2-benzothiazylsulfenamide) manufactured by Ouchi Shinsei Chemical Co., Ltd.

作製したゴム材料について、硫黄K殻吸収端近傍におけるXAFS測定を、以下の各種ビームサイズのX線を照射することで実施し、それぞれのXAFSスペクトルを得た。
(1)垂直15μm×水平15μm
(2)垂直100μm×水平100μm
(3)垂直1mm×水平2mm
With respect to the produced rubber material, XAFS measurement in the vicinity of the sulfur K-shell absorption edge was performed by irradiating X-rays having various beam sizes described below, and respective XAFS spectra were obtained.
(1) Vertical 15μm x Horizontal 15μm
(2) Vertical 100 μm x Horizontal 100 μm
(3) Vertical 1mm x Horizontal 2mm

<XAFS測定>
各試料について、XAFSを使用して、X線吸収スペクトルを得た。
(使用装置)
XAFS:SPring−8 BL27SUのBブランチのXAFS測定装置
(測定条件)
輝度:1×1016photons/s/mrad/mm/0.1%bw
光子数:5×1010photons/s
分光器:結晶分光器
検出器:SDD(シリコンドリフト検出器)
測定法:蛍光法
エネルギー範囲:2360〜3500eV
<XAFS measurement>
For each sample, an X-ray absorption spectrum was obtained using XAFS.
(Device used)
XAFS: SPring-8 BL27SU B-branch XAFS measurement system (measurement conditions)
Luminance: 1 × 10 16 photons / s / mrad 2 / mm 2 /0.1% bw
Number of photons: 5 × 10 10 photons / s
Spectrometer: Crystal spectrometer Detector: SDD (silicon drift detector)
Measurement method: Fluorescence method Energy range: 2360-3500 eV

図8に示されているように、2471eV、2478eV、2480eVに硫黄の化学状態を示すピークが観測されているが、ビームサイズが大きいほど、ピークが小さくブロードになっていることが明らかとなった。これは、測定するエリアが大きく、架橋の不均一な部分を含んでしまったためである。以上より、ビームサイズを小さくすることで、精度良く測定できることが判明し、本発明の評価法の有効性が立証された。 As shown in FIG. 8, peaks indicating the chemical state of sulfur were observed at 2471 eV, 2478 eV, and 2480 eV, but it became clear that the peak was smaller and broader as the beam size was larger. . This is because the area to be measured is large and includes a non-uniform portion of cross-linking. From the above, it has been found that the beam size can be reduced so that it can be measured with high accuracy, and the effectiveness of the evaluation method of the present invention has been proved.

Claims (4)

硫黄含有高分子材料に、ビームサイズ垂直500μm×水平500μm以下のX線を照射し、X線のエネルギーを変えながらX線吸収量を測定することにより、硫黄の化学状態を調べる方法。 A method for examining the chemical state of sulfur by irradiating a sulfur-containing polymer material with X-rays having a beam size of 500 μm vertical × 500 μm horizontal and measuring the X-ray absorption while changing the energy of the X-rays. 硫黄含有高分子材料は、硫黄が不均一に存在するものである請求項1記載の硫黄の化学状態を調べる方法。 The method for investigating the chemical state of sulfur according to claim 1, wherein the sulfur-containing polymer material contains sulfur nonuniformly. X線を用いて走査するエネルギー範囲を2300〜4000eV及び/又は100〜280eVとすることで、硫黄K殻吸収端付近及び/又は硫黄L殻吸収端付近の硫黄のX線吸収量を測定する請求項1又は2記載の硫黄の化学状態を調べる方法。 Claims for measuring the X-ray absorption of sulfur near the sulfur K-shell absorption edge and / or sulfur L-shell absorption edge by setting the energy range scanned using X-rays to 2300 to 4000 eV and / or 100 to 280 eV. Item 3. A method for examining the chemical state of sulfur according to item 1 or 2. X線は、光子数が10photons/s以上、輝度が1010photons/s/mrad/mm/0.1%bw以上である請求項1〜3のいずれかに記載の硫黄の化学状態を調べる方法。 The X-ray has a photon number of 10 7 photons / s or more and a luminance of 10 10 photons / s / mrad 2 / mm 2 /0.1% bw or more. How to check the status.
JP2014028811A 2014-02-18 2014-02-18 How to determine the chemical state of sulfur Active JP6348295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014028811A JP6348295B2 (en) 2014-02-18 2014-02-18 How to determine the chemical state of sulfur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014028811A JP6348295B2 (en) 2014-02-18 2014-02-18 How to determine the chemical state of sulfur

Publications (2)

Publication Number Publication Date
JP2015152533A true JP2015152533A (en) 2015-08-24
JP6348295B2 JP6348295B2 (en) 2018-06-27

Family

ID=53894930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014028811A Active JP6348295B2 (en) 2014-02-18 2014-02-18 How to determine the chemical state of sulfur

Country Status (1)

Country Link
JP (1) JP6348295B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198548A (en) * 2016-04-27 2017-11-02 東洋ゴム工業株式会社 Analysis method for sulfur crosslinking form of polymeric material
JP2017201252A (en) * 2016-05-02 2017-11-09 住友ゴム工業株式会社 Vulcanization material analysis method
JP2017219476A (en) * 2016-06-09 2017-12-14 住友ゴム工業株式会社 Method for measuring crosslinking density
JP2018096905A (en) * 2016-12-15 2018-06-21 住友ゴム工業株式会社 Abrasion proof performance prediction method
JP2020101456A (en) * 2018-12-21 2020-07-02 Toyo Tire株式会社 Acquisition method of x-ray absorption spectrum, and creation method of calibration curve
JP2020101454A (en) * 2018-12-21 2020-07-02 Toyo Tire株式会社 Method for analyzing sulfur crosslinked structure of high polymer material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214162A (en) * 2001-01-16 2002-07-31 Tanaka Scientific Ltd Percentage content measuring method and device using x-ray absorbing end
JP2003221466A (en) * 2002-01-29 2003-08-05 Sumitomo Rubber Ind Ltd Rubber for tire tread
US20120321039A1 (en) * 2011-06-17 2012-12-20 Uop Llc Solid material characterization with x-ray spectra in both transmission and fluoresence modes
WO2013065809A1 (en) * 2011-11-04 2013-05-10 住友ゴム工業株式会社 Deterioration analyzing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214162A (en) * 2001-01-16 2002-07-31 Tanaka Scientific Ltd Percentage content measuring method and device using x-ray absorbing end
JP2003221466A (en) * 2002-01-29 2003-08-05 Sumitomo Rubber Ind Ltd Rubber for tire tread
US20120321039A1 (en) * 2011-06-17 2012-12-20 Uop Llc Solid material characterization with x-ray spectra in both transmission and fluoresence modes
WO2013065809A1 (en) * 2011-11-04 2013-05-10 住友ゴム工業株式会社 Deterioration analyzing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANWISA PATTANASIRIWISAWA, JARUWAN SIRITAPETAWEE, ORASA PATARAPAIBOOLCHAI AND WANTANA KLYSUBUN: ""Structural analysis of sulfur in natural rubber using X-ray absorption near-edge spectroscopy"", JOURNAL OF SYNCHROTRON RADIATION, vol. 15, no. 5, JPN6014003751, September 2008 (2008-09-01), GB, pages 510 - 513, XP055239045, ISSN: 0003664667, DOI: 10.1107/S0909049508015173 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198548A (en) * 2016-04-27 2017-11-02 東洋ゴム工業株式会社 Analysis method for sulfur crosslinking form of polymeric material
JP2017201252A (en) * 2016-05-02 2017-11-09 住友ゴム工業株式会社 Vulcanization material analysis method
JP2017219476A (en) * 2016-06-09 2017-12-14 住友ゴム工業株式会社 Method for measuring crosslinking density
JP2018096905A (en) * 2016-12-15 2018-06-21 住友ゴム工業株式会社 Abrasion proof performance prediction method
JP2020101456A (en) * 2018-12-21 2020-07-02 Toyo Tire株式会社 Acquisition method of x-ray absorption spectrum, and creation method of calibration curve
JP2020101454A (en) * 2018-12-21 2020-07-02 Toyo Tire株式会社 Method for analyzing sulfur crosslinked structure of high polymer material
JP7139238B2 (en) 2018-12-21 2022-09-20 Toyo Tire株式会社 Sulfur cross-link structure analysis method for polymeric materials
JP7275461B2 (en) 2018-12-21 2023-05-18 Toyo Tire株式会社 Method for obtaining X-ray absorption spectrum and method for creating calibration curve

Also Published As

Publication number Publication date
JP6348295B2 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
JP6348295B2 (en) How to determine the chemical state of sulfur
JP6657664B2 (en) Chemical state measurement method
JP6544098B2 (en) Method of measuring crosslink density in sulfur-containing polymer composites
JP5486073B1 (en) Degradation analysis method
JP6219607B2 (en) Chemical state measurement method
US9874530B2 (en) Method of measuring crosslink densities in sulfur-containing polymer composite material
JP6374355B2 (en) Method for measuring crosslink density in sulfur-containing polymer composites
US10794893B2 (en) Method for estimating abrasion resistance and fracture resistance
JP6769123B2 (en) Method for measuring crosslink density
JP2015132518A (en) Method for investigating chemical state of sulfur
JP6294623B2 (en) Life prediction method for polymer materials
JP2019045196A (en) Measuring method of coupling amount of monosulfide bond, coupling amount of disulfide bond, coupling amount of polysulfide bond, and coupling amount of filler interface in polymer composite containing filler and sulfur
JP7167546B2 (en) Crosslinked structure visualization method
JP2019078670A (en) Method for analyzing sulfur crosslinked structure of high polymer material
JP2018179643A (en) Method for evaluating dispersion of silica aggregate
JP5805043B2 (en) Degradation analysis method
JP6371174B2 (en) How to determine the chemical state of sulfur
JP6822160B2 (en) Evaluation method for sheet scraping of polymer composite materials
JP2019078669A (en) Method for analyzing sulfur crosslinked structure of high polymer material
JP6371109B2 (en) How to determine the chemical state of sulfur
JP7163242B2 (en) Sulfur cross-linking density evaluation method for polymeric materials
US20230324315A1 (en) Method for estimating abrasion resistance
JP7069874B2 (en) How to predict changes in wear resistance and fracture resistance
JP6050174B2 (en) Degradation analysis method
JP5814277B2 (en) Fracture energy prediction method and rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180531

R150 Certificate of patent or registration of utility model

Ref document number: 6348295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250